A priori versus a posteriori filtering of association rules
(extended abstract)

Bart Goethals
Limburgs Universitair Centrum
bart.goethals@luc.ac.be

1 Introduction

The concept of inductive database, proposed by
Mannila [8, 11], is a beautiful formalization of the
interactive mining process. In the concrete set-
ting of association rule mining [1], an inductive
database provides virtual tables containing virtu-
ally all itemsets and rules over the data. The user
does not care how these inductive tables are imple-
mented; for him, mining is nothing but querying
these tables.

For example, in a market basket application,
suppose we want all rules (with a certain confidence
and support as usual) having ‘banana’ in the head
but ‘corn flakes’ not in the body. This would be
expressed by the following data mining query:

select r.head, r.body, r.confidence, r.support
from Rules r
where r.support > 10 and r.confidence > 65
and ‘banana’ in (select itemid
from Sets
where setid = r.head)
and ‘corn flakes’ not in (select itemid
from Sets
where setid = r.body)

Note that such queries might even combine the
Sets and Rules tables with the given data tables,
and that mining is an essentially interactive pro-
cess, where a user repeatedly poses new queries
based on what he found in the answers of his pre-
vious queries.

In our opinion, the idea of inductive database
indicates the ultimate goal of how a transparent
“data mining query language” [5, 4, 6, 7, 12] should
look like. The transparency lies in that the user
never issues explicit mining commands himself; the

Jan Van den Bussche
Limburgs Universitair Centrum
jan.vandenbussche@luc.ac.be

system mines whatever and whenever necessary.
Clearly the implementation of this vision presents
a great challenge. In this paper, we investigate
and compare two rather extreme approaches, the
a priori approach and the a posteriori approach,
towards the above challenge.

The a priori approach consists of answering
every individual data mining query by running an
adaptation of the mining algorithm in which the
conditions on the rules to be generated (as specified
in the query) are directly incorporated. For
example, to answer the above example query, one
would try to generate only the rules with ‘banana’
in the head and ‘corn flakes’ not in the body,
without generating irrelevant rules or itemsets.
Such adaptations of the Apriori algorithm have
already been considered in the literature, but the
problem of how to do this for a wide variety of
conditions is definitely not yet completely solved.
In this paper we will offer a further contribution in
this direction.

The a posteriori approach begins by filling up
the Sets and Rules tables as densely as possible,
by performing one major, global mining operation
where the minimal support and confidence param-
eters are set as low as one would possibly need.
After this relatively expensive operation, the ac-
tual data mining queries issued by the user then
amount to standard, basic queries on the materi-
alized tables.

2 Filtered mining of association rules

In this section, we introduce a class of filters, i.e.,
conditions on rules, and show a way to integrate
these filters tightly in the mining algorithm.

The filters we will consider in this paper are a
special case of the rule templates introduced by

Klemettinen et al. [9]. Concretely, we define a
filter as a conjunction of basic conditions, where
a basic condition specifies that some special item
must or must not occur in the body, the head, or
anywhere in the rule. An example of a filter is: ‘a
in body and b in head and ¢ not in rule’.

The question of how such filters (and other kinds
of conditions on rules) can be exploited in the
mining algorithm has already been considered by
Srikant, Vu, and Agrawal [16] and Lakshmanan,
Ng, et al. [10, 13].
concept of “member generating function” as an
aid to restrict the generation of itemsets to only
those satisfying the filter. The former work
is approximate, but can deal with disjunctions
as well. If a filter exists of only one disjunct
however, a lot of problems mentioned in their work
disappear, which makes it possible to simplify and
optimize the algorithms.

The latter work uses the

We will present a filtered mining algorithm that
(on conjunctions) is conceptually clearer and also
more efficient than earlier algorithms by adapting a
combination of the Reorder and Direct algorithms
of Srikant et al. The filtering achieved is non-
redundant, in the sense that it never generates an
itemset that could give rise to a rule that does
not satisfy the filter, and it avoids the detour via
member generating functions. A specific feature of
our algorithm is that we do not index the generated
itemsets by hashing, but by a trie, the standard
data structure for indexing collections of strings
(and hence also ordered sets). The use of a trie
allows a very direct and natural incorporation of
filters, and also offers various other advantages
(2, 3].

Let by, ..., by be the items that must be in the
body by the filter; b/, ..., b}y those that must not;
hi, ..., hy, those that must be in the head; A},

., hl, those that must not; rq, ..., r, those that
must be anywhere in the rule; and r, ..., 7, those
that must not.

Recall that an association rule X = Y is only
generated if XUY is a frequent set. Hence, we only
have to generate those frequent sets that contain
every b;, h; and r;, plus some of the subsets of these
frequent sets. This can be done as follows:

1. Start an initial trie with the linear chain by, . ..,
be, hiy ..oy By oo, 71, ..., Tp, adding at the

bottom level all other items as leafs, except that
we ignore the “negative” items r;. The leafs
represent all candidate itemsets of size k + 1,
where k = £+ m+n. We thus start with a lead
of k in comparison with standard, non-filtered
mining. From here on, we perform the standard
iteration: count frequencies; delete infrequent
itemsets; generate candidate sets of size k + 2;
prune; and repeat. Note that a slight downside
of filtered mining is that, while in non-filtered
mining we can prune by testing if all subsets
of a candidate set are frequent, here we can
only test all subsets containing every b;, h; and
ri, simply because the other subsets have not
been generated and hence their frequencies are
unknown.

2. We now have all frequent sets containing every
bi, h; and r;. In order to generate rules, we
also need those subsets of these sets that can
serve as bodies. These subsets must contain
every b;, and none of the b} or h; (the latter
because bodies and heads of rules are disjoint).
Furthermore, we need those subsets that can
serve as heads; these must contain every h;,
and none of the h} or b;. It is very easy to add
all the needed subsets to the trie and determine
their frequencies in one additional pass.

3. We finally generate the desired association rules
from the appropriate sets generated in steps 1
and 2, in accordance with the filter conditions.
The prunings that can be performed in this
step [15] can again be very easily implemented
through the built-up trie.

We performed some modest experiments which
clearly confirm the speedups achieved by filtered
mining, as expected theoretically due to the non-
redundancy of our algorithm. Note that a filter
consisting of a single condition only has the least
effect; hence, the speedups achieved for such filters
serve as a lower bound. We have run the six
possibilities for a one-condition filter three times:
once for an item with high frequency, once for
an item with average frequency, and once for an
item with low frequency. Our results, depicted in
Figure 1, show that filtering has more effect on low-
frequency items (which is quite intuitive). Notice
that the speedup gained with purely negative

100 e e L e e e e L e e e

90 r 1
80 r b
70 b
60 b
50 b
40 r b
30 - + o+ 1
20 b

10 b

+

10 11 12 13 14 15 16 17 18

[

- b
Nk
w L
IN

o b+
o+
~ -
o
©

Figure 1: Speedups (in percentages) gained by
filtered mining, for one-condition filters of the six
forms 1: ‘4 in head’; 2: ‘4 in body’; 3: ‘¢ in rule’; 4: ‘4
not in head’; 5: 4 not in body’; and 6: ‘4 not in rule’.
Numbers 1 6 are for an 4 with high frequency,
numbers 7-12 for average frequency, and numbers
13 18 for low frequency.

conditions (such as ‘187 not in body’) is smaller,
because such a condition can only be exploited in
steps 2 and 3 above, not in the most costly step 1.

3 A priori versus a posteriori

In the previous section, we have seen a way to
integrate filter conditions tightly into the mining of
association rules. We call this a priori filtering. At
the other end of the spectrum we have a posteriori
filtering, where we perform standard, non-filtered
mining, only after the completion of which we filter
the result using a standard query.

A priori filtering has the following two obvious
advantages over a posteriori filtering:

1. Answering one single data mining query using
a priori filtering is much more efficient than
answering it using a posteriori filtering.

2. It is well known that, by setting parameters
such as minimal support too low, or by the na-
ture of the data, association rule mining can
be infeasible simply because of a combinatorial
explosion involved in the generation of rules or
frequent itemsets. Under such circumstances,
of course, a posteriori filtering is infeasible as
well; yet, a priori filtering can still be executed,

if the filter conditions can be effectively ex-
ploited to reduce the number of itemsets and
rules from the outset.

However, this is certainly not all that can be
said. As already mentioned in the Introduction,
data mining query language environments must
support an interactive, iterative mining process,
where a user repeatedly issues new queries based
on what he found in the answers of his previous
queries. Now consider a situation where the second
advantage above does not apply, i.e., minimal
support requirements and data set particulars are
favorable enough so that a posteriori filtering is
not infeasible to begin with. Then the global, non-
filtered mining operation, on the result of which the
filtering will be performed by a posteriori filtering,
can be executed once and its result materialized for
the remainder of the data mining session (or part
of it).

In this case, if the session consists of, say,
20 data mining queries, these 20 queries amount
to standard retrieval queries on the materialized
mining results. In contrast, answering every single
of the 20 queries by an a priori filter will involve
at least 20, and often many more, passes over the
data, as each of these a priori filters involves a
separate mining operation. The naively conceived
obvious advantages of a priori filtering over a
posteriori filtering have suddenly become much less
clear now.

We can analyze the situation easily as follows.
Consider a session in which the user issues a total
of m data mining queries over a database of size
n. Suppose that the total number of association
rules (given a minimal support requirement) over
these data equals r. Let ¢ be the time required
to generate all these rules. Moreover, it is
not unreasonable to estimate that in a posteriori
filtering, each filter executes in time proportional
to r, and that in a priori filtering, each a priori
filter executes in time proportional to n. Then the
total time spent by the a posteriori approach is
t + m - r, while in the a priori approach this is
m - n. Hence, if n > r, then the a priori total time
s guaranteed to grow beyond the a posteriori total
time; indeed, this happens exactly at the cut-off
point of m = [t/(n — r)] queries.

We have modestly experimented with a realistic

200000 T T T

180000

T

"a priori’ + + 1
"a posteriori’ x M
160000 L0

T
!

T

140000 + 1
120000

T

100000

T
x
x
+
!

80000 .
60000 - .
40000 | . .
20000 | ° .

0 ! ! !

Figure 2: On the z-axis, the number of queries. On
the y-axis, the total time in milliseconds elapsed
during processing of the last z queries.

session of 20 data mining queries over real market
basket data (from a Belgian chain of automated
24-hour shops) containing 300 000 transactions on
300 items. The cut-off point where the a priori
approach loses against the a posteriori approach
is reached after 9 queries.
the session in time, using a priori, and using a
posteriori, is shown in Figure 2.

The evolution of

4 Challenges towards an
implementation of inductive
databases

One striking feature of the results of Figure 2 is
how slowly the a posteriori curve grows. This
means that, once the global mining operation has
been performed (which took 100 seconds in our
case, hence the curve starts at y = 100000), the
times needed to answer the individual queries on
the materialized tables is extremely small. We
expressed these queries in SQL in the obvious way
(as the example from the Introduction) and used
SQL Server to answer them.

If the necessary indices are present on the
Sets and Rules tables, queries of this style are
indeed very quickly answerable by relational query
processors. With queries that go beyond the simple
template filters considered in this paper, such as
queries that compare rules with each other, or
queries that relate rules back to the data, the
situation may of course be different. Much further

work is needed in this direction.

More generally, a priori and a posteriori filtering
are only two extremes in possible ways to imple-
ment an interactive data mining query language
environment. The perfect way lies somewhere in
the middle; we envisage it to work along the fol-
lowing lines.

Initially, when the user issues his first query,
nothing has been mined yet (the Sets and Rules
tables are empty), and thus the most efficient way
to answer this particular first query is to use a
priori filtering. The results of the mining involved
in this first step are saved in the Sets and Rules
tables.

Now to answer further queries, the system
should be able to decide to what extent the rules
needed to answer a query are already present,
and to what extent new rules must be mined for.
The filter condition must accordingly be factorized
into one part that can simply be performed by
querying the already materialized sets and rules,
and another part that will be integrated into the
mining operation using a priori mining. Again,
many great challenges for further research in this
direction remain.

References

[1] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen,
and A.I. Verkamo. Fast discovery of association
rules. In U.M. Fayyad, G. Piatetsky-Shapiro,
P. Smyth, and R. Uthurusamy, editors, Advances
in Knowledge Discovery and Data Mining, pages
307 328. MIT Press, 1996.

[2] A. Amir, R. Feldman, and R. Kashi. A new
and versatile method for association generation.
Information Systems, 2:333 347, 1997.

[3] S. Brin, R. Motwani, J.D. Ullman, and S. Tsur.
Dynamic itemset counting and implication rules
for market basket data. In Proceedings of the
1997 ACM SIGMOD International Conference on
Management of Data, volume 26:2 of SIGMOD
Record, pages 255-264. ACM Press, 1997.

[4] J. Han, Y. Fu, K. Koperski, W. Wang, and
0. Zaiane. DMQL: A data mining query language
for relational databases. Presented at SIGMOD’96
Workshop on Research Issues on Data Mining and
Knowledge Discovery.

[5] J.Han, Y. Fu, W. Wang, et al. DBMiner: A system
for mining knowledge in large relational databases.
In Simoudis et al. [14], pages 250 255.

[6]

[7]

[10]

[11]

[14]

[15]

[16]

T. Imielinski and H. Mannila. A database per-
spective on knowledge discovery. Communications

of the ACM, 39(11):58-64, 1996.

T. Imielinski, A. Virmani, and A. Abdulghani.
DataMine: Application programming interface
and query language for database mining. In
Simoudis et al. [14], pages 256-261.

M. Klemettinen. A Knowledge Discovery Method-
ology for Telecommunication Network Alarm
Databases. PhD thesis, University of Helsinki,
1999.

M. Klemettinen et al. Finding interesting rules
from large sets of discovered association rules. In
N.R. Adam, B.K. Bhargava, and Y. Yesha, editors,
Proceedings 3rd International Conference on Infor-
mation and Knowledge Management, pages 401—
407. ACM Press, 1994.

L.V.S. Lakshmanan, R.T. Ng, J. Han, and
A. Pang. Optimization of constrained frequent set
queries with 2-variable constraints. In Proceedings
1999 ACM SIGMOD International Conference. To
appear.

H. Mannila. Inductive databases and condensed
representations for data mining. In Jan Maluszyn-
ski, editor, Logic Programming, Proceedings of the
1997 International Symposium, pages 21-30. MIT
Press, 1997.

R. Meo, G. Psaila, and S. Ceri. A new SQL-
like operator for mining association rules. In
T.M. Vijayaraman, A.P. Buchmann, C. Mohan,
and N.L. Sarda, editors, Proceedings 22nd Interna-
tional Conference on Very Large Data Bases, pages
122 133. Morgan Kaufmann, 1996.

R.T. Ng, L.V.S. Lakshmanan, J. Han, and
A. Pang. Exploratory mining and pruning opti-
mizations of constrained association rules. In L.M.
Haas and A. Tiwary, editors, Proceedings of the
1998 ACM SIGMOD International Conference on
Management of Data, volume 27:2 of SIGMOD
Record, pages 13-24. ACM Press, 1998.

E. Simoudis, J. Han, and U. Fayyad, editors. Pro-
ceedings 2nd International Conference on Knowl-
edge Discovery € Data Mining. AAAT Press, 1996.

R. Srikant and R. Agrawal. Mining generalized
association rules. In U. Dayal, P.M.D. Gray, and
S. Nishio, editors, Proceedings 21th International
Conference on Very Large Data Bases, pages 407—
419. Morgan Kaufmann, 1995.

R. Srikant, Q. Vu, and R. Agrawal. Mining associa-
tion rules with item constraints. In D. Heckerman,

H. Mannila, and D. Pregibon, editors, Proceedings
3rd International Conference on Knowledge Dis-
covery & Data Mining, pages 66-73. AAATI Press,
1997.

