
Int J Data Sci Anal (2016) 1:17–35
DOI 10.1007/s41060-016-0005-2

REGULAR PAPER

Bounded correlation clustering

Floris Geerts1 · Reuben Ndindi1

Received: 22 January 2016 / Accepted: 29 January 2016 / Published online: 16 February 2016
© Springer International Publishing Switzerland 2016

Abstract Correlation clustering is to partition a set of
objects into clusters such that the number of false positives
and negatives is minimized. In this paper, we combine cor-
relation clustering and user interaction. More specifically,
we allow the user to control the quality of the clustering by
providing error bounds on the number of false positives and
negatives. If no clustering exists that satisfies these bounds,
a set of edges is returned for user inspection such that the
deletion or relabeling of these edges guarantees the exis-
tence of a clustering consistent with the error bounds. A
user, however, may reject the deletion or relabeling of certain
edges and ask for an alternative set of edges to be pro-
vided. If no such set of edges exists, a minimal change to the
error bounds should be provided, after which the interactive
process continues. The focus of this paper is on the algorith-
mic challenges involved in returning a minimal set of edges
to the user. More specifically, we formalize the Bounded
Correlation Clustering problem and show that it is
intractable. Therefore, we propose an approximation algo-
rithm based on the well-known region growing technique.
We experimentally validate the efficiency and accuracy of
the approximation algorithm.

Keywords Clustering · Multicut · Approximation
algorithms · User interaction

B Floris Geerts
floris.geerts@uantwerpen.be

Reuben Ndindi
reuben.ndindi@uantwerpen.be

1 Department of Mathematics and Computer Science,
University of Antwerp, 2020 Antwerp, Belgium

1 Introduction

Clustering is to partition a set of given objects into clusters of
similar objects. Typically, the goal is to find a clustering that
minimizes an objective function that measures the quality of
the clustering. A wide variety of formalizations and objec-
tive functions have been considered in this context. We refer
the reader to [1] for a comprehensive survey on clustering
techniques in data mining and machine learning.

In this paper, we focus on the formalization of the clus-
tering problem, known as Correlation Clustering [2].
Intuitively, in correlation clustering the set of objects are ver-
tices of a graph whose edges are labeled with either “+”
or “−”. Here, a +-edge indicates that its vertices (objects)
are similar, whereas a −-edge indicates the opposite. The
corresponding objective function counts the number of false
positives, i.e., − edges whose vertices belong to the same
cluster, and the number of false negatives, i.e., + edges whose
vertices belong two distinct clusters.

Correlation clustering can be used in applications such
as protein interaction networks [4], crosslingual link detec-
tion [17], communication networks [3], among others. It
provides a unique approach in solving problems where we
have conflicting measures among objects and the aim is to
provide a consistent clustering.

Although one of the nice features of correlation clustering
is that a user does not need to specify anything, this is at the
same time also one of its shortcomings. Indeed, a user does
not have any control on the quality of the clustering returned
by correlation clustering. In this paper, we therefore revisit
correlation clustering in the presence of user specified error
bounds.

More specifically, we envisage a clustering system where
a user should be able to interact with the system by indicat-
ing his/her preferences in terms of clustering errors thereby

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s41060-016-0005-2&domain=pdf

18 Int J Data Sci Anal (2016) 1:17–35

impacting the quality of the clustering. For instance, a user
may want to express that a clustering should not have any
errors, or more generally, want to bound the number of false
positives and negatives in a clustering. Such a setting is of
interest to any application domain of correlation clustering
as it gives the user the possibility to control the quality of the
clustering by mean of these error bounds.

To bring user interaction into correlation clustering is quite
challenging, however. Indeed, suppose that a user specifies
two error bounds, μfp and μfn, for the false positives and neg-
atives, respectively. With these bounds, she/he expresses that
a clustering is desired in which the number of false positives
and negatives does not exceed the given bounds. We call such
a clustering a valid clustering. Unfortunately, a valid cluster-
ing may not exist. We therefore generalize the correlation
clustering problem to the bounded correlation problem.

In bounded correlation clustering, we want to guide the
user toward a valid clustering by allowing him/her to either
minimally update the graph, to minimally change the error
bounds, or combinations thereof. For example, one way to
guarantee the existence of a valid clustering is to delete or
relabel a set ΔE of edges. Indeed, deleting all edges or
assigning all edges the same label trivially guarantees such
valid clusterings.

Of course, we want to minimally modify the input graph.
Therefore, we envisage a bounded correlation clustering sys-
tem that provides the user with a minimal set �E of edges to
delete/relabel. We provide a detailed motivating example in
the next section illustrating user interaction with the bounded
correlation clustering system.

In this paper, we focus on one key algorithmic component
of the interactive framework: when given an input graph G,
error bounds μfp and μfn, return a set �E of edges to the
user such that the deletion/relabeling of edges in �E guar-
antees the existence of a valid clustering, i.e., a clustering
of the updated graph that satisfies the error bounds. More
specifically, we make the following contributions:

– We formally define theBounded Correlation Clus-
tering problem, and we show that it is intractable.

– We present a region growing-based approximation algo-
rithm for solving the Bounded Correlation Clus-
tering problem and provide a performance guarantee.
More specifically, the size of the set of edges returned
by the algorithm is at most a factor O(log(|E |−)) away
from the optimal size. Here, E− represents the set of
“−” labeled edges in the input graph. The approxima-
tion algorithm leverages a close relationship between
Bounded Correlation Clustering and a variant of
the Multicut problem, called Bounded Multicut
problem, which may be of interest in its own right.

– We show how our algorithms could be used in the context
of interactive settings such as illustrated in Sect. 2.

– We empirically evaluate our algorithm on both synthetic
and real-life datasets. Although the approximation factor
may be large in theory, we verify that in practice, the size
of the returned set of edges is close to optimal.

This work extends [11] by dealing with both deletions
and relabeling of edges (Sect. 3) and by describing how our
algorithm for the Bounded Correlation problem can be
used in the context of a user interaction process (Sect. 6).
More importantly, the approximation algorithm reported
in [11] is substantially improved. In particular, our new
algorithm BMulticut now implements an “adaptive” opti-
mization strategy in which the underlying integer program
(and its relaxation) is updated between two region growing
steps provided that this is expected to lead to a better solution
(Sect. 5). Furthermore, we provide a thorough analysis of the
algorithm for correctness, which was not present in [11] and
obtain an approximation guarantee matching our previous
algorithm, in the worst case, and improves on our previous
algorithm in most cases. These analyses are more challeng-
ing than for the algorithm given in [11]. Furthermore, we
have revised and included additional experiments on real and
synthetic datasets (Sect. 7). Improvements on the quality of
approximate solutions have been observed in comparison to
the algorithm given in [11].
Organization of the paper. The rest of the paper is orga-
nized as follows. In the next section, we provide a detailed
example of an interactive clustering process. In Sect. 3, we
formally define the Bounded Correlation Cluster-
ing problem and establish its intractability. In Sect. 4, we
introduce the Bounded Multicut problem and establish
its relationship with the Bounded Correlation Clus-
tering problem. Our region growing-based approximation
algorithm is presented in Sect. 5. We provide further details
on how the algorithm fits into our proposed interactive frame-
work in Sect. 6. An experimental evaluation on both synthetic
and real-life data is presented in Sect. 7. Related work is pre-
sented in Sect. 8. We conclude the paper in Sect. 9.

2 Motivating example

In this section we further illustrate the need for revising
the standard correlation clustering problem in an interac-
tive setting. More specifically, we demonstrate an interactive
process in which user actions include providing error bounds
for the false positives and negatives. Our clustering system
will in return output a valid clustering if it exists, and oth-
erwise return a minimal set of edges to be deleted/relabeled
for user inspection. A user may additionally mark edges as
immutable, ensuring that these edges will never be deleted
or relabeled. Furthermore, feedback on revised error bounds
is given in the case where the problem is over-constrained

123

Int J Data Sci Anal (2016) 1:17–35 19

1

2

3

4

5

6 7 1

2

3

4

5

6 7 1

2

3

4

5

6 7 1

2

3

4

5

6 7

Initial graph Optimal correlation clusterings (cost=3)

(a) (b) (c) (d)

I want a clustering
with no errors

ΔE = {(1, 4), (4, 6), (5, 7)}

delete edge (1,4).

1
2

3

4

5

6 7
ΔE′ = {(1, 2), (3, 4), (4, 5), (5, 7)}

delete edge (1,2)
either

1

2

3

4

5

6 7

ΔE′′ = {(1, 5), (2, 4), (3, 4), (5, 6)}

delete edge (2,4)
either

No error-free clustering
possible. Consider setting

(e)(f)(g)

error-free clustering

error-free clusteringerror-free clustering

µfp = 1;µfn = 0

clustering (cost=1)

ΔE′′′ = {(3, 6), (5, 6)}3

5

6 71

2

4

Fig. 1 Illustration of user interaction with the bounded correlation clustering process as explained in Example 1. In these figures solid lines
represent +-labeled edges, dashed lines represent − edges, immutable edges are thickened, and clusters are represented by gray-shaded areas

due the fact that a user marked too many edges as being
immutable.

Example 1 Consider the graph G shown in Fig. 1a. It can
be easily verified, e.g., by solving an integer program that
encodes the correlation clustering problem [8], that an opti-
mal correlation clustering of G will always have a total of
three false positive and negatives. For example, the cluster-
ing shown in Fig. 1b has three false positives; the clustering
shown in Fig. 1c has one false positive and two false nega-
tives. However, suppose that a user wants a clustering with no
errors and therefore sets the two error bounds, μfp and μfn,
for the false positives and negatives, respectively, to zero.
As previously noted, a valid clustering (a clustering with no
errors) may not exist. Indeed, if μfp = μfn = 0, then G
does not have a valid clustering as we just have seen that any
optimal clustering of G has cost 3.

It is here that bounded correlation clustering comes into
play and a set ΔE of edges, to be deleted or relabeled,
is returned for user inspection. The deletion/relabeling of
these edges guarantees the existence of a valid clustering.
For example, deleting or relabeling the three edges ΔE =
{(1, 4), (4, 6), (5, 7)} corresponding to the errors in the clus-
tering shown in Fig. 1c ensures that a valid clustering with
no errors exists, as shown in Fig. 1d.

Furthermore, when presented with the set ΔE of edges,
the user may decide not to delete/relabel an edge in ΔE since
she/he regards the similarity information represented by this
edge as too important or trustworthy. In this case, a user may
mark such edges as immutable. The immutable edges are
then passed on to the bounded correlation clustering system
and another set of edges ΔE ′ is returned, which excludes the
immutable edges. For example, the user may mark the edge

(1, 4) as immutable. By fixing the edge (1, 4), one now has
to delete a set of edges ΔE ′ = {(1, 2), (3, 4), (4, 5), (5, 7)}
in order to obtain a valid clustering for the bounds μfp =
μfn = 0. Figure 1e shows a valid clustering on the updated
graph.

The user again inspects this set of edges and the interac-
tive process continues until either the user is satisfied and a
valid clustering does exist, or no valid clustering exists. The
latter case happens when the user marked too many edges
as immutable and no ΔE exists whose deletion/relabeling
ensures a valid clustering.

For example, suppose that the user marks also the edge
(1, 2) in G as immutable. Then to satisfy the bounds, a
set of edges ΔE ′′ = {(1, 5), (2, 4), (3, 4), (5, 6)} needs to
be deleted/relabeled. The corresponding valid clustering for
μfp = μfn = 0 is shown in Fig. 1f. Imagine that at this point
the user is still not happy with ΔE ′′ and also marks the edge
(2, 4) as immutable. In this case, no ΔE exists that guaran-
tees a valid clustering.

To see why no valid clustering exists, consider that by
enforcing the last user action i.e., edge (2, 4) is marked
as immutable, the user requires an error-free clustering of
a graph in which the triangle (1, 4), (1, 2) and (2, 4) is
immutable. Since edges (1, 2) and (2, 4) are +-labeled, and
(1, 4) is −-labeled, any clustering will induce at least one
error due to presence of this triangle. Therefore, as long as
this triangle remains immutable, no valid error-free cluster-
ing can exist.

Instead, the bounded correlation clustering system should
inform the user as to how to minimally change the error
bounds, for example, by letting μfp = 1 and μfn = 0 (see
Fig. 1g). We will see in Sect. 6 how these revised error bounds
can be obtained.

123

20 Int J Data Sci Anal (2016) 1:17–35

The interactive process then continues. Observe that this
process always terminates. In the worst case, all edges in G
are marked as immutable and the bounds μfp and μfn are set
such that a valid optimal correlation clustering in G exists.
For example, for μfp = 1 and μfn = 2 the clustering shown
in Fig. 1c is valid. Note that in this case ΔE = ∅.

The example thus clearly shows the need for considering
bounded correlation clustering. In the next section, we for-
mally introduce the Bounded Correlation Clustering
problem (Sect. 3.1) and establish its intractability (Sect. 3.2).

3 The bounded correlation clustering problem

We first introduce some concepts and notations.
Let G = (V, E, w) be a graph with a weight function

w : E → N on its edges. Assume that the set E of edges can
be partitioned into two sets E+ and E−. An edge e ∈ E+
carries label “+”, whereas an edge e ∈ E− carries label “−”.
Intuitively, edges in E+ represent similar objects that should
be clustered together; edges in E− represent the opposite. In
the following, we write G = (V, E+ ∪ E−, w) to make the
partition of the edge set E explicit. For an edge (u, v) ∈ E
we interchangeably use wuv and w(u, v) to denote the weight
of edge (u, v) relative to the weight function w.

A clustering C of G is a partition of V . Each partition in
C is called a cluster. For a vertex v ∈ V , we denote by C(v)

the set of vertices in the same cluster as v. In a clustering
C, we call an edge e = (u, v) a false negative if e ∈ E+
but u /∈ C(v). In other words, a false negative is a +-labeled
edge that crosses clusters. Similarly, if e ∈ E− and u ∈ C(v),
we call e = (u, v) a false positive. In other words, a false
positive is a −-labeled edge within the same cluster.

We denote by wfn(C) and wfp(C) the sum of the weights
of false negatives and positives in C, respectively. Similarly,
for an arbitrary set E of edges we define w(E) as the sum
of the weights of edges in E . Finally, we define cost(C) =
wfp(C)+wfn(C). Standard Correlation Clustering is to
find a clustering C of G such that cost(C) is minimal.

We omit the set of immutable edges IE for the moment as
these can be readily incorporated as shown in Sect. 6.

3.1 Problem statement

As already described in the Introduction, we want to control
the errors (false positives and false negatives) that a clustering
makes. Let μfp and μfn be two natural numbers. We regard a
clustering C as being valid provided that wfp(C) and wfn(C)

are below these thresholds.
We have seen in Example 1 that such valid clusterings

do not always exist. The existence of valid clustering can
be guaranteed, however, when sufficiently many edges are

deleted/relabeled in the input graph. Clearly, we want to
delete/relabel as less edges as possible. In the following we
denote by ΔEd the set of edges to be deleted and by ΔEr the
set of edges to be relabeled.

Problem 1 (Bounded Correlation Clustering) Given
a graph G = (V, E+ ∪ E−, w) and natural numbers μfp and
μfn, find a set ΔE = ΔEd ∪ΔEr of edges, such that w(ΔE)

is minimal and such that there exists a clustering C of the
updated graph

G ′ = (V, ((
(
E+ ∪ (ΔEr ∩ E−))

∪(E− ∪ (ΔEr ∩ E+))
) \ ΔEd, w),

for which wfn(C) � μfn and wfp(C) � μfp holds. �	

Here, the updated graph G ′ is obtained from G as follows:
(i) edges in E+ are replaced by edges in E+ ∪ (ΔEr ∩ E−),
i.e., the set of +-labeled edges in E+ together with those
edges in ΔEr that after relabeling become +-labeled edges
as well; (ii) similarly edges in E− are replaced by those in
E− ∪(ΔEr ∩E+); and finally (iii) edges in ΔEd are deleted.
We naturally assume that ΔEd and ΔEr are disjoint.

We next argue that we can focus on solutions of the form
ΔE = (ΔEd,∅),i.e., solutions in which only edges are to be
deleted.

Proposition 1 If ΔE = (ΔEd,ΔEr) is a solution of
Bounded Correlation Clustering then for any edge
e ∈ ΔEr, ΔE ′ = (ΔEd ∪ {e},ΔEr \ {e}) is also a solution.

Proof Let ΔE = (ΔEd,ΔEr) be a solution of Bounded
Correlation Clustering and let e ∈ ΔEr. We show that
ΔE ′ = (ΔEd ∪ {e},ΔEr \ {e}) is a solution as well.

Let C be a valid clustering in the updated graph G ′ =
(V, ((

(
E+∪(ΔEr ∩E−))∪(E−∪(ΔEr ∩E+))

)\ΔEd, w).
If e is a +-labeled edge in G ′ (and thus was a −-labeled edge
in G) between clusters of C or e is a −-labeled edge in G ′
(and thus was a +-labeled edge in G) inside a cluster of C,
then deleting e results in the elimination of a false negative or
false positive, respectively. Hence, C is a clustering of smaller
cost in the graph obtained from G ′ by deleting edge e. Hence,
ΔE ′ = (ΔEd ∪ {e},ΔEr \ {e}) is a solution. Furthermore,
if e is a −-labeled edge between clusters of C or a +-labeled
edge inside a cluster of C, then deleting e in G ′ does not affect
the cost of C and hence ΔE ′ = (ΔEd ∪ {e},ΔEr \ {e}) is
clearly a solution as well. �	

This proposition implies that, without loss of generality,
we may concentrate on solutions of Bounded Correla-
tion Clustering in which edges are only deleted. In the
following, when we write ΔE we mean (ΔEd,∅), unless
specified otherwise.

123

Int J Data Sci Anal (2016) 1:17–35 21

3.2 Intractability result

Not surprisingly, theBounded Correlation Clustering
problem is computationally infeasible. Indeed, its decision
version that is to determine givenG = (V, E+∪E−, w), μfp,
μfn, and integer L ≥ 0 whether or not there exists a set ΔE of
edges such that w(ΔE) � L and such that after deleting ΔE
from G, the updated graph G ′ = (V, (E+ ∪ E−) \ ΔE, w)

has a clustering C such that wfp(C) � μfp and wfn(C) � μfn,
is NP-complete.

Proposition 2 The decision version of Bounded Corre-
lation Clustering is NP-complete for both weighted and
unweighted graphs.

Proof For the lower bound, we prove that the decision ver-
sion of Bounded Correlation Clustering is NP-hard
by reducing it from the decision version of Correlation
Clustering. The latter decision version is to determine
given an input graph H = (W, F+ ∪ F−, w) and integer
K ≥ 0, whether or not there exists a clustering C of H such
that cost(C) � K . This problem was proven to be NP-hard
in [2] for both weighted and unweighted graphs.

The reduction is as follows. Let H = (W, F+ ∪ F−, w)

and K ≥ 0 be an instance of Correlation Clustering.
We define the corresponding instance of Bounded Corre-
lation Clustering by letting G = H , L = K , μfn = 0
and μfp = 0.

For the correctness of the reduction, consider a cluster-
ing C of H such that cost(C) � K . If we delete all edges
corresponding to the false positives and negatives in C from
H , then the clustering induced by C on the updated graph
has no false positives and negatives. Hence, by letting ΔE
be the set of edges corresponding to the false positives and
negatives in C, we obtain a solution for Bounded Corre-
lation Clustering with |ΔE | � L = K , μfn(C) = 0
and μfp(C) = 0. Conversely, suppose that by deleting edges
in ΔE from G with |ΔE | � K , we have that there is a
clustering C of G ′ = (V, (E+ ∪ E−) \ΔE, w) with no false
positives and negatives. Then, C is a clustering of H such that
cost(C) = w(ΔE) � K = L . Hence, solutions of Corre-
lation Clustering correspond to solutions of Bounded
Correlation Clustering with μfn = 0 and μfp = 0, and
vice versa.

For the upper bound, consider the following NP-algorithm:
(1) Guess (a) a set ΔE of at most L edges; and (b) a clustering
C of the updated graph G ′ = (V, (E+ ∪ E−) \ ΔE, w). (2)
Verify (in PTIME) whether wfn(C) � μfn and wfp(C) � μfp

hold. If so, accept the guess and return “yes”; otherwise reject
the guess. Clearly, this algorithm correctly decides the (deci-
sion variant of) Bounded Correlation Clustering. �	

In view of this intractability result, we develop an
approximation algorithm for the Bounded Correlation

Clustering problem. Our solution to the Bounded Cor-
relation Clustering problem is obtained by following a
similar strategy as is used for the approximation algorithm
for the Correlation Clustering problem given in [8].
More specifically, we first establish a relationship between
the Bounded Correlation Clustering problem and
a variant of the Multicut problem, called the Bounded
Multicut problem. Next, we use a region growing tech-
nique for Bounded Multicut to obtain an approximation
algorithm. Region growing was introduced in [10] as a tech-
nique for approximation the Multicut problem.

4 The bounded multicut problem

In this section, we establish a relationship between the
Bounded Correlation Clustering problem and a vari-
ant of the Multicut problem, called the Bounded Mul-
ticut problem (Sect. 4.1). This relationship ensures that an
approximation algorithm for theBounded Multicut prob-
lem automatically results in an approximation algorithm for
theBounded Correlation Clustering problem (Obser-
vation 1 below). As previously mentioned, the approximation
algorithm for the Bounded Multicut problem is based on
the region growing technique [10]. This technique requires
solving a linear relaxation of an integer program for the
Bounded Multicut problem. We end this section by pro-
viding such an integer program for theBounded Multicut
problem and show its correctness (Sect. 4.2). As a side result,
we obtain an exact algorithm for the Bounded Multi-
cut problem and thus also for the Bounded Correlation
Clustering problem, due to their close relationship.

4.1 Bounded multicut and its relation to bounded
correlation clustering

We start by introducing the Bounded Multicut problem.
Recall that an instance of the standard Multicut problem
consists of an edge-weighted graph G = (V, E, w) together
with a set S = {(si , ti) | i ∈ [1, k]} of source–sink pairs, and
is to find a set T of minimal weight (a so-calledmulticut) such
that the removal of the edges in T fromG disconnects all pairs
in S (See [13] for the first appearance of this problem).

The Bounded Multicut problem differs from Multi-
cut in that it works on graphs whose edge set is partitioned
in E+ and E−, just as in Bounded Correlation Clus-
tering; and bounds μ+ and μ− are present that limit the
allowed number of positive and negative edges, respectively,
in a multicut. A multicut T such that w(T ∩ E+) � μ+ and
w(T ∩ E−) � μ− is referred to as a valid multicut. Sim-
ilarly as in Bounded Correlation Clustering a valid
multicut may not always exist, however. Hence, Bounded
Multicut asks for a minimal set of edges to be deleted such

123

22 Int J Data Sci Anal (2016) 1:17–35

1

2

3

4

5

6 7

s1
s2

s3

t3 t2t1

1

2

3

4

5

6 7

(a) (b)

Fig. 2 Transformation from Bounded Correlation Clustering
to Bounded Multicut

that the existence of a valid multicut is guaranteed. More
formally,

Problem 2 (Bounded Multicut) Given a graph G =
(V, E+ ∪ E−, w), a set S of pairs of distinct vertices (si , ti)
of G, and bounds μ+ and μ−, find a set of edges ΔE of
minimal weight such that there is a multicut T in G =
(V, (E+ ∪ E−) \ ΔE, w) such that w(T ∩ E+) � μ+ and
w(T ∩ E−) � μ− �	

In analogy to the relationship between Multicut and
Correlation Clustering, as described in [8], we present
a procedure for transforming an instance of Bounded
Correlation Clustering to an instance of Bounded
Multicut.

Let G = (V, E+ ∪ E−, w) be an input graph of
the Bounded Correlation Clustering problem with
bounds μfp and μfn. We obtain the corresponding Bounded
Multicut instance Gbmc = (Vbmc, E

+
bmc ∪ E−

bmc, wbmc)

with bounds μ+ and μ− and set of source–sink pairs S, as
follows:

(1) For every edge (u, v) ∈ E−, we introduce a new vertex
zu,v . We define Vbmc as V together with these newly
added vertices.

(2) We define E+
bmc = E+ and let E−

bmc consist of one
new −-labeled edge (zu,v, u) for each vertex of the
form zu,v . The weight of such an edge wbmc(zu,v, u)

is set to w(u, v). Furthermore, wbmc(u, v) = w(u, v)

for every (u, v) ∈ E+
bmc.

(3) We let S consists of the source–sink pairs (zu,v, v), for
newly added vertices zu,v .

(4) We set μ+ = μfn and μ− = μfp.

This transformation only differs from the transformation pre-
sented in [8] in that the edges (zu,v, u) are given a −-label
and the edges in E+ retain their +-label. By contrast, [8]
translates an instance of Correlation Clustering into an
instance Multicut in which no +-or −-labels are present.

Example 2 Consider the graph G from Example 1, which
is shown again in Fig. 2a for convenience. The Bounded
Multicut instance Gbmc corresponding to G is shown in
Fig. 2b. According to the transformation just described, the

Bounded Multicut instance includes three new vertices
z1,4, z3,6, z5,6, corresponding to the −-labeled edges (1, 4),
(3, 6) and (5, 6) in G, respectively. Furthermore, Gbmc con-
tains three new −-labeled edges replacing the original nega-
tive edges. That is, E−

bmc = {(z1,4, 1), (z3,6, 3), (z5,6, 5)}.
Finally, the set S of source–sink pairs (shaded vertices
in Fig. 2b) are consists of (s1, t1) = (z1,4, 4), (s2, t2) =
(z3,6, 6), and (s3, t3) = (z5,6, 6). �	

We now show that solutions of the Bounded Correla-
tion Clustering problem for G with bounds μfp and μfn

correspond to solutions of the Bounded Multicut prob-
lem for Gbmc, S and bounds μ+ = μfn and μ− = μfp, and
vice versa. We first show this equivalence for clusterings and
multicuts.

Lemma 1 A valid clustering of C in G = (V, E+ ∪ E−, w)

relative to the bounds μfn and μfp corresponds to a valid
multicut T in Gbmc = (Vbmc, E

+
bmc ∪ E−

bmc, wbmc), S and
bound μ+ and μ−, and vice versa.

Proof The proof is analogous to Lemmas 4.5 and 4.6 in [8].
Let C be a valid clustering G = (V, E+ ∪ E−, w) and let T
consist of all edges in E+

bmc = E+ that contribute to wfn(C),
and all edges (zu,v, u) ∈ E−

bmc that correspond to an edge
(u, v) ∈ E− that contribute to wfp(C). It is shown in [8]
that T is a multicut. Furthermore, observe that when C is
valid relative to μfn and μfp, then w(T ∩ E+

bmc) � μ+ and
w(T ∩ E−

bmc) � μ−. Hence, T is a valid multicut.
Similarly, given a valid multicut T in Gbmc, one can

construct a clustering C as follows. Let T ′ be union of
the set of edges in E+ ∩ T (recall that E+ = E+

bmc)
and the set of edges (u, v) ∈ E− corresponding to an
edge (zu,v, u) ∈ E−

bmc ∩ T . Denote by G+ the graph
G restricted to +-labeled edges. Then, C is defined as
the set of all connected components in G+ \ T . It is
shown in [8] that T ′ consist of the false positives and
negatives of the clustering C. Hence, wfp(C) � μ− and
wfn(C) � μ+. In other words, C is a valid clustering of
G. �	
Example 3 We next illustrate Lemma 1. Recall the trans-
formation shown in Fig. 2. Consider the valid cluster-
ing C of G for μfp = 2 and μfn = 3 as shown
in Fig. 3a. Here, wfn(C) and wfp(C) correspond to the
false negatives {(1, 5), (4, 5), (4, 6)} and false positives
{(1, 4), (5, 6)}, respectively. To obtain a valid multicut T
for μ+ = 3 and μ− = 2 in Gbmc, we simply define
T = {(1, 5), (4, 5), (4, 6), (z1,4, 1), (z5,6, 5)} as shown in
Fig. 3b, where z1,4 and z5,6 denote the newly added vertices
in the transformation from G to Gbmc. Conversely, given the
valid multicut T of Gbmc, for μ+ = 3 and μ− = 2, as shown
in Fig. 3b, we obtain the valid clustering of G as shown in
Fig. 3a by declaring the positive edges in T as false negatives

123

Int J Data Sci Anal (2016) 1:17–35 23

1

2

3

4

5

6 7

s1
s2

s3

t3 t2t1

1

2

3

4

5

6 7

(a) (b)

Valid clustering Valid Multicutµfp = 2;µfn = 3 µ− = 2;µ+ = 3

1

2

3

4

5

6 7

s1
s2

s3

t3 t2t1

(c) (d)

Bounded Correlation clustering

2

3

4

5

6 7

µfp = µfn = 0

1

ΔE = {(1, 4), (4, 6), (5, 7)}
Bounded Multicut µ− = µ+ = 0

wfn(C) = 3;wfp(C) = 2

Fig. 3 a, b Going from clusterings to multicuts, and back; c, d going from solutions of Bounded Correlation Clustering to Bounded
Multicut, and back

and the edges (1, 4) and (5, 6) in G corresponding to the neg-
ative edges (z1,4, 1) and (z5,6, 5), respectively, in T as false
positives. The connected components in G+ \ T constitute
the clusters in the valid clustering C of G. �	

Consider now an instance G = (V, E+ ∪ E−, w) of
Bounded Correlation Clusteringwith bounds μfp and
μfn. Let ΔE be a solution. That is, there exists a valid cluster-
ing C on the updated graph G ′ = (V, (E+ ∪ E−) \ ΔE, w).
We know from Lemma 1 that C corresponds to a valid mul-
ticut T in the Bounded Multicut instance (G ′)bmc,i.e.,
the instance obtained by applying the transformation on the
updated instance G ′. It is now easily verified that (G ′)bmc is
equal to the Bounded Multicut instance obtained from
deleting a set of edges ΔEbmc from Gbmc. More specifically,
ΔbmcE consist of ΔE ∩ E+

bmc and all edges (zu,v, u) ∈ E−
bmc

for which (u, v) ∈ ΔE ∩ E−. Note that ΔE ∩ E+
bmc is

well-defined since E+
bmc = E+ by construction. Further-

more, wbmc(ΔEbmc) = w(ΔE). Hence, ΔEbmc is a solution
of the Bounded Multicut instance Gbmc, S, μ+ and
μ−.

Conversely, consider a solution ΔEbmc of the Bounded
Multicut instance Gbmc = (Vbmc, E

+
bmc ∪ E−

bmc, wbmc), S
and bounds μ+ and μ−. In other words, there exists a valid
multicut T in the updated graph (Gbmc)

′ = (Vbmc, (E
+
bmc ∪

E−
bmc) \ ΔEbmc, wbmc). It is readily verified that (Gbmc)

′ =
(G ′)bmc whereG ′ is obtained from deleting a set ΔE of edges
from G. Indeed, ΔE consists of ΔEbmc ∩ E+ and edges
(u, v) ∈ E− corresponding to an edge (zu,v, u) ∈ ΔEbmc ∩
E−

bmc. By Lemma 1, we know that T corresponds to a valid
clustering C in G ′. Observe that w(ΔE) = wbmc(ΔEbmc).
Hence, ΔE is a solution of the Bounded Correlation
Clustering instance G, μfp and μfn.

Example 4 Figures 3c, d illustrate the correspondence bet-
ween solutions ΔE of the bounded correlation clustering
problem for G, μfp = μfn = 0, and solutions ΔEbmc of the
bounded multicut problem for Gbmc, μ+ = μ− = 0 and
S = {(z1,4, 4), (z3,6, 6), (z5,6, 6)}. The relationship between
these two is just as described in Example 3. �	

An immediate consequence of the equivalence between
the two problems is the following.

Observation 1 Any (approximation) algorithm for the Bou
nded Multicut problem results in an (approximation) for
the Bounded Correlation Clustering problem.

In other words, the approximation algorithm for Bounded
Multicut that will be presented in the next section is indeed
an approximation algorithm for Bounded Correlation
Clustering.

4.2 An exact solution for the bounded multicut problem

We show that the Bounded Multicut problem can be
solved exactly by means of an integer program. The relax-
ation of this program will be used in the approximation
algorithm in Sect. 5.

The integer program for Bounded Multicut, denoted
by IPbmc and shown below, is a modification of the stan-
dard program for solving Multicut [18]. Given a graph
G = (V, E+ ∪ E−, w), set S of k distinct source–sink pairs
{(si , ti) | i ∈ [1, k]}, and natural numbers μ+ and μ− as
input for Bounded Multicut, the corresponding integer
program IPbmc is given by:

IPbmc: minimize
∑

(u,v)∈E wuv(xuv − yuv)

subject to∑
(u,v)∈pi xuv ≥ 1, pi ∈ Pi , 1 ≤ i ≤ k (i)∑
(u,v)∈E+ wuv yuv ≤ μ+ (ii)∑
(u,v)∈E− wuv yuv ≤ μ− (iii)

xuv ≥ yuv (iv)
xuv, yuv ∈ {0, 1} (v)

Here, Pi denotes the set of all paths from si to ti in G,
for i ∈ [1, k]. Observe that this integer program has expo-
nentially many constraints but, similarly as in the standard
Multicut case, it can be converted into one of polynomial
size. For completeness, we provide this conversion below.
Furthermore, note that the integer program for the standard
Multicut problem, denoted by IPmc and given e.g., in [18],
can be obtained by setting μ+ and μ− to zero, i.e., by ignor-
ing the yuv variables.

We first verify the correctness of the integer program
IPbmc.

123

24 Int J Data Sci Anal (2016) 1:17–35

Proposition 3 A solution of IPbmc corresponds to a solution
of the Bounded Multicut problem, and vice versa.

Proof Let ΔE be a solution of Bounded Multicut and let
T be a multicut in G = (V, (E+ ∪ E−) \ ΔE, w) such that
w(T ∩ E+) � μ+ and w(T ∩ E−) � μ−. Based on this, we
define the following valuation ν:

ν(xuv) =
{

1 if (u, v) ∈ T ∪ ΔE

0 otherwise,

and

ν(yuv) =
{

1 if (u, v) ∈ T

0 otherwise.

We claim that this valuation satisfies the conditions (i)–(v)
of the integer program IPbmc. Clearly, (iv) and (v) are sat-
isfied by the definition. Note that T ∪ ΔE is a multicut for
the original graph G = (V, E+ ∪ E−, w) and thus any path
from a source to a sink in S passes through T ∪ ΔE . Since
ν(xuv) = 1 for all (u, v) ∈ T ∪ ΔE , condition (i) is sat-
isfied. Clearly, (ii) and (iii) are satisfied since ν(yuv) = 1
for all (u, v) ∈ T and T is a valid multicut with regard to
the bounds μ+ and μ−. Finally, we also remark that the
objective function corresponds to w(ΔE) = ∑

e∈ΔE we.
Indeed, ν(xuv) − ν(yuv) = 1 for all (u, v) ∈ ΔE , and
ν(xuv) − ν(yuv) = 0 for all other edges. Because ΔE is
a solution, w(ΔE) is minimal and the valuation ν minimizes
the objective function of IPbmc.

For the converse, let ν be a valuation that satisfies con-
ditions (i)–(v). Consider the set of edges ΔE = {(u, v) |
ν(xuv) − ν(yuv) = 1} and let T = {(u, v) | ν(yuv) = 1}.
It can be readily verified that this results in a solution of
Bounded Multicut. Indeed, it is known that condition (i)
expresses that every source–sink pair is disconnected [18].
As a consequence, T ∪ ΔE is multicut in G. Furthermore,
conditions (ii) and (iii) imply that w(T ∩ E+) � μ+ and
w(T ∩ E−) � μ−, respectively. As before, w(ΔE) =∑

e∈ΔE we and since ν minimizes the objective function of
IPbmc, ΔE has minimal weight as well. �	

We next describe a standard procedure to turn IPbmc into
an equivalent integer program of polynomial size [10]. This
is important to guarantee that our approximation algorithm
runs in polynomial time, as we will see in the next section.

Let S be the set of k source–sink pairs. We introduce binary
variables ziu , one for each vertex u in the graph and each
(si , ti) ∈ S. We then replace the constraint (i) in IPbmc with
the following two constraints:

ziu−ziv � xuv , for all (u, v) ∈ E+ ∪ E−, 1 ≤ i ≤ k (i
′
)

zisi −ziti ≥ 1, for all (si , ti) ∈ S. (i
′′
)

We show that constraint (i) is equivalent to the constraints
(i

′
) and (i

′′
). Consider a source–sink pair (si , ti) in S and

assume that we have a path p between this pair consist of the
following edges (si , v1), (v1, v2), . . . , (vn, ti).

Using constraint (i
′′
) we have that

1 � zisi − ziti = zisi − ziv1
+ ziv1

− ziv2
+ · · · − zivn + zivn − ziti

and using constraint (i’), we have

zisi − ziv1
� xsiv1 , z

i
v1

− ziv2
� xv1v2 , . . . , z

i
vn

− ziti � xvn ti .

Hence,

1 � zisi − ziti �
∑

(u,v)∈p

xuv.

Note that this holds for any path p between any source–sink
pairs. Hence, constraint (i) is satisfied.

For the converse, assume that constraint (i) is satisfied.
For each (si , ti) ∈ S we set the variables ziu as follows: ziu =∑

(u′,w′)∈p xu′w′ where p is the shortest path from u to ti .

In particular, this implies that zisi � 1 by constraint (i) and
ziti = 0 since ti lies at distance 0 from ti . Hence, (i”) is
satisfied. Furthermore, note that for an edge (u, v) ∈ E we
have that ziu − ziv = xuv hence (i’) is satisfied as well.

We may thus conclude that replacing constraint (i) with
the constraints (i’) and (i”) results in an equivalent integer
program formulation of Bounded Multicut, of polyno-
mial size.

5 The BMulticut approximation algorithm

In this section we describe the BMulticut approximation
algorithm for the Bounded Multicut problem. As we
have just observed,BMulticut will also be an approximation
algorithm for the Bounded Correlation Clustering
problem, by leveraging the translation between the two prob-
lems (cfr. Observation 1).

The BMulticut algorithm is a modification of the stan-
dard region growing algorithm for the Multicut problem as
given in [10]. Intuitively, the standard region growing algo-
rithm solves a single linear program,i.e., the relaxation of
the integer program IPmc that encodes the Multicut prob-
lem. Next, the algorithm repeatedly grows regions until all
source–sink pairs are disconnected. The edges adjacent to
the regions then constitute a multicut T .

By contrast, BMulticut uses the relaxation of the inte-
ger program IPbmc that encodes the Bounded Multicut
problem. Furthermore,BMulticut implements an “adaptive”
optimization strategy in which the underlying integer pro-
gram (and its relaxation) is updated between two consecutive

123

Int J Data Sci Anal (2016) 1:17–35 25

BMulticut (G0, S0, μ+
0 , μ−

0 , K)
1. d0 := SolveLP(G0, S0, μ+

0 , μ−
0);

2. (G1, S1, B0) := GRegion(G0, S0,d0, |S0|, 1);
3. μ+

1 := max{0, μ+
0 − w(∂B0 ∩ E+

0)};
μ−
1 := max{0, μ+

0 − w(∂B0 ∩ E−
0)};

4. i := 1; next :=true;
5. While ((μ+

i �= μ+
i−1 or μ−

i �= μ−
i−1) and

|Si| > 0 and i � K and next) do
6. di := SolveLP(Gi, Si, μ

+
i , μ−

i);
7. If

∑
e∈E+

i
∪E−

i

di
e �

∑
e∈E+

i
∪E−

i

di−1
e then do

8. (Gi+1, Si+1, Bi) := GRegion(Gi, Si,di, |S0|, 1);
9. μ+

i+1 := max{0, μ+
i − w(∂Bi ∩ E+

i)};
10. μ−

i+1 := max{0, μ−
i − w(∂Bi ∩ E−

i)};
11. i := i + 1;
12. Else next :=false;
13. For j = 0 to i − 1 do
14. (H, S, Tj) := GRegion(Gj+1, Sj+1,dj , |S0|,+∞);
15. Cutj := ∂B0 ∪ · · · ∪ ∂Bj ∪ Tj ;
16. ΔEj := ExtractDeltaE(Cutj);
17. � := argmin{w(ΔEj) | j ∈ [0, i − 1]};
18. Return ΔE�.

Fig. 4 Algorithm BMulticut

region growing steps, provided that this is expected to lead
to a better solution. Contrast this with the standard region
growing algorithm that solves the relaxed integer program
only once, before the region growing process starts. Since
solving linear programs comes at a cost, however, we limit
the number of linear programs to be solved by a parameter
K . Solutions to the Bounded Multicut problem are then
obtained from the produced multicut T by a post-processing
step. That is, T is split into ΔE such that T \ ΔE is a valid
multicut relative to the given bounds μ+ and μ−. The set
ΔE is returned by the algorithm.

Due to nature of the region growing process, however, it
does not necessarily hold that increasing K leads to better
solutions. For this reason, for a given K , BMulticut runs
(at most) K region growing processes, corresponding to the
parameter values 1, 2, . . . , K and takes the best solution pro-
duced by any of these processes. This clearly guarantees that
the quality of solutions never degrades with increasing K .

The remainder of this section is organized as follows. First
we detail the BMulticut algorithm in Sect. 5.1 and show that
it is indeed an approximation algorithm in Sect. 5.2. We con-
clude with some remarks in Sect. 5.3.

5.1 Algorithm BMulticut

The pseudo-code for theBMulticut algorithm is shown in the
Fig. 4. It takes as input a graphG0 = (V, E0 = E+

0 ∪E−
0 , w),

a set S0 of source–sink pairs, bounds μ+
0 and μ−

0 , and the
parameter K . In its first step (line 1) it solves the relaxation
of IPbmc for G0, S0, μ+

0 and μ−
0 . The relaxation is obtained,

as usual, by replacing the constraint (v) in IPbmc (shown in

Sect. 4.2) with xuv, yuv ∈ [0, 1]. Note that we can obtain a
solution for the relaxation of IPbmc in PTIME by using its
equivalent polynomially sized linear program, as discussed in
Sect. 4.2. Denote by d0

e the returned valuations for variables
xuv , where e = (u, v) ∈ E0. Let d0 be the collection of
all d0

e , for e ∈ E0. We ignore the valuations returned for
the other variables. In the next step (line 2), the algorithm
grows a single region B0 in G0, using d0 by a call to the
procedure GRegion in which the last parameter is set to 1,
indicating that only a single region is requested. As will be
detailed below, the region B0 consists of all vertices that are
within a certain distance (relative to d0) from a source vertex
s in S0. Furthermore, if we denote by ∂B0 the set of edges
in E0 that have exactly one vertex in B0, then removing the
edges in ∂B0 from G0 ensures that the source–sink pair (s, t)
in S0 is disconnected. The procedure GRegion returns B0,
the updated graph G1 obtained from G0 by removing all
vertices (and their incident edges) in B0, and updated set
S1 of source–sink pairs obtained from S0 by removing all
pairs that have been disconnected by removing ∂B0 from
G0. Next, BMulticut updates the bounds μ+

0 and μ−
0 (line

3). Intuitively, μ+
1 measures how much of the bound μ+

0 is
left if all +-labeled edges in ∂B0 are to be part of a valid
multicut. Similarly for μ−

1 .
The algorithm BMulticut then continues by repeatedly

(i) solving a new linear program (line 6); and (ii) growing
a single region (line 8) in a similar way as just described.
More specifically, the while loop (lines 5–12) is executed as
a long as there are still connected source–sink pairs in Si ,
no more than K iterations have been performed, when the
updated bounds differ from the previous bounds, or when the
updated linear program is expected to return a better solution.
The latter is checked by the condition in line 7, as will become
clear in the analysis of the algorithm.

After completion of the while loop, the value i − 1 (�
K) denotes the number of times the while loop has been
executed. At this point, we have regions B0, B1, . . . , Bi−1,
graphs G0 � G1 � · · · � Gi , sets of source–sink pairs
S0 � S1 � · · · � Si , and solutions d0, . . . ,di−1 of the
(different) linear programs considered.

For each j ∈ [0, i − 1], BMulticut will run the standard
region growing algorithm (line 14) on G j+1 generating a
multicut Tj that disconnects all pairs in S j+1. Furthermore,
the region growing process uses d j to measure the distances
between vertices in G j+1. Note that the procedure GRegion
is called with its last parameter set to ∞, indicating that no
upper bound is set on the number of grown regions.

Together with ∂B0 ∪ · · · ∪ ∂Bj , the set Tj of edges forms
a complete multicut, denoted by Cut j , for G0 and S0 (line
15). It now remains to extract from Cut j the minimal set
of edges ΔE j such that the remaining edges in Cut j form
a valid multicut relative to μ+

0 and μ−
0 . This is done by

procedure ExtractDeltaE(Cut j) on line 16. This procedure

123

26 Int J Data Sci Anal (2016) 1:17–35

GRegion (G, S,d, �, N)
1. F :=

∑
e∈E+∪E− wede;

2. ε := 2 ln(� + 1);
3. Initialize H := G, T := ∅; i = 1;
4. While (|S| > 0 and i � N) do
5. grow := true
6. pick a source-sink pair (s, t) from S and

let region := ∅;
7. Let L be the list of vertices in H, sorted by their

increasing d-distance to s; Assume that s is the
first element L[0] in this list and let L = L[0];

8. While (grow) do
9. region := region ∪ L;
10. update volume V(region) and cost w(region);
11. if c(region) � εV(region) then grow := false,

else let L := L.next;
12. Update H by removing all vertices (and incident

edges) in region;
13. Remove all pairs in S that are disconnected in H;
14. T := T ∪ ∂(region);
15. i := i + 1;
16. Return (H, S, T).

Fig. 5 Region growing procedure GRegion

simply removes edges from Cut j until w(Cut j ∩ E+
0) � μ+

0
and w(Cut j ∩ E−

0) � μ−
0 hold. The removed edges are then

returned as ΔE j . We show below that ΔE j is indeed a solu-
tion of the Bounded Multicut problem for G0, S0 and μ+

0
and μ−

0 , for each j ∈ [0, i − 1].
Finally,BMulticut identifies the solution among the ΔE j ,

for j ∈ [0, i − 1], that is of minimal weight (lines 17) and
returns it as a solution for the Bounded Multicut problem
(line 18).

We next describe the region growing procedure GRe-
gion as shown in Fig. 5. It takes as input a graph G =
(V, E+ ∪ E−, w), set S of source–sink pairs, a collection
d = {de|e ∈ E} of values (obtained from solving a lin-
ear program, as explained earlier), parameter � which will
always be equal to |S0|, and a parameter N that takes values
1 or +∞, depending on whether one, or all regions should
be grown. Except for the parameters � and N , GRegion is
just the standard region growing algorithm [10]. We include it
here to make the description of the algorithms self-contained.

Initially,GRegion sets F = ∑
(u,v)∈E+∪E− wede and ε =

2 ln(� + 1), where � is the number of source–sink pairs in
S0 (lines 1–2). Then, as long as there are source–sink pairs
in S that still need to be disconnected either one (if N = 1)
or multiple (N = +∞) regions are grown (lines 4–15). A
single region region is grown starting from one source vertex
at a time. Let (s, t) be the selected source–sink pair (line 6).
Next, vertices are added to region in the order determined by
their distance to s as given by the values de (line 7). Whenever
we expand region (line 9), we update its volume by setting
V(region) = F/� + ∑

e∩region=∅ wede (line 10). That is,
we add wede to the volume for every edge that has at least

one vertex in region. At the same time, we update its cost
by setting c(region) = ∑

e∈∂(region) we, where ∂(region)

consists of all edges that have a single vertex in the current
region (line 10).

Crucial in the region growing process is to determine when
to stop adding vertices to region. For this purpose, the stop-
ping condition c(region) � εV(region) is checked (line 11).
If the condition holds, no more vertices are added to region
by setting grow=false. Otherwise, region is expanded fur-
ther. It is known that the stopping condition will be satisfied at
some point [10]. Furthermore, it is known that after the grow-
ing of region is completed, the selected source–sink pair
(s, t) becomes disconnected when the edges in ∂(region)

are removed from the graph [10].
The algorithmGRegionwill repeatedly grow regions, dis-

connecting a source–sink pair at a time, until all the pairs have
been processed. This is achieved by updating the graph under
consideration (line 12) and updating the set of source–sink
pairs such that those that have already been disconnected are
disregarded (line 13), after which the algorithm grows a new
region in the updated setting.

Furthermore, while growing regions the algorithm col-
lects all edges in ∂(region) (line 14), as this will constitute a
multicut T for G and S (when N = +∞) and single region
disconnecting (s, t) (when N = 1). Finally, observe that the
variable i is only to limit the number of regions grown (line
15 together with condition in while loop on line 4). The algo-
rithm returns the updated graph H , updated set S and set of
edges T (line 16).

5.2 Correctness and approximation guarantee

We first show that BMulticut indeed returns a solution ΔE
of the Bounded Multicut problem on input G0, S0, μ+

0
and μ−

0 . It suffices to show that each ΔE j , for j ∈ [0, i −
1], is a solution. Recall that ΔE j is the result of applying
ExtractDeltaE on Cut j and that Cut j = ∂B0 ∪ · · · ∪ ∂Bj ∪
Tj . Clearly, if we can argue that Cut j is a multicut for G0

and S0, then ΔE j is indeed a solution. To see this, recall
that ExtractDeltaE simply removes edges from Cut j until
it becomes a valid multicut relative to μ+

0 and μ−
0 , and puts

the removed edges in ΔE j .
It thus remains to show that Cut j is a multicut for G0 and

S0. This, however, follows immediately from the correctness
of the region growing process [10]. Indeed, it is known that
when a region region is grown by GRegion, starting from
a source vertex s in a pair (s, t) ∈ S0, then the stopping
condition is satisfied by only considering vertices v whose
distance to s is strictly less than 1

2 . This implies that the
distance between any two vertices in region is strictly smaller
than 1. Since the distances are measured usingd, a solution of
the relaxed integer program IPbmc, the distance between s and
t is at least 1 [condition (i) in IPbmc]. In other words, t does

123

Int J Data Sci Anal (2016) 1:17–35 27

not belong to region and cutting away ∂(region) disconnects
s and t . Because BMulticut keeps growing regions until no
more source–sink pairs are left, it follows that cutting away
∂B0 ∪ · · · ∪ ∂Bj ∪ Tj indeed disconnects all source–sink
pairs.

Next, we verify that BMulticut is an approximation algo-
rithm. We start by bounding the weights of ∂Bj and Tj for
j ∈ [0, i − 1] in terms of F0 = ∑

e∈E+
0 ∪E−

0
wed0

e . Consider
the region Bj . We know from the stopping condition used in
GRegion that c(Bj) � 2 ln(|S0| + 1)V(Bj) where the cost
and volume are computed using d j . Since c(Bj) = w(∂Bj)

we thus have that

w(∂B0 ∪ · · · ∪ ∂Bj) =
j∑

i=0

c(Bi)

�
j∑

i=0

2 ln(|S0| + 1)V(Bi).

Similarly, w(Tj) � 2 ln(|S0| + 1)
∑

region j V(region j),
where the summation runs over all (say p j) regions con-
structed to obtain Tj . For j ∈ [0, i − 1] denote by Fj =
∑

e∈E+
j ∪E−

j
wed

j
e where d j

e denote the values in d j and E+
j

and E−
j are the edges in G j . Then,

V(Bj) = Fj/|S0| +
∑

e∩Bj =∅
wed

j
e

and

∑

region j

V(region j) = p j
Fj

|S0| +
∑

e∈E+
j+1∪E−

j+1

wed
j
e .

This implies that w(Cut j) is bounded by

2 ln(|S0| + 1)

(
1

|S0| (F0 + F1 + · · · + Fj−1 + (p j + 1)Fj)

+
⎛

⎝
∑

e∩B0 =∅
wed

0
e +

∑

e∩B1 =∅
wed

1
e + · · ·

+
∑

e∩Bj =∅
wed

j
e +

∑

e∈E+
j+1∪E−

j+1

wed
j
e

)
.

Note that BMulticut ensures (by the condition in line 7) that

Fj =
∑

e∈E+
j ∪E−

j

wed
j
e �

∑

e∈E+
j ∪E−

j

wed
j−1
e

� Fj−1 =
∑

e∈E+
j−1∪E−

j−1

wed
j−1
e , (1)

for any j ∈ [1, i − 1]. Furthermore, j + p j + 1 is at most
|S0| since, in the worst case, |S0| regions are grown each
of which disconnects a single source–sink pair in S0. Hence,

1
|S0| (F0 +F1 +· · ·+Fj−1 +(p j +1)Fj) � 1

|S0| |S0|F0 = F0.
Similarly,

F0 =
∑

e∩B0 =∅
wed

0
e +

∑

e∈E+
1 ∪E−

1

wed
0
e

�
∑

e∩B0 =∅
wed

0
e + F1

=
∑

e∩B0 =∅
wed

0
e +

∑

e∩B1 =∅
wed

1
e +

∑

e∈E+
2 ∪E−

2

wed
1
e

�
∑

e∩B0 =∅
wed

0
e +

∑

e∩B1 =∅
wed

1
e + F2

...

�
∑

e∩B0 =∅
wed

0
e +

∑

e∩B1 =∅
wed

1
e + · · ·

+
∑

e∩Bj =∅
wed

j
e +

∑

e∈E+
j+1∪E−

j+1

wed
j
e .

All combined this implies that w(Cut j) � 4 ln(|S0| + 1)F0.
Note, however, that we are interested in approximating solu-
tion of the Bounded Multicut problem. Let d0 be a
valuation of the variables xuv and f0 be a valuation of the
variables yuv in the relaxation of IPbmc. Then,

⎛

⎜
⎝

∑

e∈E+
0 ∪E−

0

wed
0
e

)
− (

μ+
0 + μ−

0

⎞

⎟
⎠ �

∑

e∈E+
0 ∪E−

0

we
(
d0
e − f 0

e

)

and thus

F0 � |ΔElp| + (
μ+

0 + μ−
0

)
,

where |ΔElp| denotes the objective value of the relaxation of
IPbmc. Hence,

w
(
ΔE j

)
� w

(
Cut j

)
� 4 ln

(|S0| + 1
)
F0

� 4 ln
(|S0| + 1

)(|ΔEopt| + (
μ+

0 + μ−
0

))
(2)

since |ΔElp| � |ΔEopt| where |ΔEopt| is the size of the
optimal solution as given by the integer program IPbmc.

We thus have indeed obtained a O(log |S0|)-approxi-
mation algorithm for Bounded Multicut. To relate this
back to the Bounded Correlation problem, observe
that S0 corresponds to the negative edges (recall that
the transformation from Bounded Correlation Clus-
tering to Bounded Multicut), and thus BMulticut
is a O(log(|E−|))-approximation algorithm for Bounded
Correlation Clustering.

123

28 Int J Data Sci Anal (2016) 1:17–35

5.3 Remarks

Observe that when K = 0, the algorithm BMulticut is pre-
cisely the same as the standard region growing algorithm.
It is thus a conservative extension of the standard algo-
rithm. Furthermore, the analysis of BMulticut reveals that
we expect that increasing K leads to better solutions. Indeed,
the inequality (1) in the analysis shows that w(Cut j) can be
bounded in terms of the sum of the Fj ’s rather than F0 alone,
as is the case when setting K = 0. Since Fj � Fj−1 for
j ∈ [1, i − 1] and thus Fj � F0 for j ∈ [0, i − 1], this
means that the weight of the multicut (and thus also ΔE)

can be bounded by a smaller number than 4 ln(|S0| + 1)F0.
Of course, this does not imply that we always get a better
solution since these are upper bounds. This is precisely the
reason why BMulticut takes the minimum solution among
all those that are generated.

Furthermore, the region growing algorithm uses the relax-
ation of IPbmc to determine, among other things, the order
in which vertices are added to the region. However, the
algorithm only uses the valuations duv for the variables
xuv and does not explicitly leverages the availability of
valuations fuv for yuv . As an immediate consequence,
the weight of the obtained multicut is related to F =∑

(u,v)∈E+∪E− wuvduv rather than the objective function of
IPbmc (

∑
(u,v)∈E+∪E− wuv(duv− fuv)). We thus get an overly

pessimistic upper bound on the quality of the approximation.
Nevertheless, we will see in the experimental section that we
get ΔE’s that are close to optimal.

Ideally, we would like to grow regions using duv − fuv

rather than duv . This does not work, however, since constraint
(i) in IPbmc only refers to the xuv variables and this con-
straint, together with the stop condition for growing regions
(line 11 in the algorithm GRegion), ensures that the result is
indeed a multicut. Further investigation is required as how to
make better use of the available valuations of the yuv vari-
ables.

However, we remark that the additional constraints (ii),
(iii), and (iv) in IPbmc may indeed help to guide the region
growing process toward a better solution than when ignor-
ing these constraints and using the relaxation of IPmc for the
standard Multicut problem as is illustrated in the following
example.

Example 5 Consider a simple instance of Bounded Mul-
ticut for μ+ = 1 and μ− = 1 as shown in Fig. 6, i.e.,
we allow for one positive and one negative edge to belong
to the multicut. As before, dashed edges represent edges in
E−, solid edges correspond to edges in E+. We adorned
the edges with valuations for xuv obtained by relaxing IPmc

(left) and with valuations for xuv and yuv obtained by relax-
ing IPbmc (right). In this example, we get integer solutions.
As can be seen, by growing regions based on IPmc, we get a

s1 t1v

s2 t2w

xs1v = 0

xs2w = 0 xwt2 = 1

xvt1 = 1
s1 t1v

s2 t2w

xs1v = 0 xvt1 = 1

xs2w = 1 xwt2 = 0
ywt2 = 0ys2w = 1

ys1v = 0 yvt1 = 1

Fig. 6 Effect of additional constraints on approximate solution

multicut consisting of two positive edges (the regions are
gray-shaded). After post-processing, we put one of these
in ΔE and thus |ΔE | = 1. However, by growing regions
based on IPbmc, we immediately obtain a multicut that is
valid, i.e., it consists of one positive and one negative edge.
As a consequence, an empty ΔE will be returned by the
algorithm. �	

The example shows the advantage of growing regions
based on the relaxation of IPbmc.

6 Interactive framework

Before showing our experimental evaluation of the BMulti-
cut algorithm, we describe how it fits in the user interaction
process illustrated in Fig. 1. Recall from that example that a
user can (1) specify false negative and positive bounds; (2)
mark a set of edges as immutable and make immutable edges
mutable again; and (3) receive feedback on revised bounds
suggested by the system when no solution can be found for
the given error bounds and set of immutable edges.

Clearly, the error bounds are well-integrated in BMulti-
cut since they are part of the linear program that is solved
to obtain a solution, as explained in the previous section.
We therefore focus on (2) and (3). We discuss these issues
in the context of Bounded Multicut but as we have seen
before, this discussion also concerns Bounded Correla-
tion Clustering.

6.1 Processing of immutable edges

When a user declares an edge as immutable, she/he does
not want any solution ΔE that includes this edge. Recall the
integer program IPbmc for solving the Bounded Multicut
problem. Note that according to semantics of a valuation of
variables xuv and yuv , an edge e = (u, v) is in ΔE (and
hence to be deleted) if xuv = 1 and yuv = 0. To prevent e to
be in ΔE it thus suffices to set xuv = 0 in IPbmc.

Therefore, given a set of immutable edges I E from a user
during some stage in the interaction process, we proceed as
follows: for every edge e = (u, v) ∈ I E , we add an equality
constraint of the form: xuv = 0 to the IPbmc program. Note
that we add at most |I E | constraints and thus the program
remains polynomial in size.

123

Int J Data Sci Anal (2016) 1:17–35 29

The algorithm BMulticut then uses the relaxation of
this modified integer program. When growing regions, any
valuation of these xuv will be equal to 0 and hence the cor-
responding edges will always be included in a region region
and not in its boundary ∂(region). Indeed, GRegion adds
vertices to region in increasing distance from a source ver-
tex, hence those with distance zero will always be added to
region. In other words, immutable edges will never be part
of ∂(region) and thus also not be part of Cut. As a conse-
quence, edges in I E will not be present in a solution ΔE .
Indeed, recall that ΔE is obtained as a subset of Cut.

6.2 Obtaining revised error bounds

Although a solution always exists in the absence of immu-
table edges, this is no longer the case when immutable edges
are present as was shown in Example 1. Intuitively, in these
cases the integer program becomes over-constrained and no
solution exists. In particular, when too many variables xuv are
set to zero, it may become impossible to satisfy condition (i)
in IPbmc. In such cases, as part of the user interaction we want
to suggest revised error bounds that guarantee the existence
of a solution.

To deal with this problem observe that IPbmc becomes
infeasible when there are source–sink pairs that have a path
between them that entirely consists of immutable edges, i.e.,
edges (u, v) whose xuv-value is 0. Moreover, such source–
sink pairs can be easily found in PTIME by starting from a
source vertex and checking whether the corresponding sink
vertex can be reached by following immutable edges only.
Intuitively, such an immutable path cannot be disconnected
by removing edges as all edges are immutable and should
not be deleted, as requested by the user.

Given a set S of source–sink pairs, we denote by Sie
those pairs for which an immutable path exists, and by Snie
the remaining source–sink pairs in S. During the interactive
process, we maintain the sets Sie and Snie and modify BMul-
ticut as follows:

– Instead of using the relaxation of IPbmc, we use the
relaxation of the revised integer program obtained by
including xuv = 0 for each (u, v) ∈ I E and by only
considering paths between source–sink pairs in Snie
in condition (i); This guarantees the feasibility of the
revised integer program and its relaxation.

– When applying BMulticut with this revised relaxation,
we obtain a solution ΔE that does not contain any
immutable edges and for which there exists a valid mul-
ticut T . In other words, removing the edges ΔE ∪ T
disconnects all source–sink pairs in Snie.

– We further expand T with a multicut for the source–
sink pairs in Sie. To this aim, we run BMulticut in
which the error bounds are set to 0 and for which only

source–sink pairs in Sie are taking into account. Fur-
thermore, in the corresponding integer program, we do
treat immutable edges as normal edges by removing the
additional equality conditions xuv = 0 for (u, v) ∈ I E .
By setting the error bounds to zero, BMulticut gener-
ates a T ′ whose removal disconnects all pairs in Sie. In
other words, T ∪ T ′ is a multicut for the original set S
albeit for error bounds (μ+)′ = μ+ + w(T ′ ∩ E+) and
(μ−)′ = μ− + w(T ′ ∩ E−).

That is, when a user marked too many edges as immutable
such that no solution can be found for the given error bounds
μ+ and μ−, the user is informed about this and in addition,
she/he is informed that a solution exists for revised upper
bounds (μ+)′ and (μ−)′. If these revised bounds are accept-
able for the user, the interactive process can then continue.
Otherwise, a user may decide to make certain immutable
edges mutable (normal) again.

Example 6 Consider the triangle (1, 4), (1, 2) and (2, 4)

from Example 1 that was marked as immutable. Recall
that S = {(z1,4, 4), (z3,6, 6), (z5,6, 6)} in the corresponding
Bounded Multicut instance shown in Fig. 2. Note that the
pair (z1,4, 4) has an immutable path: (z1,4, 1), (1, 2), (2, 4)

where the edge (z1,4, 1) corresponds to the −-labeled edge
(1, 4). Hence, Sie = {(z1,4, 4)} and Snie = {(z3,6, 6),

(z5,6, 6)}. We have seen in Example 1 that no solution
exists for μ+ = 0 and μ− = 0. Indeed, to disconnect
(z1,4, 4) one of the edges (z1,4, 1), (1, 2), (2, 4) needs to
be deleted, which is disallowed since these are marked as
immutable. Following the strategy outline above, we thus
first process source–sink pairs in Snie, leading to a solu-
tion ΔE = {(3, z3,6), (5, z5,6)} that disconnects all pairs
in Snie, followed by a cut T ′ = {(z1,4, 1)} disconnecting
the pair in Sie. Hence (μ+)′ = μ+ = 0 and (μ−)′ =
μ− + w(T ′ ∩ E−) = 0 + 1 = 1. Hence, (μ+)′ = 0 and
(μ−)′ = 1 will be suggested to the user as new error bounds
for which a solution exists. The corresponding clustering C
and solution ΔE are shown in Fig. 1g. �	

7 Experimental evaluation

We now describe the empirical evaluation of our approxima-
tion algorithm on synthetic and real datasets. For solving
the integer program IPbmc and its relaxation, we use the
IBM Cplex Optimizer [14]. The algorithm BMulticut is
implemented in Java. The experiments were conducted on a
GNU/Linux machine with Intel(R) Xeon(R) CPU 2.90 GHz
(16 cores) and 32 GB memory.

7.1 Datasets

We perform experiments on synthetic and real datasets,
which are detailed next.

123

30 Int J Data Sci Anal (2016) 1:17–35

7.1.1 Synthetic data

We use two kinds of synthetic data. The first kind of synthetic
data synth_cc is aimed particularly at correlation clustering.
Here, the graph data are generated along the same lines as
in [4]. That is, starting with an initial number of vertices and
number of clusters, we randomly add “+” and “-” labeled
edges to the graph using parameters to control the number
of false positive and negatives. These parameters include the
probability of intra-cluster edges, probability of inter-cluster
edges and the probability of having a negative edge inside a
cluster. The second kind of synthetic data synth_gen con-
cerns randomly generated graphs in which the number of
clusters and errors is purely random. That is we do not control
number of clusters or number of false negatives and positives.
However, we do control the total number of “-” labeled edges
in the graph.

7.1.2 Real data

We used two real datasets: (1) The epinions social network
dataset [15] and (2) the Wikipedia requests for adminship
dataset [19].

The epinions social network dataset is a directed graph
depicting a who-trust-whom network from a general con-
sumer site epinions.com. The directed edges in this dataset
come with a + or −-label indicating who-trust-whom. To
turn this into an undirected graph, we proceeded as follows.
For those pairs of vertices that only had a single directed
edge between them, we removed the direction. For those
pairs that had edges in both directions, we replaced them
with a single undirected edge and randomly picked a label
if the original two directed edges carried distinct labels. We
sampled 10 subgraphs with sizes ranging from 1647 to 7808
in the number of vertices and 1000 to 5500 in the number of
edges.

The Wikipedia requests for adminship dataset is a signed
network in which nodes represent Wikipedia users and the
edges represent votes. In order for a Wikipedia editor to
become an administrator, the candidate or another member
must submit a Request for Adminship (RfA). Thereafter, any
community member may cast a vote indicating their sup-
port or opposition. A vote may also be neutral. This directly
translated to our problem instance in which a supporting vote
becomes a “+”-labeled edge and an opposing edge becomes
a “-”-labeled edge. We ignored the neutral votes. Similarly,
subgraphs were sampled from the full dataset ranging in size
from 1847 to 2367 in the number of vertices and 1500 to
2250 in the number of edges. We varied the false negative
and positive bounds between 0 and 25 for both datasets.

In all experiments, we report averaged results over 20 runs.

(b)

(a)

Fig. 7 Quality of approximation and running times

7.2 Quality of approximation

We first investigate the quality of solutions ΔE returned
by BMulticut by comparing it against the optimal solution
ΔEopt, obtained by solving the integer program IPbmc. For
the synth_cc dataset, we considered small graphs ranging
from 50 to 210 in number of edges. A total of 640 graph
instances were generated. We considered small graphs in this
part of the experiment because as we see in Fig. 7a, even for
small graphs, a clear behavior of the algorithm in terms of the
approximate, optimal solutions and the theoretical bound is
observed. This behavior is expected to hold for larger graphs
as well.

Figure 7a shows the size of the optimal ΔEopt, the size
of set of ΔE returned by BMulticut, and the theoretical

123

Int J Data Sci Anal (2016) 1:17–35 31

upper bound on the approximation guarantee, in terms of the
number of edges in the input graph and error bounds. The the-
oretical bound corresponds to Eq. (2) in Sect. 5.2. Each of the
points shown in the graph represents averaged results over 80
input instances of the synth_cc data sets. The parameter K
and both error bounds μfp and μfn were set to zero. Since the
quality of solutions returned by BMulticut does not degrade
for increasing values of parameter K , we can only expect to
get solutions that lie closer to the optimal solution for K > 0.
One can see from Fig. 7a that BMulticut obtains solutions
that are consistently close to the optimal and much better
than predicted by the theoretical approximation guarantee.
This shows that BMulticut generates good solutions. A sim-
ilar behavior (not shown) was observed on the synth_gen
data sets.

We then checked the effect of increasing the error bounds
on the size of ΔE returned by BMulticut. Also here the
parameter K is set to zero. Figure 8a, b show the size of
ΔE returned by BMulticut for varying error bounds on the
synth_cc and Wikipedia datasets, respectively. For Fig. 8a,
reported results are for individual graph instances selected
from the synth_cc data sets. Not surprisingly, as we increase
the error bounds the size of ΔE decreases. Indeed, one
expects that less edges need to be deleted to guarantee the
existence of clusterings with large cost (high error bounds).

Note that for theWikipedia dataset results are reported for
graphs starting from 1500 edges. The reason is that for graphs
of less than 1500 edges with parameters K and error bounds
fixed to zero, the approximated ΔE matched the optimal
solution ΔEopt, and more specifically ΔE = ∅. For this
reason we do not show the results for these smaller samples
of theWikipedia dataset. The results on the epinions dataset
were similar (not shown).

The plots shown in Fig. 8a, b illustrate ranges of ΔE that
are achievable with different sizes of error bounds. Since the
edges in ΔE are returned for user inspection, we want the
size of ΔE to be reasonable. To this aim, we explore in a bit
more details how large the ΔE’s returned by BMulticut are,
compared to the total number of edges in the graph. We report
our findings in Table 1 for a couple of synth_cc data sets.
As can be seen, only a small fraction of edges are returned
for user inspection.

For the real datasets, the returned ΔE were generally very
small. For instance, in the epinions dataset, for the sampled
graphs an average ΔE of size 6 was obtained, translating
into an average ratio (|ΔE |/|E+ ∪ E−|) of 0.002. Similarly,
for the Wikipedia dataset, we obtained an average ratio of
0.005. As before, in all these experiments K was set to zero.

7.3 Scalability

We next compare the running times of solving the integer
program IPbmc, and thus obtaining an exact solution, against

(a)

(b)

Fig. 8 Effect of bounds

Table 1 synth_cc dataset: ratio of |ΔE | versus |E+ ∪ E−|
No. vertices |V | No. edges |E+ ∪ E−| |ΔE |/|E+ ∪ E−|
250 634 0.23

270 1250 0.13

290 2094 0.07

300 2566 0.06

310 3119 0.06

330 4389 0.04

450 5739 0.05

the running time of BMulticut. Figure 7b shows the aver-
aged running times for 80 instances of synth_cc. We varied
the error bounds between 0 and 10 with parameter K fixed
at zero. Not surprisingly, solving IPbmc quickly becomes
more time consuming as input graphs get larger. Instead, the

123

32 Int J Data Sci Anal (2016) 1:17–35

Table 2 synth_cc dataset:
linear program size

No. vertices |V | No. edges |E+ ∪ E−| No. variables No. constants No. nonzeros

28 50 564 2029 4840

46 70 1752 6476 15,746

49 90 1830 7532 18,720

56 110 2624 11,575 29,212

66 130 3490 15,627 39,590

88 150 6496 27,115 67,980

92 170 7120 31,502 79,850

103 190 9000 40,052 101,690

115 210 11,305 50,248 127,617

Table 3 synth_cc dataset: LP
and region growing run times

No. vertices |V | No. edges |E+ ∪ E−| LP runtime (s) Region growing
runtime (s)

250 634 15.56 0.57

270 1250 89.93 0.45

290 2094 189.69 0.89

300 2566 172.18 0.99

310 3119 153.32 1.04

330 4389 196.48 1.51

450 5739 1269.41 2.28

approximation algorithm returns results within reasonable
time. For instance, for small graphs in the range (90, 210]
in number of edges, the IPbmc program is at least 2 orders
of magnitude slower than our approximation algorithm. This
scalability behavior is expected to hold when larger graph
instances are considered.

We remark that for very small graphs, solving IPbmc is
sometimes faster than running the approximation algorithm.
Note, however, that these differences are very small (log
scale) and probably due to background processes.

Figure 7b shows that the running time of BMulticut grows
with increasing graph sizes. This is mainly due to the increas-
ing size of the linear programs that need be solved. Table 2
illustrates how the linear program changes in terms of the
number of variables, constants and non-zero values (i.e.,
number of non-zero values in the Cplex matrix representation
of the linear program).

Table 3 shows that solving the linear program (LP Run-
time in seconds) constitutes the dominant factor in the whole
region growing process. In this experiment we set parameter
K and both error bounds to zero. Since for this experiment we
do not need to solve the program IPbmc, which takes longer,
we used larger graph instances of the synth_cc data sets and
we show results for a couple of instances in Table 3.

7.4 Effect of the parameter K

So far, we have set the parameter K to zero such that
BMulticut generates “worst-case” solutions ΔE . Indeed, as

observed earlier, increasing the value of the parameter K
should lead to better approximate solutions. We next vali-
date this claim experimentally.

Firstly, for fixed error bounds, we investigate how the sizes
of the returned ΔE is affected by the value of K . We therefore
compared results for the values of K = 0 and K = 10. The
plots in Fig. 9a, b show results on synth_gen and synth_cc
data sets, respectively. Error bounds are set to μfp := 25 and
μfn := 20.

Figure 10a, b show the results for the Wikipedia dataset.
We considered two pairs of error bounds i.e., (μfp = 10;
μfn = 5) and (μfp = 25; μfn = 20), respectively.

From all these plots, we observe that as K is relaxed from
0 to 10, we indeed get a smaller ΔE in most of the cases.
Only in a few instances, the size of ΔE obtained matched
the size of ΔE obtained in the zero-valued K case. We may
conclude that relaxing K helps us to obtain better solutions
than when fixing K to 0.

We also observe that Fig. 9a, b show that the benefit of
non-zero values for parameter K in obtaining better solutions
is more noticeable for the synth_cc datasets (Fig. 9b) than
for the synth_gen datasets (Fig. 9a). Since the synth_cc
datasets are generated with some underlying structure mim-
icking correlation clustering real-life scenarios, our experi-
ments indicate that our algorithm works better in those prob-
lem instances (i.e., like synth_cc) than when one has com-
pletely random graph instances (i.e., synth_gen datasets).

Since K indicates how many region growing processes
BMulticut can run, and from which the best solution can

123

Int J Data Sci Anal (2016) 1:17–35 33

(b)

(a)

Fig. 9 Effect of the K parameter on ΔE

be taken, we also investigated which of these runs actu-
ally generated the best solution. In Fig. 10a we show which
run actually produced the best solution (dashed line) on the
Wikipedia dataset. We observe that in most cases the best
solution was obtained by running at most 7 region growing
processes. In some cases, even running two region growing
processes suffices to obtain the best solution. Only in one
case (1500 edges), the best solution was obtained for K = 0.

To see the impact of the error bounds on the size of ΔE
when K can be larger than 0, consider Fig. 10a, b. As previ-
ously observed (for K = 0 in Fig. 8a, b), when error bounds
are increased we obtain smaller solutions. Indeed, Fig. 10b
shows that we obtain smaller sizes of ΔE as compared to the
sizes reported in Fig. 10a. Recall that (μfp = 10; μfn = 5)

and (μfp = 25; μfn = 20) in Fig. 10a, b, respectively.
Specifically, looking at the largest instance of 2250 edges

and for the K = 0 case, as the error bounds are relaxed (i.e.,

(a)

(b)

Fig. 10 Effect of the K parameter on ΔE

μfp : 10 to 25 and μfp : 5 to 20), we note an improvement
(decrease) in size of ΔE by a factor of about 2.6. Similarly,
when K is set to 10, sizes of ΔE decrease by a factor of
approximately 2.2, when error bounds increase.

Furthermore, one would expect the positive effect of larger
K to be less prominent when large error bounds are present.
Indeed, larger error bounds alone lead to smaller solutions
already. Indeed, consider again the instance of 2250 edges
in Fig. 10a, b. The difference in the sizes of ΔE between the
two cases (i.e., K = 0 vs. K = 10) in Fig. 10a is 33, while
in Fig. 10b the difference is only 10. A similar behavior was
noted for the epinions dataset (not shown).

Finally, we report the effect of K on the efficiency of our
approximation algorithm. Recall that K corresponds to the
number of linear programs that are solved. Hence, increasing
K is expected to add an overhead in terms of the running time.
Figure 11a, b shows the running times for various K on the

123

34 Int J Data Sci Anal (2016) 1:17–35

(a)

(b)

Fig. 11 Effect of the K parameter on running time of region growing

Wikipedia and synth_ccdatasets, respectively. As expected,
the smallest running times are obtained when K = 0 (i.e., for
the Wikipedia dataset the largest instance in this case 2250
edges completed in under 43 s). Similarly, for small synthetic
datasets, running times are below 0.8 s when K = 0. For the
K > 0 case, in Fig. 11a we compare the running times for
values of K set to 2, 4 and 8. We note that our algorithm
remains efficient as K is increased and as before notable dif-
ferences in time are observed for instances of at least 2000
edges. Moreover, as K was increased from 2 to 8, the maxi-
mum increase in time for the largest instance was by a factor
of 2.1. Furthermore, we note that there is a slightly higher
increase in running time between the 2125-edge and 2250-
edge instances. This is attributed to sampling which resulted
in graphs which are different in structure. This behavior was
similar for the synth_cc datasets as shown in Fig. 11b where

K was set to 4, 12 and 20. Observe that for these smaller
datasets, even as K as set to 20, BMulticut algorithm com-
pleted running in under 16 s.

In summary, the running times increase in terms of K , as
expected. However, we note that for small values of K , the
overheads are smaller for successive values. As we reported
earlier, even when K is large, the best solution is sometimes
found by running less (than K) region growing processes. In
practice, a user may thus adopt a pay-as-you-go strategy in
whichBMulticut is halted whenever a time limit is exceeded.
The best solution found in the allowed time is then returned.

8 Related work

Most relevant to our work is the O(log n)-approximation
algorithm for Correlation Clustering presented in [8].
In that work, the region growing algorithm for Multi-
cut [10] is used to obtain an approximation algorithm for
Correlation Clustering. We follow a similar strategy in
this paper, albeit in the presence of error bounds, as explained
in Sect. 5.

TheCorrelation Clustering problem itself was intro-
duced in [2]. Approximation algorithms have been reported
in [2,6,9,16] with the goal of minimizing disagreements
(i.e., minimizing false positive and negatives, which corre-
sponds to our setting) or maximizing agreements. Different
algorithms are provided depending on whether graphs are
complete or incomplete, weighted or unweighted, or whether
certain conditions on the weights are imposed. None of
these papers consider error bounds and to our knowledge,
the Bounded Correlation Clustering problem has not
been studied before.

Similarly, the Multicut problem has received ample
attention, see e.g., [7] for a survey. To our knowledge,
the Bouded Multicut problem has not been considered
before.

We also note that a number of variations of the cor-
relation clustering problem have been considered: by
fixing the number of clusters [12]; by allowing overlapping
clusters [5]; and for generally labeled edges (chromatic clus-
tering) [4]. None of these works consider the presence of
user-defined error bounds, however.

This work is an extended version of [11]. We refer to
Sect. 1 for a description of the differences between the current
paper and [11].

9 Conclusion

We revisited Correlation Clustering when users can
specify desired error bounds. An approximation algorithm
is provided for the associated Bounded Correlation

123

Int J Data Sci Anal (2016) 1:17–35 35

Clustering problem. We analyzed the algorithm theoreti-
cally and provide an experimental validation. It is shown that
approximation algorithm provides solutions that are close
to optimal. Furthermore, we envisage our algorithm to be
part of an interactive clustering framework. We leave the full
exploration and implementation of the interactive framework
as part of future work. Another direction is to reconsider
the variations of the Correlation Clustering Prob-
lem [4,5,12] mentioned before, in the presence of error
bounds.

References

1. Aggarwal, C.C., Reddy, C.K.: Data Clustering: Algorithms and
Applications. CRC Press, Boca Raton (2013)

2. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach.
Learn. 56(1–3), 89–113 (2004)

3. Bejerano, Y., Smith, M.A., Naor, J.S., Immorlica, N.: Efficient
location area planning for personal communication systems.
IEEE/ACM Trans. Netw. (TON) 14(2), 438–450 (2006)

4. Bonchi, F., Gionis, A., Gullo, F., Ukkonen, A.: Chromatic cor-
relation clustering. In: Proceedings of the 18th ACM SIGKDD
International Conference on Knowledge Discovery and Data Min-
ing, pp. 1321–1329 (2012)

5. Bonchi, F., Gionis, A., Ukkonen, A.: Overlapping correlation clus-
tering. In: Proceedings of the 11th IEEE International Conference
on Data Mining, pp. 51–60 (2011)

6. Charikar, M., Guruswami, V., Wirth, A.: Clustering with qualita-
tive information. In: Proceedings of the 44th IEEE Symposium on
Foundations of Computer Science, pp. 524–533 (2003)

7. Costa, M.-C., Létocart, L., Roupin, F.: Minimal multicut and max-
imal integer multiflow: a survey. Eur. J. Oper. Res. 162(1), 55–69
(2005)

8. Demaine, E.D., Emanuel, D., Fiat, A., Immorlica, N.: Correlation
clustering in general weighted graphs. Theor. Comput. Sci. 361(2),
172–187 (2006)

9. Demaine, E.D., Immorlica, N.: Correlation clustering with partial
information. In: Approximation, Randomization, and Combinato-
rial Optimization. Algorithms and Techniques, pp. 1–13. Springer,
Berlin (2003)

10. Garg, N., Vazirani, V.V., Yannakakis, M.: Approximate max-flow
min-(multi) cut theorems and their applications. SIAM J. Comput.
25(2), 235–251 (1996)

11. Geerts, F., Ndindi, R.: Interactive correlation clustering. In: Pro-
ceedings of the 1st International Conference on Data Science and
Advanced Analytics, pp. 170–176 (2014)

12. Giotis, I., Guruswami, V.: Correlation clustering with a fixed
number of clusters. In: Proceedings of the 17th ACM-SIAM Sym-
posium on Discrete Algorithm, pp. 1167–1176 (2006)

13. Hu, T.C.: Multi-commodity network flows. Oper. Res. 11(3), 344–
360 (1963)

14. IBM. Cplex Optimzer. http://www-01.ibm.com/software/commer
ce/optimization/cplex-optimizer/. Accessed 27 Nov 2013

15. Leskovec, J., Huttenlocher, D., Kleinberg, J.: Signed networks in
social media. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pp. 1361–1370 (2010)

16. Swamy, C.: Correlation clustering: maximizing agreements via
semidefinite programming. In: Proceedings of the 15th ACM-
SIAM Symposium on Discrete Algorithms, pp. 526–527 (2004)

17. Van Gael, J., Zhu, X.: Correlation clustering for crosslingual link
detection. In: IJCAI, pp. 1744–1749 (2007)

18. Vazirani, V.V.: Approximation Algorithms. Springer, Berlin (2001)
19. West, R., Paskov, H.S., Leskovec, J., Potts, C.: Exploiting Social

Network Structure for Person-to-Person Sentiment Analysis. arXiv
preprint arXiv:1409.2450 (2014)

123

http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://arxiv.org/abs/1409.2450

	Bounded correlation clustering
	Abstract
	1 Introduction
	2 Motivating example
	3 The bounded correlation clustering problem
	3.1 Problem statement
	3.2 Intractability result

	4 The bounded multicut problem
	4.1 Bounded multicut and its relation to bounded correlation clustering
	4.2 An exact solution for the bounded multicut problem

	5 The BMulticut approximation algorithm
	5.1 Algorithm BMulticut
	5.2 Correctness and approximation guarantee
	5.3 Remarks

	6 Interactive framework
	6.1 Processing of immutable edges
	6.2 Obtaining revised error bounds

	7 Experimental evaluation
	7.1 Datasets
	7.1.1 Synthetic data
	7.1.2 Real data

	7.2 Quality of approximation
	7.3 Scalability
	7.4 Effect of the parameter K

	8 Related work
	9 Conclusion
	References

