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Abstract 

We introduce the problem of discovering functional deter- 
minacies that result from “rolling up” data to a higher ab- 
straction level. Such a determinacy is called a Roll-Up De- 
pendency (RUD). An example RUD is: The probability that 
two files in the same directory have the same file extension, 
is greater than a specific number. We show the applicability 
of RUDs for OLAP and data mining. We consider the prob- 
lem of mining RUDs that satisfy specified support and con- 
fidence thresholds. This problem is NP-hard in the number 
of attributes. We give an algorithm for this problem. Ex- 
perimental results show that the algorithm uses linear time 
in the number of tuples of the input database. 

1 Introduction 

The problem of discovering functional dependencies 
(FDs) from relational databases has been studied 
[KMRS92]. Although FDs are the most important 
dependencies in database design, FDs are not prevalent 
in data mining. This may be attributed to the fact 
that FDs other than those known at design time, are 
fairly rare. We propose Roll-Up Dependencies (RUDs) 
with clear and interesting applications in data mining 
and OLAP. RUDs generalize FDs for attribute domains 
(called levels) that are organized in a finer-than order. 
Such finer-than relations are very common in data 
mining and OLAP; they have been called concept 
hierarchies [HCC93], or roll-up/drill-down lattices. For 
example, time can be measured in days (level DAY) or 
weeks (level WEEK). DAY is finer than WEEK, and there is 
a many-to-one mapping from DAY values to WEEK values 
capturing the natural containment of days in weeks. A 
price can be expressed in cents (level CENT) or integral 
Euros (level EURO). 
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RUDs allow attributes to be compared for equality 
at different levels. For example, consider the relation 
scheme (D : DAY)(Price : CENT) that stores the daily 
price in cents of a particular product. We have one 
price per day, as expressed by the FD: 

D + Price. (1) 

In general, cent prices can change from day to day, and 
we may be interested in finding regularities in price 
fluctuations. We may find that within a week, all cent 
prices are equal if they are expressed to the nearest 
integral Euro, as stated by the RUD: 

(D : WEEK) + (Price : EURO). (2) 

The meaning is that if the D-values of two tuples 
belong to the same week then their Price-values 
round to the same integral Euro. It is worth noting 
that the dependency (1) above does not imply the 
dependency (2), nor vice versa. The dependency (2) 
does imply, for example, (D : DAY) + (Price : EURO). 

In the next section, we present a few key motivations 
and applications of RUDs. Section 3 studies the 
problem of mining RUDs. We first define RUDs, 
and then we characterize the strength of a RUD 
by adapting the common notions of support and 
confidence. RUDMINE is the problem of finding the 
RUDs that satisfy specified support and confidence 
thresholds. We study the computational complexity 
of RUDMINE. Section 4 gives an algorithm for mining 
RUDs, and Section 5 reports on our experience with 
a real-life dataset. Section 6 discusses related work. 
Section 7 presents a conclusion. 

2 Applications of RUDs 
2.1 Scheme Decomposition 

Consider the scheme: 

(1 : ITEM)(D : DAY)(S : STORE)(Price : CENT). (3) 

A tuple (1 : u)(D : v)(S : w)(Price : x) expresses 
that the price of item u on day v in store w amounted 
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to x cents. Intuitively, one may think of this scheme 
as a data cube scheme, where I, D, and 5’ are the 
dimensions, and Price is the measurement. A typical 
OLAP query then is “Give for each item the highest 
sales price per area and year.” 

Suppose the price of an item does not change within 
a month and a store chain, as captured by the RUD: 

(I : ITEM)(D :MONTH)(S : CHAIN) + (Price :CENT). 

For example, the price of the item “Lego System 
6115” in all stores of the Toysrus chain .invariably 
was 912 cents during January, 1997. Then a relation 
over scheme (3) will store a lot of redundant prices: 
whenever two tuples that agree on I roll up to the same 
month and chain, they must necessarily agree on Price. 
The data redundancy can be avoided by decomposing 
scheme (3) into the schemes: 

(I : ITEM)(D : MONTH)(S : CHAIN)(Price : CENT), (4) 

(I : ITEM)(D :DAY)(S :STORE). (5) 

Scheme (4) is to store the price of an item for a 
particular month and chain. Scheme (5) is to store 
whether a particular item was sold in a particular 
store at a particular day, and can be dropped if such 
information is not needed. 

2.2 Generalizing Data 

We may be faced with a large number of pricing infor- 
mation, giving such a profusion of detailed information 
that direct comparison is impossible. For OLAP and 
data mining, it is often desirable to reduce the mass of 
data to a few manageable “representative” figures from 
which meaningful comparisons can be made. In this 
section we show that RUDs are intimately related to 
data generalization and summarization. 

2.2.1 Rolling Up Data 

On examination of a relation over scheme (4) we may 
observe that, although cent prices change within a year, 
the price fluctuations are small. In particular, we may 
find that within a year and a chain, an item is always 
sold at the same integral Euro price, as described by 
the RUD: 

(I : ITEM)(D : YEAR)(S : CHAIN) + (Price :EURO). (6) 

For example, the round Euro price of the item “Leg0 
System 6115” in each store of the Toysrus chain 
invariably was 9 Euros during 1997. For applications 
in which Euro prices are sufficiently accurate, we can 
replace scheme (4) by the following one: 

(I : ITEM)(D : YEAR)(S : CHAIN)(Price : EURO). (7) 

The advantage is that relations over scheme (7) are, 
on average, twelve times smaller than relations over 
scheme (4) (as there are twelve months in a year). 

2.2.2 Summarizing Data 

In the preceding example, we rolled up days to years, 
and stores to chains, and rounded Price-values to the 
nearest integral Euro. Another way of summarizing 
Price-values is by taking the arithmetic mean, or any 
other measure of central tendency (median, mode). 
However, if important decisions in real life are based 
on the summarized Price-values, then we have to be 
careful that the dispersion of the prices summarized is 
not too high, or else the arithmetic mean is of limited 
significance. We argue that RUDs in combination with 
confidence can be used as a measure of dispersion. As- 
sume that RUD (6) is highly but not fully satisfied. The 
confidence of this RUD is the conditional probability 
that the Price-values of two tuples round to the same 
integral Euro, given the two tuples concern the prices of 
the same item within a single year and a single chain. A 
high confidence then means that the dispersion of the 
prices of a particular item within a year and chain is 
small, and consequently, taking average prices is mean- 
ingful. In this way, RUDs give us an indication about 
the representativeness of central tendency measures. 

The foregoing does not only hold for numeric data 
(like Price), but also for categorical data, as demon- 
strated by our real-life experiments (see Section 4). 
Consider a file system where files roll up to a cer- 
tain type (FTYPE), such as “document,” “program- 
source-code,” or “program-object-code.” The question 
is whether one can reasonably classify directories ac- 
cording to the types of the files they contain. If files in 
the same directory are of the same type with a high con- 
fidence, then such classification is reasonable; otherwise 
it is not. 

3 The RUD Mining Problem 

3.1 Definition of RUDs 

Domain names are called Newels. Every level I has 
associated with it a disjoint domain of values, denoted 
dam(Z). In all examples throughout this paper, levels 
appear in uppercase typewriter style. Examples used 
earlier include DAY, WEEK, CENT, and EURO. The family 
of all levels is a partially ordered set, as shown in 
Figure 1. The order is denoted 5, and corresponds to 
a finer-than relationship. Whenever 1 3 l’, there is a 
total function mapping each element v E dam(Z) to an 
element u’ E dom(Z’), and we say that u rolls up to v’ 
in 1’. Roll-up is transitive in the sense that whenever 
u rolls up to V’ in I’, and V’ rolls up to w” in 1” then 
v must roll up to w” in 2”. Roll-up is reflexive in the 
sense that every element v E dam(Z) rolls up to itself in 
1. Details can be found in [WN98]. 

A re2ation scheme (or scheme) is a set S = {(Al : 
h), . . . , (An : In)} where n > 0, and A1,...,An 
are distinct attributes, and 11,. . . , I, are levels. For 
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Figure 1: The Partially Ordered Set of Levels 

simplicity, curly braces and commas will be omitted 
in the denotation of a set. Let S denote the scheme 
(A1 : Zl)(Aa : 12). . . (A, : In) hereinafter. A tuple 
over S is a set (Al : vl)(Az : ~2). . . (A, : v,) where 
each vi E dom(li). A relation (instance) over S is a 
set of tuples over S. Figure 3 top shows a relation 
over (Path : PATH) (Fname : FNAME), with its intuitive 
meaning: a tuple (Path : x)(Fname : y) means that z 
is the location of file 1~. Paths are a concatenation of 
drive (C or D) and directory. 

A generalization scheme P of S is a set (Ai, : 
4,) . . . (Ai,,, : li,) satisfying the following conditions: 

1. each Aij is an attribute among Al, . . . , A,, and each 
lij is a level such that if Aij = Ak then lk 5 Zij 
(Ic E [I..n], j E [I..m]); and 

2. whenever Aij = Ai, with j # k then lij $ li, and 
Zi, $ lij (j,k E [l..m]). 

If P is a generalization scheme of S, we also say that P is 
a generalization of S. Given the set of levels in Figure 1, 
there are more than three hundred generalizations of the 
scheme (I : ITEM)(D : DAY)(S : STORE)(Price : CENT). 
Two such generalizations are: (I : ITEM)(D : YEAR)(S : 

AREA) and (I : BRAND) (s : CHAIN) (S : AREA). Because 
AREA and CHAIN are not comparable by 5, the last 
generalization can contain both (S : AREA) and (S : 
CHAIN). 

The only assumption we make about 5 is that it is 
a partial order. We do not assume that the order 5 
is a lattice, nor do we partition the set of all levels 
into different hierarchies, as is done in other proposals. 
The order 5 on levels gives rise to a relation i on 
generalization schemes as follows. For generalizations 
P and Q of scheme S, we write P 9 Q iff for every 
(A : I) E Q, there exists some (A : I’) E P such that 
1’ 3 1. While 5 is only a partial order, the set of all 
generalization schemes of S, ordered by A, is a complete 
lattice (Theorem 1). We call this lattice the roZZ-up 
lattice over S. Figure 2 shows the roll-up lattice over 
the scheme (D : MONTH)(S : STORE). Moreover, it is 
possible to assign a number to the nodes of the roll-up 
lattice such that (i) the top is numbered 0, and (ii) if P 
is a child of Q in the roll-up lattice, then the number of 
P equals the number of Q plus one. (P is called a child 
of Q, denoted P E chiZdren( Q), if P is an immediate 
descendant of Q in the roll-up lattice. In terms of lattice 

theory, chiZdren( Q) are the nodes covered by Q.) The 
unique number that is in this way assigned to each node, 
is called the stratum of the node. This stratification of 
the roll-up lattice will be exploited by our RUD mining 
algorithm. 

Theorem 1 The set of all generalization schemes of 
S, ordered by 9, is a complete lattice. Furthermore, 
there exists a function f from the set of generalization 

schemes of S to N such that 

1. f(T) = 0, and 

2. if P E children(Q) then f(P) = f(Q) + 1. 

The proof of Theorem 1 can be found in [WN98, Ca199]. 
Our notion of roll-up lattice extends and generalizes 
several earlier proposals found in the literature. Our 
notion is more general than the one in [HRU96], 
because the same attribute can appear more than 
once in a lattice element. This extension is natural 
and useful in OLAP applications. Dimensionality 
reduction [GCB+97] is embedded naturally in our roll- 
up lattice. 

Finally, a roll-up dependency (RUD) over S is a 
statement of the form P -+ Q where P and Q are 
generalizations of S. A RUD gives rise to a convenient 
histogram representation of a relation instance, as 
is shown in Figure 3. Figure 3 bottom gives the 
histogram of the relation MYFILES and the RUD 
(Path : DRIVE) -+ (Fname : EXTENSION). The first row 
in the histogram indicates that there are 2 tuples t in 
MYFILES such that t(Path) rolls up to drive C and 
t(Fname) rolls up to extension dot. 

3.2 Notion of Satisfaction: Support and 
Confidence 

Let S be a scheme. Let t and t’ be tuples over S and 
let P be a generalization of S. We say that the tuples 
t and t’ are equivalent under P (or P-equivalent) iff for 
every member (A : I) of P, t(A) and t’(A) roll up to the 
same value in 1. To continue with the example relation 
MYFILES given in Figure 3 top, the first two tuples are 
equivalent under (Path : DRIVE)(Fname : EXTENSION), 
because their Path-values both roll up to drive C, and 
their Fname-values both roll up to extension dot. We 
say that a relation R satisfies a RUD P -+ Q iff for 
all tuples t, t’ of R, whenever t and t’ are P-equivalent 
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Figure 2: The Family of Generalizations of (D : MONTH)(S : STORE) Ordered by g 

MYFILES 
Path : PATH 
C:/Research/ 
C:/Teaching/ 
C:/Research/ 
C:/Teaching/ 
D:/Private/ 
D:/Private/ 
D:/Teaching/ 
D :/Teaching/ 
D:/Teaching/ 
D:/Teaching/ 

Figure 3: A Relation Instance MYFILES over Scheme 
(Path : PATH)(Fname : FNAME) and the Histogram of 
(Path : DRIVE) -+ (Fname : EXTENSION) 

Fname : FNAME 
Paper.doc 
Course.doc 
Paper.ps 
Course.ps 
Resume.doc 
Letter.doc 
Program.exe 
Handouts.ps 
Slides.ps 
Spreadsheet.ps 

Ps -2 
D dot - 2 

exe - 1 

II Ps -3 

then they are Q-equivalent as well. It follows that the 
relation MYFILES falsifies the RUD (Path : DRIVE) + 
(Fname : EXTENSION), as the first and the third tuple 
are equivalent under (Path : DRIVE) but not under 
(Fname : EXTENSION). That is, it is not true that all 
files on the same drive have the same file extension. 

The notion of satisfaction introduced in the above 
paragraph is classical in the sense that a RUD is either 
satisfied or falsified by a relation; there is no third 
possibility. In data mining, one is typically not only 
interested in rules that are fully satisfied, but also in 
rules that are highly satisfied. We now introduce a 
relaxed notion of satisfaction by adapting the classical 
notions of support and confidence [AIS93]. 

Let R be a relation over the scheme S. Let P + 
Q be a RUD over 5’. The confidence of P + Q 
is the conditional probability that two tuples that 
are randomly selected from R without replacement, 
are Q-equivalent given they are already P-equivalent. 
The support of P + Q is the probability that two 
tuples that are randomly selected from R without 
replacement, are P-equivalent. Given a relation R, the 
support and the confidence of P --+ Q will be denoted 
sup(P + Q, R) and conf(P + Q, R) respectively. We 
give some differences between our notions of support 
and confidence and the notions with the same name 
used in association rule mining [AIS93]: 

l Our support and confidence refer to pairs of tuples, 
rather than individual tuples. This is because only 
pairs of tuples can give evidence for or against a 
RUD. Contrast this with association rules where 
individual customer transactions can give evidence 
for or against a rule. 

l In the definition of support, we consider only left- 
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hand sides of RUDs. In this way, support and confi- 
dence are independent-the support can be smaller 
or greater than the confidence. This is a divergence 
from the association rule literature, where the sup- 
port is defined as the fraction of transactions sat- 
isfying both the left-hand and the right-hand side 
of a rule, and the support cannot exceed the confi- 
dence. In our framework, multiplying support and 
confidence gives the fraction of tuple pairs that are 
equivalent under both the left-hand and the right- 
hand side of the RUD under consideration. We pre- 
fer our notion of support because it has a natural 
characteristic: the confidence is a conditional prob- 
ability; the probability that the conditioning event 
occurs, is the support. 

l The confidence of a RUD lies between 0 and 1. If 
a RUD is fully satisfied, then its confidence is 1. 
The closer the confidence of a RUD P + Q is 
to 0, the greater the spread of the Q-values within 
each P-equivalence class. In this way, confidence is 
an indicator of dispersion. There are other more 
sophisticated measures of dispersion, like entropy. 

Given a relation instance and a RUD, support and 
confidence can be computed from the histogram of the 
RUD. Precise mathematical formulas are easy to obtain 
and are given in [WN98]. We only include an example 
here. Recall that the support of (Path : DRIVE) -+ 
(Fname : EXTENSION) is the probability that two files 
reside on the same drive. For the relation MYFILES 
shown in Figure 3, the support of (Path : DRIVE) + 

(Fname : EXTENSION) is given by $$$ = &. (Cr 

denotes the total number of combinaiions of choosing 
Ic objects from n objects.) The Ci gives the total 
number of pairs of files on drive C. Similarly, Cz 
corresponds to the pairs of files on drive D. Finally, 
C4+6 gives the total number of pairs of files. The 
cinfidence of (Path : DRIVE) -+ (Fname : EXTENSION) 

is given by: (c~+cZ)C+(+C~+c:+cZ) = $. The denominator, 

as discussed above, ‘giv& the total number of pairs of 
tuples that are equivalent under (Path : DRIVE). Among 
those, there are a total of (Ci +Cp) pairs of files that roll 
up to drive C and that roll up to the same file extension 
(dot and ps). Similarly, the next (C,” + Cg + C,“) in the 
numerator gives the total number of pairs of files that 
roll up to drive D and that roll, up to the same file 
extension. Here, Ci is considered to be zero. 

Apart from the notion of confidence discussed so 
far, we have also considered an alternative confidence 
measure for RUDs in [WN98]. The confidence measure 
discussed so far gives equal weight to all tuple pairs. 
Thus, larger groups may dominate smaller groups in the 
overall confidence. For the example given in Figure 3, 
there may be ten times more D-drive tuples than C- 

drive tuples. Under the current confidence measure, the 
RUD may become more a reflection of the situation on 
drive D than of a global one. For certain applications, 
it is desirable that each group be assigned equal weight, 
independent of its size. Thus, we also developed a 
measure that is based on the average confidence per 
group. See [WN98] for more details. 

3.3 The RUDMINE Problem 

Suppose we are given a very large relation over scheme 
(3). This relation gives such a profusion of detailed 
information that direct comparison of prices is impos- 
sible. The information has first to be simplified to a 
higher generalization level. In a first attempt, we may 
decide that prices in integral Euros are sufficiently ac- 
curate, so we roll up Price-values from CENT to EURO. 
We are still left with the problem of finding meaningful 
generalization levels for the attributes 1, D, and S. By 
meaningful, we mean that the dispersion of the Euro 
prices within each group of aggregated data must be 
reasonably small. That is, we are actually looking for a 
generalization P of (I : ITEM)(D : DAY) (5’ : STORE) such 
that the confidence of P + (Price : EURO) is high. This 
problem is generalized and captured by RUDMINE. 

RUDMINE is the problem of finding all RUDs with 
a fixed right-hand generalization scheme that satisfy 
certain support and confidence thresholds. More for- 
mally, a RUDMINE problem is a quintet (S, Q, ts, tc, R) 
where S is a scheme, Q is a generalization scheme of S, 
support threshold ts and confidence threshold tc are 
rational numbers between 0 and 1, and R is a rela- 
tion over S. The answer to the RUDMINE problem 
(S, Q, ts, tc, R) is the set containing every generalization 
scheme P of S that satisfies the following conditions: 
(i) sup(P + Q, R) > ts and conf(P + Q, R) 2 tc; and 
(ii) P has no attributes in common with Q. The proof 
of the following result can be found in [WN98]. 

Theorem 2 RUDMINE is NP-hard. 

An upper bound for the complexity of RUDMINE 
depends on the complexity of roll-up functions. For 
practical situations, RUDMINE is in NP, and hence is 
NP-complete. 

In the following section, we use the following nota- 
tional conventions. The support of a RUD P + Q 
is independent of Q. For convenience, we can write 
sup(P, R) instead of sup(P -+ Q, R) for any Q. Thus, 
we can talk about the support of a generalization 
scheme. Finally, we will use percentages to denote prob- 
abilities. 

4 A RUD Mining Algorithm 
Consider the RUDMINE problem (S, Q, ts, tc, R). Let 
Sl be the greatest subset of S that has no attributes in 
common with Q. Our algorithm is outlined in Figure 4 
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0. INPUT: A RUDMINE problem (S, Q, ts, tc, R). 
1. OUTPUT: The solution of the RUDMINE problem. 
2. % C” computes the candidate generalization schemes at stratum Ic. 
3. % TooLow computes the negative border. 
4. Co := {T}; TooLow := {}; k := 0 
5. while Ck # {} loop 
6. % EVALUATE 
7. compute sr~p(P + Q, R) and conf (P + Q, R) for 
8. each P E C” using “histogram inversion,” and 
9. l output each P E Ck with sup(P -+ Q, R) 2 ts and conf (P -+ Q, R) > tc 

10. l C”+l := U{chiZdren(P) ] P E C” and sup(P + Q,R) 2 ts} 
11. l add to TooLow each P E C” with sup(P + Q, R) < ts 
12. % PRUNE 
13. for each P E TooLow loop 
14. for each P’ E C”+l loop 
15. if P’ d P then remove P’ from C”+’ end-if 
16. end-loop 
17. end-loop 
18. k:= k+l 
19. end-loop 

Figure 4: Stratum-Wise Algorithm for Solving RUDMINE 

and follows the idea of levelwise search [MT97]: start 
from the top of the roll-up lattice over S’l (i.e., the 
most general node), and then generate and evaluate 
more and more nodes down the lattice, without ever 
evaluating those nodes that cannot be interesting 
given the information obtained in earlier iterations. 
More precisely, the roll-up lattice over S’l is traversed 
stratum-wise (cf. Theorem 1) from top to bottom to 
find the generalizations of Sl with sufficient support 
and confidence. The set C” contains the candidate 
generalization schemes at stratum k. If an element P 
of C” has sufficient support, then all children of P are 
inserted in C”+i . An “apriori trick” is used for pruning: 
if the support of P -+ Q is below the threshold, and 
P’ q P, then we know a priori that P’ + Q must 
fail the support threshold. This is because the support 
decreases monotonically if we traverse the roll-up lattice 
from top to bottom. The set TooLow contains the 
nodes of the roll-up lattice whose support was effectively 
computed but failed the minimum threshold support; 
this corresponds to what is called the negative border 
in association rule mining. Nodes below the negative 
border must necessarily fail the threshold support. Note 
incidentally that no such monotonicity property holds 
for confidence, and hence confidence is not used for 
pruning. 

We developed and implemented a technique called 
“histogram inversion” for computing the support and 
confidence of candidate generalization schemes. The 

inverted histogram of P + Q is the histogram of 
Q + P. Figure 5 shows the inverted histogram of 
the histogram in Figure 3. Both histograms contain 
the same figures but in a different order. For the 
RUDMINE problem (S, Q, ts, tc, R), the input database 
R is first partitioned according to the generalization 
scheme Q. This is shown in Figure 6 left for the 
relation MYFILES and the right-hand side (Fname : 
EXTENSION). Significantly, as Q is fixed for a given 
RUDMINE problem, this partitioning has to be done 
only once. From this partitioned input database, we 
can construct fragments of the inverted histogram of 
P + Q for any P. These fragments can then be 
merged to obtain all figures needed to compute the 
support and confidence of P -+ Q. Figure 6 shows 
the computation of the support and confidence of 
(Path : DRIVE) + (Fname : EXTENSION). The figure 
shows one merge operation; in practice, merge can be 
done two histograms at a time. In this example, the 
fixed right-hand side is a singleton, but in general, our 
algorithm allows multiple right-hand side attributes. 

Theoretically, histogram inversion is an interesting 
application of the well-known Bayes’ theorem, which 
reads as follows in our framework: 

conf (P + Q, R) = SUP(Q, RI x conf (Q -+ p, RI 

SUP(P, R) 

C8j 

for any relation R. Equation (8) expresses the relation 
between P --+ Q and the “inverted rule” Q + P; note 
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Fname : Path : 
EXTENSION DRIVE- # 

Figure 5: Inverted Histogram of (Path : DRIVE) + 
(Fname :EXTENSION) 

partitioned partitioned 
relation inverted histogram 

coupt 

J merge 

ID -6 

Figure 6: Technique Used for Computing Support and 
Confidence 

that Q and hence szlp(Q, R) are constant in RUDMINE. 
The advantages of the histogram inversion technique 

are as follows. The original non-inverted histograms 
can become very large as one goes down the roll-up 
lattice, and may not fit into main memory. In the 
histogram inversion approach, we only need to store 
smaller fragments, and we can compute fragments in 
main memory until it is filled. For generalization 
schemes near the top of the roll-up lattice, on the other 
hand, the size of the (inverted) histograms is small. 
In that case, we can compute several generalization 
schemes together in main memory, and the cost of 
reading the (partitioned) input relation is amortized 
over multiple generalization schemes. 

Significantly, our algorithm computes complete and 
exact results, in the sense that if a certain RUD is an 
answer of the RUDMINE problem under consideration, 
then that RUD will be found by the algorithm. 

5 Experimental Results 
Our experiments were performed on a 200 MHz Pen- 
tium PC with 64 MB of main memory. The database 
was built by gathering properties of files on a number 
of hard disks. Properties of files included Fname, Path, 
Time (of creation), and Size. The roll-up lattice con- 
tained up to 200 nodes. These data are fairly easy to 
obtain, roll-ups are natural, and our familiarity with 
the dataset facilitated interpreting the output of the 
algorithm. 

Scale-Up Figure 7 shows the execution time of the 
algorithm as we increase the number of tuples in the 
input database, for three different levels of threshold 
support (l%, 5%, and 10%). In the experiments, the 
fixed right-hand side was (Fname : EXTENSION). The 
graph shows that the algorithm scales quite linearly. 
Note that the execution time is independent of the 
threshold confidence, as the confidence is not used for 
pruning. 

Figure 8 shows the execution time as we increase the 
number of attributes that can appear at the left-hand 
side. More precisely, consider the RUDMINE problem 
(S, Q, ts, tc, R). Let 5’l be the greatest subset of S that 
has no attributes in common with Q, and let S,. = S\Sl. 
Sl contains all possible left-hand side attributes. In our 
experiment Sl contained seven attributes. For every 
non-empty subset 5’; of 5’l we measured the time needed 
to solve the RUDMINE problem (Si U S,,Q, ts, tc,R). 
The graph shows that the execution time can vary 
considerably depending on which set of attributes is 
chosen. For example, attributes with a small number of 
distinct values are easier to handle. 

Pruning As stated by Theorem 2, RUDMINE is NP- 
hard. The source of exponentiality is that the size 
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of the roll-up lattice is exponential in the number of 
attributes. In the worst case, our algorithm has to 
evaluate every element of the roll-up lattice. Therefore, 
it is important to see how many nodes of the roll- 
up lattice have to be evaluated in practice. Figure 9 
shows the execution time as we increase the threshold 
support, for two different database sizes. Increasing the 
threshold support from 0.1% to 0.7% results in a drastic 
decrease of the execution time. The reason is explained 
by Figure 10, which shows the number of nodes of 
the roll-up lattice that are effectively evaluated as we 
increase the threshold support. These are the nodes 
that are above or on the negative border. The diagram 
shows that the pruning strategy used is quite effective 
for this dataset. Significantly, the nodes that are 
pruned away are near the bottom of the roll-up lattice, 
below the negative border. These nodes correspond to 
RUDs with large histograms that would otherwise be 
expensive to evaluate. 

Interpretation of Output RUDs As expected, 
many RUDs had low support. Remind that our support 
only considers left-hand sides of RUDs. If the left-hand 
side is, for example, (Path : DIR), then the support of 
the RUD is the probability that two files belong to the 
same directory. If the number of directories is large, 
and files are evenly distributed over directories, then 
the support of the RUD is low. 

More interesting than the support is the confidence 
of a RUD. Here caution is in order when interpreting 
high confidences. For example, RUDs with (Path : 
DRIVE) at the right-hand side happened to have a 
high confidence independent of the left-hand side, just 
because the confidence of {} + (Path : DRIVE) is 
high. The confidence of {} -+ (Path : DRIVE) is the 
probability that two files reside on the same drive; if n 
files are distributed over two drives (C and D), then 
one can prove that this probability will be at least 

n-2 2n--2 M 50%. The confidence 0: a RUD P + Q 
has therefore to be compared with the confidence of 
{} + Q to verify its statistical significance. An example 
of a statistically significant RUD was (Path : DIR) + 
(Fname : EXTENSION), saying that files in the same 
directory tend to have the same file extension. This 
RUD had a confidence of more than 50%, while the 
RUD {} -+ (Fname:EXTENSION) had a confidence of 
less than 2%. 

6 Related Work 
RUDs generalize FDs for relational databases that 
support roll-up/drill-down. The discovery of FDs from 
relational databases has already been studied before the 
explosive growth of data mining research [KMRS92]. 
Roll-up plays an important role in data mining and 
related areas. A lattice framework for OLAP has been 
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provided by Harinarayan et al. [HRU96]. As we pointed 
out in Section 3, our notion of roll-up lattice is more 
general than what has so far been proposed in the 
literature. 

We believe that the applicability of RUD mining is far 
beyond that of FD mining. An OLAP user can rely on 
discovered RUDs to decide which roll-up operations are 
beneficial-rather than performing roll-up in an ad hoc 
manner. The integration of OLAP and data mining is 
a promising research area, which has been called OLAP 
mining [Han97]. 

This work is also strongly related to OLAP in the 
following way. Many computational issues involved 
in the algorithm to solve the RUDMINE problem 
are similar to those in computing data cubes. As a 
concrete example, Harinarayan et al. [HRU96] study the 
selection of views to materialize for a data cube. The 
views typically group data by one or more dimensions, 
and then apply a distributive set function on each 
group so obtained. Rather than distributive, our 
notion of confidence is an example of a holistic set 
function [GCB+97]. Little work has addressed data 
cubes that compute a holistic set function. 

An interesting research topic is the use of RUDs 
in (multidimensional) database design. Our work was 
inspired by the work on temporal FDs (TFDs) and 
temporal normalization of Wang et al. [WBBJ97], and 
the TFDs proposed by ourselves [Wij99]. Loosely 
speaking, a TFD corresponds to a RUD where roll-up 
is only provided for one single dedicated timestamping 
attribute. 

Theorem 2 shows that RUDMINE is NP-hard in 
the number of attributes. Data mining problems that 
have exponential complexity in terms of the number of 
attributes are not rare. Another example is the mining 
of quantitative association rules [SASS, WM98]. 

7 Summary 

Roll-up dependencies (RUDs) generalize FDs for do- 
mains (called levels) that are related by a partial order 
that captures roll-up semantics. From this partially or- 
dered set of levels we derive a complete ro&up lattice. 
Our construct of roll-up lattice is a generalization of 
several earlier proposals. RUDs have a high application 
potential in database design, data mining, and OLAP. 
We addressed the problem RUDMINE: discover RUDs 
whose support and confidence exceed certain specified 
threshold values. We can show that the problem is NP- 
hard. An upper bound for the complexity depends on 
the complexity of roll-up functions. We implemented an 
algorithm for mining RUDs, based on a technique called 
“histogram inversion.” Experimental results show that 
the algorithm uses linear time in the number of tuples. 

An interesting and important research goal is to 
further generalize our roll-up framework, and to study 

the impact of such generalizations on RUDs. For 
example, instead of saying that two prices in cents roll 
up to the same integral Euro, we may wish to express 
that the distance between two cent prices is less than 
one Euro. 
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