
Discovering Roll-Up Dependencies

Jef Wijsen Raymond T. Ng
University of Antwerp University of British Columbia

Jef.Wijsen@uia.ua.ac.be rng@cs.ubc.ca

Toon Calders
University of Antwerp

Toon.Calders@uia.ua.ac.be

Abstract

We introduce the problem of discovering functional deter-
minacies that result from “rolling up” data to a higher ab-
straction level. Such a determinacy is called a Roll-Up De-
pendency (RUD). An example RUD is: The probability that
two files in the same directory have the same file extension,
is greater than a specific number. We show the applicability
of RUDs for OLAP and data mining. We consider the prob-
lem of mining RUDs that satisfy specified support and con-
fidence thresholds. This problem is NP-hard in the number
of attributes. We give an algorithm for this problem. Ex-
perimental results show that the algorithm uses linear time
in the number of tuples of the input database.

1 Introduction

The problem of discovering functional dependencies
(FDs) from relational databases has been studied
[KMRS92]. Although FDs are the most important
dependencies in database design, FDs are not prevalent
in data mining. This may be attributed to the fact
that FDs other than those known at design time, are
fairly rare. We propose Roll-Up Dependencies (RUDs)
with clear and interesting applications in data mining
and OLAP. RUDs generalize FDs for attribute domains
(called levels) that are organized in a finer-than order.
Such finer-than relations are very common in data
mining and OLAP; they have been called concept
hierarchies [HCC93], or roll-up/drill-down lattices. For
example, time can be measured in days (level DAY) or
weeks (level WEEK). DAY is finer than WEEK, and there is
a many-to-one mapping from DAY values to WEEK values
capturing the natural containment of days in weeks. A
price can be expressed in cents (level CENT) or integral
Euros (level EURO).

Permission to make digital or hard topics of all or part ot’this work fat
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
topics hear this notice and the full citation on the first page. To copy
othcrwisc, to republish, to post on sewers or to redistribute to lists.
requires prior specitic permission and/or a fee.
KDD-90 San Diego CA USA
Copyright ACM 1999 l-58113-143-7/99/08...$5.00

RUDs allow attributes to be compared for equality
at different levels. For example, consider the relation
scheme (D : DAY)(Price : CENT) that stores the daily
price in cents of a particular product. We have one
price per day, as expressed by the FD:

D + Price. (1)

In general, cent prices can change from day to day, and
we may be interested in finding regularities in price
fluctuations. We may find that within a week, all cent
prices are equal if they are expressed to the nearest
integral Euro, as stated by the RUD:

(D : WEEK) + (Price : EURO). (2)

The meaning is that if the D-values of two tuples
belong to the same week then their Price-values
round to the same integral Euro. It is worth noting
that the dependency (1) above does not imply the
dependency (2), nor vice versa. The dependency (2)
does imply, for example, (D : DAY) + (Price : EURO).

In the next section, we present a few key motivations
and applications of RUDs. Section 3 studies the
problem of mining RUDs. We first define RUDs,
and then we characterize the strength of a RUD
by adapting the common notions of support and
confidence. RUDMINE is the problem of finding the
RUDs that satisfy specified support and confidence
thresholds. We study the computational complexity
of RUDMINE. Section 4 gives an algorithm for mining
RUDs, and Section 5 reports on our experience with
a real-life dataset. Section 6 discusses related work.
Section 7 presents a conclusion.

2 Applications of RUDs
2.1 Scheme Decomposition

Consider the scheme:

(1 : ITEM)(D : DAY)(S : STORE)(Price : CENT). (3)

A tuple (1 : u)(D : v)(S : w)(Price : x) expresses
that the price of item u on day v in store w amounted

213

to x cents. Intuitively, one may think of this scheme
as a data cube scheme, where I, D, and 5’ are the
dimensions, and Price is the measurement. A typical
OLAP query then is “Give for each item the highest
sales price per area and year.”

Suppose the price of an item does not change within
a month and a store chain, as captured by the RUD:

(I : ITEM)(D :MONTH)(S : CHAIN) + (Price :CENT).

For example, the price of the item “Lego System
6115” in all stores of the Toysrus chain .invariably
was 912 cents during January, 1997. Then a relation
over scheme (3) will store a lot of redundant prices:
whenever two tuples that agree on I roll up to the same
month and chain, they must necessarily agree on Price.
The data redundancy can be avoided by decomposing
scheme (3) into the schemes:

(I : ITEM)(D : MONTH)(S : CHAIN)(Price : CENT), (4)

(I : ITEM)(D :DAY)(S :STORE). (5)

Scheme (4) is to store the price of an item for a
particular month and chain. Scheme (5) is to store
whether a particular item was sold in a particular
store at a particular day, and can be dropped if such
information is not needed.

2.2 Generalizing Data

We may be faced with a large number of pricing infor-
mation, giving such a profusion of detailed information
that direct comparison is impossible. For OLAP and
data mining, it is often desirable to reduce the mass of
data to a few manageable “representative” figures from
which meaningful comparisons can be made. In this
section we show that RUDs are intimately related to
data generalization and summarization.

2.2.1 Rolling Up Data

On examination of a relation over scheme (4) we may
observe that, although cent prices change within a year,
the price fluctuations are small. In particular, we may
find that within a year and a chain, an item is always
sold at the same integral Euro price, as described by
the RUD:

(I : ITEM)(D : YEAR)(S : CHAIN) + (Price :EURO). (6)

For example, the round Euro price of the item “Leg0
System 6115” in each store of the Toysrus chain
invariably was 9 Euros during 1997. For applications
in which Euro prices are sufficiently accurate, we can
replace scheme (4) by the following one:

(I : ITEM)(D : YEAR)(S : CHAIN)(Price : EURO). (7)

The advantage is that relations over scheme (7) are,
on average, twelve times smaller than relations over
scheme (4) (as there are twelve months in a year).

2.2.2 Summarizing Data

In the preceding example, we rolled up days to years,
and stores to chains, and rounded Price-values to the
nearest integral Euro. Another way of summarizing
Price-values is by taking the arithmetic mean, or any
other measure of central tendency (median, mode).
However, if important decisions in real life are based
on the summarized Price-values, then we have to be
careful that the dispersion of the prices summarized is
not too high, or else the arithmetic mean is of limited
significance. We argue that RUDs in combination with
confidence can be used as a measure of dispersion. As-
sume that RUD (6) is highly but not fully satisfied. The
confidence of this RUD is the conditional probability
that the Price-values of two tuples round to the same
integral Euro, given the two tuples concern the prices of
the same item within a single year and a single chain. A
high confidence then means that the dispersion of the
prices of a particular item within a year and chain is
small, and consequently, taking average prices is mean-
ingful. In this way, RUDs give us an indication about
the representativeness of central tendency measures.

The foregoing does not only hold for numeric data
(like Price), but also for categorical data, as demon-
strated by our real-life experiments (see Section 4).
Consider a file system where files roll up to a cer-
tain type (FTYPE), such as “document,” “program-
source-code,” or “program-object-code.” The question
is whether one can reasonably classify directories ac-
cording to the types of the files they contain. If files in
the same directory are of the same type with a high con-
fidence, then such classification is reasonable; otherwise
it is not.

3 The RUD Mining Problem

3.1 Definition of RUDs

Domain names are called Newels. Every level I has
associated with it a disjoint domain of values, denoted
dam(Z). In all examples throughout this paper, levels
appear in uppercase typewriter style. Examples used
earlier include DAY, WEEK, CENT, and EURO. The family
of all levels is a partially ordered set, as shown in
Figure 1. The order is denoted 5, and corresponds to
a finer-than relationship. Whenever 1 3 l’, there is a
total function mapping each element v E dam(Z) to an
element u’ E dom(Z’), and we say that u rolls up to v’
in 1’. Roll-up is transitive in the sense that whenever
u rolls up to V’ in I’, and V’ rolls up to w” in 1” then
v must roll up to w” in 2”. Roll-up is reflexive in the
sense that every element v E dam(Z) rolls up to itself in
1. Details can be found in [WN98].

A re2ation scheme (or scheme) is a set S = {(Al :
h), . . . , (An : In)} where n > 0, and A1,...,An
are distinct attributes, and 11,. . . , I, are levels. For

214

YEAR

G

WEEK
MONTH

DAY

FTYPE
*

AREA CHAIN BRAND EURO DRIVE DIR
EXTENSION

UE i ITEM i CENT bi 1 FNAHE

Figure 1: The Partially Ordered Set of Levels

simplicity, curly braces and commas will be omitted
in the denotation of a set. Let S denote the scheme
(A1 : Zl)(Aa : 12). . . (A, : In) hereinafter. A tuple
over S is a set (Al : vl)(Az : ~2). . . (A, : v,) where
each vi E dom(li). A relation (instance) over S is a
set of tuples over S. Figure 3 top shows a relation
over (Path : PATH) (Fname : FNAME), with its intuitive
meaning: a tuple (Path : x)(Fname : y) means that z
is the location of file 1~. Paths are a concatenation of
drive (C or D) and directory.

A generalization scheme P of S is a set (Ai, :
4,) . . . (Ai,,, : li,) satisfying the following conditions:

1. each Aij is an attribute among Al, . . . , A,, and each
lij is a level such that if Aij = Ak then lk 5 Zij
(Ic E [I..n], j E [I..m]); and

2. whenever Aij = Ai, with j # k then lij $ li, and
Zi, $ lij (j,k E [l..m]).

If P is a generalization scheme of S, we also say that P is
a generalization of S. Given the set of levels in Figure 1,
there are more than three hundred generalizations of the
scheme (I : ITEM)(D : DAY)(S : STORE)(Price : CENT).
Two such generalizations are: (I : ITEM)(D : YEAR)(S :

AREA) and (I : BRAND) (s : CHAIN) (S : AREA). Because
AREA and CHAIN are not comparable by 5, the last
generalization can contain both (S : AREA) and (S :
CHAIN).

The only assumption we make about 5 is that it is
a partial order. We do not assume that the order 5
is a lattice, nor do we partition the set of all levels
into different hierarchies, as is done in other proposals.
The order 5 on levels gives rise to a relation i on
generalization schemes as follows. For generalizations
P and Q of scheme S, we write P 9 Q iff for every
(A : I) E Q, there exists some (A : I’) E P such that
1’ 3 1. While 5 is only a partial order, the set of all
generalization schemes of S, ordered by A, is a complete
lattice (Theorem 1). We call this lattice the roZZ-up
lattice over S. Figure 2 shows the roll-up lattice over
the scheme (D : MONTH)(S : STORE). Moreover, it is
possible to assign a number to the nodes of the roll-up
lattice such that (i) the top is numbered 0, and (ii) if P
is a child of Q in the roll-up lattice, then the number of
P equals the number of Q plus one. (P is called a child
of Q, denoted P E chiZdren(Q), if P is an immediate
descendant of Q in the roll-up lattice. In terms of lattice

theory, chiZdren(Q) are the nodes covered by Q.) The
unique number that is in this way assigned to each node,
is called the stratum of the node. This stratification of
the roll-up lattice will be exploited by our RUD mining
algorithm.

Theorem 1 The set of all generalization schemes of
S, ordered by 9, is a complete lattice. Furthermore,
there exists a function f from the set of generalization

schemes of S to N such that

1. f(T) = 0, and

2. if P E children(Q) then f(P) = f(Q) + 1.

The proof of Theorem 1 can be found in [WN98, Ca199].
Our notion of roll-up lattice extends and generalizes
several earlier proposals found in the literature. Our
notion is more general than the one in [HRU96],
because the same attribute can appear more than
once in a lattice element. This extension is natural
and useful in OLAP applications. Dimensionality
reduction [GCB+97] is embedded naturally in our roll-
up lattice.

Finally, a roll-up dependency (RUD) over S is a
statement of the form P -+ Q where P and Q are
generalizations of S. A RUD gives rise to a convenient
histogram representation of a relation instance, as
is shown in Figure 3. Figure 3 bottom gives the
histogram of the relation MYFILES and the RUD
(Path : DRIVE) -+ (Fname : EXTENSION). The first row
in the histogram indicates that there are 2 tuples t in
MYFILES such that t(Path) rolls up to drive C and
t(Fname) rolls up to extension dot.

3.2 Notion of Satisfaction: Support and
Confidence

Let S be a scheme. Let t and t’ be tuples over S and
let P be a generalization of S. We say that the tuples
t and t’ are equivalent under P (or P-equivalent) iff for
every member (A : I) of P, t(A) and t’(A) roll up to the
same value in 1. To continue with the example relation
MYFILES given in Figure 3 top, the first two tuples are
equivalent under (Path : DRIVE)(Fname : EXTENSION),
because their Path-values both roll up to drive C, and
their Fname-values both roll up to extension dot. We
say that a relation R satisfies a RUD P -+ Q iff for
all tuples t, t’ of R, whenever t and t’ are P-equivalent

215

T=O

(D:HONTH) A

Figure 2: The Family of Generalizations of (D : MONTH)(S : STORE) Ordered by g

MYFILES
Path : PATH
C:/Research/
C:/Teaching/
C:/Research/
C:/Teaching/
D:/Private/
D:/Private/
D:/Teaching/
D :/Teaching/
D:/Teaching/
D:/Teaching/

Figure 3: A Relation Instance MYFILES over Scheme
(Path : PATH)(Fname : FNAME) and the Histogram of
(Path : DRIVE) -+ (Fname : EXTENSION)

Fname : FNAME
Paper.doc
Course.doc
Paper.ps
Course.ps
Resume.doc
Letter.doc
Program.exe
Handouts.ps
Slides.ps
Spreadsheet.ps

Ps -2
D dot - 2

exe - 1

II Ps -3

then they are Q-equivalent as well. It follows that the
relation MYFILES falsifies the RUD (Path : DRIVE) +
(Fname : EXTENSION), as the first and the third tuple
are equivalent under (Path : DRIVE) but not under
(Fname : EXTENSION). That is, it is not true that all
files on the same drive have the same file extension.

The notion of satisfaction introduced in the above
paragraph is classical in the sense that a RUD is either
satisfied or falsified by a relation; there is no third
possibility. In data mining, one is typically not only
interested in rules that are fully satisfied, but also in
rules that are highly satisfied. We now introduce a
relaxed notion of satisfaction by adapting the classical
notions of support and confidence [AIS93].

Let R be a relation over the scheme S. Let P +
Q be a RUD over 5’. The confidence of P + Q
is the conditional probability that two tuples that
are randomly selected from R without replacement,
are Q-equivalent given they are already P-equivalent.
The support of P + Q is the probability that two
tuples that are randomly selected from R without
replacement, are P-equivalent. Given a relation R, the
support and the confidence of P --+ Q will be denoted
sup(P + Q, R) and conf(P + Q, R) respectively. We
give some differences between our notions of support
and confidence and the notions with the same name
used in association rule mining [AIS93]:

l Our support and confidence refer to pairs of tuples,
rather than individual tuples. This is because only
pairs of tuples can give evidence for or against a
RUD. Contrast this with association rules where
individual customer transactions can give evidence
for or against a rule.

l In the definition of support, we consider only left-

216

hand sides of RUDs. In this way, support and confi-
dence are independent-the support can be smaller
or greater than the confidence. This is a divergence
from the association rule literature, where the sup-
port is defined as the fraction of transactions sat-
isfying both the left-hand and the right-hand side
of a rule, and the support cannot exceed the confi-
dence. In our framework, multiplying support and
confidence gives the fraction of tuple pairs that are
equivalent under both the left-hand and the right-
hand side of the RUD under consideration. We pre-
fer our notion of support because it has a natural
characteristic: the confidence is a conditional prob-
ability; the probability that the conditioning event
occurs, is the support.

l The confidence of a RUD lies between 0 and 1. If
a RUD is fully satisfied, then its confidence is 1.
The closer the confidence of a RUD P + Q is
to 0, the greater the spread of the Q-values within
each P-equivalence class. In this way, confidence is
an indicator of dispersion. There are other more
sophisticated measures of dispersion, like entropy.

Given a relation instance and a RUD, support and
confidence can be computed from the histogram of the
RUD. Precise mathematical formulas are easy to obtain
and are given in [WN98]. We only include an example
here. Recall that the support of (Path : DRIVE) -+
(Fname : EXTENSION) is the probability that two files
reside on the same drive. For the relation MYFILES
shown in Figure 3, the support of (Path : DRIVE) +

(Fname : EXTENSION) is given by $$$ = &. (Cr

denotes the total number of combinaiions of choosing
Ic objects from n objects.) The Ci gives the total
number of pairs of files on drive C. Similarly, Cz
corresponds to the pairs of files on drive D. Finally,
C4+6 gives the total number of pairs of files. The
cinfidence of (Path : DRIVE) -+ (Fname : EXTENSION)

is given by: (c~+cZ)C+(+C~+c:+cZ) = $. The denominator,

as discussed above, ‘giv& the total number of pairs of
tuples that are equivalent under (Path : DRIVE). Among
those, there are a total of (Ci +Cp) pairs of files that roll
up to drive C and that roll up to the same file extension
(dot and ps). Similarly, the next (C,” + Cg + C,“) in the
numerator gives the total number of pairs of files that
roll up to drive D and that roll, up to the same file
extension. Here, Ci is considered to be zero.

Apart from the notion of confidence discussed so
far, we have also considered an alternative confidence
measure for RUDs in [WN98]. The confidence measure
discussed so far gives equal weight to all tuple pairs.
Thus, larger groups may dominate smaller groups in the
overall confidence. For the example given in Figure 3,
there may be ten times more D-drive tuples than C-

drive tuples. Under the current confidence measure, the
RUD may become more a reflection of the situation on
drive D than of a global one. For certain applications,
it is desirable that each group be assigned equal weight,
independent of its size. Thus, we also developed a
measure that is based on the average confidence per
group. See [WN98] for more details.

3.3 The RUDMINE Problem

Suppose we are given a very large relation over scheme
(3). This relation gives such a profusion of detailed
information that direct comparison of prices is impos-
sible. The information has first to be simplified to a
higher generalization level. In a first attempt, we may
decide that prices in integral Euros are sufficiently ac-
curate, so we roll up Price-values from CENT to EURO.
We are still left with the problem of finding meaningful
generalization levels for the attributes 1, D, and S. By
meaningful, we mean that the dispersion of the Euro
prices within each group of aggregated data must be
reasonably small. That is, we are actually looking for a
generalization P of (I : ITEM)(D : DAY) (5’ : STORE) such
that the confidence of P + (Price : EURO) is high. This
problem is generalized and captured by RUDMINE.

RUDMINE is the problem of finding all RUDs with
a fixed right-hand generalization scheme that satisfy
certain support and confidence thresholds. More for-
mally, a RUDMINE problem is a quintet (S, Q, ts, tc, R)
where S is a scheme, Q is a generalization scheme of S,
support threshold ts and confidence threshold tc are
rational numbers between 0 and 1, and R is a rela-
tion over S. The answer to the RUDMINE problem
(S, Q, ts, tc, R) is the set containing every generalization
scheme P of S that satisfies the following conditions:
(i) sup(P + Q, R) > ts and conf(P + Q, R) 2 tc; and
(ii) P has no attributes in common with Q. The proof
of the following result can be found in [WN98].

Theorem 2 RUDMINE is NP-hard.

An upper bound for the complexity of RUDMINE
depends on the complexity of roll-up functions. For
practical situations, RUDMINE is in NP, and hence is
NP-complete.

In the following section, we use the following nota-
tional conventions. The support of a RUD P + Q
is independent of Q. For convenience, we can write
sup(P, R) instead of sup(P -+ Q, R) for any Q. Thus,
we can talk about the support of a generalization
scheme. Finally, we will use percentages to denote prob-
abilities.

4 A RUD Mining Algorithm
Consider the RUDMINE problem (S, Q, ts, tc, R). Let
Sl be the greatest subset of S that has no attributes in
common with Q. Our algorithm is outlined in Figure 4

217

0. INPUT: A RUDMINE problem (S, Q, ts, tc, R).
1. OUTPUT: The solution of the RUDMINE problem.
2. % C” computes the candidate generalization schemes at stratum Ic.
3. % TooLow computes the negative border.
4. Co := {T}; TooLow := {}; k := 0
5. while Ck # {} loop
6. % EVALUATE
7. compute sr~p(P + Q, R) and conf (P + Q, R) for
8. each P E C” using “histogram inversion,” and
9. l output each P E Ck with sup(P -+ Q, R) 2 ts and conf (P -+ Q, R) > tc

10. l C”+l := U{chiZdren(P)] P E C” and sup(P + Q,R) 2 ts}
11. l add to TooLow each P E C” with sup(P + Q, R) < ts
12. % PRUNE
13. for each P E TooLow loop
14. for each P’ E C”+l loop
15. if P’ d P then remove P’ from C”+’ end-if
16. end-loop
17. end-loop
18. k:= k+l
19. end-loop

Figure 4: Stratum-Wise Algorithm for Solving RUDMINE

and follows the idea of levelwise search [MT97]: start
from the top of the roll-up lattice over S’l (i.e., the
most general node), and then generate and evaluate
more and more nodes down the lattice, without ever
evaluating those nodes that cannot be interesting
given the information obtained in earlier iterations.
More precisely, the roll-up lattice over S’l is traversed
stratum-wise (cf. Theorem 1) from top to bottom to
find the generalizations of Sl with sufficient support
and confidence. The set C” contains the candidate
generalization schemes at stratum k. If an element P
of C” has sufficient support, then all children of P are
inserted in C”+i . An “apriori trick” is used for pruning:
if the support of P -+ Q is below the threshold, and
P’ q P, then we know a priori that P’ + Q must
fail the support threshold. This is because the support
decreases monotonically if we traverse the roll-up lattice
from top to bottom. The set TooLow contains the
nodes of the roll-up lattice whose support was effectively
computed but failed the minimum threshold support;
this corresponds to what is called the negative border
in association rule mining. Nodes below the negative
border must necessarily fail the threshold support. Note
incidentally that no such monotonicity property holds
for confidence, and hence confidence is not used for
pruning.

We developed and implemented a technique called
“histogram inversion” for computing the support and
confidence of candidate generalization schemes. The

inverted histogram of P + Q is the histogram of
Q + P. Figure 5 shows the inverted histogram of
the histogram in Figure 3. Both histograms contain
the same figures but in a different order. For the
RUDMINE problem (S, Q, ts, tc, R), the input database
R is first partitioned according to the generalization
scheme Q. This is shown in Figure 6 left for the
relation MYFILES and the right-hand side (Fname :
EXTENSION). Significantly, as Q is fixed for a given
RUDMINE problem, this partitioning has to be done
only once. From this partitioned input database, we
can construct fragments of the inverted histogram of
P + Q for any P. These fragments can then be
merged to obtain all figures needed to compute the
support and confidence of P -+ Q. Figure 6 shows
the computation of the support and confidence of
(Path : DRIVE) + (Fname : EXTENSION). The figure
shows one merge operation; in practice, merge can be
done two histograms at a time. In this example, the
fixed right-hand side is a singleton, but in general, our
algorithm allows multiple right-hand side attributes.

Theoretically, histogram inversion is an interesting
application of the well-known Bayes’ theorem, which
reads as follows in our framework:

conf (P + Q, R) = SUP(Q, RI x conf (Q -+ p, RI

SUP(P, R)

C8j

for any relation R. Equation (8) expresses the relation
between P --+ Q and the “inverted rule” Q + P; note

218

Fname : Path :
EXTENSION DRIVE- #

Figure 5: Inverted Histogram of (Path : DRIVE) +
(Fname :EXTENSION)

partitioned partitioned
relation inverted histogram

coupt

J merge

ID -6

Figure 6: Technique Used for Computing Support and
Confidence

that Q and hence szlp(Q, R) are constant in RUDMINE.
The advantages of the histogram inversion technique

are as follows. The original non-inverted histograms
can become very large as one goes down the roll-up
lattice, and may not fit into main memory. In the
histogram inversion approach, we only need to store
smaller fragments, and we can compute fragments in
main memory until it is filled. For generalization
schemes near the top of the roll-up lattice, on the other
hand, the size of the (inverted) histograms is small.
In that case, we can compute several generalization
schemes together in main memory, and the cost of
reading the (partitioned) input relation is amortized
over multiple generalization schemes.

Significantly, our algorithm computes complete and
exact results, in the sense that if a certain RUD is an
answer of the RUDMINE problem under consideration,
then that RUD will be found by the algorithm.

5 Experimental Results
Our experiments were performed on a 200 MHz Pen-
tium PC with 64 MB of main memory. The database
was built by gathering properties of files on a number
of hard disks. Properties of files included Fname, Path,
Time (of creation), and Size. The roll-up lattice con-
tained up to 200 nodes. These data are fairly easy to
obtain, roll-ups are natural, and our familiarity with
the dataset facilitated interpreting the output of the
algorithm.

Scale-Up Figure 7 shows the execution time of the
algorithm as we increase the number of tuples in the
input database, for three different levels of threshold
support (l%, 5%, and 10%). In the experiments, the
fixed right-hand side was (Fname : EXTENSION). The
graph shows that the algorithm scales quite linearly.
Note that the execution time is independent of the
threshold confidence, as the confidence is not used for
pruning.

Figure 8 shows the execution time as we increase the
number of attributes that can appear at the left-hand
side. More precisely, consider the RUDMINE problem
(S, Q, ts, tc, R). Let 5’l be the greatest subset of S that
has no attributes in common with Q, and let S,. = S\Sl.
Sl contains all possible left-hand side attributes. In our
experiment Sl contained seven attributes. For every
non-empty subset 5’; of 5’l we measured the time needed
to solve the RUDMINE problem (Si U S,,Q, ts, tc,R).
The graph shows that the execution time can vary
considerably depending on which set of attributes is
chosen. For example, attributes with a small number of
distinct values are easier to handle.

Pruning As stated by Theorem 2, RUDMINE is NP-
hard. The source of exponentiality is that the size

219

400

350

; 300

2
i 200 250

0
8 150

B u 100

so

0

1 2 3 4 5 6 7 8 9 10 11 12

tltupk3 (to 000)

Figure 7: Execution Time in Function of the Number
of Tuples

1400 -

1200.
l l

I 1000 -
D
8 800

i 600
i i

:
l

%
400

*

200 - l
f *

0,
t ! ! J ; ,

Figure 8: Execution Time in Function of the Number
of Attributes (50 000 Tuples, 5% Threshold Support)

2 4 6 6 10 12

SUPPOrt w

Figure 9: Execution Time in Function of the Threshold
Support

g 20.

10

0,

0 2 4 6 8 10 12

SupPOrt w

Figure 10: Number of Nodes of the Roll-Up Lattice that
are Effectively Evaluated in Function of the Threshold
Support

of the roll-up lattice is exponential in the number of
attributes. In the worst case, our algorithm has to
evaluate every element of the roll-up lattice. Therefore,
it is important to see how many nodes of the roll-
up lattice have to be evaluated in practice. Figure 9
shows the execution time as we increase the threshold
support, for two different database sizes. Increasing the
threshold support from 0.1% to 0.7% results in a drastic
decrease of the execution time. The reason is explained
by Figure 10, which shows the number of nodes of
the roll-up lattice that are effectively evaluated as we
increase the threshold support. These are the nodes
that are above or on the negative border. The diagram
shows that the pruning strategy used is quite effective
for this dataset. Significantly, the nodes that are
pruned away are near the bottom of the roll-up lattice,
below the negative border. These nodes correspond to
RUDs with large histograms that would otherwise be
expensive to evaluate.

Interpretation of Output RUDs As expected,
many RUDs had low support. Remind that our support
only considers left-hand sides of RUDs. If the left-hand
side is, for example, (Path : DIR), then the support of
the RUD is the probability that two files belong to the
same directory. If the number of directories is large,
and files are evenly distributed over directories, then
the support of the RUD is low.

More interesting than the support is the confidence
of a RUD. Here caution is in order when interpreting
high confidences. For example, RUDs with (Path :
DRIVE) at the right-hand side happened to have a
high confidence independent of the left-hand side, just
because the confidence of {} + (Path : DRIVE) is
high. The confidence of {} -+ (Path : DRIVE) is the
probability that two files reside on the same drive; if n
files are distributed over two drives (C and D), then
one can prove that this probability will be at least

n-2 2n--2 M 50%. The confidence 0: a RUD P + Q
has therefore to be compared with the confidence of
{} + Q to verify its statistical significance. An example
of a statistically significant RUD was (Path : DIR) +
(Fname : EXTENSION), saying that files in the same
directory tend to have the same file extension. This
RUD had a confidence of more than 50%, while the
RUD {} -+ (Fname:EXTENSION) had a confidence of
less than 2%.

6 Related Work
RUDs generalize FDs for relational databases that
support roll-up/drill-down. The discovery of FDs from
relational databases has already been studied before the
explosive growth of data mining research [KMRS92].
Roll-up plays an important role in data mining and
related areas. A lattice framework for OLAP has been

220

provided by Harinarayan et al. [HRU96]. As we pointed
out in Section 3, our notion of roll-up lattice is more
general than what has so far been proposed in the
literature.

We believe that the applicability of RUD mining is far
beyond that of FD mining. An OLAP user can rely on
discovered RUDs to decide which roll-up operations are
beneficial-rather than performing roll-up in an ad hoc
manner. The integration of OLAP and data mining is
a promising research area, which has been called OLAP
mining [Han97].

This work is also strongly related to OLAP in the
following way. Many computational issues involved
in the algorithm to solve the RUDMINE problem
are similar to those in computing data cubes. As a
concrete example, Harinarayan et al. [HRU96] study the
selection of views to materialize for a data cube. The
views typically group data by one or more dimensions,
and then apply a distributive set function on each
group so obtained. Rather than distributive, our
notion of confidence is an example of a holistic set
function [GCB+97]. Little work has addressed data
cubes that compute a holistic set function.

An interesting research topic is the use of RUDs
in (multidimensional) database design. Our work was
inspired by the work on temporal FDs (TFDs) and
temporal normalization of Wang et al. [WBBJ97], and
the TFDs proposed by ourselves [Wij99]. Loosely
speaking, a TFD corresponds to a RUD where roll-up
is only provided for one single dedicated timestamping
attribute.

Theorem 2 shows that RUDMINE is NP-hard in
the number of attributes. Data mining problems that
have exponential complexity in terms of the number of
attributes are not rare. Another example is the mining
of quantitative association rules [SASS, WM98].

7 Summary

Roll-up dependencies (RUDs) generalize FDs for do-
mains (called levels) that are related by a partial order
that captures roll-up semantics. From this partially or-
dered set of levels we derive a complete ro&up lattice.
Our construct of roll-up lattice is a generalization of
several earlier proposals. RUDs have a high application
potential in database design, data mining, and OLAP.
We addressed the problem RUDMINE: discover RUDs
whose support and confidence exceed certain specified
threshold values. We can show that the problem is NP-
hard. An upper bound for the complexity depends on
the complexity of roll-up functions. We implemented an
algorithm for mining RUDs, based on a technique called
“histogram inversion.” Experimental results show that
the algorithm uses linear time in the number of tuples.

An interesting and important research goal is to
further generalize our roll-up framework, and to study

the impact of such generalizations on RUDs. For
example, instead of saying that two prices in cents roll
up to the same integral Euro, we may wish to express
that the distance between two cent prices is less than
one Euro.

References
[AIS93]

[Cal991

[GCB+97]

[Han971

[HCC93]

[HRU96]

[KMRS92]

[MT971

[SA96]

R. Agrawal, T. Imielinski, and A. Swami.
Mining association rules between sets of
items in large databases. In Proc. ACM
SIGMOD Int. Conf. Management of Data,
pages 207-216, Washington, D.C., 1993.

T. Calders. Het ontdekken van roll-up
afhankelijkheden in databases. Master’s
thesis, University of Antwerp, 1999. In
Dutch.

J. Gray, S. Chaudhuri, A. Bosworth, A. Lay-
man, D. Reichart, M. Venkatrao, F. Pellow,
and H. Pirahesh. Data cube: A relational
aggregation operator generalizing group-by,
cross-tab, and sub-totals. Data Mining and
Knowledge Discovery, 1:29-53, 1997.

J. Han. OLAP mining: An integration of
OLAP with data mining. In Proceedings
of the 7th IFIP 2.6 Working Conference
on Database Semantics (DS-7), pages 1-9,
1997.

J. Han, Y. Cai, and N. Cercone. Data-driven
discovery of quantitative rules in relational
databases. IEEE Trans. on Knowledge and
Data Engineering, 5(1):29-40, 1993.

V. Harinarayan, A. Rajaraman, and J.D.
Ullman. Implementing data cubes effi-
ciently. In Proc. ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of
Database Systems, pages 205-216, Montreal,
Canada, 1996.

M. Kantola, H. Mannila, K.-J. RBihB, and
H. Siirtola. Discovering functional and in-
clusion dependencies in relational databases.
Internat. Journal of Intelligent Systems,
7:591-607, 1992.

H. Mannila and H. Toivonen. Levelwise
search and borders of theories in knowledge
discovery. Data Mining and Knowledge
Discovery, 1(3):241-258, 1997.

R. Srikant and R. Agrawal. Mining quan-
titative association rules in large relational
tables. In Proc. ACM SIGMOD Int. Conf.
Management of Data, pages 1-12, Montreal,
Canada, 1996.

221

[WBBJ97] X.S. Wang, C. Bettini, A. Brodsky, and
S. Jajodia. Logical design for temporal
databases with multiple granularities. ACM
Trans. on Database Systems, 22(2):115-170,
1997.

[Wij99] J. Wijsen. Temporal FDs on complex
objects. To appear in the March, 1999 issue
of ACM Trans. on Database Systems, 1999.

[WM98] J. Wijsen and R. Meersman. On the com-
plexity of mining quantitative association
rules. Data Mining and Knowledge Discov-
ery, 2(3):263-281, 1998.

[WN98] J. Wijsen and R.T. Ng. Discovering roll-
up dependencies. Technical report, The
University of British Columbia, Dept. of
Computer Science, 1998. Also available at
http://www.uia.ua.ac.be/u/jwijsen/.

222

