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Abstract

We present BioGraph, a data integration and data mining platform for the exploration and discovery of biomedical
information. The platform offers prioritizations of putative disease genes, supported by functional hypotheses. We
show that BioGraph can retrospectively confirm recently discovered disease genes and identify potential
susceptibility genes, outperforming existing technologies, without requiring prior domain knowledge. Additionally,
BioGraph allows for generic biomedical applications beyond gene discovery. BioGraph is accessible at http://www.
biograph.be.

Rationale
High-throughput methods for large scale and genome-
wide identification of disease-related genes often result
in large sets of potential targets requiring expensive and
arduous experimental validation [1]. For the high-
throughput discovery of genes associated with disease
(further referred to as ‘disease genes’), it is necessary to
identify functionally interesting research targets among
large sets of candidates. The latter often requires a thor-
ough understanding of possibly indirect functional rela-
tions between the research subject and its putative
targets. However, one of the most common problems
facing biomedical researchers today is finding or keeping
up with the knowledge relevant to research interests in
the shear amount of available literature and data. Espe-
cially when required information is functionally only
indirectly connected to a researcher’s main field of inter-
est, the data deluge becomes unmanageable.
Based on the availability of large volumes of curated

biomedical databases, various methods for gene prioriti-
zation have emerged in recent years [2]. These compu-
tational technologies rank putative disease genes with
the goal of identifying true disease genes as prominent
genes in the ranking. Computational technologies are
complementary to conventional ‘wet lab’ gene discovery
technologies in that they can support the prioritization
and comprehension of, for example, associated regions

from genome wide association studies or linkage studies,
allowing researchers to more efficiently select the most
compelling variants for further study. A common priori-
tization approach is the identification of potential causa-
tive genes that complement sets of known genes
associated with disease, utilizing genetic interaction net-
works, regulatory networks or high-throughput datasets
[3-5]. The statistical fusion of prioritizations from multi-
ple, heterogeneous resources allows for ranking by
incorporating diverse types of knowledge [6,7]. Alterna-
tively, literature mining is a related research theme that
employs natural language processing to extract biomedi-
cal information from the literature and to adopt this
information for the discovery of new knowledge [8].
Prioritization platforms commonly lack an easily

accessible user interface for the formulation of queries
and the intelligible interpretation of the results. One
common problem is that most of the data mining plat-
forms are supervised, that is, they require prior domain
knowledge from the user. For example, in disease gene
prioritization techniques, it is commonly required to
define a set of known disease genes on which the system
can be trained for the identification of new genes. Since
these training gene sets are subjective, they will conse-
quently vary between users and outcomes are strongly
dependent on them, and the robustness of the predic-
tions becomes impaired. These platforms offer rankings
of possible susceptibility genes, but often lack compre-
hensible support for these prioritizations. Often, rank-
ings of research targets are offered without references to
the literature, inhibiting the user from evaluating the
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rationale behind the predictions. Still, platforms that
offer rationale and incentives for researching functional
support are mostly limited to a specific domain of inter-
actions. A common paradigm, for example, is to adopt
protein or gene interaction networks for the construc-
tion of functional hypotheses, which excludes alternative
functional explanations in support of the predictions.
Here, we propose BioGraph, a user-friendly computa-
tional platform that strives to overcome such deficien-
cies by applying novel data mining techniques on
integrated databases of diverse types of biomedical
knowledge.
Summarized, BioGraph provides an online resource

and data mining method for the automated inference of
functional hypotheses between biomedical entities.
Assessment of these hypotheses can consequently be
used for the ranking of targets in the context of a
research domain, such as a disease. BioGraph’s resource
is a knowledge base that integrates many biomedical
databases into a common network of heterogeneous
relations. These databases are selected based on their
practices of manual curation by experts, guaranteeing
that the integrated knowledge is accurate and valid. Our
methodology generates a map of relations linking bio-
medical research subjects to potential targets, such as
diseases, genes, ontology annotations, pathways, and so
on, and offers literature support for these putative func-
tional hypotheses. Assessment of these hypotheses’ plau-
sibility and specificity to source and targets allows for

various applications in the identification of promising
research targets. Here, we focus on the genome-wide
identification of susceptibility genes for heritable disor-
ders. The overall framework of BioGraph’s methodology
is schematically represented in Figure 1.

Methods and principles
Integration of heterogeneous knowledge sources
BioGraph is based on the data integration of 21 publicly
available curated databases containing biomedical rela-
tions (Table 1; Additional materials and methods in
Additional file 1) between heterogeneous biomedical
entities such as genes, diseases, compounds, pathways,
ontology terms, protein domains, disease and gene
families, and microRNAs.
The integrated databases were selected based on their

quality of relations with respect to curation methods
and peer-reviewed references to the literature. Curated
database producers employ domain experts to read and
extract proven knowledge from the peer-reviewed scien-
tific literature. Such processes of indexing, albeit time-
consuming, ensure that the collected knowledge is accu-
rate and complete, allowing for the successive establish-
ment of new relations, for example, with BioGraph or
related prioritization algorithms. We did not integrate
databases constructed from high-throughput experi-
ments with statistical or computational inferences where
no manual curation of the indexed relations was per-
formed. Such databases may include information of

Figure 1 Schematic representation of the data integration and data mining methodology. (a) Public databases with heterogeneous
biomedical relations are integrated into a common network. (b) Illustratively, genes (green circles), diseases (red boxes) and protein domains
(blue diamonds) are related through gene-disease associations, gene-gene interactions and gene-domain annotations and integrated into a
unified graph. (c) The a priori accessibility of each concept is computed by performing stochastic random walks to detect highly connected
hubs in the network (area of a node scales with its rank score). (d) The a posteriori rank of each concept with respect to a source concept, in
this case disease A, is computed by performing random walks with restarts in the source. (e) The posterior probabilities are adjusted using the
prior probabilities to score the importance of each concept, specific to the source target (area of node scales with log of rank score). Genes
(green circles) are ranked according to this score, gene 1 being most specific to disease A and gene 8 least specific.
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lower quality and consequently impair the predictive
quality of consecutive data mining. We provide an
assessment of each database’s quality in the Results
section.
The integrated databases in BioGraph consist of three

types. (1) Curated databases (for example, Online Men-
delian Inheritance in Man (OMIM) and various protein-
protein interaction databases) constructed by manual
extraction of published, peer-reviewed information
about a specific type of information, guaranteeing the
quality of the relations in these databases. (2) Curated
ontology databases (for example, Gene Ontology (GO)
and Medical Subject Headings) using hierarchical classi-
fications of subjects. (3) Curated annotation databases
(for example, GO Annotations (GOA) and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathway data-
base) that relate biomedical entities or concepts to
ontology terms.
With regard to the integration of diverse databases

with diverse identifiers for the concepts, each concept is
provided with a distinct accession number, based on the
Unified Medical Language System (UMLS) [9], to

guarantee each concept’s uniqueness. It should be noted
that some of the integrated concepts (especially micro-
RNAs and pathways) are underrepresented in UMLS. In
these cases, we have extended the index of UMLS iden-
tifiers by these concepts’ originating identifiers (for
example, by adopting miRBase and KEGG pathway
accession numbers). Relations between concepts are
extracted from the knowledge resources, represented in
a common format, annotated with semantic relation
types (denoting the meaning of the relations, for exam-
ple, ‘protein interaction’ or ‘disease drug’) and references
to supporting literature, as provided by the integrated
databases. All relations in the network are equally
weighed independent of their support in the databases
or the literature. We have experimented with weighing
relations differently, dependent on the quality of the
resource database, semantic type or references in the lit-
erature, but have not noticed a significant effect of such
weights on test benchmarks, as discussed later. To sani-
tize the resulting network for the subsequent data
mining algorithms, disconnected concepts from the lar-
gest connected network are removed and dangling

Table 1 Integrated databases

Database Concept 1 Relation Concept 2 Literature
references

Number of
relations

BioGRID [25] Gene/protein PPI Gene/protein Yes 29,566

CTD [26] Compound Association Gene/protein Yes 62,336

Compound Association Disease Yes 5,438

Gene/protein Association Disease Yes 8,123

DIP [27] Gene/protein PPI Gene/protein Yes 1,524

GOA [28] Gene/protein Annotation Gene Ontology term No 26,949

HPRD [29] Gene/protein PPI Gene/protein Yes 149,036

IntAct [30] Gene/protein PPI Gene/protein Yes 37,258

InterPro [31] Gene/protein Contains Protein domain/repeat/
region

No 26,652

Gene/protein Is member of Gene family No 22,988

Gene/gene family/protein domain/
repeat/region

Annotation Gene Ontology term No 18,446

KEGG [32] Gene/protein Is part of Pathway No 14,100

Gene/protein Has
metabolite

Compound No 19,073

MeSH [33] Disease Belongs to Disease (family) No 21,282

MINT [34] Gene/protein PPI Gene/protein Yes 11,389

miR2Disease [35] MicroRNA Targets Gene Yes 2,615

MicroRNA Association Disease Yes 344

NetworKIN [36] Gene/protein Phosphorylates Gene/protein No 2,811

OMIM Morbid Map
[11]

Gene/protein Association Disease Yes 6,199

OMIM [11] Disease Is related to Disease Yes 2,467

TarBase [37] MicroRNA Targets Gene No 858

Overview of the 21 publicly available curated databases used to create BioGraph’s heterogeneous knowledge base. Specific concept types were extracted from
the various databases and integrated into a central graph. Note that these represent relations selected for Homo sapiens only. OMIM’s disease-disease relations
have been added after the data freeze of March 2010. CTD, Comparative Toxicogenomics Database; DIP, Database of Interacting Proteins; GOA, Gene Ontology
Annotations; HPRD, Human Protein Reference Database; KEGG, Kyoto Encyclopedia of Genes and Genomes; MeSH, Medical Subject Headings; MINT, Molecular
Interactions Database; OMIM, Online Mendelian Inheritance in Man; PPI, protein-protein interaction.
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concepts (that is, concepts connected to only one other
concept) are pruned. As a result, the integrated network
comprises 54,567 biomedical entities representing
unique biomedical concepts and 425,353 unique rela-
tions among these entities, supported by 244,258 refer-
ences to 52,866 items from the biomedical literature.
The integrated network is frequently updated with
updates of its dependent resources and the list of inte-
grated databases may be appended with additional
resources.

Prioritization principle
Provided with the integrated network, one can intui-
tively conjecture that nearby concepts in the integrated
network are related. Indeed, since functionally related
concepts are connected in the graph, we may assume
that concepts that are close but only indirectly related
in the network may also be functionally related in the
real world. However, empirical analysis of the network
shows that most of the concepts in the network are
interconnected in only a few steps. This indicates that
the network shows so-called small-world properties.
Indeed, there is a considerable abundance of highly con-
nected nodes. For example, interactions of proteins with
water and ATP compounds or functional annotations
such as the location of a protein in membranes or pro-
tein binding are prevalent. These unspecific hubs serve
as ubiquitous connections mediating short path lengths
between functionally unrelated concepts. This character-
istic of the network prevents successful prioritization
using simple shortest path methods. Still, our prioritiza-
tion technique relies on the detection of nearby con-
cepts in the network with respect to a source concept,
but we correct the ranking of concepts for their global
accessibility in the network.
We provide a short technical summary of the methods

here, but refer the interested user to the full implemen-
tation details in the Additional materials and methods
in Additional file 1. We utilize stochastic random walks
(trajectories on the network that consist of taking suc-
cessive steps from one entity to a random related entity)
on the knowledge network to measure the a priori
importance or accessibility of concepts in a graph. This
technique determines the global centrality of concepts
in our integrated network. For this purpose, we compute
the limit distribution that yields the probability of visit-
ing the concepts when performing an infinite random
walk on the integrated network. Google’s PageRank
algorithm [10] adopts a similar link analysis algorithm
to rank web pages by their relative importance. Network
hubs (top ranked concepts with a high prior probability)
are generic and unspecific target concepts in the net-
work (Additional Table 1 in Additional file 1). These
hubs indicate important concepts for diverse biomedical

processes, but should be avoided when trying to find
relevant and non-obvious links between seemingly unre-
lated concepts.
For computing the vicinity of targets to a source con-

cept in similarity to the prior probabilities, we compute
the limit distribution of a stochastic model of random
walks with restarts in the source concept (with probabil-
ity 0.25 at each step). As such, we compute the a poster-
iori accessibility of each concept from the source
concept, measuring the probability of visiting each target
concept from the source disease, pathway, and so on.
Concepts are scored by their posterior probability,
divided by the square root of their respective prior prob-
abilities and ranked with respect to this resulting score.
In practice, for a gene prioritization query, a user of the
web application provides a ‘research subject’ (for exam-
ple, a disease, but also a pathway, a GO annotation or a
gene may represent a research subject) and a list of
‘research targets’ (for example, putative genes or com-
pounds) that need to be ranked in relation to the
research subject. Our algorithm then assesses and ranks
the relations between the source concept and each of
the target concepts as above. Since any type of concept
can be provided as the subject or target of a prioritiza-
tion, our method does not require prior domain knowl-
edge from the user, that is, there is no need to define a
gene set of known disease-causing genes for the identifi-
cation of related genes, which results in a more repro-
ducible and robust user experience.

Automated generation of functional hypotheses
The method of performing random walks to determine
the accessibility of target concepts implicitly generates
ensembles of indirect paths between source and target
concepts, which may serve as functional hypotheses for
highly ranking targets. We can heuristically determine
highly probable simple paths, that is, paths that do not
contain cycles, of the random walk that starts in the
source concept and ends in the target concept by adopt-
ing backtracking (Figure 2). The backtracking heuristic
incrementally builds partial candidate paths, starting
from the target to the source, while abandoning least
likely paths along the way, leading to valid and specific
paths that offer incentives for further functional
research. A detailed description of the heuristic is avail-
able in the Additional materials and methods in Addi-
tional file 1.
The resulting set of paths is presented to the user as a

network with putative hypotheses linking the source to
the target. Each directed edge represents a supporting
relation among intermediate concepts, with annotated
semantic meanings and literature references intelligibly
supporting the relation for evaluation by the user. In
cases where the target is highly ranked, specific and
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relevant connections and concepts are included in the
constructed hypotheses. If the functional hypotheses
linking concepts is limited to visiting general hub con-
cepts, this is usually a sign that the linked source and
target concepts can be considered unrelated, reflected
by a bad ranking score.

Results
In order to assess the quality of BioGraph in prioritizing
interesting research targets, we study its application in the
identification of genes known to be associated with dis-
ease. Test sets of proven disease-related genes were
selected from the OMIM Morbid Map database and Com-
parative Toxicogenomics Database (CTD). OMIM Morbid
Map contains several thousand diseases and disease genes
with a proven underlying molecular basis, manually
selected and indexed from the peer-reviewed medical lit-
erature by experts [11]. Similar to the curation process for
OMIM Morbid Map, the CTD employs professional bio-
curators who read and manually curate the literature to
derive proven relations among genotypes and phenotypes,
ensuring that the indexed data are valid and accurate.
We have adopted the BioGraph framework to priori-

tize all human genes in the context of diseases selected

from these databases and evaluate the positions of the
diseases’ proven susceptibility genes in this ranking. We
then compute sensitivity and specificity values and
observe the area under the receiver operator characteris-
tic (ROC) curve (AUC) as the standard performance
measure for analyzing the quality of prioritizations or
classifications [12]. A perfect ranking algorithm that
manages to put the true disease genes at the top would
score 100% on such a test, where random rankings
score 50%. Provided with a reliable and valid AUC mea-
sure, it can be interpreted as the probability that when
we randomly pick one positive and one negative exam-
ple, the prioritization algorithm will assign a higher rank
to the positive example than to the negative. An algo-
rithm that scores well on this assessment is thus likely
to identify disease-associated genes as high-ranking
genes and vice versa.

Disease-gene prioritization benchmark
As a first application, we analyzed the performance of
our platform in prioritizing known disease genes among
all genes in our integrated knowledge base. For testing a
known disease-gene association, we first removed the
link between the disease and its susceptibility gene from

Figure 2 Schematic representation of the backtracking heuristic to find most probable paths from a source concept s to a target t. (a)
Assume a network with source and target concepts. For clarity, the nodes are ordered by their accessibility from s (leftmost nodes are most
accessible, rightmost nodes least accessible). (b) As a first step in the backtracking process, we find the neighbors of the target t, leading in the
direction of the source, that is, the neighbors of t with highest accessibility with respect to s. (c) The paths from the target are repeatedly
expanded to include highly accessible nodes leading toward the source concept. Pruning of least probable paths keeps the growing set of
paths to a workable size (not shown). (d) Most probable paths that arrive in the source (continuous lines) are considered as functional
hypotheses linking the target to the source concept. Unfinished paths (dashed paths) continue being expanded until k paths between s and t
have been found.
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the knowledge base. We then ranked all genes in the
network in relation to the disease and evaluated the
ranking of the test gene. If the test genes ranked high,
BioGraph allows retrieval of these genes as valid disease
genes based on integrated information linking the dis-
ease to its susceptibility gene. For this test, we adopted
published benchmarks and compared our prediction
performance to that of Endeavour.
Endeavour is a related and mature technology for gene

prioritization [6], which adopts a data fusion method to
build statistical models of known disease-causing genes
with respect to various data sets. Using order statistics,
genes are prioritized by measuring the matching quality
of test genes to these training profiles.
We have computed the performance of BioGraph’s

prioritization method for the disease-gene prioritization
benchmark initially published to evaluate the perfor-
mance of Endeavour. This benchmark consists of 627
genes known to cause 29 diseases, selected from the
OMIM database, of which 609 disease genes are present
in our integrated knowledge base [6].
Benchmarking a disease gene with BioGraph requires

that each disease gene is evaluated by first removing the
direct relations between the gene and the disease from
the integrated network to ensure that the relation to be
prioritized is not already in the network. Moreover, var-
iants of the disease (for example, subtypes or syndromes
that have the disease as one of its symptoms) are also
disconnected from the disease gene. In order to identify
these related diseases, we have selected the diseases for
which at least one of its UMLS synonyms has the origi-
nal disease’s name as its substring. For example, we
identify Charcot-Marie-Tooth disease, type 4C as a
related disease to Charcot-Marie-Tooth or Alport’s dis-
ease as related to Deafness, since a synonym of Alport’s
disease is Nephritis with nerve deafness. This method
provides an objective interpretation of the benchmark
by guaranteeing that no prior direct information can be
exploited by our prioritization algorithm. Subsequently,
for the prioritization of a disease gene, we perform a
ranking of the integrated network’s 16,912 known
human genes with respect to the disease concept.
For benchmarking Endeavour, each disease-gene

relation was tested by removing the gene from the dis-
ease’s known gene set, by training Endeavour on the
remaining disease genes and by ranking the gene
among a set of 99 random test genes. For both plat-
forms, we adopt the AUC for analyzing the quality of
these prioritizations.
The mean AUC for BioGraph’s prioritization of dis-

ease genes among all human genes is 92.92%, where the
reported AUC for Endeavour in prioritizing disease
genes among 99 random genes is 86.6% [6]. Additional
Table 2 in Additional file 1 lists the AUC scores for the

prioritization results per disease. Of the 609 disease
genes in the benchmark, 181 prioritizations (29.72%) are
ranked in the top 1% of the test set of all genes and 449
(73.73%) are ranked in the top 10%. In other words, in
an experimental application where a causative gene is
among a set of 99 random genes, BioGraph is conse-
quently expected to rank the defecting gene as the top
gene in 29.72% of the cases and in the top 10 with prob-
ability 73.73%.
The benchmark indicates that our prioritization

approach yields a considerable improvement over
mature technologies. There are two noteworthy differ-
ences in the experimental benchmarking design. Our
platform does not require a training set of known dis-
ease-causing genes since it will implicitly base prioritiza-
tions on integrated disease-gene associations in addition
to other heterogeneous types of integrated knowledge of
the disease. This has a major advantage for the user
since no prior knowledge of the disease is required. Sec-
ondly, our platform provides a ranking of the disease
gene in relation to all known genes, where Endeavour
ranks disease genes among a random set of 99 non-dis-
ease genes.
As a quality control of the integrated databases, we

have assessed the effect of each database on the bench-
marking results by leaving out one database at a time
and by assessing the prioritization algorithm on the
Endeavour benchmark. This experiment showed that
none of the included databases significantly harms the
overall prediction capabilities. Conversely, it should be
noted that some databases (most specifically CTD gene-
disease, GOA and Medical Subject Headings) are essen-
tial for successful prioritization, since leaving out these
databases has a significantly negative impact on the
benchmarks. More information on these quality checks
is available in the Additional materials and methods in
Additional file 1.

Ranking recently discovered disease genes
In the above benchmark tests, well-known disease genes
are expected to rank high. Indeed, important susceptibil-
ity genes usually become the subject of intensive
research efforts. Consequently, a literature and database
bias may exist toward indirect evidence linking a gene
to a disease in the integrated databases. Since BioGraph
is capable of using this indirect evidence, the literature
bias of important disease genes may strengthen the pre-
dictive power of our algorithm. To remove this bias, we
can more objectively evaluate the platform by ranking
recently discovered disease-gene relations that are not
present in the knowledge base.
Provided with the integrated network for which the

resource datasets were frozen in March 2010, we identi-
fied all recently curated additions of human disease-
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gene relations from the July 2010 releases of the OMIM
Morbid Map (15 new disease genes) and CTD (830
direct, non-inferred relations) that are not present as
direct relations in the knowledge base from March
2010. This yielded 845 recent disease-gene relations for
which the ranks in the disease’s genome-wide prioritiza-
tion have been determined based on the integrated net-
work of March 2010.
Figure 3 shows the ROC curve of the combined

results, with AUC 86.14%. Of the 845 curated disease
genes, 189 prioritizations (22.73%) are ranked in the top
1% of the test set consisting of all genes for its corre-
sponding disease and 524 (62.01%) are ranked in the top
10%. The median rank of a disease gene is in the top
6.04%.

Applications
The above benchmarks demonstrate that BioGraph is
capable of retrospectively finding or confirming existing
disease genes, indicating that we can adopt the method
to predict putative susceptibility genes for heritable dis-
eases. Feasible applications of the framework are the
identification of functionally interesting genes from sets
of candidate genes - for example, in the identification of

Table 2 Top inferred genes for schizophrenia

Number Gene Prioritization hypothesis SZ association studies

1 PRL Affected by the antipsychotics aripiprazole and risperidone, neuroactive
ligand-receptor interaction, associated with autistic disorder

No association studies. Associated with autistic
disorder [16]

2 ARID4B Target of mir-20b No association studies

3 HTR1A Related to HTR2A Positive association [19]

4 DRD2 Related to DRD3 Positive association [20]

5 DNMT3B Target of mir-29*, related to COMT, folic acid Positive association [21]

6 DNMT3A Target of mir-29*, related to COMT, folic acid No association studies

7 FSTL1 Target of mir-206 No association studies

8 SYN3 Related to SYN2 No association found [23]

9 MYLIP Target of mir-20b, involved in CNS development No association studies

10 EFEMP2 Target of mir-346 No association studies

11 UTRN Interacts with DISC1, target of mir-206 No association studies

12 OMG Myelin sheet, interacts with RTN4R, axonogenesis Weak positive association [22]. Putatively
associated with mental retardation [38]

13 BACE1 Target of mir-29*, Alzheimer’s disease No association studies. Schizophrenia-like
phenotypes in BACE1-null mice [39]

14 HIPK3 Target of mir-20b No association studies

15 TAC1 Target of mir-206, axonal and synaptic transmission No association studies. Down-regulated in
psychosis [40]

16 ATXN1 Interacts with ZNF804A and AKT1 Positive association [18]

17 SYN1 Related to SYN2 No association studies. Associated with epilepsy
[41]

18 RTN4IP1 Interacts with RTN4R, neurite growth No association studies

19 CDKN1A Interacts with AKT1, target of mir-20b No association studies

20 LINGO1 Interacts with RTN4R, axonogenesis, CNS development No association studies. Associated with essential
tremor and Parkinson’s disease [42]

BioGraph top inferred genes for schizophrenia that are not known as direct relations in the integrated network. Prioritizations are based on a data freeze of
September 2009 to retrospectively verify predictions in more recent literature. CNS, central nervous system.
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Figure 3 ROC curve of prioritization performance on 845
recent disease-gene relations. The performance of BioGraph
prioritizations is 86.14%, confirming the relations recently added to
the resource databases but not present in the integrated database.
The diagonal dashed line represents a theoretical random algorithm.
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promising genes in linked regions, copy number varia-
tion regions or for the identification of genes through
genome-wide association or expression studies.
Additionally, the automated construction of hypoth-

eses is of interest to explore genetic/genomic findings in
peer-reviewed functional support. Collecting functional
support for newly discovered disease-gene associations
is not always obvious, especially when the functional
evidence is indirect and spans several fields of interest.
With the advent of high-throughput methodologies and
torrents of published material to substantiate these find-
ings, detecting relevant information has become a labor-
ious process where computational techniques, such as
those presented here, allow for these processes to be
automated.
Beyond applications in genetics and genomics, the fra-

mework can similarly be adopted to prioritize or to
determine functional support for biomedical relations
other than disease-gene associations - for example, in
linking drug compounds, annotation terms, pathways,
and so on - making the framework a very versatile tool
in the discovery of diverse types of biomedical knowl-
edge. In one feasible application, BioGraph can be
adopted to determine functional interactions between
drug compounds and for the in silico exploration of
drug-drug interactions or the prioritization of identifying
compounds in screening pipelines. Another example
application is the computational inference of clinical
biomarkers related to pathways, biochemical functions
or disease processes, building on the various integrated
types of concepts, relations and integrated literature
references to detect promising candidates.

Genome-wide prioritization of genes related to
schizophrenia
To illustrate possible applications of the framework, we
have employed the platform to predict candidate genes
for schizophrenia (SZ) and substantiate the top predic-
tions with support adopting the automatically generated
functional hypotheses.
SZ is a common neuropsychiatric genetic disorder

with approximately 1% prevalence and with 64% herit-
ability. It is characterized by a constellation of symp-
toms, including hallucinations and delusions, and
symptoms such as severely inappropriate emotional
responses, disordered thinking and concentration, erratic
behavior, as well as social and occupational deterioration
[13,14].
The newly identified genes are indirectly inferred from

the integrated knowledge, but not directly associated in
our gene-disease resource databases. The predictions in
this section are based on a dataset freeze of the inte-
grated databases from September 2009. This data freeze
allows us to test if the predicted genes have been

observed in genetic studies since the data freeze. Table
2 shows the top 20 inferred BioGraph genes with
respect to the SZ concept, as designated by its UMLS
accession ID [UMLS:C0036341], and a short summary
of the hypotheses of their relatedness with SZ by our
platform.
PRL, the top inferred gene that is not a known dis-

ease-causing gene for SZ, encodes the prolactin hor-
mone, of which the most commonly known function is
to stimulate lactogenesis. Prolactin’s relation to SZ is
important, especially due to the effects of dopamine-reg-
ulating drugs aripiprazole and risperidone on the
expression of prolactin and their adverse hyperprolacti-
nemia-associated side effects [15] where the secretion of
prolactin is regulated by dopamine, following the cur-
rent dopamine hypothesis of SZ. We did not find pub-
lished association studies of prolactin with SZ, although
an association with autistic spectrum disorder was
reported [16]. Additionally, PRL is located on chromo-
some 6p22.3, which is linked to SZ through DTNBP1
[17] and ATXN1 [18]. Although no causal associations
have been shown between prolactin function and SZ,
BioGraph hypothesizes PRL as a likely candidate gene
for SZ.
The automatically inferred hypotheses by BioGraph

that support the high ranking of PRL for SZ are along
the lines of current understandings and are schemati-
cally shown in Figure 4. The most likely indirect links
between SZ and PRL are through the antipsychotic com-
pounds aripiprazole and respiredone, which are both
dopamine antagonists affecting the expression of prolac-
tin. This hypothesis also shows that both compounds
are adopted as drugs for attention deficit disorder,
Asperger syndrome and autistic disorders. Additionally,
PRL is associated with autistic disorder, strengthening
the importance of it for psychiatric disorders. Additional
paths from SZ visit SZ-associated genes and commonal-
ities among these genes with PRL; TAAR6 and PRL are
both genes in the neuroactive ligand-receptor interac-
tion pathway; CCL2 and PRL are both regulated by 8-
bromo cAMP, a derivative of cyclic AMP; DRD3 and
PRL share the GO annotation ‘Regulation of multicellu-
lar organism growth’. These relations may serve as indi-
cators for determining the putative functional
involvement of PRL in the etiology of SZ.
Figure 5 provides hypothetical evidence for the invol-

vement of the second inferred candidate gene HTR1A
(serotonin receptor 1A) with SZ. The main hypothesis is
driven by the receptor’s interaction with the antipsycho-
tic drugs aripiprazole and chlorprothixene. HTR1A is
additionally linked to its paralog HTR2A, a known sus-
ceptibility gene for schizophrenia, via GO annotations
on serotonin binding activity. Although our integrated
disease-gene databases (OMIM Morbid Map and CTD)
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have not indexed HTR1A as a schizophrenia susceptibil-
ity gene, variants in the gene have previously been
shown to be associated with schizophrenia and other
psychopathologies [19]. This example shows that Bio-
Graph is capable of identifying known disease genes,
even if these gene-disease associations are not in the
integrated resources.
Significant associations with SZ and polymorphisms in

4 of the top 20 ranked genes, namely HTR1A [19], DRD2
[20], DNMT3B [21] and ATXN1 [18], have previously
been shown. These known disease-gene relations are not
indexed by our integrated databases, but were success-
fully prioritized by our data mining platform. Most nota-
bly, significant association of polymorphisms in
DNMT3B with SZ was only reported in October 2009,
where the data for our predictions are based on inte-
grated databases from September 2009, demonstrating
the usefulness of the currently proposed prioritization
technique. Additionally, the highly ranking OMG gene
has been shown to be associated with SZ, warranting
replication studies for confirmation [22]. SYN3 is the
only gene in the top 20 for which several association stu-
dies have been performed, but where the findings show
no support for SYN3 as a SZ susceptibility gene [23].

For the remaining 15 of the top 20 genes, we did not
find published association studies to support or contra-
dict possible roles of these genes in SZ, although for
some genes associations with SZ-like symptoms or
related psychiatric and various neurological disorders
have been shown, supporting the putative role of these
genes in SZ (Table 2).

Discussion
We have constructed BioGraph, an integrated network
of curated relations from heterogeneous knowledge
sources, such as disease-gene-compound associations,
protein-protein interactions, GO and pathway annota-
tions, microRNA targets, protein domains, and so on. In
order to guarantee the accurateness of the integrated
knowledge, the integrated databases were selected based
on their curation processes for the indexing of knowl-
edge from the peer-reviewed scientific literature. We
show that the automated generation of functional
hypotheses in this integrated network of biomedical
knowledge allows the successful prioritization and iden-
tification of research targets in the context of a research
subject. More specifically, we can successfully identify
proven disease genes for hereditary diseases as highly

CCL2 gene

8-Bromo Cyclic Adenosine
Monophosphate

reaction,
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Attention Deficit
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TAAR6 gene
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Figure 4 Schematic representation of the top ten automatically generated hypotheses supporting the susceptibility of PRL in relation
to schizophrenia. Solid, dashed and dotted line styles represent the importance of the link in descending order, that is, the probability to visit
the relation to reach the target gene concepts while performing random walks from the source schizophrenia concept. All links are grounded in
their originating integrated curated knowledge bases, annotated with their semantic meanings and enriched by their references to the literature
(not shown).
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ranking genes among all human genes in the context of
their disease and vice versa. We have shown that
ensembles of highly probable walks through this net-
work can be adopted to successfully rank putative rela-
tions among non-obvious and indirectly associated
concepts, with a focus on adopting these automatically
generated hypotheses for the prioritization of possible
susceptibility genes of diseases. The prioritization and
automated hypothesis generation platform is available as
a web service [24].
BioGraph offers a range of significant improvements

over leading prioritization platforms for in silico identifi-
cation of disease-related genes. Most notably, and in
contrast with other methods, our approach is unsuper-
vised and does not require prior domain knowledge
from the user. This removes possible user biases and
problems with prediction robustness in common super-
vised machine learning approaches that require, for
example, training sets of known disease causing genes to
define the subject of an analysis. Furthermore, highly
ranked targets are grounded in comprehensible func-
tional hypotheses, consisting of refereed relation paths
in support of the prioritization. Since our method is
based on the integration of heterogeneous knowledge
sources, the generated hypotheses offer richer semantics
about inferred biomedical relations compared to related
data mining efforts in, for example, gene and protein
interaction networks.

Tests on published benchmarks (AUC 92.92%) show
that our prioritization method outperforms leading
technologies and notable differences in the rankings
are supported by comprehensible hypotheses that con-
fidently support the prioritization. In experimental
cases where an accountable gene needs to be identified
in a set of 100 genes, BioGraph prioritizes the gene
among the top 10 genes in 73.73% of the cases. We
showed that BioGraph is able to retrospectively con-
firm recent disease-gene associations to the integrated
databases (AUC 86.14%). Additionally, relations that
have been confirmed in recent publications were suc-
cessfully predicted. For example, BioGraph ranked
DNMT3B as a top ranking SZ susceptibility gene using
integrated data frozen in September 2009 while this
association was published in October 2009. Addition-
ally, of the top 20 prioritized inferred genes for schizo-
phrenia, 4 disease genes were not indexed by the
integrated resources but are confirmed as true associa-
tions by the literature.
Finally, we would like to note that, although the focus

of the applications of BioGraph in this paper is in the
ranking of disease-gene relations, the presented metho-
dology is generic and applicable in various biological
research settings requiring the construction of intelligent
and intelligible hypotheses among interrogated concepts.
One may use the platform, for example, to identify dis-
eases related to a pathway of interest, or to enrich a
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priori defined gene sets to determine related ontology
terms, compounds or protein domains.

Additional material

Additional file 1: Additional materials and methods and Additional
Tables. Detailed methods describing technicalities of the database
integration and algorithms, with the following sections. Knowledge
integration: detecting hub nodes by computing a priori probabilities with
random walks; computing a posteriori probabilities and ranking relations;
backtracking heuristic for the automated generation of functional
hypotheses; additional results. Additional Table 1: top 50 hubs or highest
ranking concepts of the computation of the a priori rank score in the
integrated network. Additional Table 2: area under the receiver operator
characteristic (ROC) curve (AUC) for the prioritization of disease genes in
the Endeavour benchmark. Additional Table 3: effect on the Endeavour
benchmark after leaving out each separate database from the data
integration process.
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