
A priori versus a posteriori �ltering of asso
iation rules(extended abstra
t)Bart GoethalsLimburgs Universitair Centrumbart.goethals�lu
.a
.be Jan Van den Buss
heLimburgs Universitair Centrumjan.vandenbuss
he�lu
.a
.be1 Introdu
tionThe 
on
ept of indu
tive database, proposed byMannila [8, 11℄, is a beautiful formalization of theintera
tive mining pro
ess. In the 
on
rete set-ting of asso
iation rule mining [1℄, an indu
tivedatabase provides virtual tables 
ontaining virtu-ally all itemsets and rules over the data. The userdoes not 
are how these indu
tive tables are imple-mented; for him, mining is nothing but queryingthese tables.For example, in a market basket appli
ation,suppose we want all rules (with a 
ertain 
on�den
eand support as usual) having `banana' in the headbut `
orn 
akes' not in the body. This would beexpressed by the following data mining query:sele
t r:head , r:body , r:
on�den
e , r:supportfrom Rules rwhere r:support � 10 and r:
on�den
e � 65and `banana' in (sele
t itemidfrom Setswhere setid = r:head )and `
orn 
akes' not in (sele
t itemidfrom Setswhere setid = r:body)Note that su
h queries might even 
ombine theSets and Rules tables with the given data tables,and that mining is an essentially intera
tive pro-
ess, where a user repeatedly poses new queriesbased on what he found in the answers of his pre-vious queries.In our opinion, the idea of indu
tive databaseindi
ates the ultimate goal of how a transparent\data mining query language" [5, 4, 6, 7, 12℄ shouldlook like. The transparen
y lies in that the usernever issues expli
it mining 
ommands himself; the

system mines whatever and whenever ne
essary.Clearly the implementation of this vision presentsa great 
hallenge. In this paper, we investigateand 
ompare two rather extreme approa
hes, thea priori approa
h and the a posteriori approa
h,towards the above 
hallenge.The a priori approa
h 
onsists of answeringevery individual data mining query by running anadaptation of the mining algorithm in whi
h the
onditions on the rules to be generated (as spe
i�edin the query) are dire
tly in
orporated. Forexample, to answer the above example query, onewould try to generate only the rules with `banana'in the head and `
orn 
akes' not in the body,without generating irrelevant rules or itemsets.Su
h adaptations of the Apriori algorithm havealready been 
onsidered in the literature, but theproblem of how to do this for a wide variety of
onditions is de�nitely not yet 
ompletely solved.In this paper we will o�er a further 
ontribution inthis dire
tion.The a posteriori approa
h begins by �lling upthe Sets and Rules tables as densely as possible,by performing one major, global mining operationwhere the minimal support and 
on�den
e param-eters are set as low as one would possibly need.After this relatively expensive operation, the a
-tual data mining queries issued by the user thenamount to standard, basi
 queries on the materi-alized tables.2 Filtered mining of asso
iation rulesIn this se
tion, we introdu
e a 
lass of �lters, i.e.,
onditions on rules, and show a way to integratethese �lters tightly in the mining algorithm.The �lters we will 
onsider in this paper are aspe
ial 
ase of the rule templates introdu
ed by
1



Klemettinen et al. [9℄. Con
retely, we de�ne a�lter as a 
onjun
tion of basi
 
onditions, wherea basi
 
ondition spe
i�es that some spe
ial itemmust or must not o

ur in the body, the head, oranywhere in the rule. An example of a �lter is: `ain body and b in head and 
 not in rule'.The question of how su
h �lters (and other kindsof 
onditions on rules) 
an be exploited in themining algorithm has already been 
onsidered bySrikant, Vu, and Agrawal [16℄ and Lakshmanan,Ng, et al. [10, 13℄. The latter work uses the
on
ept of \member generating fun
tion" as anaid to restri
t the generation of itemsets to onlythose satisfying the �lter. The former workis approximate, but 
an deal with disjun
tionsas well. If a �lter exists of only one disjun
thowever, a lot of problems mentioned in their workdisappear, whi
h makes it possible to simplify andoptimize the algorithms.We will present a �ltered mining algorithm that(on 
onjun
tions) is 
on
eptually 
learer and alsomore eÆ
ient than earlier algorithms by adapting a
ombination of the Reorder and Dire
t algorithmsof Srikant et al. The �ltering a
hieved is non-redundant, in the sense that it never generates anitemset that 
ould give rise to a rule that doesnot satisfy the �lter, and it avoids the detour viamember generating fun
tions. A spe
i�
 feature ofour algorithm is that we do not index the generateditemsets by hashing, but by a trie, the standarddata stru
ture for indexing 
olle
tions of strings(and hen
e also ordered sets). The use of a trieallows a very dire
t and natural in
orporation of�lters, and also o�ers various other advantages[2, 3℄.Let b1, . . . , b` be the items that must be in thebody by the �lter; b01, . . . , b0̀ 0 those that must not;h1, . . . , hm those that must be in the head; h01,. . . , h0m0 those that must not; r1, . . . , rn those thatmust be anywhere in the rule; and r01, . . . , r0n0 thosethat must not.Re
all that an asso
iation rule X ) Y is onlygenerated ifX[Y is a frequent set. Hen
e, we onlyhave to generate those frequent sets that 
ontainevery bi, hi and ri, plus some of the subsets of thesefrequent sets. This 
an be done as follows:1. Start an initial trie with the linear 
hain b1, . . . ,b`, h1, . . . , hm, . . . , r1, . . . , rn, adding at the

bottom level all other items as leafs, ex
ept thatwe ignore the \negative" items r0i. The leafsrepresent all 
andidate itemsets of size k + 1,where k = `+m+n. We thus start with a leadof k in 
omparison with standard, non-�lteredmining. From here on, we perform the standarditeration: 
ount frequen
ies; delete infrequentitemsets; generate 
andidate sets of size k + 2;prune; and repeat. Note that a slight downsideof �ltered mining is that, while in non-�lteredmining we 
an prune by testing if all subsetsof a 
andidate set are frequent, here we 
anonly test all subsets 
ontaining every bi, hi andri, simply be
ause the other subsets have notbeen generated and hen
e their frequen
ies areunknown.2. We now have all frequent sets 
ontaining everybi, hi and ri. In order to generate rules, wealso need those subsets of these sets that 
anserve as bodies. These subsets must 
ontainevery bi, and none of the b0i or hi (the latterbe
ause bodies and heads of rules are disjoint).Furthermore, we need those subsets that 
anserve as heads; these must 
ontain every hi,and none of the h0i or bi. It is very easy to addall the needed subsets to the trie and determinetheir frequen
ies in one additional pass.3. We �nally generate the desired asso
iation rulesfrom the appropriate sets generated in steps 1and 2, in a

ordan
e with the �lter 
onditions.The prunings that 
an be performed in thisstep [15℄ 
an again be very easily implementedthrough the built-up trie.We performed some modest experiments whi
h
learly 
on�rm the speedups a
hieved by �lteredmining, as expe
ted theoreti
ally due to the non-redundan
y of our algorithm. Note that a �lter
onsisting of a single 
ondition only has the leaste�e
t; hen
e, the speedups a
hieved for su
h �ltersserve as a lower bound. We have run the sixpossibilities for a one-
ondition �lter three times:on
e for an item with high frequen
y, on
e foran item with average frequen
y, and on
e for anitem with low frequen
y. Our results, depi
ted inFigure 1, show that �ltering has more e�e
t on low-frequen
y items (whi
h is quite intuitive). Noti
ethat the speedup gained with purely negative
2



0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18Figure 1: Speedups (in per
entages) gained by�ltered mining, for one-
ondition �lters of the sixforms 1: `i in head'; 2: `i in body'; 3: `i in rule'; 4: `inot in head'; 5: `i not in body'; and 6: `i not in rule'.Numbers 1{6 are for an i with high frequen
y,numbers 7{12 for average frequen
y, and numbers13{18 for low frequen
y.
onditions (su
h as `187 not in body') is smaller,be
ause su
h a 
ondition 
an only be exploited insteps 2 and 3 above, not in the most 
ostly step 1.3 A priori versus a posterioriIn the previous se
tion, we have seen a way tointegrate �lter 
onditions tightly into the mining ofasso
iation rules. We 
all this a priori �ltering. Atthe other end of the spe
trum we have a posteriori�ltering, where we perform standard, non-�lteredmining, only after the 
ompletion of whi
h we �lterthe result using a standard query.A priori �ltering has the following two obviousadvantages over a posteriori �ltering:1. Answering one single data mining query usinga priori �ltering is mu
h more eÆ
ient thananswering it using a posteriori �ltering.2. It is well known that, by setting parameterssu
h as minimal support too low, or by the na-ture of the data, asso
iation rule mining 
anbe infeasible simply be
ause of a 
ombinatorialexplosion involved in the generation of rules orfrequent itemsets. Under su
h 
ir
umstan
es,of 
ourse, a posteriori �ltering is infeasible aswell; yet, a priori �ltering 
an still be exe
uted,

if the �lter 
onditions 
an be e�e
tively ex-ploited to redu
e the number of itemsets andrules from the outset.However, this is 
ertainly not all that 
an besaid. As already mentioned in the Introdu
tion,data mining query language environments mustsupport an intera
tive, iterative mining pro
ess,where a user repeatedly issues new queries basedon what he found in the answers of his previousqueries. Now 
onsider a situation where the se
ondadvantage above does not apply, i.e., minimalsupport requirements and data set parti
ulars arefavorable enough so that a posteriori �ltering isnot infeasible to begin with. Then the global, non-�ltered mining operation, on the result of whi
h the�ltering will be performed by a posteriori �ltering,
an be exe
uted on
e and its result materialized forthe remainder of the data mining session (or partof it).In this 
ase, if the session 
onsists of, say,20 data mining queries, these 20 queries amountto standard retrieval queries on the materializedmining results. In 
ontrast, answering every singleof the 20 queries by an a priori �lter will involveat least 20, and often many more, passes over thedata, as ea
h of these a priori �lters involves aseparate mining operation. The naively 
on
eivedobvious advantages of a priori �ltering over aposteriori �ltering have suddenly be
ome mu
h less
lear now.We 
an analyze the situation easily as follows.Consider a session in whi
h the user issues a totalof m data mining queries over a database of sizen. Suppose that the total number of asso
iationrules (given a minimal support requirement) overthese data equals r. Let t be the time requiredto generate all these rules. Moreover, it isnot unreasonable to estimate that in a posteriori�ltering, ea
h �lter exe
utes in time proportionalto r, and that in a priori �ltering, ea
h a priori�lter exe
utes in time proportional to n. Then thetotal time spent by the a posteriori approa
h ist + m � r, while in the a priori approa
h this ism � n. Hen
e, if n > r, then the a priori total timeis guaranteed to grow beyond the a posteriori totaltime; indeed, this happens exa
tly at the 
ut-o�point of m = dt=(n� r)e queries.We have modestly experimented with a realisti

3



0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

0 5 10 15 20

’a priori’
’a posteriori’

Figure 2: On the x-axis, the number of queries. Onthe y-axis, the total time in millise
onds elapsedduring pro
essing of the last x queries.session of 20 data mining queries over real marketbasket data (from a Belgian 
hain of automated24-hour shops) 
ontaining 300 000 transa
tions on300 items. The 
ut-o� point where the a prioriapproa
h loses against the a posteriori approa
his rea
hed after 9 queries. The evolution ofthe session in time, using a priori, and using aposteriori, is shown in Figure 2.4 Challenges towards animplementation of indu
tivedatabasesOne striking feature of the results of Figure 2 ishow slowly the a posteriori 
urve grows. Thismeans that, on
e the global mining operation hasbeen performed (whi
h took 100 se
onds in our
ase, hen
e the 
urve starts at y = 100 000), thetimes needed to answer the individual queries onthe materialized tables is extremely small. Weexpressed these queries in SQL in the obvious way(as the example from the Introdu
tion) and usedSQL Server to answer them.If the ne
essary indi
es are present on theSets and Rules tables, queries of this style areindeed very qui
kly answerable by relational querypro
essors. With queries that go beyond the simpletemplate �lters 
onsidered in this paper, su
h asqueries that 
ompare rules with ea
h other, orqueries that relate rules ba
k to the data, thesituation may of 
ourse be di�erent. Mu
h further

work is needed in this dire
tion.More generally, a priori and a posteriori �lteringare only two extremes in possible ways to imple-ment an intera
tive data mining query languageenvironment. The perfe
t way lies somewhere inthe middle; we envisage it to work along the fol-lowing lines.Initially, when the user issues his �rst query,nothing has been mined yet (the Sets and Rulestables are empty), and thus the most eÆ
ient wayto answer this parti
ular �rst query is to use apriori �ltering. The results of the mining involvedin this �rst step are saved in the Sets and Rulestables.Now to answer further queries, the systemshould be able to de
ide to what extent the rulesneeded to answer a query are already present,and to what extent new rules must be mined for.The �lter 
ondition must a

ordingly be fa
torizedinto one part that 
an simply be performed byquerying the already materialized sets and rules,and another part that will be integrated into themining operation using a priori mining. Again,many great 
hallenges for further resear
h in thisdire
tion remain.Referen
es[1℄ R. Agrawal, H. Mannila, R. Srikant, H. Toivonen,and A.I. Verkamo. Fast dis
overy of asso
iationrules. In U.M. Fayyad, G. Piatetsky-Shapiro,P. Smyth, and R. Uthurusamy, editors, Advan
esin Knowledge Dis
overy and Data Mining, pages307{328. MIT Press, 1996.[2℄ A. Amir, R. Feldman, and R. Kashi. A newand versatile method for asso
iation generation.Information Systems, 2:333{347, 1997.[3℄ S. Brin, R. Motwani, J.D. Ullman, and S. Tsur.Dynami
 itemset 
ounting and impli
ation rulesfor market basket data. In Pro
eedings of the1997 ACM SIGMOD International Conferen
e onManagement of Data, volume 26:2 of SIGMODRe
ord, pages 255{264. ACM Press, 1997.[4℄ J. Han, Y. Fu, K. Koperski, W. Wang, andO. Zaiane. DMQL: A data mining query languagefor relational databases. Presented at SIGMOD'96Workshop on Resear
h Issues on Data Mining andKnowledge Dis
overy.[5℄ J. Han, Y. Fu, W. Wang, et al. DBMiner: A systemfor mining knowledge in large relational databases.In Simoudis et al. [14℄, pages 250{255.
4



[6℄ T. Imielinski and H. Mannila. A database per-spe
tive on knowledge dis
overy. Communi
ationsof the ACM, 39(11):58{64, 1996.[7℄ T. Imielinski, A. Virmani, and A. Abdulghani.DataMine: Appli
ation programming interfa
eand query language for database mining. InSimoudis et al. [14℄, pages 256{261.[8℄ M. Klemettinen. A Knowledge Dis
overy Method-ology for Tele
ommuni
ation Network AlarmDatabases. PhD thesis, University of Helsinki,1999.[9℄ M. Klemettinen et al. Finding interesting rulesfrom large sets of dis
overed asso
iation rules. InN.R. Adam, B.K. Bhargava, and Y. Yesha, editors,Pro
eedings 3rd International Conferen
e on Infor-mation and Knowledge Management, pages 401{407. ACM Press, 1994.[10℄ L.V.S. Lakshmanan, R.T. Ng, J. Han, andA. Pang. Optimization of 
onstrained frequent setqueries with 2-variable 
onstraints. In Pro
eedings1999 ACM SIGMOD International Conferen
e. Toappear.[11℄ H. Mannila. Indu
tive databases and 
ondensedrepresentations for data mining. In Jan Maluszyn-ski, editor, Logi
 Programming, Pro
eedings of the1997 International Symposium, pages 21{30. MITPress, 1997.[12℄ R. Meo, G. Psaila, and S. Ceri. A new SQL-like operator for mining asso
iation rules. InT.M. Vijayaraman, A.P. Bu
hmann, C. Mohan,and N.L. Sarda, editors, Pro
eedings 22nd Interna-tional Conferen
e on Very Large Data Bases, pages122{133. Morgan Kaufmann, 1996.[13℄ R.T. Ng, L.V.S. Lakshmanan, J. Han, andA. Pang. Exploratory mining and pruning opti-mizations of 
onstrained asso
iation rules. In L.M.Haas and A. Tiwary, editors, Pro
eedings of the1998 ACM SIGMOD International Conferen
e onManagement of Data, volume 27:2 of SIGMODRe
ord, pages 13{24. ACM Press, 1998.[14℄ E. Simoudis, J. Han, and U. Fayyad, editors. Pro-
eedings 2nd International Conferen
e on Knowl-edge Dis
overy & Data Mining. AAAI Press, 1996.[15℄ R. Srikant and R. Agrawal. Mining generalizedasso
iation rules. In U. Dayal, P.M.D. Gray, andS. Nishio, editors, Pro
eedings 21th InternationalConferen
e on Very Large Data Bases, pages 407{419. Morgan Kaufmann, 1995.[16℄ R. Srikant, Q. Vu, and R. Agrawal. Mining asso
ia-tion rules with item 
onstraints. In D. He
kerman,

H. Mannila, and D. Pregibon, editors, Pro
eedings3rd International Conferen
e on Knowledge Dis-
overy & Data Mining, pages 66{73. AAAI Press,1997.

5


