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Abstract To experimentally validate learning and approximation algorithms for
XML Schema Definitions (XSDs), we need algorithms to generate uniformly at ran-
dom a corpus of XSDs as well as a similarity measure to compare how close the gen-
erated XSD resembles the target schema. In this paper, we provide the formal founda-
tion for such a testbed. We adopt similarity measures based on counting the number
of common and different trees in the two languages, and we develop the necessary
machinery for computing them. We use the formalism of extended DTDs (EDTDs)
to represent the unranked regular tree languages. In particular, we obtain an efficient
algorithm to count the number of trees up to a certain size in an unambiguous EDTD.
The latter class of unambiguous EDTDs encompasses the more familiar classes of
single-type, restrained competition and bottom-up deterministic EDTDs. The single-
type EDTDs correspond precisely to the core of XML Schema, while the others are
strictly more expressive. We also show how constraints on the shape of allowed trees
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can be incorporated. As we make use of a translation into a well-known formalism for
combinatorial specifications, we get for free a sampling procedure to draw members
of any unambiguous EDTD. When dropping the restriction to unambiguous EDTDs,
i.e. taking the full class of EDTDs into account, we show that the counting problem
becomes #P-complete and provide an approximation algorithm. Finally, we discuss
uniform generation of single-type EDTDs, i.e., the formal abstraction of XSDs. To
this end, we provide an algorithm to generate k-occurrence automata (k-OAs) uni-
formly at random and show how this leads to the uniform generation of single-type
EDTDs.

Keywords XML schema languages · Counting · Complexity

1 Introduction

XML Schema is the accepted industry standard for the specification of schemas for
collections of XML documents. At the same time, it is widely recognized that XML
Schema is not a simple language. As it is very unlikely that the World Wide Web
Consortium (W3C) will adopt a new schema standard any time soon, several initia-
tives have been taken to simplify XML Schema. For instance, algorithms have been
developed to automatically infer XML Schema Definitions (XSDs) from XML data
[8, 10, 11]. We later refer to this setting as the learning scenario. Another type of
simplification is to let users design a schema in a different, but more user-friendly for-
malism and then offer the means to automatically convert this schema into an XSD.
In general, the latter schema can not be equivalent but, hopefully, constitutes a best
approximation in some well-defined way. The latter approach was taken in [19]. We
later refer to this setting as the approximation scenario. In addition, algorithms to ap-
proximate non-deterministic content models by deterministic ones, hereby relieving
the user from the Unique Particle Attribution constraint, are studied in [7].

Because it is not always possible to formally prove optimality of the above men-
tioned types of algorithms, their effectiveness is usually validated by an experimental
study using real-world data, for instance using XSDs and corresponding XML cor-
pora found on the web. Unfortunately, as real world data is often only sparsely avail-
able, ad-hoc methods are used to generate schemas and corresponding XML corpora.
At the same time, a similarity measure is needed that quantifies how closely two
unranked regular tree languages resemble each other, and which can be efficiently
computed.

The aim of this paper is to provide the machinery to efficiently compute the simi-
larity between two tree languages and to provide algorithms to generate a corpus of
XSDs uniformly at random. As usual, we use the abstraction of XSDs as single-type
EDTDs [27, 30]. In particular, we consider the following three problems:

(i) Counting: Given a tree language L and n ∈ N in unary notation, compute the
number of trees in L of size n;

(ii) Sampling: Given a tree language L and n ∈ N in unary notation, generate uni-
formly at random a tree t ∈ L of size n;
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(iii) Generation: Given a class of tree languages C and n ∈ N in unary notation,
generate uniformly at random a member L ∈ C of size n.

We next provide further motivation and describe our contributions for each of these
three problems.

Counting and Sampling We start by discussing an approach towards a similarity
measure for tree languages. To this end, let S and T be two tree languages. In the
schema learning case described above, T can be the target language and S can be
the schema inferred by the learning algorithm under consideration. Or, in the second
scenario of schema approximation, T can be the schema designed by the user and S
is an approximation of T in a certain (simple) subclass of tree languages. This raises
the natural question of how closely S resembles T . In this paper, we approach this
problem by quantifying the number of common and different trees in S and T . For
instance, one possibility is to define the similarity of S and T as

sim≤n(S, T ) :=
∑n

k=0 |(S ∩ T )=k|
∑n

k=0 |(S ∪ T )=k| ,

where the set of trees of size k in a language L is denoted by L=k , and the cardi-
nality of L=k is denoted by |L=k|. This similarity measure coincides with a measure
commonly used when comparing regular string languages [7, 8, 10]. Furthermore,
this measure has a natural probabilistic interpretation: the similarity between S and
T is defined as (an approximation) of the expected probability that a tree, chosen
uniformly at random from S ∪ T , belongs to S ∩ T . The approximation is realized
by restricting attention to trees up to a certain size n. The algorithmic challenge is to
efficiently compute |L=k| for a tree language L.

For string languages, when L is represented by a deterministic finite automaton,
the counting problem reduces to counting the number of accepting paths in a graph;
an easy exercise in dynamic programming. However, when L is represented by an
NFA the problem becomes #P-complete [24]. We establish a similar dichotomy for
tree languages.

Three classes of unranked regular tree languages are of immediate interest to us:
single-type, restrained competition, and bottom-up deterministic EDTDs. Whereas
single-type EDTDs correspond to the core of XML Schema [27, 30], restrained com-
petition EDTDs correspond to EDTDs that can be correctly typed in a one-pass pre-
order manner [27]. Both of these classes are deterministic in a top-down sense and
are strict subclasses of the unranked regular tree languages. Moreover, the single-type
EDTDs are known to be a strict subclass of the restrained-competition EDTDs [27].
The class of bottom-up deterministic EDTDs are deterministic in a bottom-up sense
and correspond to the full class of unranked regular tree languages. We observe that
while every restrained-competition EDTD is equivalent to a bottom-up deterministic
EDTD, there is in general no efficient translation. Indeed, in some cases an exponen-
tial size increase can not be avoided.

In fact, we consider the class of unambiguous EDTDs in which any tree can have
at most one valid typing. We observe that every single-type, restrained-competition
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and bottom-up deterministic EDTD is in effect an unambiguous EDTD. As a con-
sequence, it suffices to develop counting and sampling algorithms for unambiguous
EDTDs only. Rather than providing an ad-hoc dynamic programming solution to
count the number of trees of a certain size in an unambiguous EDTD, we exhibit
a mapping from the class of unambiguous EDTDs into a (recursive) combinatorial
specification. The latter is a formalism defined by Flajolet, Zimmermann and Van
Cutsem [18] and provides an elegant way to derive counting and sampling algorithms.
We show that in the case of unambiguous EDTDs, these algorithms are also efficient.

In addition, we show how to incorporate shape constraints into combinatorial
specifications. These are numerical constraints on the depth and width of trees in
relation to the total size of the tree. For instance, to avoid string-like trees, we can
restrict the depth of a tree to be at most logarithmic in the total number of nodes. In
this way, the computation of the similarity of two tree languages can be restricted to
trees of a certain shape (which is not necessarily regular).

Finally, when going beyond unambiguous EDTDs, the counting problem becomes
intractable. That is, for general EDTDs, we show that computing the number of trees
of a certain size is #P-complete. However, we do provide a pseudo-polynomial ap-
proximation algorithm based on a similar result for context-free grammars [21].

Generation To assess the average behavior of an algorithm, one can test it on a
substantial input set drawn uniformly at random. This approach makes sense when
no or little real-world data is available and opens up the possibility to quantify the
quality of the obtained results in terms of confidence intervals.

In this paper, we consider the problem of generating XSDs uniformly at random.
That is, for each n, every non-isomorphic XSD of size n must be generated with
the same probability. This definition is the same as for the random generation of
deterministic finite automata [2, 5]. Furthermore, since XSDs can be modelled as
top-down DFAs that map states to content models [25, 27], we can extend methods
for DFA generation to XSDs.

Unfortunately, current DFA generation methods do not constrain the occurrence
of alphabet symbols, a constraint important for XSDs. Indeed, it has been noted in
[8] that content models in XSDs contain large alphabets but every alphabet symbol
occurs only a small number of times. We have referred to such expressions with
alphabet symbol occurrence up to k as k-OREs (k-occurrence regular expressions)
and to their automata counterparts as k-OAs (k-occurrence automata). In this paper,
we provide an algorithm to generate uniformly at random deterministic k-OAs and
show how this leads to uniform XSD generation.

Outline In Sect. 2, we introduce the necessary definitions concerning automata, reg-
ular expressions and abstractions of XML schema languages. We study the problem
of counting of general EDTDs and unambiguous EDTDs in Sects. 3 and 4, respec-
tively. The sampling problem for EDTDs is considered in Sect. 5. The uniform gener-
ation problem for XSDs is discussed in Sect. 6. Finally, Sect. 7 contains related work
and the paper is concluded in Sect. 8.
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2 Preliminaries

We define regular expressions, automata and XML Schema languages. First, we fix
some basic notation.

2.1 String Languages

Strings For any two integers n,m ∈ N where n ≤ m, we denote by [n,m] the set
of all the integers j such that n ≤ j ≤ m. A symbol is an element of the alphabet Σ

and a string w is a finite sequence of symbols σ1 · · ·σn for some n ∈ N. We assume
that the alphabet Σ is finite. We define the length of a string w = σ1 · · ·σn, denoted
by |w|, as n and we also refer to |w| as the size of w. The empty string is denoted
by ε and is the unique string of size 0. If w1 and w2 are two strings, we denote their
concatenation by w1 · w2 or simply by w1w2. The set of all strings is denoted by Σ∗
and a string language is a subset of Σ∗. If L1 and L2 are two string languages, then
their concatenation is defined as the set {w1w2 | w1 ∈ L1,w2 ∈ L2}, and is denoted
by L1 · L2 or simply by L1L2. For a string language L and for any k ∈ N, we denote
by L=k the set of strings in L that have length or size k.

Automata A non-deterministic finite automaton (NFA) A is a tuple
(Σ,Q, I,F, δ), such that Q is a finite set of states, I ⊆ Q is the set of initial states,
F is the set of final states, and δ is the transition function of the automaton, defined as
δ : Q × Σ → 2Q, mapping each pair of a state and symbol to a set of states. A run ρ

of A on some string w = a1 · · ·an is a sequence of states q0, . . . , qn, such that q0 ∈ I

and, for each i ∈ [1, n], qi ∈ δ(qi−1, ai). Furthermore, when qn is a member of F , we
say that the run is accepting. The string language accepted by A is denoted by L(A)

and is defined as the set of strings w for which there exists an accepting run of A

on w. We define the size of an automaton A, denoted by |A|, as the size of its transi-
tion function |{(q, a, q ′) ∈ Q × Σ × Q | q ′ ∈ δ(q, a)}|. An automaton A is complete
if the transition function maps every state/symbol pair to a non-empty set of states.
Finally, a non-deterministic finite automaton A is said to be deterministic (or A is a
DFA) if I is a singleton set and the transition function maps each state/symbol-pair
to a singleton set or the empty set.

Regular Expressions The set of regular expressions (REs) over Σ is defined re-
cursively as follows. The empty string ε, the empty set ∅, and every symbol in Σ

is a regular expression and if r1 and r2 are regular expressions, then so are r1 · r2,
r1 + r2, r+ and r∗. The string language defined by a regular expression r , is de-
noted by L(r) and is defined as follows. If r = ε then L(r) = {ε}, if r = ∅ then
L(r) = ∅, and if r = σ for some σ ∈ Σ , then L(r) = {σ }. If r = r1 · r2 then
L(r) = L(r1)L(r2), if r = r1 + r2 then L(r) = L(r1) ∪ L(r2), and finally if r = r+

1
then L(r) = {w | w = w1 · · ·wn for some n ≥ 1 and ∀i ∈ [1, n],wi ∈ L(r1)}. For any
regular expression r , the regular expression r∗ is equivalent to the regular expression
r+ + ε and r? is used to abbreviate r + ε. We assume w.l.o.g. that ∅ is not used as a
subexpression in any other regular expression. We define the size of a regular expres-
sion r , denoted by |r|, as the number of symbols in Σ and operators occurring in it.
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Formally, |∅| = |ε| = |σ | = 1, |r1r2| = |r1 + r2| = |r1| + |r2| + 1, |r+| = |r| + 1. In
addition, |r∗| = |r+ + ε| and |r?| = |r + ε|. For example, the size of r = ab∗(b +a+)

is 11.
For any regular expression r , we denote by r̄ the regular expression obtained from

r by replacing, for each i and each a ∈ Σ , the i-th occurrence of a by ai . For example,
if r = ab∗(b + a+), then r̄ = a1b

∗
1(b2 + a+

2 ). The XSD and DTD specifications (to
be defined later) restrict regular expressions to be deterministic. A regular expression
r is deterministic or 1-unambiguous if there are no strings w · ai · v and w · aj · v′
in L(r̄) such that i = j [15]. We recall that a deterministic regular expression can be
translated into an equivalent DFA in quadratic time [13].

2.2 XML Schema Languages

Trees A set of strings S is prefix closed if for every string s ∈ S and any prefix sp of
s, sp is also in S. A tree t over an alphabet Σ is a tuple (Nodes, lab,Σ) where Nodes,
the set of nodes of t , is a finite prefix closed set of strings over the natural numbers,
such that if v · i ∈ Nodes then v · i′ ∈ Nodes for all i′ < i, and lab : Nodes → Σ is a
labeling function assigning symbols of Σ to each node in Nodes. The size of a tree
equals its number of nodes. A node v ∈ Nodes is a leaf node if there is no v′ ∈ Nodes
different from v, such that v is a prefix of v′. The root of t is the empty string in
Nodes. The children of a node v in t are all nodes v′ ∈ Nodes such that v′ = v · i for
i ∈ N. The subtree of a tree t rooted at a node v of t is the set of nodes with prefix v.
For the tree consisting of a single leaf node v labeled with the symbol σ , we write
σ(ε), and for any node v labeled with σ and having subtrees t1, t2, . . . , tn rooted at
its children, we write σ(t1, t2, . . . , tn), denoting the subtree of t rooted at v. For a
tree t , and a node v ∈ Nodes with parent v′ ∈ Nodes, the height of the node v in t ,
denoted by heightt (v), is equal to heightt (v′) + 1, with the root of t having height 0.
The height of a tree t is maxv∈Nodes{heightt (v)}. The width of a node v in a tree t ,
denoted by widtht (v), is equal to the number of children of v, and the width of a tree
t is maxv∈Nodes{widtht (v)}.

The set of all trees over Σ is denoted by TreesΣ and a tree language T over Σ is
a subset of TreesΣ . The set of trees over Σ that have exactly k nodes is denoted by
Trees=k

Σ , for k ∈ N. For a tree language T , T =k denotes the set of trees with k nodes,
namely T =k = T ∩ Trees=k

Σ .

DTDs and Extended DTDs A DTD over some finite alphabet Σ is a tuple D =
(Σ,R,d,Sd) where R is a set of deterministic regular expressions over Σ , d is a
function that maps symbols in Σ to expressions in R, and Sd ⊆ Σ is the set of start
symbols. We refer to the regular expressions in R as the content models of the DTD.
A finite tree t is valid with respect to a DTD D or satisfies D, if its root is labeled by
an element of Sd and, for every node labeled with some a ∈ Σ , the sequence a1 · · ·an

of labels of its children, is in the language defined by d(a).
A DTD-DFA (Σ,A,d,Sd) over some finite alphabet Σ is a DTD whose content

models are represented by the DFAs in the finite set A, instead of regular expressions.
An extended DTD (EDTD) over a finite alphabet Σ is a tuple D = (Σ,Δ,R,

d,Sd,μ), where Δ is a finite set of types, (Δ,R,d,Sd) is a DTD and μ is a mapping
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from Δ to Σ . A tree t is valid with respect to an EDTD D or satisfies D if t = μ(t ′)
for some tree t ′ that satisfies the DTD (Δ,R,d,Sd), where μ is extended to trees.
We call t ′ a witness to t .

An EDTD-DFA (Σ,Δ,A,d,Sd,μ) over a finite alphabet Σ is an EDTDwhere
(Δ,A,d,Sd) is a DTD-DFA.

The tree language consisting of trees that are valid with respect to a DTDor EDTD
D is denoted by L(D). An EDTD D is reduced if, for every type τ , there exists a
witness tree t ′ of some tree t ∈ L(D) such that the label τ occurs somewhere in t ′.
Any EDTD can be transformed to an equivalent reduced EDTD in polynomial time
[1, 26]. In the following, we assume that all EDTDs are reduced.

Let D be an EDTD (Σ,Δ,R,d,Sd,μ). Then, for any τ ∈ Δ, we denote by Dτ the
EDTD (Σ,Δ,R,d, {τ },μ). In particular the set of start symbols Sd of D is changed
to {τ }. We use the same notation for EDTD-DFAs.

Subclasses of EDTDs We recall the following subclasses of EDTDs: single-
type EDTDs, restrained competition EDTDs, and bottom-up deterministic
EDTDs. Intuitively, these classes have the following significance. Single-type EDTDs
are the formal abstraction of XSDs [27] and are therefore central in this paper. The
class of restrained competition EDTDs corresponds to the EDTDs that can be cor-
rectly typed in a one-pass preorder manner [27]. This means that, when visiting the
children of a node from left to right it is clear which type is associated with each
node without looking ahead at the nodes to the right. Restrained competition EDTDs
form a strict superclass of the single-type EDTDs. Finally, bottom-up deterministic
EDTDs are a class of EDTDs that are equally expressive as general EDTDs, i.e., they
recognize all regular tree languages. They correspond to bottom-up deterministic tree
automata [14].

More formally, let D = (Σ,Δ,R,d,Sd,μ) be an EDTD.

• D is single-type if Sd does not contain two conflicting types and no regular ex-
pression in R contains two conflicting types. Here, two types τ = τ ′ conflict if
μ(τ) = μ(τ ′).

• D is restrained competition if Sd does not contain two conflicting types and all
regular expressions in R restrain competition. Here, a regular expression r over Δ

restrains competition if there are no strings wτv and wτ ′v′ in L(r) with τ = τ ′
and μ(τ) = μ(τ ′).

• D is bottom-up deterministic, if for any two distinct types τ1, τ2 ∈ Δ, it holds that
L(d(τ1)) ∩ L(d(τ2)) = ∅.

These notions are defined analogously for EDTD-DFAs. The class of all single-
type (resp., restrained competition, bottom-up deterministic) EDTDs is denoted by
EDTDst (resp., EDTDrc, EDTDbud).

Let D = (Σ,Δ,R,d,Sd,μ) be an EDTD. We define the size of D, denoted
by |D|, as the sum of sizes of the regular expressions d(τ) ∈ R, for τ ∈ Δ. Simi-
larly, the size of an EDTD-DFAis the sum of the sizes of the DFAs occurring in it.

We note that translating between EDTDsts and EDTDbuds gives rise to unavoid-
able exponential blow-ups. The following proposition holds for all formalisms used
for representing content models of EDTDs in this paper.
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Proposition 2.1 There is a class (Dn)n∈N of EDTDsts such that each Dn has size
O(n) and the smallest EDTDbud for L(Dn) has size 2Ω(n). Likewise, there is a class
(Dn)n∈N of EDTDbuds such that each Dn has size O(n) and the smallest EDTDst and
EDTDrc for L(Dn) has size 2Ω(n).

Proof The class (Dn)n∈N of EDTDsts defines the unary trees that, when read as a
string from root to leaf, obey the regular expression (a + b)na(a + b)∗. The fact
that the minimal EDTDbud for L(Dn) has size 2Ω(n) immediately follows from the
fact that the smallest DFA for (a + b)∗a(a + b)n has size 2Ω(n) [29]. Informally,
when reading a tree from leaf to root, the EDTDbud has to remember, for the last n

positions, all positions at which the symbol ‘a’ appeared. If the EDTDbud uses less
than 2Ω(n) types, it can be shown with a fooling argument that the EDTDbud does not
recognize the correct language. This proof is analogous to the proof that the smallest
DFA for (a +b)∗a(a +b)n has size 2Ω(n). The direction from EDTDbuds to EDTDsts
is analogous. �

To conclude this section, we next provide two examples of EDTDs that will also
be used in Sect. 4.

Example 2.2 Consider the EDTDst D1 = (Σ,Δ,R,d,Sd,μ) with Σ = {a}, Δ =
{τo, τe}, d(τe) = (τoτo)

∗, d(τo) = τe(τeτe)
∗, Sd = {τe} and μ(τo) = μ(τe) = a. Then

D1 defines trees of even height where each node at even height has an even number
of children and each node at odd height has an odd number of children. Here, the
root has height 0. Let D2 be the EDTD (Σ,Δ,R,d ′, Sd,μ), where d ′ is such that
d ′(τo) = τe(τeτe)

∗ and d ′(τe) = (τoτoτoτo)
∗. Then, D2 defines trees where a node at

odd height has an odd number of children, but nodes at even height have 0 (mod 4)

number of children.

2.3 Unambiguous EDTDs

We next define the class of unambiguous EDTDs and show that this class contains the
single-type, restrained competition, and bottom-up deterministic EDTDs previously
defined.

Definition 2.3 An EDTD or EDTD-DFA D is unambiguous, denoted by EDTDun, if
every tree t ∈ L(D) has a unique witness tree t ′ with μ(t ′) = t .

Proposition 2.4 Let D = (Σ,Δ,R,d,Sd,μ) be an EDTD. If D is single-type, re-
strained competition, or bottom-up deterministic then D is unambiguous.

Proof If D is single-type, then D is also restrained competition. Therefore, let us
first assume that D is restrained competition. We prove that D is also unambiguous.
Towards a contradiction, assume that D is not unambiguous. Then there are two
distinct trees t1, t2 over Δ that are witnesses to some tree t ∈ L(D) and are such that
μ(t1) = μ(t2). Let v be a node in t such that the type of v in t1, say τ1, is different
from the type of v in t2, say τ2. Moreover, let v be such that none of its ancestors or
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left siblings have this property. Notice that v cannot be the root of t since by definition
of restrained competition EDTDs, the set of initial types cannot contain conflicting
types. Let v′ be the parent of v in t , and let its type (which is the same both in t1
and t2) be τ ′. Then the child-string of v′ in t1 is of the form wτ1u1 and the child-
string of v′ in t2 is of the form wτ2u2 by the assumption that v is the leftmost child
with the property above. Therefore, the regular language associated with τ ′ does not
restrain competition, which is a contradiction.

Finally, assume that D is bottom-up deterministic. Towards a contradiction, as-
sume D that is not unambiguous. Then there are two distinct trees t1, t2 over Δ that
are witnesses to some tree t ∈ L(D) and are such that μ(t1) = μ(t2). Notice that t1, t2
and t are the same trees with different type-labeling. Let v be a node in t such that
the type τ1 of v in t1 is different from the type τ2 of v in t2, and such that none of
v’s descendants have this property. Since none of v’s descendants have this property,
v’s child string is the same in t1 and t2. Denote this child string by s ∈ Δ∗. How-
ever, this means that s ∈ L(d(τ1)) ∩ L(d(τ2)), which contradicts that D is bottom-up
deterministic. �

The following result readily follows from the standard product construction of
automata (see, e.g., [19]). We add the observation that, if the input EDTDs are
EDTDuns, then the product EDTDs for the union and intersection are also EDTDuns.

Proposition 2.5 Let D1 and D2 be two EDTD-DFAuns. Then we can construct,
in quadratic time, an EDTD-DFAun for L(D1) ∪ L(D2) and an EDTD-DFAun for
L(D1) ∩ L(D2).

Finally, we recall that deciding whether a given EDTD is in one of the particular
classes we use here is in polynomial time.

Proposition 2.6 ([27, 32]) Deciding whether a given EDTD is a EDTDst, EDTDrc,
EDTDbud , or EDTDun is in PTIME.

Proof The result for EDTDst and EDTDrc is proved in [27]. Testing whether an
EDTD is a EDTDbud simply boils down to testing emptiness of finite string automata,
which is in PTIME.

We can translate an EDTD to a ranked tree automaton using a variant of the stan-
dard first-child next-sibling encoding (in polynomial time), and the resulting ranked
tree automaton is unambiguous if and only if the original EDTD is unambiguous. In
[32], Seidl has shown that testing whether a ranked tree automaton is unambiguous
(i.e., 1-ambiguous in Seidl’s terminology) is in PTIME. Therefore, testing whether
an EDTD is an EDTDun is also in PTIME. �

3 Counting General Tree Languages

In this section, we consider the counting problem for tree languages L(D), where D

is an EDTD or EDTD-DFA. In general, the counting problem for languages can be
stated as follows:
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Definition 3.1 For a class of languages C , given a language C ∈ C and m ∈ N in
unary notation, we define #C as the problem of finding the number of members in C

of size m.

For instance, #DFA reduces to counting the number of paths in a graph, a PTIME
process. In contrast, #NFA is known to be #P-complete [24]. In this section, we first
show that the counting problem #EDTD is #P-complete. Next, in view of this in-
tractability result, we provide a randomized approximation scheme for #EDTD. We
conclude this section by showing that similar results hold for #EDTD-DFA.

3.1 Intractability of #EDTD

We first establish the intractability of #EDTD. More specifically, we show #P-
hardness for #EDTD by a reduction from the #NFA problem, which is known to
be #P-complete [24]. The matching upper bound is established by providing a #P-
algorithm for #EDTD.

Proposition 3.2 #EDTD is #P-complete.

Proof Recall that, given m ∈ N and NFA N , #NFA is the problem of finding
|L(N)=m|. Let A = (Σ,Q, I,F, δ) be any NFA. We define an EDTD DA such that
there is a bijection between words accepted by A and trees accepted by DA. In addi-
tion, the EDTD DA is derived from A in polynomial time. From this, the #P-hardness
of #EDTD then readily follows.

We define DA to be the EDTD (Σ � {σ0},Δ,R,d,Sd,μ) as follows. The sym-
bol σ0 is a distinguished symbol not in Σ . The set of types Δ is Q × (Σ � {σ0}).
Furthermore, for any τ ∈ Δ, if τ = (q, a) then μ(τ) = a, and d is defined as
the function mapping any τ = (q, a) to the disjunction of the elements of the set
{(q ′, a′) | q ′ ∈ δ(q, a′), a′ ∈ Σ} ∪ {ε | if q ∈ F }.

Since each d((q, a)) is a finite set of elements from Δ, it can be represented by
a polynomial-size deterministic regular expression, which is just a disjunction of the
elements in d((q, a)). We claim that for any string w = a1 · · ·an ∈ Σ∗, w ∈ L(A) ⇔
σ0(a1(. . . (an(ε)))) ∈ L(DA).

For the only if direction, suppose that for some string w = a1 · · ·an, w ∈ L(A).
Then there is a successful run ρ = q0, . . . , qn of A on w. To show that t =
σ0(a1(. . . (an(ε)))) is a tree that satisfies DA, it suffices to show that there is a tree
t ′ = τ(τ1(. . . (τn(ε)))) that is a witness to t with τ ∈ Sd and such that for all i ∈ [1..n],
μ(τi) = ai . But t ′ = (q0, σ0)((q1, a1)(. . . ((qn, an)))) is such a tree by definition.

For the if direction, suppose that a tree t = σ0(a1(. . . (an(ε)))) is in L(DA). No-
tice that the letter of the root of t is always labeled by σ0 by definition of DA.
We want to show that there is an accepting run ρ of A on w = a1 · · ·an. Let
t ′ = (q, σ0)((q1, a1)(. . . ((qn, an)))) be a witness of t . Then the run ρ = q, q1, . . . , qn

is an accepting run of A on w.
Note that the above translation from NFAs to EDTDs can be performed in PTIME

and therefore #EDTD is #P-hard.
For the upper bound it suffices to observe that deciding whether there is a tree of

a given size in the language of an EDTD is in NP. Therefore, the counting problem
#EDTD is in #P. �
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3.2 Approximating #EDTD

In view of the intractability of #EDTD we next provide a randomized approxima-
tion scheme for #EDTD. We first recall the notion of randomized approximation
schemes for languages from Gore et al. [21]. A randomized approximation scheme
for languages is a randomised procedure that takes as input a description for a lan-
guage L ⊆ Σ∗ and a tolerance ε > 0, and produces as output a number L̂ such that
(1 + ε)−1|L| ≤ L̂ ≤ (1 + ε)|L| with probability at least 3

4 . For instance, an approxi-
mation scheme exists for context-free grammars (CFGs). We refer to Sect. 3.3 for the
definition of CFGs.

Theorem 3.3 ([21]) There is a randomized approximation scheme for #CFG, i.e.,
finding the number of elements of size m of a language defined by a given CFG G,
with running time ε−2(m|G|)O(log m).

Here, |G| can be taken as the sum of the sizes of the regular expressions that appear
in the productions of the CFG G [21]. To obtain a randomized approximation scheme
for #EDTD, we proceed as follows. We first establish a translation from EDTDs to
CFGs in which the number of trees of a certain size that are accepted by the EDTD
are closely related to the number of strings of a certain size that are accepted by the
associated CFG. More specifically, we show the following.

Lemma 3.4 For every EDTD D = (Σ,Δ,R,d,Sd,μ) there is a CFG G =
(N,Σ ′,R′, S′) such that for all n ∈ N, |L(D)=n| = |L(G)=3n|.

The approximation scheme for #EDTDs then immediately follows from Theo-
rem 3.3 and Lemma 3.4.

Corollary 3.5 For an EDTD D, there is a randomized approximation scheme for
finding the number of elements of size n of the language L(D), which runs in time
ε−2(3n|D|)O(logn).

The next section is dedicated to the translation from EDTDs to CFGs and the proof
of Lemma 3.4.

3.3 From EDTDs to CFGs

We first recall the definition of CFGs. A context-free grammar (CFG) G is a tuple
(N,Σ,R,S) such that N is a finite set of non-terminal symbols, Σ is a set of terminal
symbols, the set of derivation rules R is a subset of N × (N ∪ Σ)∗ and S ∈ N is
the start symbol. We denote the tuples (V ,w) ∈ R by V → w. When w,w1,w2 ∈
(N ∪ Σ∗) and V ∈ N , we write w1V w2 ⇒ w1ww2, if V → w in G. Intuitively, this
means that w1ww2 can be obtained from w1V w2 by applying the derivation rule
V → w. We write w ⇒k w′ to abbreviate that there exist w1, . . . ,wk−1 such that
w ⇒ w1 ⇒ ·· · ⇒ wk−1 ⇒ w′. For technical reasons, we write sometimes w ⇒0 w′
when w = w′. The transitive and reflexive closure of ⇒ is denoted by ⇒∗. The
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language accepted by G is the set of strings w ∈ Σ∗ such that S ⇒∗ w, and is denoted
by L(G). If T ∈ N , then L(GT ) is the set of strings w such that T ⇒∗ w. A derivation
tree of a context-free grammar G = (N,Σ,R,S), is a tree over the alphabet N ∪ Σ ,
whose root is labeled by S and where each non-leaf node is labeled by a non-terminal,
each leaf node is labeled by a terminal or ε, and for each node of the tree with label
V whose children are labeled V1, . . . , Vn respectively from left to right, it holds that
V → V1 . . . Vn.

In order to translate EDTDs to CFGs, we first need to show how to associate CFGs
to REs. Let RE GΣ denote the class of regular expressions over the alphabet Σ . Let
N be an infinite set of non-terminal symbols. Also, let RN,Σ denote the class of
context-free grammar rules over the set of terminal symbols Σ and the set of non-
terminal symbols N . We define the function ϕ : N × RE GΣ → 2(RN,Σ ) to be a partial
function mapping pairs of a non-terminal symbol and regular expression to a set of
context-free grammar rules.

To this end, we slightly adapt a translation given by Hopcroft et al. [23]. The
function is defined inductively as follows:

ϕ(R, r) = ∅ if r = ∅,

ϕ(R, r) = {R → ε} if r = ε,

ϕ(R, r) = {R → σ } if r = σ,

ϕ(R, r) = {R → R1,R → R2} ∪ ϕ(R1, r1) ∪ ϕ(R2, r2) if r = r1 + r2,

ϕ(R, r) = {R → R1R2} ∪ ϕ(R1, r1) ∪ ϕ(R2, r2) if r = r1 · r2,

ϕ(R, r) = {R → RR1,R → ε} ∪ ϕ(R1, r1) if r = r∗
1 ,

where the non-terminal symbols introduced in the rules above, are not used else-
where. The following lemma is readily verified.

Lemma 3.6 Let r be a regular expression over the alphabet Δ. Then we can con-
struct in linear time a CFG G with start symbol S such that τ1 · · · τn ∈ L(r) if and
only if S ⇒∗ τ1 · · · τn and thus τ1 · · · τn ∈ L(G).

Given the translation from REs to CFGs, we next turn to the translation from
EDTDs to CFGs. For this, we need to show how CFGs obtained from REs that occur
in an EDTD can be combined. Let D = (Σ,Δ,R,d,Sd,μ) be an EDTD. We use
the following notation: if r is a regular expression, then we denote by CFG(r,V )
the set of CFG rules obtained by taking rules of G from Lemma 3.6, replacing the
start symbol S by V , and replacing each terminal symbol τ ∈ Δ in the derivation
rules by a non-terminal Tτ . In this way, we have that τ1 · · · τn ∈ L(r) if and only if
V ⇒∗ Tτ1 · · ·Tτn in CFG(r,V ). We again use RN,Σ to refer to the class of context-
free grammar rules over the set of terminal symbols Σ and the set of non-terminal
symbols N . Let ψD : Δ → 2(RN,Σ ′ ), for Σ ′ = Σ ∪ {[, ]}, be a function mapping types
to sets of CFG rules, defined as:

ψD(τ) = {
Tτ → σ [Rτ ]

} ∪ CFG
(
d(τ),Rτ

)
,

where σ = μ(τ). In the following, we assume that the non-terminals in the rules
CFG(d(τ ),Rτ ) that are not of the form Tτ , for some τ ∈ Δ, are not used else-
where. This can always be achieved by renaming non-terminals accordingly. Let
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ΨD be the set (
⋃

τ∈Δ ψD(τ)) ∪ {S → Tτ | τ ∈ Sd}. Notice that, for each type τ

there exists exactly one rule in ΨD whose left-hand side is Tτ . For an EDTD
D = (Σ,Δ,R,d, {sd},μ) we define G = (N,Σ ∪ {[, ]},ΨD,Tsd ) as its associated
context-free grammar. As a first step towards the proof of Lemma 3.4 we establish
the following property.

Lemma 3.7 Let D = (Σ,Δ,R,d, {sd},μ) be an EDTD and let G = (N,Σ ∪
{[, ]},ΨD,Tsd ) be its associated context-free grammar. Then, for every R ∈ N , and
for every w ∈ (Σ ∪ {[, ]})∗ such that R ⇒∗ w, it holds that |w| = 3n for some n ∈ N.

Proof Let D be an EDTD and let G be its associated context-free grammar, as spec-
ified above. Furthermore, let R be any non-terminal symbol in N . Let R ⇒∗ w.
We proceed by induction on the number of derivation steps m. Suppose that m = 1
and hence that R ⇒ w. By definition, the only rule in ΨD that produces a string of
only terminal symbols, is R ⇒ ε, and |ε| = 0 = 3 · 0. Suppose then that the state-
ment holds for all k < K derivation steps, for some K ∈ N, and consider the case
where the number of derivation steps is K . Suppose that R ⇒ R1R2 and there-
fore there exist w1,w2 such that w = w1w2 and R1 ⇒ w1 and R2 ⇒ w2. Then
by the inductive hypothesis, |w1| = 3n1 and |w2| = 3n2 for n1, n2 ∈ N. Therefore,
|w| = 3(n1 + n2). The argument is similar for the other cases that are in the image of
ϕ given some regular expression r . The only remaining case is where R ⇒ σ · [·R′·],
where R′ ∈ N . Therefore, if R ⇒K w, there exists w′ such that w = σ · [·w′·] and
R′ ⇒(K−1) w′. By the inductive hypothesis, |w′| = 3n for some n ∈ N and therefore
|w| = 3n + 3 = 3(n + 1). �

We are now ready to prove Lemma 3.4. Recall that we need to show that for every
EDTD D = (Σ,Δ,R,d,Sd,μ) there is a CFG G such that for all n ∈ N, |L(D)=n| =
|L(G)=3n|. We show that the CFG G = (N,Σ ∪{[, ]},ΨD,S), associated with D, has
the desired property. We show this by establishing a bijection str between the lan-
guages L(D) and L(G). More precisely, str : TreesΣ → (Σ ∪{[, ]})∗ is inductively
defined as follows:

str(σ (ε)) = σ · [·],
str(σ (t1, . . . , tm)) = σ · [·str(t1) · · ·str(tm)·].

We will show by induction on n that, for any n ∈ N and any type τ , str is a bijection
between L(Dτ )

=n and L(GTτ )
=3n. Recall that Dτ and GTτ denote the EDTD D and

the grammar G with start symbols τ and Tτ , respectively. Since the function str is
injective and well-defined, |L(D)=n| = |L(G)=3n| holds. In order to show that str
is a bijection it suffices to show:

⇒ For any tree t , if t ∈ L(Dτ )
=n then str(t) ∈ L(GTτ )

=3n; and
⇐ For any string w, if w ∈ L(GTτ )

=3n then w = str(t) for some tree t such
that t ∈ L(Dτ )

=n.

We show these two directions by induction on n.
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Consider the base case when n = 1. For the ⇒ direction, let t be a tree in
L(Dτ )

=1. Then t = σ(ε) for σ = μ(τ). By definition of ψD(τ), the string σ [] is
in L(GTτ )

=3 if and only if ε ∈ L(GRτ ). We know that ε ∈ L(d(τ )) and therefore
by induction on the structure of d(τ), Lemma 3.6 implies that ε ∈ L(GRτ ). For the
⇐ direction, let τ be a type and w be a string in L(GTτ )

=3. Notice that each
rule in G that produces terminal symbols, produces 3 terminal symbols and is of
the form Tτ → σ [R], for some non-terminal symbol R and terminal symbol σ . So
suppose that σ [] ∈ L(GTτ )

=3. Then, since the set of rules of G is equal to {S →
Tτ ′ | τ ′ ∈ Sd} ∪ ⋃

τ ′∈Δ ψD(τ ′) with ψD(τ ′) = {Tτ ′ → σ [Rτ ′ ]} ∪ CFG(d(τ ′),Rτ ′),
where σ = μ(τ ′), it holds by induction on the structure of d(τ ′) and Lemma 3.6, that
ε ∈ L(d(τ )) and therefore σ(ε) ∈ L(Dτ ).

Consider next the general case. That is, suppose that both directions hold for all
k < n for some n ∈ N. We want to show that the directions also hold for n. For
the ⇒ direction, suppose that, for some tree t and type τ , t ∈ L(Dτ )

=n. Then t =
σ0(t1, . . . , tm) for some m such that for each i ∈ [1,m], ti ∈ L(Dτi

)=ni , where ni < n,∑m
i=1 ni = n− 1, and where τ1 . . . τm ∈ d(τ). By the inductive hypothesis, str(ti) ∈

L(GTτi
)=3ni for each i ∈ [1,m]. Notice that n = 1 + ∑m

i=0 ni and therefore 3n =
3 + ∑m

i=0 3ni . By definition of ψD(τ) = {Tτ → σ [Rτ ]} ∪ CFG(d(τ ),Rτ ), it suffices
to show that str(t1) · · ·str(tm) ∈ L(GRτ ). From the assumption above, that for all
i ∈ [1,m], str(ti) ∈ L(GTτi

)=3ni , it is enough to show that Rτ ⇒∗ Tτ1 . . . Tτm by the
rules in G. However, this is true by construction of G and by Lemma 3.6.

For the ⇐ direction, suppose that for some type τ and string w, w ∈ L(GTτ )
=3n.

Notice that the set of rules of G is equal to {S → Tτ ′ | τ ′ ∈ Sd} ∪ ⋃
τ ′∈Δ ψD(τ ′) and

ψD(τ) = {Tτ → σ [Rτ ]} ∪ CFG(d(τ ),Rτ ) where σ = μ(τ), and furthermore, there
is a unique rule whose left-hand side is Tτ . Therefore, it holds that w ∈ L(GTτ )

=3n

if and only if there exists string w′ such that w = σ · [·w′·] and w′ ∈ L(GRτ )
=3(n−1).

Furthermore, w′ ∈ L(GRτ )
=3(n−1) if and only if Rτ ⇒∗ Tτ1 . . . Tτm for some m, and

w′ = w1 . . .wm such that for each i ∈ [1,m], wi ∈ L(GTτi
)=ni , where

∑m
i=1 ni =

3(n − 1). Notice that for each i ∈ [1,m], ni = 3n′
i for some n′

i by Lemma 3.7, and
therefore

∑m
i=1 n′

i = n − 1. By the inductive hypothesis, there exist trees t1, . . . , tm

such that for all i ∈ [1,m], wi = str(ti) and ti ∈ L(Dτi
)=n′

i . Furthermore, by in-
duction on the structure of d(τ) and Lemma 3.6, Rτ ⇒∗ Tτ1 . . . Tτm if and only
if τ1 . . . τm ∈ L(d(τ )). Therefore, t = σ(t1, . . . , tm) ∈ L(Dτ ) and in addition t ∈
L(Dτ )

=n. This concludes the proof of Lemma 3.4.

3.4 #EDTD-DFA

We next turn our attention to #EDTD-DFA. Along the same lines as the proof of
Proposition 3.2, it is readily verified that #EDTD-DFA is #P-complete. Further-
more, similarly to #EDTD, the counting problem #EDTD-DFA admits a randomized
approximation scheme. This is verified in precisely the same way as for #EDTD.
More specifically, it suffices to show that one can translate EDTD-DFAs into CFGs
such that Lemmas 3.7 and 3.4 hold. Since EDTD-DFAs use DFAs rather than REs
to represent regular languages, we only need to describe how DFAs can be trans-
lated into CFGs. Let A = (Σ,Q,q0,F, δ) be a DFA. Then, a context-free gram-
mar GA such that L(GA) = L(A) can be constructed as follows. The grammar
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GA = (NA,Σ,RA,SA) is defined with NA = SA � {Rq | q ∈ Q} and the set of rules
RA which is defined as the union of all rules of the form

• SA → Rq0 , for the initial state q0;
• Rq → ε for every q ∈ F ; and
• Rq1 → aRq2 for every a ∈ Σ and q2 ∈ Q such that q2 ∈ δ(q1, a).

Notice that this is a standard translation from automata to a (left-linear) context-free
grammar. It is easily verified that, with this translation, Lemma 3.6 holds when con-
sidering DFAs instead of regular expressions. Furthermore, we can associate a CFG
to an EDTD-DFA in the same way as before and only a minor modification of the
proof of Lemma 3.7 is required. Indeed, in the inductive step in that proof we need to
consider a production of the form R ⇒ TτR

′. Again, by induction, we have that there
exist w1,w2 such that w = w1w2 and Tτ ⇒ w1 and R′ ⇒ w2 and by the inductive
hypothesis, |w1| = 3n1 and |w2| = 3n2 for n1, n2 ∈ N. Hence, Lemma 3.7 holds for
EDTD-DFAs as well. The proof of Lemma 3.4 for EDTD-DFAs is analogous to its
EDTD counterpart. We may thus conclude:

Corollary 3.8 For an EDTD-DFA D, there is a randomized approximation scheme
for finding the number of elements of size n of the language L(D), which runs in time
ε−2(3n|D|)O(logn).

4 Counting Unambiguous Tree Languages

In this section we show that counting unambiguous tree languages is in PTIME. More
specifically, we provide an efficient algorithm for #EDTD-DFAun. Given an EDTD-
DFAun D, the algorithm (1) translates D into an unambiguous CFG GD similar to
the translation given in Sect. 3.3; (2) translates GD into a so-called combinatorial
specification [18]; and (3) leverages the available PTIME counting algorithm for the
corresponding combinatorial class [18]. We further consider two applications of the
translation into a combinatorial specification: the counting of trees that adhere to
some shape constraints; and the efficient computation of the similarity between two
unambiguous tree languages. As we will see in the next section, the combinatorial
specification has as additional advantage that one obtains a sampling procedure for
trees in L(D). Before describing the algorithm for #EDTD-DFAun in more detail,
we define the notion of combinatorial specification (see [18] for more details). Since
single-type-, restrained competition-, and bottom-up deterministic EDTD-DFAs are
EDTD-DFAuns, the results presented here thus apply to those classes as well.

4.1 Combinatorial Specifications

A combinatorial class is a finite or denumerable set on which a size function is de-
fined, satisfying the following two conditions:

(i) the size of an element is a non-negative integer,
(ii) the number of elements of any given size is finite.
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If A is a class, the size of an element a ∈ A is denoted by |a|. The set of objects in
A of size n is denoted by An. The counting sequence of a combinatorial class is the
sequence of integers (An)n≥0 where An = |An| is the number of objects in class A
that have size n. Two combinatorial classes A and B are said to be combinatorially
isomorphic, written A ∼= B if and only if their counting sequences are identical. This
condition is equivalent to the existence of a bijection from A to B that preserves size.

A calculus for combinatorial classes introduced in [18], is presented below. Here,
E and Z are atoms that denote the classes containing exactly one object of size 0 and
size 1 respectively. (We remark that E is denoted as 1 in [18].) In the following, we
allow different instantiations Za , Zb , . . . of the same atom Z . Let B and F be combi-
natorial classes. Then the combinatorial class A = B + F is the disjoint union of the
classes B and F . In particular, Z + Z contains two objects of size 1. Furthermore,
A = B × F denotes the combinatorial class {α = (β, γ ) | β ∈ B, γ ∈ F } and for each
α = (β, γ ) ∈ A, the size of α is the sum of the sizes of β and γ . More generally, if
α = (β1, . . . , βn) ∈ A then the size of α is the sum of the sizes of βi for i ∈ [1, n].
For all n the following hold when A is a combinatorial class:

if A = B + F then |An| = |Bn| + |Fn|,

if A = B × F then |An| =
n∑

k=0

|Bn−k| · |Fk|

We assume an infinite set of variables C,C0,C1, . . . . Each variable will define a
combinatorial class L(C).

Definition 4.1 ([18]) A specification for (C1, . . . ,Cn) is a collection of n equations,
with the i-th equation being of the form

Ci := Ψi(C1, . . . ,Cn)

where Ψi(C1, . . . ,Cn) is a term built from E , Z and the Cj , using the constructors +
and ×. For each j ∈ [1, n], let C0

j = ∅ and for each i ∈ N, let Ci+1
j = Ψj (C

i
1, . . . ,C

i
n).

Then L(Cj ) is defined to be
⋃

i≥0 L(Ci
j ). For k ∈ N, we denote by L(Cj )

=k the
objects in L(Cj ) of size k.

We say that a specification is in normal form if each equation is either a single
atom, or a single operation Ci := Cj + Ck or Ci := Cj × Ck .

Theorem 4.2 ([18]) Given a specification for (C1, . . . ,Cn) in normal form and an
integer k, the counting sequence up to size k can be computed in O(nk2) arithmetic
operations.

As an example of specifications, we consider the class of unambiguous CFGs.
Recall that a context-free grammar G = (N,Σ,R,S) is unambiguous if, for every
string w ∈ L(G), w has exactly one derivation tree for G. A CFG G is in Chomsky
normal form if every V → w in R is either of the form V → ε, V → σ for σ ∈ Σ , or
V → V1 · V2 with V1 and V2 in N . It is well-known [18] that an unambiguous CFG
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G with n non-terminals in Chomsky normal form can be translated into a linear-
size combinatorial specification (C1, . . . ,Cn) in normal form by simply replacing
concatenation (·) by ×, disjunction (∪) of rules with the same left hand side by +,
ε by E , and finally by replacing each σ ∈ Σ by Zσ . The following lemma is readily
verified.

Lemma 4.3 ([18]) Let G be an unambiguous CFG in Chomsky normal form with
n non-terminals and let (C1, . . . ,Cn) be the corresponding combinatorial specifica-
tion. Then, |L(C1)

=k| = |L(G)=k| for all k ∈ N, where C1 corresponds to the start
symbol S ∈ N . Furthermore, |L(G)=k| can be computed by using O(nk2) arithmetic
operations.

4.2 #EDTD-DFAun

The previous lemma tells that a PTIME algorithm for #EDTD-DFAun can be ob-
tained by providing a polynomial time computable translation from EDTD-DFAuns
to unambiguous CFGs in Chomsky normal form. We first show that the translation
from EDTD-DFAs to CFG given in Sect. 3.3 preserves unambiguity. More specifi-
cally, given an EDTD-DFAun D = (Σ,Δ,A,d,Sd,μ), we show that its associated
CFG GD = (N,Σ ∪{[, ]},ΨD,S) is unambiguous (Lemma 4.5). Secondly, we verify
that the number of non-terminals of the Chomsky normal form G′

D of GD depends
in a polynomial way on the size of GD (Lemma 4.6). More specifically, we show that
G′

D has O(|Δ||Qmax|) non-terminals where Qmax denotes the largest set of states
of an automaton in A. From this, together with Lemma 3.4 and 4.3 we obtain that
L(D)=k can be computed using O(|Δ||Qmax|(3k)2) = O(|Δ||Qmax|k2) arithmetic
operations, from which the tractability of #EDTD-DFAun follows. The following the-
orem summarizes the main result of this section.

Theorem 4.4 For an EDTD-DFAun D = (Σ,Δ,A,d,Sd,μ), the sequence of num-
bers of trees in L(D) of size m, for all m ≤ k can be computed using O(|Δ||Qmax|k2)

arithmetic operations, where Qmax denotes the largest set of states of an automaton
in A.

It remains to verify Lemma 4.5 and 4.6

Lemma 4.5 If D = (Σ,Δ,A,d,Sd,μ) is an EDTD-DFAun, then its associated
context-free grammar G = (N,Σ ∪ {[, ]},ΨD,S) is unambiguous.

Proof Let w be a string in L(G) and let Σ ′ = Σ � {[, ]}. We want to show that there
exists a unique derivation tree for w. We show the equivalent statement that each
w has a unique left derivation, i.e., a derivation in which at each step the leftmost
non-terminal is replaced.

We show by induction on n that, for any B ∈ N ∪Σ ′ and any string w ∈ (N ∪Σ ′)∗,
B ⇒n w implies that there is a unique left derivation for w from B . Let n = 0. Then
w = σ for some σ ∈ Σ or w = ε. In both cases, B = w and therefore there is a unique
left derivation for w. Suppose then that the statement is true for all k < K for some
K ∈ N, and let B ⇒K w.
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Suppose first that B is equal to Rqτ for some τ ∈ Δ and qτ ∈ Aτ , for Aτ ∈ A.
There are two cases: either w = ε or w = w1 · w2 for some w1 ∈ Σ ′+. In the first
case, qτ is a final state of Aτ and there is only one possible left derivation for w = ε

from B . In the second case, suppose there are two distinct sequences Tτ1 , . . . , Tτm ,
and Tτ ′

1
, . . . , Tτ ′

m′ , and two sequences w1, . . . ,wm ∈ Σ ′∗ and w′
1, . . . ,w

′
m′ ∈ Σ ′∗ with

w = w1 · · ·wm = w′
1 · · ·w′

m′ , such that

Tτi
⇒�i wi, and Tτ ′

j
⇒�′

j w′
j ,

with �i, �
′
j < K for all i ∈ [1,m], j ∈ [1,m′], and furthermore

Rqτ ⇒ Tτ1 · · ·Tτm and Rqτ ⇒ Tτ ′
1
· · ·Tτ ′

m′ .

Now, by definition of the bijection str, for every type τ ∈ Δ and every word w,
if Tτ ⇒ w, then w = σ · [·w′·], where w′ ∈ Σ ′∗ is a well-nested string in terms of the
symbols ‘[’ and ‘]’. Therefore there is a unique way to split the word w into subwords
to which there is a derivation from some Tτ ′′ , τ ′′ ∈ Δ. This means that m = m′ and
wi = w′

i , for all i ∈ [1,m].
If the sequences Tτ1 , . . . , Tτm and Tτ ′

1
, . . . , Tτ ′

m
are distinct, we have that τj = τ ′

j

for some j ∈ [1,m]. By definition of the bijection str, and since Tτj
⇒ wj and

Tτ ′
j
⇒ wj , there is a tree t ∈ L(Dτj

)∩ L(Dτ ′
j
). But then there are two distinct trees t1

and t2 that are witnesses to t being in L(Dτj
) and L(Dτ ′

j
) respectively. These trees t1

and t2, together with the trees si = str−1(wi) for i = j , can then be used to construct
two distinct witnesses for some tree t ′ ∈ L(D), which is a contradiction since D is
unambiguous.

Hence there is a unique such sequence Tτ1 , . . . , Tτm . Since for all i ∈ [1,m],
Tτi

⇒�i wi with �i < K , there is a unique left derivation of wi from Tτi
and hence

there is also a unique left derivation from Rqτ to w.
Suppose then that B is equal to Tτ for some τ . For each τ there is a unique rule

Tτ → σ [RAτ ] with Tτ at the left hand side and, therefore, w is of the form σ · [·w′·],
where RAτ ⇒(K−1) w′. By the inductive hypothesis, w′ has a unique left derivation
from RAτ and therefore so does w from B = Tτ .

Let B be equal to RAτ for some τ ∈ Δ and Aτ ∈ A. Since D is a EDTD-DFAun,
Aτ is a DFA for each τ ∈ Δ and only has a single initial state qinit. Therefore, there
exists a unique qinit ∈ Aτ such that RAτ → Rqinit . Therefore, Rqinit ⇒(K−1) w and, by
the inductive hypothesis, w has a unique left derivation from Rqinit and therefore also
from RAτ .

Finally, let B be equal to the start symbol S. Towards a contradiction, assume that
there exist two types τ1, τ2 ∈ Sd ⊆ Δ such that S → Tτ1 , S → Tτ2 , Tτ1 ⇒K−1 w,
and Tτ2 ⇒K−1 w. Then, by definition of the bijection str, there exist a tree t such
that str(t) = w, t ∈ L(Dτ1), and t ∈ L(Dτ1). But since τ1, τ2 ∈ Sd , this means that
t ∈ L(D) and there are two witness trees t1, t2 for t that differ at least at their root,
with t1 having τ1 as a root label and t2 having τ2 as a root label.

Therefore, there are no two distinct types τ1, τ2 ∈ Δ such that μ(τ1) = μ(τ2) and
τ1, τ2 ∈ Sd . Suppose that w = σ ·w′. Then, as we proved above, there exists a unique
type τ ∈ Sd such that Tτ ⇒ σ [SAτ ]. In particular, Tτ ⇒(K−1) w and therefore there
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is a unique left derivation of w from Tτ by the inductive hypothesis. Hence w has a
unique left derivation from S. �

Lemma 4.6 Let GD = (N,Σ ∪ {[, ]},ΨD,S) be the unambiguous CFG associated
with an EDTD-DFAunD. Then the Chomsky normal form G′

D of GD has at most
O(|Δ||Qmax|) non-terminals.

Proof We first observe that the number of non-terminals |N | of GD is O(|Δ||Qmax|),
where Qmax is the largest set of states in any automaton in A. Consider the different
types of rules in GD . We remind the reader that ΨD = ⋃

τ∈Δ ψD(τ) ∪ {S → Tτ |
τ ∈ Sd}, where ψD(τ) = {Tτ → σ [Rτ ]} ∪ CFG(d(τ ),Rτ ).

We now argue how GD can be brought into a normal form G′
D in which ev-

ery right hand side of a production either consists of (i) ε, (ii) a single terminal, or
(iii) two non-terminals. Furthermore, by analyzing the increase in the number of non-
terminals incurred by the normalization process, we obtain the desired bound on the
non-terminals in G′

D .
Notice that production rules whose right hand side consists of a single non-

terminal, such as Rτ → Rq and S → Tτ , can be eliminated by a standard size-
reduction algorithm [23]. For rules of the form Tτ → σ [Rτ ], we add the non-
terminals N[ and N] with rules N[ → [ and N] →], and for each σ ∈ Σ we add the
non-terminal Nσ and the rule Nσ → σ . For each rule of the form Tτ → σ [Rτ ], we
finally add a non-terminal Nσ ·[ and NRτ · ], with the respective rules Nσ ·[ → Nσ · N[
and NRτ · ] → Rτ ·N]. We then replace each rule Tτ → σ [Rτ ] with Tτ → Nσ ·[ ·NRτ · ].
Since for each τ ∈ Δ there is only one rule with Tτ as a left hand side, we add in total
2 + |Σ | + 2 · |Δ| < 2 + |Δ| + 2 · |Δ| non-terminals for the rules of this form. The
remaining forms of rules, namely rules of the form Rq1 → Tai

· Rq2 and Rq → ε, are
already in Chomsky normal form and thus need no further processing.

As a consequence, G′
D has O(|Δ||Qmax| + 2 + |Δ| + 2 · |Δ|) = O(|Δ||Qmax|)

non-terminals. �

We stress that the size of the numbers |L(D)=k| can grow very fast. To implement
the algorithm underlying Theorem 4.4, a mathematical software package is needed.
Actually, Maple provides an implementation for combinatorial specifications in the
combstruct module.1 We implemented our specification for the EDTD-DFAun D1
given in Example 2.2. As an illustration, we computed the number of trees of size
1001 valid with respect to D1 and obtained a number with 314 decimals:

5187950237123931732051175236954451756169819365598840423158521214
8190894888949535843265681593434395020810002443582868233520387650
9254373728438806292876525845302947032070990934669778240958562432
2318852268438965431780372366645013594586870608079034900002010371
20152303965795554922650323287553303269884549851688819208474

The computation remains under the 60 seconds on a 1.8 GHz iMac with 1 GB of
RAM.

1http://www.maplesoft.com/support/help/Maple/view.aspx?path=combstruct.

http://www.maplesoft.com/support/help/Maple/view.aspx?path=combstruct
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For τ ∈ Δ, (δ,w) ∈ N
2, δ ≥ 1:

T
(≤δ,≤w)
τ := Zμ(τ) × Z[ × R

(≤δ−1,≤w)
init(d(τ))

× Z]

For q ∈ Qτ ′ , (δ,w) ∈ N
2, δ ≥ 1:

R
(≤δ,≤w)
q := ∑

τ∈Δ,q ′∈Q

q ′∈δτ ′ (q,τ )

(
T

(≤δ,≤w)
τ × R

(≤δ,≤w−1)
q ′

)
+ E
︸︷︷︸

iff q∈Fτ ′

For q ∈ Qτ ′ , w ∈ N
2:

R
(≤0,≤w)
q := E iff q ∈ Fτ ′

Fig. 1 Combinatorial specification of CFG GD In the presence of shape constraints

4.3 Shape Constraints

As a first application of the translation of EDTD-DFAuns into combinatorial speci-
fications, we consider the counting problem of languages in the presence of shape
constraints. Given an EDTD-DFAun D = (Σ,Δ,A,d,Sd,μ), it is often desirable to
count the number of trees in L(D) that satisfy certain shape constraints. Here, by
shape constraints we mean certain restrictions on the allowed combinations of the
size, depth and/or width of trees in the language. More formally, a shape constraint
on the depth (δ) (resp. branching width (w)) of trees consists of a function φδ(k)

(resp. φw(k)) that assigns to each tree of size k its maximal allowed depth (resp.
branching width). For instance, to avoid string-like trees one can take φδ(k) = logk;
to only consider binary trees one simply lets φw(k) = 2. As previously described, the
counting sequences of trees in L(D) can be computed using the combinatorial speci-
fication corresponding to the CFG GD . In the presence of shape constraints, we need
to augment this specification with parameters corresponding to the depth and width
of objects.

We next describe in detail the specification for GD : Let D = (Σ,Δ,A,d,Sd,μ)

be an EDTD-DFAun. Let A = {Aτ | τ ∈ Δ} such that, for each τ ∈ Δ, Aτ =
(Δ,Qτ , δτ , qτ,0,Fτ ) is the DFA such that d(τ) = Aτ and let Qτ = {qτ,0, . . . , qτ,mτ }.
We assume w.l.o.g. that the Qτ are pairwise disjoint and also disjoint with Δ.
Also, let init : {Aτ | τ ∈ Δ} → {qτ,0 | τ ∈ Δ} be the function mapping each au-
tomaton to its initial state. Finally, we let Q = ⋃

τ∈Δ Qτ . Given the maximal
tree depth d and width w, the specification is defined over the set of variables
Var(d,w) = {T (≤δ,≤w)

τ ,R
(≤δ,≤w)
q , Zμ(τ) | τ ∈ Δ,q ∈ Q,δ ∈ [1,d],w ∈ [0,w]} and

equations shown in Fig. 1. This specification is obtained as described in the previous
section, by translating D into GD , followed by the translation of GD into a com-
binatorial specification. Note that Fig. 1 represents GD before its normalization in
Chomsky normal form.

We denote by L(D)(=k,≤d,≤w) the set of trees of size k, maximal depth d and
maximal width w. A straightforward generalization of Lemma 3.4 then shows that
|L(D)(=k,≤d,≤w)| = |(L(

∑
τ∈Sd

T
(≤d,≤w)
τ ))=3k|. Furthermore, it is easily verified that
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the normalization of the specification
∑

τ∈Sd
T

(≤d,≤w)
τ contains O(|Δ||Qmax|dw)

non-terminals. Hence, similarly to Theorem 4.4 we obtain:

Corollary 4.7 For an EDTD-DFAun D = (Σ,Δ,A,d,Sd,μ), size k, depth d and
width w, the cardinality of L(D)(=k,≤d,≤w) can be computed using O(|Δ||Qmax|dwk2)

arithmetic operations, where Qmax denotes the largest state space of an automaton
in A.

We remark that when shape constraints φδ(k) and φw(k) are provided,
|L(D)(=k,φδ(k),φw(k))| is easily obtained from Corollary 4.7. Moreover, when only
φδ(k) or φw(k) is provided one simply removes the w or δ parameter, respectively,
from the above specification and the complexity is adjusted correspondingly. Finally,
we observe that when no shape constraint is specified, the specification reduces to the
one for GD .

4.4 Similarity Measure

The translation of EDTD-DFAuns into combinatorial specifications further allows
for the computation of the similarity between two tree languages as defined in the
introduction. More specifically, for tree languages S and T , define,

sim≤n(S,T ) :=
∑n

k=0 |(S ∩ T )=k|
∑n

k=0 |(S ∪ T )=k| ,

where 0
0 is taken to be 1.

Then following result is then readily verified:

Proposition 4.8 Assume S and T are specified as unambiguous EDTD-DFAs. Then
for any n, sim≤n(S,T ) can be computed using O(|Δ||Qmax,S ||Qmax,T |n2) arithmetic
operations, where Qmax,S and Qmax,T denote the largest state space of an automaton
in S and T , respectively.

Proof Since sim≤n(S,T ) requires both |(S ∩ T )=k| and |(S ∪ T )=k|, for k ∈ [0, n],
it suffices to bound the operations needed to compute these quantities. By Proposi-
tion 2.5, EDTDuns can be computed for S ∩ T and S ∪ T in quadratic time. Hence,
all |(S ∩ T )=k| for k ∈ [0, n] can be computed from the specification of S ∩ T us-
ing O(|Δ||Qmax,S ||Qmax,T |n2) operations, where Qmax,S and Qmax,T denote the
largest state space of an automaton in S and T , respectively. Indeed, this follows
from Theorem 4.4 and the fact that the automata in S ∩ T consist of product au-
tomata of S and T . Due to trees common to S and T , we cannot use S ∪ T . In-
stead, we simply use |S=k| + |T =k| − |(S ∩ T )=k| for the counting sequence of
the union of S and T . From Theorem 4.4 it follows again that these quantities
can be computed up to k = n using O(|ΔS ||Qmax,S |n2), O(|ΔT ||Qmax,T |n2) and
O(|Δ||Qmax,S ||Qmax,T |n2) operations, respectively. As a consequence, sim≤n(S,T )

requires O(|Δ||Qmax,S ||Qmax,T |n2) operations. �
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To illustrate feasibility, we used our implementation in Maple to compute
sim≤100(D1,D2) = 2.405906249 ·10−7 taking D1 and D2 as defined in Example 2.2.
The score was computed in as little as a few seconds.

5 Sampling Tree Languages

We next turn to the problem of sampling trees of a certain size in a tree language L
uniformly at random.

Definition 5.1 For a class of languages C , we say that C admits uniform sampling
if for every C ∈ C and m ∈ N, there is an algorithm that generates each element
t ∈ L(C) of size m with probability 1/|L(C)=m|. We say that C admits tractable
uniform sampling if the sampling algorithm runs in PTIME in the size of C and m,
where m is given in unary notation.

In this section we observe that EDTD-DFAuns admit tractable uniform sampling
by leveraging the translation from EDTD-DFAuns into combinatorial specifications
as described in the previous section. More specifically, we have shown in that section
that an EDTD-DFAun D can be translated into a specification (C1, . . . ,Cn) such that
|L(D)=m| = |L(C1)

=3m| for all m ∈ N. Here, n is a parameter that depends on the
number of non-terminals in the unambiguous CFG in Chomsky normal form used
in the translation. Clearly, if we can generate each object c in L(C1)

=3m with equal
probability 1/|L(C1)

=3m|, then we can also generate each tree t ∈ L(D)=m with
probability 1/|L(D)=m|. Indeed, we simply need to convert c ∈ L(C1) into a tree
t ∈ L(D). We note that this conversion is implicit in the translation given in the
previous section. The following general result for sampling a combinatorial class then
provides the necessary machinery to conclude that EDTD-DFAuns admit tractable
uniform sampling.

Theorem 5.2 ([18]) Any combinatorial specification for (C1, . . . ,Cn) in normal
form has a random generation routine for objects of size k, that uses precomputed
tables of size O(nk) and achieves O(nk logk) worst case time complexity. The com-
putation of the tables requires O(nk2) operations.

A sampling procedure for combinatorial specifications is built by combining sam-
pling procedures from smaller components in the specification and heavily relies on
the computation of the number of objects in a class of a certain size. For instance,
when C = A + B, then an object of size k is drawn uniformly at random from C by
drawing an object from A with probability Ak/Ck and an object from B with prob-
ability Bk/Ck . A more detailed description can be found in [18]. Again, as numbers
can grow very fast, a Mathematical Software package is needed. Luckily, Maple pro-
vides an implementation of the just sketched sampling technique for a combinatorial
specification in its combstruct module. So, to write a uniform generator for any
class of objects, only a parser needs to be written which translates that class into a
combinatorial specification.
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6 Uniform XSD Generation

We next turn our attention to the generation of languages in some given class of tree
languages. In general, the generation problem for classes of languages can be stated
as follows:

Definition 6.1 For a class of languages C , let s : C → N be a function that assigns
to each language L ∈ C its size s(L). We say that C admits uniform generation if
for every m ∈ N, there is an algorithm that generates each language L ∈ C of size m

with equal probability 1/p, where p denotes the number of languages in L′ ∈ C with
s(L′) = m.

Observe that in contrast to the previous section, we here consider the generation
of languages rather than trees in the language.

For example, Almeida et al. show that the class of languages defined by connected
complete DFAs admits uniform generation [2]. This is even shown to hold when
relaxing the completeness assumption by Bassino et al. [4]. In both cases, s(L) is
given in terms of the number n of states of the DFA and the size k of the alphabet.
More specifically, we define the size of the language L specified by a DFA with n

states and k alphabet symbols as s(L) = 2n3k . Given a language L of size s(L) = m,
there is a unique pair n and k such that m = 2n3k . We can thus, without ambiguity,
measure the size of a language L in terms of n and k, or in terms of s(L).

In this section, we consider the problem of generating uniformly at random lan-
guages defined by XSDs of a given size. In order to define the size of an XSD one
must choose a representation of XSDs. Here, a natural choice is to regard XSDs as
single-typed EDTDs [27, 30]. However, little is known on how to uniformly generate
the regular expressions present in the EDTDs. In view of the existing generation al-
gorithms for DFAs [2, 4], it will thus be more convenient to represent XSDs entirely
by means of DFAs.

We do this as follows: First, we use the representation of XSDs as DFA-based
XSDs [25]. In this representation, part of the structure is specified by a DFA whereas
the so-called context models are specified by regular expressions. We do not lose gen-
erality since it is known that single-typed EDTDs have equivalent expressive power
as DFA-based XSDs. Indeed, they can be translated back and forth in linear time [20,
25].2 Second, we represent the regular expressions in the content models of the DFA-
based XSD by means of DFAs as well. However, as it was noted in [9, 10], regular
expressions in real-world XSDs can have large alphabets but each of these alphabet
symbols typically occurs only a small number of times. The automata counterpart
of such expressions will be formalized below as k-occurrence automata (k-OA). To

2The translation algorithm in Lemma 7 of [20] only claims quadratic time, but it uses a different definition

of single-type EDTDs. In the definition there, the set of types in an EDTD is always of the form {ai | a ∈
Σ, i ∈ Δ} and, for each such type, μ(ai) = a. For the definition we use in this paper, the translation can
be easily adapted to run in linear time.
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summarize, we will represent XSDs by DFA-based XSDs with k-OAs as content
models.

This section is organized as follows: We first define DFA-based XSD with
k-OAs content models in Sect. 6.1. An algorithm to generate DFA-based XSD with
k-OAs uniformly at random is given in Sect. 6.2. In the same section, we also
show that XSDs admit uniform generation. Section 6.3 concludes by providing al-
gorithms for counting and generating k-OAs; these are needed when generating
XSDs.

6.1 DFA-Based XSD with k-OAs Content Models

We start by defining DFA-based XSDs with general content models.

Definition 6.2 Let C be a class of languages over alphabet Σ . A DFA-based XSD
with content model C is a tuple D = (Σ,A,λ,S), where S is the set of start symbols
and A = (Σ,Δ,q0,F, δ) is a DFA with set of states Δ over the alphabet Σ , λ is a
function mapping each non-initial state q of A to some language C ∈ C , and F = ∅.
A tree t is valid with respect to D if its root is labeled with a symbol from S and, for
every node v of t , the sequence a1 · · ·an of labels of its children is in the language
L(λ(q)), where q = δ(q0, a

′
1 · · ·a′

m) where a′
1 · · ·a′

m is the sequence of labels of the
nodes on the path from the root to v, including the label of the root and the label
of v.

When context models are given by regular expressions, it is known that the corre-
sponding DFA-based XSDs equally expressive as XSDs (single-typed EDTDs) since
they can be translated back and forth in linear time [20, 25]. Note that in Defini-
tion 6.2, the DFA A is possibly incomplete. Furthermore, since no final states are
present, the standard way of completing an incomplete DFA by adding a new final
sink state cannot be applied. We can, however, assume that the DFA is connected
since states that cannot be reached from the initial state can be disregarded. In the
following, we assume A to be connected. Recall that an NFA A = (Σ,Q, I,F, δ)

is connected if for every state q ∈ Q, there is a string w and a run ρ = q0, . . . , qn

of A on w, such that q = qi for some i ∈ [0, n]. We also observe that given a
D = (Σ,A,λ,S), we may assume that for every non-initial state q in the DFA A,
the language λ(q) is defined over the alphabet consisting of all σ ∈ Σ for which
δ(q, σ ) is defined, and if q has no outgoing transitions, then λ(q) should be either
the trivial language {ε} or the empty language. If this holds, we say that the content
models in D are redundancy-free. It is readily verified that every D can be converted
into a D′ with redundancy-free content models such that L(D) = L(D′). In the fol-
lowing, we assume D to have redundancy-free content models. We next illustrate the
notion of DFA-based XSDs with REs as content models by means of the following
example.

Example 6.3 Consider D = (Σ,A,λ,S) with Σ = {a, b, c, d} and S = {a, b}, where
A is a DFA (without final states) as depicted below:
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Furthermore, we define λ(q1) = c, λ(q2) = cc, and λ(q) = ε. This DFA-based XSD
accepts two trees, namely a(c) and b(c, c). Note that A is connected but incomplete,
and that D has redundancy-free content models.

As mentioned above, in content models of XSDs that occur in practice, alphabets
can be large but each alphabet symbol occurs only a small number of times. Thereto,
Bex et al. [9] introduced the notion of a k-occurrence regular expression (or k-ORE).
These are regular expressions in which every alphabet symbol occurs at most k times.
For instance, a · (a + b)∗ is a 2-ORE. As we explained previously, little is known
about the uniform generation of regular expressions. Therefore, we will not consider
k-OREs as such but instead we turn to the corresponding (but slightly larger) class
of k-occurrence automata (k-OAs) as defined next. Such automata are state labeled
and at most k states can be labeled by the same alphabet symbol. As every k-ORE
can be defined by a corresponding k-OA (although not vice versa [9]), we choose to
represent content models by k-OAs rather than by unconstrained DFAs.

We formalize this notion by means of k-occurrence automata which are defined as
follows:

Definition 6.4 A k-occurrence automaton A (k-OA) over Σ is a tuple (V ,E, I,F,

lab, e) where V is a finite set of states, E ⊆ (V × V ) is the edge relation, I ⊆ V is
the initial set of states, F ⊆ V is the set of final states, lab : V → Σ is the labeling
function, and e is a Boolean which is true when A accepts the empty string. We have
the additional requirement that every Σ -symbol labels at most k states.

Since k-OAs are defined as state-labeled automata (rather than in the usual edge-
labeled way), we need to redefine how k-OAs define languages. Given a word
w = w1 · · ·wn ∈ Σ+, and a k-OA A, a run of A on w is an assignment ρ of nodes
of A to positions of the word, such that for all i ∈ [1, n], lab(ρ(wi)) = wi , for all i ∈
[1, n − 1], (ρ(wi), ρ(wi+1)) ∈ E and ρ(w1) ∈ I . The run is accepting when
ρ(wn) ∈ F . The language defined by a k-OA A, denoted by L(A), is the set of words
w on which there is an accepting run of A together with the word ε exactly when
e = 1.

In addition, in order to be able to generate k-OAs we will require them to be
admissible, i.e., deterministic, connected and complete. A k-OA A is deterministic if
for every state s ∈ V and σ ∈ Σ there is at most one state s′ ∈ V such that (s, s′) ∈ E

and lab(s′) = σ , and there are no two distinct states s, s′ ∈ I with the same label.
A k-OA A is complete if for every state s ∈ V and every σ ∈ Σ , there exists a state
s′ ∈ V such that lab(s′) = σ and (s, s′) ∈ E, and for every label σ there is a state
s ∈ I with lab(s) = σ . Finally, a k-OA A is connected, if every state s is reachable
from an initial state in I .
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Fig. 2 An example of an
admissible k-occurrence
automaton (k-OA)

Example 6.5 Consider the k-OA A = (V ,E, I,F, lab, e) shown in Fig. 2, where V =
{q1, q2, q3, q4, q5}, I = {q1, q2}, F = {q5}, and E and lab are as shown in the figure,
and e is true, which is not represented in the figure. It is readily verified that A is
deterministic, connected and complete and thus admissible.

We are now ready to define the representation of XSDs that will be used in the
uniform generation algorithm.

Definition 6.6 A DFA-based k-OA XSD D = (Σ,A,λ,S) is a DFA-based XSD with
k-OAs as content model. The size of the language L(D) is given by s(L(D)) = 2n3�,
where n is the number of states of the DFA A and � is the size of the alphabet Σ .

One may wonder why s(L(D)) does not explicitly depend on the number of states
and alphabet sizes of the component k-OAs. First of all, since we consider DFA-based
XSDs with redundancy-free content models, we can bound the size of the alphabets
of the k-OAs as follows:

Property 6.7 Let D = (Σ,A,λ,S) be a DFA-based k-OA XSD, and let q be state of
the DFA A. Then, the size of the alphabet of the k-OA λ(q) is equal to the number of
outgoing transitions of state q in A.

Second, given the size of alphabet for a k-OA and assuming that the k-OA is
admissible, we can also bound its number of states:

Property 6.8 Let B = (V ,E, I,F, lab, e) be a k-OA over an alphabet Σ of size �.
Then the number of states for B is at most k · �. Furthermore, if B is admissible then
the number of states of B is at least �.

Proof Let B be a k-OA over Σ of size �. Since each symbol in B can label at most k

states, there can be at most k · � states. If B is admissible, then for each symbol in Σ ,
there is an initial state labeled by it. Therefore there are at least � states. �

Finally, in order to generate languages of a certain size that are defined by DFA-
based k-OA XSDs, we will need to consider minimal DFA-based k-OA XSDs (see
Sect. 6.2 for more details of the generation algorithm).
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To this end, we define the state size of a DFA-based k-OA XSD D = (Σ,A,λ,S)

to be if |A| + ∑
q∈Δ |λ(q)|, where Δ are the states in A, |A| denotes the number of

states of A and |λ(q)| denotes the number of states of the k-OA λ(q). A DFA-based
k-OA XSD D is minimal if there does not exist a DFA-based k-OA XSD D′ such
that L(D) = L(D′) for which the state size of D′ is smaller than the state size of D.

We will show below that a minimal DFA-based k-OA XSD is unique, up to
isomorphism. Here, two DFA-based k-OA XSDs D1 = (Σ,A1, λ1, S1) and D2 =
(Σ,A2, λ2, S2) are said to be isomorphic if there is an isomorphism ı : A1 → A2
such that for all states q in A1, the k-OAs λ1(q) and λ2(ı(q)) are isomorphic. Two
k-OAs B1 = (V1,E1, I1,F1, lab1, e1) and B2 = (V2,E2, I2,F2, lab2, e2) are isomor-
phic, if there exists a bijective function β : V1 → V2 such that for all v1, v2 ∈ V1,
(v1, v2) ∈ E1 if and only if (β(v1), β(v2)) ∈ E2, v1 ∈ I1 if and only if β(v1) ∈ I2,
v2 ∈ F1 if and only if β(v2) ∈ F2, lab1(v1) = lab2(β(v1)) and e1 = e2.

The following proposition will be crucial in showing that XSDs admit uniform
generation.

Proposition 6.9 Let D = (Σ,A,λ,S) be a DFA-based k-OA XSD. Then,

1. one can check in PTIME whether or not D is minimal; and
2. if D is minimal, then D is unique up to isomorphism.

Proof It is proved in [28] that there exists an algorithm that, for a given single-
type EDTD-DFA, computes the unique minimal equivalent one. Given a single-type
EDTD-DFA D = (Σ,Δ,A,d,Sd,μ), this minimization algorithm performs the fol-
lowing three steps:

1. Transform D to an equivalent reduced single-type EDTD-DFA D by removing
types that do not occur in any witness tree.

2. Test, for each (τ1, τ2) ∈ Δ2, whether L(Dτ1) = L(Dτ2). If so, replace all occur-
rences of τ2 by τ1 in the definition of D and remove τ2 from Δ.

3. For each remaining τ ∈ Δ, minimize the DFA Aτ .

To see how this algorithm can be used for DFA-based k-OA XSDs, we make sev-
eral observations. The first is that each DFA-based k-OA XSD D = (Σ,A,λ,S)

with A = (Σ,Δ,q0,∅, δ) can be translated into an equivalent single-type EDTD
ϕ(D) = (Σ,Δ′,B, d,Sd,μ) as follows:

• Δ′ = {(a, q) ∈ Σ × Δ | δ(p, a) = q in A};
• Sd = {(a, q) | δ(q0, a) = q in A};
• μ((a, q)) = a for every (a, q) ∈ Δ′;
• For each (a, q) ∈ Δ′, d defines B(a,q) to be the automaton recognizing the lan-

guage {(a1, q1) · · · (an, qn) ∈ Δ∗ | a1 · · ·an ∈ L(λ(q)) and, for each ai, δ(q, ai) =
qi in A}.

We note that this translation is essentially the one of Lemma 7 in [20]. Notice that
this translation defines a one-one correspondence between transitions in A and types
in Δ′. Furthermore, for each (a, q), the automaton B(a,q) can be defined to behave
exactly the same as λ(q), since the Δ-symbols qi are determined by q and ai . In other
words, there exists a k-OA for λ(q) if and only if there exists a k-OA for L(B(a,q)).
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Algorithm 1 generate-k-OA-XSD

Require: n, �
Ensure: DFA-based k-OA XSD (Σ,A,λ,S)

1: A = generate-DFA(n, �);
2: for every state j ∈ [2, n] of A do
3: �j = |{σ | δA(j, σ ) is defined in A}|
4: end for
5: for every state j ∈ [2, n] of A do
6: max = ∑k·�j

i=�j
k-OA-uniform-count(i, �j )

7: choose nj ∈ [�j , k · �j ] with probability k-OA-uniform-count(nj , �j )/max
8: λ(j) =k−OA-uniform-generation(nj , �j );
9: end for

10: S = {a | δA(q0, a) = ∅, where q0 is the initial state of A}

This implies that transforming a DFA-based k-OA XSD into a reduced one can be
done by the same algorithm as for single-type EDTD-DFAs. Furthermore, also the
second step of the above algorithm can be performed on DFA-based k-OAs in the
same manner than for EDTD-DFAs.

The third step of the algorithm can also be performed directly on DFA-based k-
OA XSDs, since deterministic k-OAs can be minimized by a simple adaptation of
the standard DFA minimization algorithms. Since this minimization algorithm only
merges states and transitions, the resulting automaton remains a k-OA. Finally, due
to the above mentioned translation and due to the uniqueness up to isomorphism of
minimal single-type EDTD-DFAs [28], we also obtain that the minimal DFA-based
k-OA XSD for a given language is unique. �

6.2 Generating XSDs Uniformly at Random

In this section we show that XSDs admit uniform generation. More specifically, we
first provide an algorithm that, given n, k and �, generates uniformly at random DFA-
based k-OA XSDs of size n over alphabets of size �. Second, we use rejection sam-
pling to filter out DFA-based k-OA XSDs that are not minimal. Indeed, in view of
Proposition 6.9 tree languages can be uniquely specified by means of minimal DFA-
based k-OA XSDs. All combined, this provides a way of generating languages de-
fined by XSDs.

Generating DFA-Based k-OA XSDs We describe an algorithm, generate-k-OA-
XSD(n, �), that generates, uniformly at random, non-isomorphic DFA-based k-OA
XSDs over an alphabet of size �, in which (i) the inner DFA is connected and con-
sists of n states; and (ii) all of its k-OAs are admissible. Algorithm 1 provides the
pseudocode for the algorithm.

The algorithm generate-k-OA-XSD takes as input parameters n and �, and first
generates the inner DFA A with n states over the alphabet [0, �−1] uniformly at ran-
dom. It does so by calling the procedure generate-DFA(n, �) (line 1) from Bassino
et al. [4]. This method is particularly well suited since it produces possibly incom-
plete connected DFAs, as needed for DFA-based k-OA XDSs. In addition, only non-
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isomorphic DFAs are generated. We assume that the states of A are numbered from
1 to n and its initial state is 1.

Then, for each j ∈ [2, n], i.e., for each state of A except the initial state, we com-
pute the alphabet size �j of the k-OA that will be associated to state j . Property 6.7
tells that in a DFA-based k-OA XSD, �j is equal to the number of outgoing transitions
of state j (line 3).

Next, generate-k-OA-XSD maps each j ∈ [2, n] to a k-OA λ(j) over an alphabet
of size �j (lines 6, 7, 8). For this, the algorithm relies on two procedures, k-OA-
uniform-count(m,κ) and k-OA-uniform-generation(m,κ), that count and generate all
non-isomorphic k-OAs that have m states and have alphabet Σ of size κ , respectively.
These procedures will be described in detail in Sect. 6.3.

Let j ∈ [2, n] and let �j be the size of the alphabet. To generate a k-OA λ(j) we
need to uniformly range over the sizes of the k-OAs of alphabets of size �j (lines 6, 7).
Indeed, k-OA-uniform-generation requires both the number of states of the k-OA and
the size of the alphabet. By Property 6.8, the possible number of states of k-OAs over
alphabets of size �j , ranges between �j and k · �j . Consequently, the probability that
a k-OA has nj ∈ [�j , k · �j ] states is given by ratio of the number of k-OAs with n

states over the total number of k-OAs whose number of states lie in [�j , k · �j ]. These
ratios are computed by means of k-OA-uniform-count, followed by a corresponding
draw of nj from [�j , k ·�j ] with the appropriate probability (lines 6, 7). Given nj and
�j , k-OA-uniform-generation(nj , �j ) then generates a k-OA with nj states and over
an alphabet of size �j , uniformly at random (line 8).

Finally, generate-k-OA-XSD instantiates the initial states of the generated DFA-
based k-OA XSD (line 10).

We next show the correctness of the algorithm generate-k-OA-XSD:

Theorem 6.10 Algorithm generate-k-OA-XSD generates, given n and �, uniformly
at random non-isomorphic DFA-based k-OA XSDs with n states and alphabet size �.

Proof Since the procedures generate-DFA and k-OA-uniform-generation generate
DFAs and k-OAs uniformly at random, and since the algorithm selects the num-
ber of states in the k-OAs uniformly at random, we may conclude that generate-k-
OA-XSD generates DFA-based k-OA XSDs uniformly at random as well. It remains
to be shown that only non-isomorphic DFA-based k-OA XSDs are generated. How-
ever, since both generate-DFA and k-OA-uniform-generation generate non-isomorphic
DFAs and k-OAs, the only way two isomorphic DFA-based k-OA XSDs can be gen-
erated, with different representation, is if there is a non-trivial automorphism on the
representation of the DFA mapping a state q to a state q ′ and where in one represen-
tation q is associated to the k-OA B and q ′ to the k-OA B ′, and where in the other
representation, q is associated to the k-OA B ′ and q ′ to the k-OA B . But, since no
two states can be reached from a single state using a transition labeled by the same
symbol, there can be no non-trivial automorphism on a DFA. �

Generating Languages Defined by XSDs We next show that XSDs admit uniform
generation. Note that generate-k-OA-XSD does not necessarily generate minimal
DFA-based k-OA XSDs. Indeed, two DFA-based k-OA XSDs A1 and A2 can be
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generated that are equivalent, that is, they define the same tree language. To uniquely
generate languages L defined by DFA-based k-OA XSDs uniformly at random, we
need to only retain the minimal DFA-based k-OA XSDs generated by generate-k-OA-
XSD. Indeed, Proposition 6.9 tells that minimal DFA-based k-OA XSDs are unique,
up to isomorphism. Furthermore, checking the minimality of DFA-based k-OA XSDs
can be done in PTIME.

We therefore use generate-k-OA-XSD in combination with a rejection stage that
checks if the resulting automaton is minimal, and keep generating such automata until
a minimal one is found. In view of Theorem 6.10, each minimal DFA-based k-OA
XSD will be generated once, as generate-k-OA-XSD only produces non-isomorphic
DFA-based k-OA XSDs, and hence may thus conclude that XSDs admit uniform
generation.

Observe that the efficiency of the generation procedure is prone to optimization.
Indeed, one could incorporate a minimization step for the k-OAs in generate-k-OA-
XSD, hereby reducing the number DFA-based k-OA XSDs that will be generated and
tested for minimality.

One may wonder whether a similar uniform generation procedure is also possible
for some of the more expressive subclasses of EDTDs that we considered in the paper.
We note that, already for EDTD-DFAbuds, we believe that such a generation proce-
dure is likely to be more difficult. The two underlying reasons why we believe this to
be the case are that (i) in contrast to DFA-based k-OA XSDs, state-minimal EDTD-
DFAbuds are no longer unique for a given language [28]; and (ii) testing whether a
EDTD-DFAbud is minimal is coNP-complete [12, 28]. As such, the computational
complexity of the above mentioned rejection stage is likely to become much higher.

6.3 Counting and Generating k-OAs

In this section we describe the procedures k-OA-uniform-count(n, �) and k-OA-
uniform-generation(n, �) that are used in algorithm generate-k-OA-XSD, presented in
the previous section. These procedures count and generate all non-isomorphic k-OAs
that have n states and have alphabet Σ of size �. We obtain both procedures as a
direct result from a translation from k-OAs into a combinatorial specification (see
Sect. 4.1 for the definition of such specifications). This translation is canonical in the
sense that isomorphic k-OAs are translated in the same specification, and vice versa,
distinct specifications correspond to non-isomorphic k-OAs. The translation is ob-
tained as follows: first we provide a (canonical) string encoding of k-OAs; then we
characterize the set of strings that correspond to encodings of k-OAs; and finally we
use this characterization to obtain a specification of strings that encode k-OAs. We
start by providing the string encoding of k-OAs.

String Encoding of k-OAs The string encoding is inspired by [2] and is computed
as follows: Let A = (V ,E, I,F, lab, e) be an admissible k-OA and assume that the
alphabet Σ has size � and V consists of M states. We denote by o : Σ → [0, � − 1] a
total order over the symbols of Σ . In other words, for any two symbols σ1, σ2 ∈ Σ ,
σ1 comes before σ2 in the order o iff o(σ1) < o(σ2), where < denotes the standard
order on the natural numbers. Given o, we define a canonical total order c : V →
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[1,M] as follows. First, for each state s ∈ I let c(s) = o(lab(s)) + 1. Then, traverse
the automaton in a breadth-first way, where at each state s, assign to each of the
neighbours of s, i.e., those s′ ∈ V such that (s, s′) ∈ E, that are not yet in the domain
of c, and in the order induced by o, the smallest number n ∈ [1,M] that has not been
assigned to a state.

Example 6.11 Consider the k-OA A shown in Fig. 2, over the alphabet Σ = {a, b},
where o(a) = 0 and o(b) = 1, and let ε ∈ L(A). The canonical total order c : V →
[1,5] is defined as follows. The initial state q1 with label a is assigned the number 1,
and the initial state q2 is assigned the number 2. Now, traversing the automaton in
a breadth-first order, the number 3 is assigned to the state q4, which is a neighbour
of q1 and has label a. Similarly, the state q3, which is a neighbour of q1 with label
b is assigned the number 4. Finally, proceeding to the neighbours of q2, the state q5
is assigned the number 5 and all states are now ordered. The ordering of the states is
annotated between parentheses in Fig. 2.

Given an admissible k-OA A over Σ with M states, the string encoding of A is a
string enc(A) = z1 · z2 · s of length (M + 1) · � + M + 1, where z1 is the substring
encoding the transitions of the automaton and is of length (M + 1) · �, z2 is the
substring encoding the set of final states and is of length M , and finally s is 1 if A

accepts the empty string and 0 otherwise. The substring z1 = s0 · · · s(M+1)·�−1 is such
that for each j ∈ [0, � − 1] sj = c(i) where i ∈ I and o(lab(i)) = j , and for each
j ′ ∈ [1,M] and j ∈ [0, � − 1], sj ′·�+j is equal to c(v) where v is the state of A such
that lab(v) = o−1(j) and (c−1(j ′), v) ∈ E. Notice that according to the above, the
prefix s0 . . . s�−1 is equal to the sequence 1 . . . �, and informally, for j ′ ∈ [1,M] the
above expresses that sj ′·�+j is the number corresponding to the state reached from
state with number j ′ reading the alphabet symbol o−1(j). For the substring z2 =
s(M+1)·� · · · s(M+1)·�+M−1 encoding the set of final states, for each j ∈ [0,M − 1],
s(M+1)·�+j is 1 if the state c−1(j) is final and is 0 otherwise.

Example 6.12 For example, the string encoding for the k-OA A shown in Fig. 2, is
the string

12︸︷︷︸
0

34︸︷︷︸
1

15︸︷︷︸
2

35︸︷︷︸
3

12︸︷︷︸
4

35︸︷︷︸
5

00001︸ ︷︷ ︸
final

1︸︷︷︸
ε

.

The first two digits of the string encode that state 1 (q1) is the initial state with label
a and that state 2 (q2) is the initial state with label b. The next two digits encode the
outgoing transitions of state 1. The outgoing a-transition goes to state 3 (q4) and the
outgoing b-transition goes to state 4 (q3). The outgoing transitions for states 2–5 are
encoded analogously.

Notice that if the given k-OA is not deterministic or not complete, then the string
encoding defined above is not well-defined. Indeed, for a k-OA with n states, if it is
not deterministic then for some j ′ ≤ n and some j < �, there will be more than two
possible values for sj ′·�+j , and if the k-OA is not complete, there will be no suitable
value for sj ′·�+j , for some j ′ ≤ n and j < �.
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We next show that the encoding is canonical: Isomorphic and admissible k-OAs
have the same string encoding; and a string encoding of an admissible k-OA uniquely
specifies the k-OA, up to isomorphism. It is readily verified that isomorphic and ad-
missible k-OAs lead to the same string encoding. The other direction is more chal-
lenging and is shown in the next lemma.

Lemma 6.13 For two admissible k-OAs A1 and A2 with n states over an alphabet Σ

of size �, with a total order o : Σ → [0, � − 1] defined on this alphabet, if enc(A1) =
enc(A2) then A1 is isomorphic to A2.

Proof We first show that for admissible k-OAs with M states, the canonical total
order c : V → [1,M] defined above is a bijection. Let A be an admissible k-OA with
M states. Since c(I ) = [1, �], every state s is mapped to some n ∈ [1,M]. To show
that every n ∈ [1,M] is in the image of c, we need to show that c is injective, since
|V | = M . But notice that every time a number is assigned to a state, it is the smallest
number that has not yet been assigned to a state.

Now, let Ai = (Vi,Ei, Ii,Fi, labi , ei) for i ∈ [1,2], let s = enc(A1) and let A =
(V ,E, I,F, lab, e) be the following k-OA. The set of states V is equal to [1, n], where
n is the largest number appearing in s, for any state v ∈ V , lab(v) = o−1(j (mod �)),
where j is the first position in s where v appears, for any two states v1, v2 ∈ V , let
(v1, v2) ∈ E if v2 = sv1·�+o(lab(v2)) and let I = [1, �]. Note that, enc(A) = enc(A1).

We want to show that A1 is isomorphic to A. By symmetry it will follow that A2
is also isomorphic to A and therefore isomorphic to A1. Let c be the ordering of the
states of A1 and notice that the ordering of the states of A is the identity function.
We show that the function c : V1 → V , in addition to being bijective, it is also an
isomorphism for the two automata A and A1. Suppose that this is not the case. Then
one of the following cases hold, each of which leads to a contradiction:

• There exists k ∈ [1, n] such that lab(k) = lab1(c
−1(k)). Then o(lab(k)) =

o(lab1(c
−1(k))) and the first position in enc(A) that k occurs is different from the

first position that k occurs in enc(A1). This contradicts that enc(A) = enc(A1).
• The final states of A are different than the final states of A1. Again, this contradicts

that enc(A) = enc(A1).
• It is not the case that ε ∈ A ⇔ ε ∈ A1. But then the last letter in enc(A) is different

from the last letter in enc(A1). This contradicts that enc(A) = enc(A1).
• There exist k, k′ ∈ [1, n] such that k has a transition to k′ but the state s1 = c−1(k)

does not have a transition to the state s2 = c−1(k′). Then the (k · � + o(lab(k′)))-th
position in the string enc(A) is k′ and the same position in enc(A1) is not k′, and
hence enc(A) = enc(A1). This contradicts that enc(A) = enc(A1).

As a consequence, A1 is isomorphic to A. �

Characterisation of String Encodings We next provide a characterisation of strings
that correspond to encodings of admissible k-OAs.

For every string s = s0 . . . s(n+1)·�−1, n ∈ N, we let (fi)i∈[1,n] be a sequence of
numbers such that for each i ∈ [1, n], fi denotes the first position in the string s

where the number i appears. Then consider the strings s0, . . . , s(n+1)·�−1 that satisfy
the following 4 rules:
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(A1) ∀i ∈ [1, n − 1], fi < fi+1,
(A2) ∀i ∈ [1, n], fi < i · �,
(A3) ∀i ∈ [0, � − 1], |{sp | p = i (mod �)}| ≤ k,
(A4) ∀i, i′ ∈ [0, �−1], where i = i′, {sp | p = i (mod �)}∩{sp | p = i′ (mod �)} = ∅.

Intuitively, the above rules express the following: Rule (A1) expresses that for
each state i, the first time i appears in the string is before the first time state i + 1
appears in the string. Rule (A2) expresses that for each state i, the first occurrence
of i is in the part of the string that is encoding the transitions of the first i − 1 states,
which means that state i is reachable from a state i′ < i. Rule (A3) expresses that for
any symbol σ , there are at most k different states that can be reached by reading σ .
Finally, rule (A4) expresses that each state has a unique label.

Notice that the rules (A1)–(A4) imply that the substring s0s1 . . . s�−1 is equal to
1 . . . �. This is because rule (A2) implies that 1 must be in the first � positions, and
rule (A1) ensures that s0 = 1. Furthermore, rule (A4) ensures that 1 appears nowhere
else in the first � positions of the string. Following the same reasoning for s1 . . . s�−1,
it follows that s0 . . . s�−1 = 1 . . . �.

The precise relationship between the set of strings satisfying (A1)–(A4) and
k-OAs is given by the following lemma:

Lemma 6.14 For each n ∈ N, enc is a bijection from the set of non-isomorphic ad-
missible k-OAs with n states, over an alphabet Σ of size � to the strings of size
(n + 1) · � + n + 1 whose prefix s = s0 . . . s(n+1)·�−1 satisfies the rules (A1)–(A4)

above and whose suffix s′ = s(n+1)·� · · · s(n+1)·�+n uses only 0 and 1.

Proof From Lemma 6.13, it follows that the function enc is injective, so it remains
to be shown that it is also surjective. Consider any string of length (n+ 1) · �+n+ 1,
whose prefix of size (n + 1) · � satisfies (A1)–(A4), and whose suffix of length n + 1
uses only 0 and 1. Let A be the automaton obtained by letting the set of states be
[1, n], and for each i ∈ [0, � − 1], let Si be the set of states {sj | j < (n + 1) · �, j =
i (mod �)}. Then for each s ∈ Si let lab(s) = i. According to rule (A3) for each i ∈
[0, �− 1], |Si | ≤ k. Furthermore, for each i ∈ [�, (n+ 1) · �− 1], if i = j ′ · �+ j , with
j < �, let (j ′, si) be a member of E. Finally, let I = [1, �] and let e and the final states
of A be determined by the suffix of length n + 1 of the string. It is readily verified
that applying the function enc on A returns the original string. This automaton is
complete and deterministic, and it remains to show that it is connected. But from the
remark above, the prefix s0 . . . s�−1 is equal to 1 . . . � and from the rule (A2) for each
i ∈ [1, n], there is j < i · � such that sj = i, and therefore state i in A is reachable
from state � j

�
�. By induction, every state is reachable from one of the states in [1, �],

the initial states. �

In other words, Lemma 6.14 characterizes the strings corresponding to encodings
of k-OAs. We next use this characterization to build a combinatorial specification for
the set of strings encoding k-OAs.

Combinatorial Specification of k-OAs Let Σ be an alphabet of size � and let A be
an admissible k-OA over Σ with n states. Recall that enc(A) = z1 · z2 · s is a string
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For m ≥ �, j ′ ≤ m − 1 and j < �:

S (j ′,j)
m [Wm] := Q1 + Q2

Q1 := (
∏�+j

i=j+1 Wi (mod �)) × S (j ′+1,j)
m [Wm]

Q2 := ∑�
i=1

(∏i−1
i′=1 Wj+i′ (mod �)

) × Zm+1 × S (j ′,j+i)
m+1 [Wm

m+1,j+i (mod �)]
For m ≥ �, j ′ = m and j < �:

S (j ′,j)
m [Wm] := Q3

Q3 := ∑�−j−1
i=1

(∏i−1
i′=1 Wj+i′ (mod �)

) × Zm+1 × S (j ′,j+i)
m+1 [Wm

m+1,j+i (mod �)]
For m = n, j ′ = n and j < �:

S (n−1,j)
n [Wn] := Wj+1 × · · · × W�−1

For j < � and when W
m

is not a valid partition w.r.t. k for m, or
when j ′ > m or when m > n:

S (j ′,j)
m [Wm] := ∅

Fig. 3 Combinatorial specification of k-OAs with n states

of length (n + 1)� + n + 1, where z1 is the substring of length (n + 1)� encoding
the transitions of A, z2 is the substring of length n encoding the set of final states,
and finally s is 1 if A accepts the empty string and 0 otherwise. Furthermore, the
prefix of z1 of size � is equal to 1 · 2 · · ·� and the suffix z2 · s solely contains 0 or 1.
Such fixed strings can easily be combinatorially specified. Indeed, for i ∈ [1, n], let
Zi denote the atom corresponding to state i. Then, Z1 × · · · × Z� corresponds to the
prefix 1 · 2 · · ·�, whereas for B := Z0 + Z1, we have that Bn × B corresponds to the
set of all possible suffixes of size n + 1 in encodings of k-OAs.

Given these, it remains to specify the remaining symbols in z1. We need the fol-
lowing notation: For m ∈ [�,n], let W

m = [W0, . . . ,W�−1] be a partition of [1,m] in
which each part is of cardinality at most k and for each i ∈ [1, �], i ∈ Wi−1. We call
such a partition, a valid partition w.r.t. k for m. We denote by W

m

m+1,j the partition

of [1,m + 1] obtained from W
m

by adding {m + 1} to Wj . Finally, if W is a subset
of [1, n] then W denotes the specification

∑
i∈W Zi that represents W .

Consider the specification given in Fig. 3. Intuitively, for � < m ≤ n, the combi-

natorial class S (j ′,j)
m [Wm] corresponds to the class of strings of length (n + 1) · �,

with a prefix s0, . . . , sj ′·�+j , which satisfy the rules (A1)–(A4), and are such that for
each i ∈ [0, � − 1], and p ∈ [0, j ′ · � + j ], it holds that |{sp | p = i (mod �)}| = |Wi |.
This class of strings consists of two sets of strings: those strings in which the state
m+1 does not appear in any of the � positions after position j ′ ·�+ j , and the strings
in which the state m + 1 does appear in one of those. In the specification shown in
Fig. 3, this is represented by the two classes Q1 and Q2, respectively.

We further need to address two boundary cases: First, in case that j ′ = m, the
rule (A2) implies that symbol m + 1 must appear soon afterwards, namely in one of
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the remaining positions up to position (m + 1) · � − 1. For j ′ = m and j < �, these
positions are those ranging from j ′ · �+ j + 1 up to (j ′ + 1) · �− 1. The specification
for the class defined by Q3 reflects that there are � − j − 1 such positions. Second,
when m = n and j ′ = n, the end of string is nearby and the recursive specification
must end. The pre-ultimate equation in the specification deals with this case. Indeed,
it simply pads the string with symbols until the desired length of (n+1) ·� is reached.
The final equation in the specification simply says to ignore invalid inputs, that is,
wrong partitions and positions that are out of bound. Notice that k is an implicit
parameter in the specification and in particular it is a parameter of a valid partition.
A partition is invalid if any of the partition sets it comprises contains more than k

elements.
Assume for now that the specification in Fig. 3 is correct. In other words, the

combinatorial class S
(j ′,j)

�+1 [W�

�+1,j (mod �)] consists of all strings of length (n + 1) ·
� satisfying rules (A1)–(A4), with a prefix s0 . . . sj ′·�+j , where exactly the states
[1, � + 1] occur in the string up to position j ′ · � + j , and for each i ∈ [0, � − 1], and
q ∈ [0, j ′ · �+ j ], it holds that {sq | q = i (mod �)} = Wi . Then, Lemma 6.14 implies
that the class of strings corresponding to k-OAs with n states can be combinatorially
specified as:

O An := Z1 × · · · × Z�

×
((�+1)·�−1∑

p=�

(
p−�−1∏

i=0

Zi (mod �)

)

× Z�+1 × S
(j ′,j)

�+1 [W�

�+1,j ]
)

× Bn × B,

where j ′ and j are such that p = j ′� + j and j < �. Intuitively, O An is the class of
strings where the first � positions are the states 1 to �, the last n + 1 positions are
either 0 or 1, and the positions in between, are labeled according to which is the first
position with the state � + 1, which must be before the position (� + 1) · � − 1.

The following two lemmas tell that the specification shown in Fig. 3 is correct.

Lemma 6.15 For �, k,n, j ′, j, n0, . . . , n�−1 ∈ N, m ≥ �, and W
m

a valid partition

w.r.t. k for m, the class S (j ′,j)
m [Wm] defined by the specification in Fig. 3 is combina-

torially isomorphic to the class of strings of length (n + 1) · � satisfying rules (A1)–
(A4), with a prefix s0 . . . sj ′·�+j , where exactly the states [1,m] occur in the string at
positions up to position j ′ · � + j , and for each i ∈ [0, � − 1], and q ∈ [0, j ′ · � + j ],
it holds that {sq | q = i (mod �)} = Wi .

Proof We defer the proof of this lemma to the Appendix. �

From Lemma 6.15 and the definition of O An it then readily follows that:

Lemma 6.16 Let Σ be an alphabet of size �. For each n ∈ N, there is a bijection from
the set of objects in O An to the set of strings over Σ of (i) size (n + 1) · � + n + 1;
(ii) with a prefix s = s0 . . . s(n+1)·�−1 satisfying the rules (A1)–(A4) given earlier;
and (iii) with a suffix s′ = s(n+1)·� · · · s(n+1)·�+n that uses only 0 and 1.
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As a consequence from Lemma 6.14 and Lemma 6.16 we may thus conclude:

Theorem 6.17 Let Σ be an alphabet of size �. For each n ∈ N, there is a bijection
between the set of non-isomorphic k-OAs with n states over Σ and the set of objects
in O An of size (n + 1) · � + n + 1.

In other words, the specification O An consists of all strings that correspond to the
encoding of a k-OA with n states and alphabet of size �.

Uniform Generation Procedure for k-OAs With Theorem 6.17 in place, we have a
canonical translation from k-OAs to the combinatorial specification O A. As a con-
sequence, we now get the procedures k-OA-uniform-count(n, �) and k-OA-uniform-
generation(n, �) for free from Theorems 4.2 and 5.2. The procedure k-OA-uniform-
generation(n, �) requires an additional step to translate the returned string encodings
back to k-OAs, a linear time process. The exact complexity of these procedures is left
for future work.

7 Related Work

Sampling Our approach towards counting of tree languages is based on the recur-
sive method, which was initiated by Nijenhuis and Wilf [31], and then formalized by
Flajolet, Zimmermann and Van Cutsem [18] in the more general setting of combina-
torial specifications. In the current paper we only use a restricted class of specifica-
tions (called context-free) in that only atoms, union and product are allowed. General
recursive specifications allow many more operators (cf. [18]).

The computational complexity of variants of computing the number of strings of a
given length in context-free languages is investigated by Bertoni et al. [6]. We choose
to employ the method of going through the combinatorial specification as it gives
rise to an immediate implementation in Maple and is versatile enough to incorporate
shape constraints (which are not context-free definable).

Sampling of trees that adhere to a probabilistic tree model is investigated in
[16, 17]. In particular in [17] a sampling procedure for trees that additionally sat-
isfy a bottom-up tree automaton is provided. These methods differ from ours in that
trees are sampled in accordance with their probabilities specified by the probabilistic
model rather than uniformly.

XSD Generation There has been substantial work on the uniform generation of reg-
ular languages represented by DFAs. To the best of our knowledge, no algorithm
exists that uniformly generates minimal DFAs. The works [2, 5] and [4] do consider
the non-isomorphic uniform generation of admissible and connected DFAs, respec-
tively, but need rejection sampling to sample minimal DFAs. This approach, however,
has no proven guarantees on running times.

Our string encoding for k-OAs is inspired by [2]. For the generation procedure,
however, we rely on a sampling procedure for combinatorial specifications [18]. Al-
though Héam, Nicaud and Sylvain [22] show that non-isomorphic deterministic tree-
walking automata can be generated uniformly at random through an encoding into
string transducers, it is not clear how to use their results to generate XSDs.
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To the best of our knowledge, the present paper presents the first step towards uni-
form XSD generation. The papers [8, 10] only dealt with DTDs which reduce to reg-
ular expressions. In [11], the experimental validation used one real-world XSD and
8 hand-crafted XSDs. The XSD generation algorithm presented in this paper could
be used to generate a benchmark of XSDs. We did not address generation of XML
corpora adhering a given schema as is for instance implemented in ToXGene [3].

8 Conclusion

In this paper, we presented a first step towards the foundation for an experimental
testbed for XSD generating algorithms. We addressed uniform XSD generation as
well as the machinery to compute similarity measures based on the counting of trees
of a certain size in tree languages. Finally, we provided a sampling procedure for
(unambiguous) tree languages using the formalism of combinatorial specifications.

An initial implementation in Maple shows that the approach through combinato-
rial specifications is promising. Although the approach to assess similarity through
counting of the number of different and common trees is intuitive, in depth experi-
mental validation of efficiency and effectiveness remains needed to obtain a robust
similarity measure.

Directions for future work include the following:
The complexity of the generation algorithm for k-OAs and DFA-based k-OA

XSDs remains to be determined. We expect, however, an exponential behavior in
the size of the alphabet. The main reason for this is that during the generation pro-
cess, we implicitly need to remember how many times each alphabet symbol already
occurred. Fortunately, in real-world content models the far majority of the symbols
occur only once. It would be interesting to see how this constraint can be incorporated
into the algorithm.

Furthermore, it we would like to extend the XSD generation algorithm to gen-
erate k-OREs rather than k-OAs. This, however, would require a useful canonical
representation for regular expressions.

Finally, we want to explore the possibility of using specifications (possibly ex-
tended with probabilities) to get non-uniform sampling procedures of trees in a tree
language. This would be particularly useful in the probabilistic XML setting, among
others.

Appendix: Proof of Lemma 6.15

We show that the specification given in Fig. 3 is combinatorially isomorphic to the
strings of length satisfying rules (A1)–(A4) given in Sect. 6.

Lemma 6.15 For �, k,n, j ′, j, n0, . . . , n�−1 ∈ N, m ≥ �, and W
m

a valid partition

w.r.t. k for m, the class S (j ′,j)
m [Wm] defined by the specification in Fig. 3 is combina-

torially isomorphic to the class of strings of length (n + 1) · � satisfying rules (A1)–
(A4), with a prefix s0 . . . sj ′·�+j , where exactly the states [1,m] occur in the string at
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positions up to position j ′ · � + j , and for each i ∈ [0, � − 1], and q ∈ [0, j ′ · � + j ],
it holds that {sq | q = i (mod �)} = Wi .

Proof We first count the number of valid extensions of such a given prefix
(Lemma A.1) and then show that this number coincides with the number of objects
in the corresponding class (Lemma A.2).

We need the following notations. Let Σ be an alphabet of size �. For � and k

as above, and m,j ′, j, n,n0, . . . , n�−1 ∈ N, let N(m,j ′ · � + j,n,n0, . . . , n�−1) be
defined inductively as follows:

N
(
m,j ′� + j,n,n0, . . . , n�−1

) = 0 if ∃i ∈ [0, � − 1] s.t. ni > k,

N
(
m,j ′� + j,n,n0, . . . , n�−1

) = 0 if j ′ > m,

N
(
m,j ′� + j,n,n0, . . . , n�−1

) = 0 if m > n,

N
(
m,j ′� + j,n,n0, . . . , n�−1

) = 0 if m = ∑�−1
i=0 ni.

(A.1)

N(n,n� + j,n,n0, . . . , n�−1) =
�−1∏

i=j+1

ni, (A.2)

and for j ′ ≤ m − 1 and j < �,

N
(
m,j ′ · � + j,n,n0, . . . , n�−1

) = N1 + N2, (A.3)

and for j ′ = m and j < �,

N
(
m,j ′ · � + j,n,n0, . . . , n�−1

) = N3, (A.4)

where:

N1 = (n0 · . . . · n�−1) · N(
m,

(
j ′ + 1

) · � + j,n,n0, . . . , n�−1
)
,

N2 =
�∑

i=1

((
i−1∏

i′=1

(nj+i′ (mod �))

)

· N(
m + 1, j ′� + j + i, n,n0, . . . , nj+i (mod �) + 1, . . . , n�−1

)
)

,

N3 =
�−j−1∑

i=1

((
i−1∏

i′=1

(nj+i′ (mod �))

)

· N(
m + 1, j ′� + j + i, n,n0, . . . , nj+i (mod �) + 1, . . . , n�−1

)
)

.

Informally, and in a similar manner as above, the number of strings satisfying the
rules (A1)–(A4) where exactly the states in [1,m] appear at the positions up to an
including position j ′ · � + j , is equal to the sum of the number of possible strings
where m + 1 appears for the first time in one of the positions between j ′ · � + j + 1
and (m+1) ·�−1. In equation (A.3), N1 covers the case where between the positions
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j ′ · �+ j + 1 and (j ′ + 1) · �+ j no new state m+ 1 is introduced, and N2 covers the
cases where at some position J between the positions j ′ ·�+j +1 and (j ′ +1) ·�+j ,
the state m + 1 is introduced. In the case where j ′ = m, since N(m, (j ′ + 1) · � +
j,n,n0, . . . , n�−1) = 0 by the definition of the base case that also complies with
the rule (A2), the equation is different in order to take into account the remaining
positions until position m · � − 1. This is reflected in (A.4).

The next lemma tells that the function N(·) defined above, correctly counts the
strings satisfying rules (A1)–(A4).

Lemma A.1 For �, k,m,n, j ′, j, n0, . . . , n�−1 ∈ N with 1 ≤ m ≤ n, the number
N(m,j ′ · � + j,n,n0, . . . , n�−1) is the number of strings of length (n + 1) · � sat-
isfying rules (A1)–(A4), with a prefix s0 . . . sj ′·�+j , where exactly the states in [1,m]
occur up to the position j ′ · � + j , and for each i ∈ [0, � − 1], and p ∈ [0, j ′ · � + j ],
it holds that |{sp | p = i (mod �)}| = ni .

Proof We proceed by inverse induction on m to show that the statement above holds.
For the base case, let m = n. Notice that if m = n+1, N(n+1, J, n,n0, . . . , n�−1) =
0 for all values of the other parameters. We show that N(n,J,n,n0, . . . , n�−1) is the
number of strings described by the lemma. For J ≥ (n + 1) · �, N(n,J,n,n0, . . . ,

n�−1) = 0, as required by the rules. We proceed by inverse induction on J ≤ (n+ 1) ·
� − 1.

If J = n · � + j for some j ∈ [0, � − 1], then

N(n,n · � + j,n,n0, . . . , n�−1) =
�−1∏

i=j+1

ni,

by (A.2), which is the correct number according to the rules (A1)–(A2).
For the inductive case, suppose that for all r > J ′ for some J ′ < n · �,

N(n, r, n,n0, . . . , n�−1) for all ni with n = ∑�−1
i=0 ni , is the correct number of strings.

Consider the number N(n,J ′, n,n0, . . . , n�−1). If for any i ∈ [0, � − 1], ni > k then
this number is equal to 0 which complies with the rule (A3) of strings. Suppose
then that for all i ∈ [0, � − 1], ni ≤ k and let J ′ = J ′

0 · � + J ′
1, for J ′

0, J
′
1 ∈ N and J ′

0
maximal. Notice that, since all states [1, n] occur at a position up to position J ′, no
state number can appear in the string at a position to the right of the position J ′ that
has not appeared to the left or exactly at the position J ′. Therefore, from the rules
(A3) and (A4), each position to the right of position J ′ can be occupied by states
that have already appeared before that position, and furthermore, have appeared at
positions associated with the appropriate label. Consider therefore, the next � posi-
tions, starting with J ′

0 · � + J ′
1 + 1. For this position there are nJ ′

1+1 (mod �) possible
values for the string to comply with the rules (A1)–(A4). Similarly, for the position
J ′

0 · � + J ′
1 + 2 there are nJ ′

1+2 (mod �) possible symbols, and so on, until position
J ′

0 · � + J ′
1 + � = (J ′

0 + 1) · � + J ′
1 for which there are nJ ′

1
possible values. By the

inductive hypothesis, N(n,J ′
0 · � + J ′

1 + �,n,n0, . . . , n�−1) is the number of pos-
sible strings with a prefix s0, . . . , s(J ′

0·�+J ′
1+�), that satisfy the rules (A1)–(A4) and

exactly the states [1, n] appear up to position J ′
0 · �+ J ′

1 + �. Therefore, N(n,J ′
0 · �+
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J ′
1, n,n0, . . . , n�−1) = n0 · . . . · n�−1 · N(n, (J ′

0 + 1) · � + J ′
1, n,n0, . . . , n�−1), which

is also what N1 is defined to be according to (A.3). Notice that N2 = 0, according to
(A.1), which complies with the fact that no new state can appear to the right of J ′.

Suppose then that for some M < n and all m > M , the number N(m,J,n,

n0, . . . , n�−1), for all ni such that m = ∑�−1
i=0 ni , is the correct number for all J ∈ N,

and consider the value of N(M,J ′, n,n0, . . . , n�−1) for the different values of J ′ ∈ N.
We show that this is the correct number of strings. First, for J ′ ≥ (M + 1) · �,
the number N(M,J ′, n,n0, . . . , n�−1) is equal to 0 which complies with rule (A2).
We proceed by inverse induction on J ′ < (M + 1) · �. For the base cases, suppose
J ′ = M · �+J ′

1, for J ′
1 ∈ [0, �−1]. Then, N(M,M · �+J ′

1, n,n0, . . . , n�−1) is deter-
mined by (A.4). By rule (A2), the number of strings where exactly the states [1,M]
appear at positions up to M ·�+J ′

1 is equal to the sum of the number of strings where
state M +1 appears for the first time in some position in the next �−J ′

1 −1 positions,
and this is the number given by (A.4).

For the inductive hypothesis, suppose that N(M, r,n,n0, . . . , n�−1), for all ni such
that M = ∑�

i=0 ni , is the correct number of strings for all r > J ′ for some J ′ < M ·�.
Consider N(M,J ′, n,n0, . . . , n�−1). If for any i ∈ [0, �−1], ni > k then this number
is equal to 0 which complies with the rule (A3) of strings.

Otherwise, the possible strings with n states that satisfy rules (A1)–(A4) and with
prefix s0 · · · sJ ′ , where exactly the states [1,M] occur at positions up to position J ′,
are the following. Either, M + 1 does not appear in the following � positions to the
right of J ′, or it appears in at least one of them. For the first case, the number of pos-
sible strings is n0 · . . . · n�−1 · N(M,J ′ + �,n,n0, . . . , n�−1), where by the inductive
hypothesis, N(M,J ′ + �,n,n0, . . . , n�−1) is the correct number of the appropriate
strings. This is the number given by the term N1 of (A.3). For the second case, let
J ′ = J0 · � + J1 and let us consider all possible � positions to the right of position J ′
where the state M + 1 appears for the first time. Suppose that this position is J ′ + i

for i ∈ [1, �]. Then, the number of possible strings complying with rules (A1)–(A4)

is the following. For position J ′ + 1 there are nJ1+1 (mod �) possible values, for posi-
tion J ′ + 2 there are nJ1+2 (mod �) possible values, and so on until the position J ′ + i

which is labeled by M + 1. The number of allowed strings with prefix s0 · · · sJ ′+i ,
and where the states [1,M + 1] appear at positions up to position J ′ + i, is given
by N(M + 1, J ′ + i, n,n0, . . . , nJ1+i (mod �), . . . , n�−1), by the inductive hypothesis.
Considering all possible values where the new symbol can appear, we get a sum equal
to the term N2 of (A.3). Notice that any string counted in one of the terms of this sum,
is not counted in any other term of this sum. Therefore, N(M,J ′, n,n0, . . . , n�−1) is
equal to N1 + N2, which is what is described by (A.3). �

We next show that N(·) also correctly counts the number of objects in the specifi-
cation given in Fig. 3.

Lemma A.2 Let �, k,m,n, j ′, j, n0, . . . , n�−1 ∈ N, � < m. The number of objects in

S (j ′,j)
m [Wm] is equal to N(m,j ′ ·�+j,n,n0, . . . , n�−1), where for each i ∈ [0, �−1],

ni = |Wi |.
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Proof Firstly, for m > n, N(m,j ′ ·�+j,n,n0, . . . , n�−1) = 0 and there are no objects

in S (j ′,j)
m [Wm]. We proceed by reverse induction on m ≤ n to show that the statement

holds.
Suppose first that m = n. Then for all j ′ > m = n, N(n, j ′ · � + j,n,n0, . . . ,

n�−1) = 0, and S (j ′,j)
n [Wn] has no objects. We then show that the statement holds by

reverse induction on j ′ ≤ m = n.
For the base cases, suppose that j ′ = n and j ∈ [0, � − 1]. Then S (n,j)

n [Wn] :=∏�−1
i=j+1 Wi , and N(n,n ·�+j,n,n0, . . . , n�−1) = ∏�−1

i=j+1 ni . For each i in [0, �−1],
the number of objects in Wi is equal to ni , and hence the statement holds for j ′ = n.

Next, assume that the statement holds for m = n and j ′ > J ′ for some J ′ < n and

consider the case where j ′ = J ′ and j ∈ [0, � − 1]. The class S (J ′,j)
n [Wn] is given by

Q1 + Q2, and N(n,J ′ · � + j,n,n0, . . . , n�−1) is given by N1 + N2. Consider first
Q1 and N1. The class Q1 is defined as

Q1 =
(

�+j∏

i=j+1

Wi (mod �)

)

× S (J ′+1,j)
n

[
W

n]
,

and for m = n,

N1 = (n0 · . . . · n�−1) · N(
n,

(
J ′ + 1

) · � + j,n,n0, . . . , n�−1
)
.

From the inductive hypothesis, we may conclude that the number of objects in Q1 is
equal to N1 for m = n, j ′ = J ′ and j ∈ [0, � − 1].

Similarly, for m = n and j ′ = J ′, the class Q2 is empty by the equation

Q2 :=
�∑

i=1

(
i−1∏

i′=1

Wj+i′ (mod �)

)

× Zn+1 × S (J ′,j+i)

n+1

[
W

n

n+1,j+i (mod �)

]

and N2 is defined to be equal to

�∑

i=1

((
i−1∏

i′=1

(nj+i′ (mod �))

)

· N(
n + 1, J ′ · � + j + i, n,n0, . . . , nj+i (mod �) + 1, . . . , n�−1

)
)

.

We have that Q2 is undefined whereas N called for n + 1 is equal to 0 by definition.
Hence, the number of objects in Q1 +Q2 is equal to N1 +N2 for m = n and j ′ = J ′,
and hence the statement holds.

Suppose next that the statement holds for all m > M for some M < n, and con-
sider the case where m = M . For all j ′ > M , N(M,j ′ · � + j,n,n0, . . . , n�−1) = 0,

and S (j ′,j)
M [WM ] has no objects. We then show that the statement holds by reverse

induction on j ′ ≤ M .
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For the base cases, let j ′ = M , and j ∈ [0, � − 1]. Then, we have that the class

S (j ′,j)
M [WM ] is defined by

Q3 :=
�−j−1∑

i=1

(
i−1∏

i′=1

Wj+i′ (mod �)

)

× ZM+1 × S (j ′,j+i)

M+1

[
W

M

M+1,j+i (mod �)

]
,

whose number of elements is equal to

N3 =
�−j−1∑

i=1

((
i−1∏

i′=1

(nj+i′ (mod �))

)

· N(
M + 1, j ′ · � + j + i, n,n0, . . . , nj+i (mod �) + 1, . . . , n�−1

)
)

by the inductive hypothesis. Finally, assume that the statement holds for all j ′ > J ′

for some J ′ < M , and consider the case where j ′ = J ′. The class S (J ′,j)
M [WM ] is

defined by the equation Q1 + Q2. Since

Q1 :=
(

�+j∏

i=j+1

Wi (mod �)

)

× S (J ′+1,j)
M

[
W

M]
,

its number of elements is equal to

N1 =
(
n0 · . . . · n�−1

)
· N(

M,(J ′ + 1) · � + j,n,n0, . . . , n�−1
)
,

by the inductive hypothesis. Similarly, the number of elements in Q2 defined by

Q2 =
�∑

i=1

(
i−1∏

i′=1

Wj+i′ (mod �)

)

× ZM+1 × S (J ′,j+i)

M+1 [WM

M+1,j+i (mod �)]

is equal to

N2 =
�∑

i=1

((
i−1∏

i′=1

(nj+i′ (mod �))

)

· N(
M + 1, J ′ · � + j + i, n,n0, . . . , nj+i (mod �) + 1, . . . , n�−1

)
)

,

by the inductive hypothesis. �

Clearly, since N(·) both correctly counts strings and the corresponding objects in
the specification, the lemma readily follows.
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