
A priori versus a posteriori �ltering of assoiation rules(extended abstrat)Bart GoethalsLimburgs Universitair Centrumbart.goethals�lu.a.be Jan Van den BussheLimburgs Universitair Centrumjan.vandenbusshe�lu.a.be1 IntrodutionThe onept of indutive database, proposed byMannila [8, 11℄, is a beautiful formalization of theinterative mining proess. In the onrete set-ting of assoiation rule mining [1℄, an indutivedatabase provides virtual tables ontaining virtu-ally all itemsets and rules over the data. The userdoes not are how these indutive tables are imple-mented; for him, mining is nothing but queryingthese tables.For example, in a market basket appliation,suppose we want all rules (with a ertain on�deneand support as usual) having `banana' in the headbut `orn akes' not in the body. This would beexpressed by the following data mining query:selet r:head , r:body , r:on�dene , r:supportfrom Rules rwhere r:support � 10 and r:on�dene � 65and `banana' in (selet itemidfrom Setswhere setid = r:head )and `orn akes' not in (selet itemidfrom Setswhere setid = r:body)Note that suh queries might even ombine theSets and Rules tables with the given data tables,and that mining is an essentially interative pro-ess, where a user repeatedly poses new queriesbased on what he found in the answers of his pre-vious queries.In our opinion, the idea of indutive databaseindiates the ultimate goal of how a transparent\data mining query language" [5, 4, 6, 7, 12℄ shouldlook like. The transpareny lies in that the usernever issues expliit mining ommands himself; the

system mines whatever and whenever neessary.Clearly the implementation of this vision presentsa great hallenge. In this paper, we investigateand ompare two rather extreme approahes, thea priori approah and the a posteriori approah,towards the above hallenge.The a priori approah onsists of answeringevery individual data mining query by running anadaptation of the mining algorithm in whih theonditions on the rules to be generated (as spei�edin the query) are diretly inorporated. Forexample, to answer the above example query, onewould try to generate only the rules with `banana'in the head and `orn akes' not in the body,without generating irrelevant rules or itemsets.Suh adaptations of the Apriori algorithm havealready been onsidered in the literature, but theproblem of how to do this for a wide variety ofonditions is de�nitely not yet ompletely solved.In this paper we will o�er a further ontribution inthis diretion.The a posteriori approah begins by �lling upthe Sets and Rules tables as densely as possible,by performing one major, global mining operationwhere the minimal support and on�dene param-eters are set as low as one would possibly need.After this relatively expensive operation, the a-tual data mining queries issued by the user thenamount to standard, basi queries on the materi-alized tables.2 Filtered mining of assoiation rulesIn this setion, we introdue a lass of �lters, i.e.,onditions on rules, and show a way to integratethese �lters tightly in the mining algorithm.The �lters we will onsider in this paper are aspeial ase of the rule templates introdued by
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Klemettinen et al. [9℄. Conretely, we de�ne a�lter as a onjuntion of basi onditions, wherea basi ondition spei�es that some speial itemmust or must not our in the body, the head, oranywhere in the rule. An example of a �lter is: `ain body and b in head and  not in rule'.The question of how suh �lters (and other kindsof onditions on rules) an be exploited in themining algorithm has already been onsidered bySrikant, Vu, and Agrawal [16℄ and Lakshmanan,Ng, et al. [10, 13℄. The latter work uses theonept of \member generating funtion" as anaid to restrit the generation of itemsets to onlythose satisfying the �lter. The former workis approximate, but an deal with disjuntionsas well. If a �lter exists of only one disjunthowever, a lot of problems mentioned in their workdisappear, whih makes it possible to simplify andoptimize the algorithms.We will present a �ltered mining algorithm that(on onjuntions) is oneptually learer and alsomore eÆient than earlier algorithms by adapting aombination of the Reorder and Diret algorithmsof Srikant et al. The �ltering ahieved is non-redundant, in the sense that it never generates anitemset that ould give rise to a rule that doesnot satisfy the �lter, and it avoids the detour viamember generating funtions. A spei� feature ofour algorithm is that we do not index the generateditemsets by hashing, but by a trie, the standarddata struture for indexing olletions of strings(and hene also ordered sets). The use of a trieallows a very diret and natural inorporation of�lters, and also o�ers various other advantages[2, 3℄.Let b1, . . . , b` be the items that must be in thebody by the �lter; b01, . . . , b0̀ 0 those that must not;h1, . . . , hm those that must be in the head; h01,. . . , h0m0 those that must not; r1, . . . , rn those thatmust be anywhere in the rule; and r01, . . . , r0n0 thosethat must not.Reall that an assoiation rule X ) Y is onlygenerated ifX[Y is a frequent set. Hene, we onlyhave to generate those frequent sets that ontainevery bi, hi and ri, plus some of the subsets of thesefrequent sets. This an be done as follows:1. Start an initial trie with the linear hain b1, . . . ,b`, h1, . . . , hm, . . . , r1, . . . , rn, adding at the

bottom level all other items as leafs, exept thatwe ignore the \negative" items r0i. The leafsrepresent all andidate itemsets of size k + 1,where k = `+m+n. We thus start with a leadof k in omparison with standard, non-�lteredmining. From here on, we perform the standarditeration: ount frequenies; delete infrequentitemsets; generate andidate sets of size k + 2;prune; and repeat. Note that a slight downsideof �ltered mining is that, while in non-�lteredmining we an prune by testing if all subsetsof a andidate set are frequent, here we anonly test all subsets ontaining every bi, hi andri, simply beause the other subsets have notbeen generated and hene their frequenies areunknown.2. We now have all frequent sets ontaining everybi, hi and ri. In order to generate rules, wealso need those subsets of these sets that anserve as bodies. These subsets must ontainevery bi, and none of the b0i or hi (the latterbeause bodies and heads of rules are disjoint).Furthermore, we need those subsets that anserve as heads; these must ontain every hi,and none of the h0i or bi. It is very easy to addall the needed subsets to the trie and determinetheir frequenies in one additional pass.3. We �nally generate the desired assoiation rulesfrom the appropriate sets generated in steps 1and 2, in aordane with the �lter onditions.The prunings that an be performed in thisstep [15℄ an again be very easily implementedthrough the built-up trie.We performed some modest experiments whihlearly on�rm the speedups ahieved by �lteredmining, as expeted theoretially due to the non-redundany of our algorithm. Note that a �lteronsisting of a single ondition only has the leaste�et; hene, the speedups ahieved for suh �ltersserve as a lower bound. We have run the sixpossibilities for a one-ondition �lter three times:one for an item with high frequeny, one foran item with average frequeny, and one for anitem with low frequeny. Our results, depited inFigure 1, show that �ltering has more e�et on low-frequeny items (whih is quite intuitive). Notiethat the speedup gained with purely negative
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18Figure 1: Speedups (in perentages) gained by�ltered mining, for one-ondition �lters of the sixforms 1: `i in head'; 2: `i in body'; 3: `i in rule'; 4: `inot in head'; 5: `i not in body'; and 6: `i not in rule'.Numbers 1{6 are for an i with high frequeny,numbers 7{12 for average frequeny, and numbers13{18 for low frequeny.onditions (suh as `187 not in body') is smaller,beause suh a ondition an only be exploited insteps 2 and 3 above, not in the most ostly step 1.3 A priori versus a posterioriIn the previous setion, we have seen a way tointegrate �lter onditions tightly into the mining ofassoiation rules. We all this a priori �ltering. Atthe other end of the spetrum we have a posteriori�ltering, where we perform standard, non-�lteredmining, only after the ompletion of whih we �lterthe result using a standard query.A priori �ltering has the following two obviousadvantages over a posteriori �ltering:1. Answering one single data mining query usinga priori �ltering is muh more eÆient thananswering it using a posteriori �ltering.2. It is well known that, by setting parameterssuh as minimal support too low, or by the na-ture of the data, assoiation rule mining anbe infeasible simply beause of a ombinatorialexplosion involved in the generation of rules orfrequent itemsets. Under suh irumstanes,of ourse, a posteriori �ltering is infeasible aswell; yet, a priori �ltering an still be exeuted,

if the �lter onditions an be e�etively ex-ploited to redue the number of itemsets andrules from the outset.However, this is ertainly not all that an besaid. As already mentioned in the Introdution,data mining query language environments mustsupport an interative, iterative mining proess,where a user repeatedly issues new queries basedon what he found in the answers of his previousqueries. Now onsider a situation where the seondadvantage above does not apply, i.e., minimalsupport requirements and data set partiulars arefavorable enough so that a posteriori �ltering isnot infeasible to begin with. Then the global, non-�ltered mining operation, on the result of whih the�ltering will be performed by a posteriori �ltering,an be exeuted one and its result materialized forthe remainder of the data mining session (or partof it).In this ase, if the session onsists of, say,20 data mining queries, these 20 queries amountto standard retrieval queries on the materializedmining results. In ontrast, answering every singleof the 20 queries by an a priori �lter will involveat least 20, and often many more, passes over thedata, as eah of these a priori �lters involves aseparate mining operation. The naively oneivedobvious advantages of a priori �ltering over aposteriori �ltering have suddenly beome muh lesslear now.We an analyze the situation easily as follows.Consider a session in whih the user issues a totalof m data mining queries over a database of sizen. Suppose that the total number of assoiationrules (given a minimal support requirement) overthese data equals r. Let t be the time requiredto generate all these rules. Moreover, it isnot unreasonable to estimate that in a posteriori�ltering, eah �lter exeutes in time proportionalto r, and that in a priori �ltering, eah a priori�lter exeutes in time proportional to n. Then thetotal time spent by the a posteriori approah ist + m � r, while in the a priori approah this ism � n. Hene, if n > r, then the a priori total timeis guaranteed to grow beyond the a posteriori totaltime; indeed, this happens exatly at the ut-o�point of m = dt=(n� r)e queries.We have modestly experimented with a realisti
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Figure 2: On the x-axis, the number of queries. Onthe y-axis, the total time in milliseonds elapsedduring proessing of the last x queries.session of 20 data mining queries over real marketbasket data (from a Belgian hain of automated24-hour shops) ontaining 300 000 transations on300 items. The ut-o� point where the a prioriapproah loses against the a posteriori approahis reahed after 9 queries. The evolution ofthe session in time, using a priori, and using aposteriori, is shown in Figure 2.4 Challenges towards animplementation of indutivedatabasesOne striking feature of the results of Figure 2 ishow slowly the a posteriori urve grows. Thismeans that, one the global mining operation hasbeen performed (whih took 100 seonds in ourase, hene the urve starts at y = 100 000), thetimes needed to answer the individual queries onthe materialized tables is extremely small. Weexpressed these queries in SQL in the obvious way(as the example from the Introdution) and usedSQL Server to answer them.If the neessary indies are present on theSets and Rules tables, queries of this style areindeed very quikly answerable by relational queryproessors. With queries that go beyond the simpletemplate �lters onsidered in this paper, suh asqueries that ompare rules with eah other, orqueries that relate rules bak to the data, thesituation may of ourse be di�erent. Muh further

work is needed in this diretion.More generally, a priori and a posteriori �lteringare only two extremes in possible ways to imple-ment an interative data mining query languageenvironment. The perfet way lies somewhere inthe middle; we envisage it to work along the fol-lowing lines.Initially, when the user issues his �rst query,nothing has been mined yet (the Sets and Rulestables are empty), and thus the most eÆient wayto answer this partiular �rst query is to use apriori �ltering. The results of the mining involvedin this �rst step are saved in the Sets and Rulestables.Now to answer further queries, the systemshould be able to deide to what extent the rulesneeded to answer a query are already present,and to what extent new rules must be mined for.The �lter ondition must aordingly be fatorizedinto one part that an simply be performed byquerying the already materialized sets and rules,and another part that will be integrated into themining operation using a priori mining. Again,many great hallenges for further researh in thisdiretion remain.Referenes[1℄ R. Agrawal, H. Mannila, R. Srikant, H. Toivonen,and A.I. Verkamo. Fast disovery of assoiationrules. In U.M. Fayyad, G. Piatetsky-Shapiro,P. Smyth, and R. Uthurusamy, editors, Advanesin Knowledge Disovery and Data Mining, pages307{328. MIT Press, 1996.[2℄ A. Amir, R. Feldman, and R. Kashi. A newand versatile method for assoiation generation.Information Systems, 2:333{347, 1997.[3℄ S. Brin, R. Motwani, J.D. Ullman, and S. Tsur.Dynami itemset ounting and impliation rulesfor market basket data. In Proeedings of the1997 ACM SIGMOD International Conferene onManagement of Data, volume 26:2 of SIGMODReord, pages 255{264. ACM Press, 1997.[4℄ J. Han, Y. Fu, K. Koperski, W. Wang, andO. Zaiane. DMQL: A data mining query languagefor relational databases. Presented at SIGMOD'96Workshop on Researh Issues on Data Mining andKnowledge Disovery.[5℄ J. Han, Y. Fu, W. Wang, et al. DBMiner: A systemfor mining knowledge in large relational databases.In Simoudis et al. [14℄, pages 250{255.
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