
How to Recognise Different Tree Patterns from quite a Long

Way Away

Jan Hidders Philippe Michiels Jérôme Siméon Roel Vercammen

Abstract

Tree patterns are one of the main abstractions used to access XML data. Tree patterns
are used, for instance, to define XML indexes, and support a number of efficient evaluation
algorithms. Unfortunately deciding whether a particular query, or query fragment, is a tree
pattern is undecidable for most XML Query languages. In this paper, we identify a subset of
XQuery for which the problem is decidable. We then develop a sound and complete algorithm
to recognize the corresponding tree patterns for that XQuery subset. The algorithm relies on
a normal form along with a set of rewriting rules that we show to be strongly normalizing.
The rules have been implemented and result in a normal form which is suitable for compiling
tree patterns into an appropriate XML algebra.

1 Introduction

Recognizing trees can be a difficult task. Some trees look like shrubberies, while some shrubberies,
seen from afar, look like trees. Recognizing tree patterns in full-fledge XML Query languages
is even harder, and notably, it is undecidable for the whole XQuery language. Tree patterns
are used extensively as a representation for accessing XML data. For instance, numerous ef-
forts have focused on the development of efficient algorithms for tree patterns [Bruno et al., 2002,
Fontoura et al., 2005, Lu et al., 2005b, Jiang et al., 2004, Choi et al., 2003, Gottlob et al., 2002,
Grust et al., 2003] and corresponding indexes [Grust et al., 2004, Chin-Wan Chung and Shim, 2002,
Li and Moon, 2001, Chien et al., 2002, Jiang et al., 2003, Lu et al., 2005a, Chen et al., 2004]. How-
ever, current compilers typically only recognize such tree patterns when they are written as very
simple XPath expressions. In this paper, we study the problem of deciding whether a query is a
tree pattern or not, and if yes how to recognize which tree pattern it is. We identify a subset of
XQuery for which the problem is decidable. We then develop a sound and complete algorithm to
recognize the corresponding tree pattern for a given query in that subset. The algorithm relies
on a normal form along with a set of rewriting rules that we show to be strongly normalizing.
The rules have been implemented and result in a normal form which is suitable for compiling Tree
Patterns into an appropriate XML algebra.

Tree patterns [Bruno et al., 2002] have been used extensively for XML processing because
they provide the right abstraction to describe access to tree-structured data. They are typically
defined as simple trees whose nodes are labelled with XML names, and edges describe either
child or descendant relationships. Figure 1 on the left, shows some tree patterns expressed in
XQuery. Most XML Query languages do not directly support tree patterns, but usually rely on
path navigation primitives based on XPath. Very simple XPath expressions, such as Q1a on
Figure 1 look very similar to tree patterns and are easy to recognize as such. Note however that
even in that case, XPath differs from a tree pattern in that it can only return nodes from one
branch while other branches act as predicates (the emailaddress branch in our example). This
work focusses on tree patterns that correspond with XPath expressions and from now on, we also
refer to tree patterns as XPath expressions, i.e., having exactly one node of the pattern as output
node for which the result is returned in document order and without duplicates.

Determining whether an arbitrary expression is a tree pattern is far from trivial. For instance,
Q1b and Q1c which are written using a combination of Path expressions and FLWOR expressions,

1

are equivalent to Q1a and therefore are tree patterns. In some cases, subtle changes in the query
can affect its semantics in a way that makes it different from a tree pattern. For instance, Q1n
is almost identical to Q1b but does not return the corresponding nodes in document order. As
shown in [Fernández et al., 2005], deciding whether a simple XPath expression returns nodes in
document order or not depends on the particular combination of axes that are used in it. For
instance, Q2 returns nodes in document order because the first step uses the child axis, making sure
the nodes that are the input for the second step do not have an ancestor-descendant relationship.
However, that property does not hold for Q2n and as a result the query may not return nodes in
document order and therefore is not a tree pattern. We use similar techniques to those presented
in [Fernández et al., 2005] for deciding the so called ord and nodup properties for a different
fragment of XQuery. We also show that whether an expression yields ordered and duplicate-free
results, is the deciding factor for determining whether the expression is an XPath expression, and
thus can be expressed with a tree pattern.

Q1a $d//person[emailaddress]/name

(for $x in
Q1b $d//person[emailaddress]

return $x)/name

let $x :=
for $y in $d//person

Q1c where $y/emailaddress
return $y

return $x/name

Q2 for $x in $d/item[description]
return $x//listitem

for $x in
Q1n $d//person[emailaddress]

return $x/name

Q2n for $x in $d//item
where $x/description
return $x//listitem

Figure 1: Some examples of tree patterns (left) and non-tree patterns (right).

More generally, an important requirement for a query compiler is the ability to detect funda-
mental access operations independently of the way the query is written. In the case that interest
us, we believe all the queries Q1 should be recognized as tree patterns, and compiled as such to
the appropriate algorithms which can take advantage of available indexes. There has been very
little work on trying to address that problem. Compilation techniques that take tree patterns into
account, as well as corresponding rewritings and algebraic optimization rules have been proposed
in [Michiels et al., 2007]. While the proposed approach works on the complete languages, it is not
complete. To the best of our knowledge, this paper is the first to identify a precise fragment of
XQuery for which a complete algorithm exists.

The rest of this paper is organized as follows. In Section 2, we formally introduce tree patterns,
and the query fragment that we consider. In Section 3, we present the algorithm used to decide
whether a query in that fragment is a tree pattern. In Section 4, we show that all expressions in
the considered fragment that return a result in document order and without duplicates are tree
patterns and we give a set of rules to obtain the corresponding tree pattern. Finally, we discuss
some related work in Section 6 and conclude the paper in Section 7.

2 Preliminaries

We first define a few essential notions that are used in the rest of the paper. We then define
formally the notion of tree pattern, and introduce the XQuery fragment on which our algorithm
work.

2

2.1 Essential Notions

Before proceeding to the heart of the problem, we present the usual concepts.

• XML store, (simply called store here) simplified here to ordered sets of ordered node-labeled
trees, denoted by variables S, S′, . . . , S1, . . .

• Sub/super-store: S is a sub-store of S′ if S′ can be constructed from S by adding extra
edges and / or nodes.

• XML value over a store, (simply called value here) simplified here to finite sequences of
nodes in the store, denoted by variables v, v′, . . . , v1, . . ., and enumerated such as 〈n1, n2, n3〉.
Concatenation of two values v1 and v2 is denoted as v1 · v2.

• Sub/super-value: v is a sub-value of v′ if v′ = 〈n1, . . . , nk〉, {i1, . . . , ij} ⊆ {1, . . . , k} such
that i1 < . . . < ij and v = 〈ni1 , . . . , nij

〉.

• Variable names ($x, $y etc., including a special variable $dot) denoted by variables $x, $y,
$x′, . . . , $x1, . . .

• Variable assignment over a store S, a function that maps variable names to values over S,
denoted by variable Γ,Γ′, . . . ,Γ1, The variable $dot is always mapped to a single node.

• Sub/super-assignment. Variable assignment Γ is a sub-assignment of Γ′ if Γ($x) is a sub-
value of Γ′($x) for each variable $x.

2.2 Forest Patterns

Our work relies on a slightly extended notion of tree patterns that we call forest patterns. A forest
pattern is a set of tree patterns, all of which have an input which is denoted by a variable. This
last aspect makes sure that the proposed formalization can apply to any sub-expressions in the
context of an arbitrary queries.

Definition 2.1 (forest pattern). A forest pattern is a node-labeled forest that labels root nodes
with variables $x and other nodes with an axis-node test pair a::n, and in addition one node may
be marked as output node such that nodes labeled with $dot have one child if they are not output
node and no children if they are output node.

Forest patterns with an output node are called output patterns and those without an output
node are called condition patterns. Forest patterns that consist of a single tree are simply called
tree patterns.

Although defined as graphs we will usually use a textual representation of forest patterns and
their subtrees. A tree is denoted as l{t′1, . . . , t′m} where l is the label of the root and either of the
form a::n or $x, and {t′1, . . . , t′m} is the set of subtrees directly under the root. If the root of the
tree is an output node then we add to l a superscript out as in $xout. If the set of subtrees is
empty then we omit it altogether. A forest pattern that consists of the trees t1, . . . , tn is simply
denoted as {t1, . . . , tn}. Since a single tree is also a forest we will identify the tree t with the forest
{t}. For two forests f1 and f2 we denote their disjoint union as f1 + f2 which is only defined if f1

and f2 are not both output patterns.
An example of a tree pattern and its textual representation that correspond to the query Q1a

in Figure 1 are given in Figure 2.
The semantics of a set of trees is defined given a store S and variable assignment Γ over S. It

is defined by embeddings which are functions h from the nodes of the pattern to nodes in the store
such that (1) if a node n in the pattern is labeled with variable $x then it is in Γ($x) and (2) if
a node is labeled with ax::nt then (a) if n′ is the parent of n in the pattern then h(n′) must have
relationship ax with h(n) in the store S or with Γ($dot) if n has not parent, and (b) if nt is a
node name then h(n) must be labeled with nt in the store S. The result of a forest pattern is then

3

$d{ desc::person { child::person {
 child::emailaddress,
 child::nameout } } }

child::name

$d

desc::person

child::emailaddress

Figure 2: Query Q1a as a tree pattern and its textual representation.

defined as the sequence that (1) contains exactly all the nodes n from the store S for which there
is an embedding that maps the output node to n and (2) is sorted in the document order defined
by the store. For a forest pattern this will be expressed by the judgment S, Γ ` f ⇒ x where S
a store, Γ a variable assignment over S and x the value over S that is the result of evaluating f
under S and Γ.

Note that the forest patterns {$x{child::a},$x{child::bout}} and {$x{child::a,child::bout}} do not
have the same semantics since the first returns all b children of nodes in $x if there is a node in $x
with an a child, whereas the second output pattern returns the b children of nodes in $x if these
nodes in $x have an a child.

2.3 CXQ Tree Pattern Fragment

The fragment of XQuery that we consider here, is the following:

Definition 2.2 (CXQ). A fragment of the XQuery Core language, defined by:
expr ::= $x | axis::ntest | ddo(expr) | if expr then expr | for $x in expr return expr

| let $x := expr return expr
ntest ::= label | *
axis ::= child | desc | d-o-s

with the restriction that in let $x := e1 return e2 the variable $x cannot be $dot.

Note that we abbreviate the expression if e1 then e2 else () to if e1 then e2 and fs:distinct-docorder
to ddo.

Because this fragment is expressed in terms of the XQuery Core [Draper et al., 2005], it covers
a larger fragment of the XQuery language than may seem. Notably, it is sufficient to express
XPath 1.0 expressions with structural predicates (without positional predicates or comparisons),
composed with FLWOR expressions. Notably, it supports all the queries used as examples in
Section 1.

Finally, we will use the following basic notions for CXQ expressions, and a notion of variable
substitution: FV (e) denotes the set of free variables in e. It is defined as usual except that
FV (a::n) = {$dot}. The judgment S, Γ ` e ⇒ x where S a store, Γ a variable assignment over S,
e a CXQ expression and x a value over S denotes that x can be the result of the evaluation of e
under S and Γ. Two expressions e and e′ are said to be equivalent, denoted as e ≡ e′, if for every
store S and variable assignment Γ over S it holds that S, Γ ` e ⇒ x iff S, Γ ` e′ ⇒ x.

Variable substitution is defined as usual except for $dot and includes α conversion that may
be necessary because of free variables in the expression that is substituted for the variable:

Definition 2.3 (Variable substitution). Given a CXQ expression e, a variable $x and a CXQ
expression e′ we define e[$x/e′] as follows:

4

• $y[$x/e′] =
{

e′ if $y = $x
$y if $y 6= $x

• ax::nt[$x/e′] =
{

for $dot in e′ return ax::nt if $x = $dot
ax::nt if $x 6= $dot

• ddo(e)[$x/e′] = ddo(e[$x/e′])

• (if e1 then e2)[$x/e′] = if e1[$x/e′] then e2[$x/e′]

• (for $y in e1 return e2)[$x/e′] ={
for $y in e1[$x/e′] return e2 if $y = $x or (e2 = ax::nt and $y = $dot)
for $z in e1[$x/e′] return (e2[$y/$z])[$x/e′] otherwise

with $z some variable not in FV (e′).

• (let $y := e1 return e2)[$x/e′] =
{

let $y := e1[$x/e′] return e2 if $y = $x
let $z := e1[$x/e′] return (e2[$y/$z])[$x/e′] if $y 6= $x

with $z 6= $dot some variable not in FV (e′).

It can be shown that the result of a substitution is well-defined. For this we define the expanded
size of an expression as the size of the syntax tree of e after all occurrences of the form ax::nt
that do not appear as e2 in an expression of the form for $dot in e1 return e2 are replaced with the
expression for $dot in $dot return ax::nt. It can then be shown with induction upon the expanded
size of e that (1) e[$x/e′] is well-defined and (2) the expanded size of e[$x/$y] is equal to the
expanded size of e.

3 Tree Pattern Decision for CXQ

We present an algorithm for deciding wether the result of an XQuery expression always is in
document order and duplicate-free. The approach is complete for CXQ, which was introduced in
Section 2.3. We show in Section 4 that queries in CXQ that do yield ordered and duplicate-free
results, can be expressed with a tree and we also provide an algorithm for determining which tree
pattern the query corresponds to. Before we proceed, we need to discuss some preliminary lemmas
and theorems that are required to show soundness and completeness for the decision algorithm.

Lemma 3.1 (Unique result of CXQ). Given a store S, an assignment Γ over S and a CXQ
expression e there is exactly one value v over S such that S, Γ ` e ⇒ v.

Proof. Easily shown with induction upon the structure of e.

Lemma 3.2 (Monotonicity of CXQ). For all stores S, S′, assignments Γ,Γ′ over S and S′,
respectively, and CXQ expressions e it holds that if S′ is a super-store of S and Γ′ is a super-
assignment of Γ then the result of e under S′ and Γ′ is a super-value of the result of e under S
and Γ.

Proof. We show this with induction upon the structure of e:

• Assume e = $x : By definition Γ′($x) is a super-value of Γ($x).

• Assume e = a::n : Since Γ′ is a super-assignment of Γ it holds that Γ′($dot) = Γ($dot), and
since S is a projection of S′ it holds that the axis returns under S′ and a super-value of the
value that is returned under S.

• Assume e = ddo(e1) : By induction the lemma holds for e1, and clearly if v is a sub-value of
v′ then ddo(v) is a sub-value of ddo(v′).

5

• Assume e = if e1 then e2 : By the semantics of e it holds that if S, Γ ` e ⇒ v then at least
one of the following holds: (1) the result v1 of e1 under S and Γ is non-empty and v is the
result of e2 under S and Γ and (2) the result of e1 under S and Γ is empty and v = 〈〉. If we
assume (1) then, by induction it follows that the result of e1 under S′ and Γ′ is non-empty
and the result v′ of e2 under S′ and Γ′ is a super-value of v. By the semantics of e it then
holds that v′ is the value of e under S′ and Γ′. If we assume (2) then the result of e under
S′ and Γ′ is a super-value of v because every value is a super-value of 〈〉.

• Assume e = for $x in e1 return e2 : By the semantics of e it holds that if S, Γ ` e ⇒ v then
there is a value v1 = 〈n1, . . . , nk〉 such that S, Γ ` e1 ⇒ v1 and values v2,1, . . . , v2,k such that
(1) S, Γ[$x 7→ 〈ni〉] ` e2 ⇒ v2,i for each 1 ≤ i ≤ k and (2) v = v2,1 · . . . · v2,k. By induction
there is a super-value v′1 of v1 such that S′,Γ′ ` e1 ⇒ v′1. It also holds by induction that
there are values v′2,1, . . . , v

′
2,k such that for each 1 ≤ i ≤ k (1) S′,Γ′[$x 7→ 〈ni〉] ` e2 ⇒ v′2,i

and (2) v′2,i is a super-value of v′2,i. By Lemma 3.1 and the semantics of e it follows that
there is a value v′ such S′,Γ′ ` e ⇒ v′ and v′ is a super-value of v′2,1 · . . . · v′2,k and, hence,
also of v = v2,1 · . . . · v2,k.

• Assume e = let $x := e1 return e2 : By induction the result v′ of e1 under S′ and Γ′ is a
super-value of the result v under S and Γ. By induction it also follows that the result of e2

under S′ and Γ′[$x 7→ v′] is a super-value of the result under S and Γ[$x 7→ v].

Lemma 3.3 (Condition Satisfaction). Given a store S, an assignment Γ over S and a CXQ
expression e there is a super-store S′ of S, a super-assignment Γ′ of Γ such that the result of e
under S′ and Γ′ is non-empty and if Γ′($x) 6= Γ($x) then Γ($x) = 〈〉 and Γ′($x) is a singleton
sequence.

Proof. We show this with induction upon the structure of e:

• Assume e = $x : If Γ($x) = 〈〉 then add a new node to Γ($x) and to S as a singleton tree.

• Assume e = a::n : Then take the node n′ in Γ($dot) and add a child under it in S that
satisfies the node test n.

• Assume e = ddo(e1) : By induction the lemma holds for e1, and since ddo(e1) returns a
non-empty result if e1 returns a non-empty result, it also holds for ddo(e1).

• Assume e = if e1 then e2 : By induction there is a super-store S1 of S and super-assignment
Γ1 of Γ such that the result of e1 is non-empty. By induction there also exist the super-store
S2 of S1 and super-assignment Γ2 of Γ1 such that e2 returns a non-empty result. Moreover,
if Γ2 differs from Γ for $x then either Γ1($x) = 〈〉, in which case Γ($x) = 〈〉, or Γ1($x) 6= 〈〉,
in which case Γ2($x) = Γ1($x) and, since Γ2 differs from Γ for $x, so does Γ1 and therefore
Γ($x) = 〈〉. By Lemma 3.2 it holds that the result of e1 under S2 and Γ2 is also non-empty,
so the result of e under S2 and Γ2 is indeed non-empty.

• Assume e = for $x in e1 return e2 : By induction there is a super-store S1 of S and super-
assignment Γ1 of Γ such that the result of e1 is non-empty. Let n be a node in this result,
then by induction there is a superstore S2 of S1 and super-assignment Γ2 of Γ1[$x 7→ 〈n〉]
such that the result of e2 under S2 and Γ2 is non-empty and Γ2($x) = 〈n〉. By Lemma 3.2
it holds that the result of e1 under S2 and Γ2[$x 7→ Γ1($x)] also contains n, so the result
of e under S2 and Γ2[$x 7→ Γ1($x)] is indeed non-empty. Moreover, if Γ2[$x 7→ Γ1($x)]
differs from Γ for $x then Γ1 differs from Γ for $x and therefore Γ($x) = 〈〉. If, on the other
hand, Γ2[$x 7→ Γ1($x)] differs from Γ for $y 6= $x then either Γ1($y) = 〈〉 and therefore also
Γ($y) = 〈〉, or Γ1($y) 6= 〈〉, in which case Γ2($y) = Γ1($y) and, since Γ2 differs from Γ for
$y, so does Γ1 and therefore Γ($y) = 〈〉.

6

• Assume e = let $x := e1 return e2 : By induction there is a super-store S1 of S and super-
assignment Γ1 of Γ such that the result of e1 is non-empty. Let v1 be this result, then by
induction there is a superstore S2 of S1 and super-assignment Γ2 of Γ1[$x 7→ v1] such that
the result of e2 under S2 and Γ2 is a non-empty value v2 and Γ2($x) = v1. By Lemma 3.2
it holds that the result of e1 under S2 and Γ2[$x 7→ Γ1($x)] is a super-value v′1 of v1, and
the result of e2 under S2 and Γ2[$x 7→ v′1] is a super-value v′2 of v2, and so the result of e
under S2 and Γ2[$x 7→ Γ1($x)] is indeed non-empty. Moreover, if Γ2[$x 7→ Γ1($x)] differs
from Γ for $x then Γ1 differs from Γ for $x and therefore Γ($x) = 〈〉. If, on the other
hand, Γ2[$x 7→ Γ1($x)] differs from Γ for $y 6= $x then either Γ1($y) = 〈〉 and therefore also
Γ($y) = 〈〉, or Γ1($y) 6= 〈〉, in which case Γ2($y) = Γ1($y) and, since Γ2 differs from Γ for
$y, so does Γ1 and therefore Γ($y) = 〈〉.

Just as for pure XPath expressions [Fernández et al., 2005], it is possible to determine some
static properties for CXQ expressions and their values that assist in deciding wether that expression
returns ordered and duplicate-free results. A property π holds for an expression e if for any store
S and any variable assignment Γ, s.t. S, Γ ` e ⇒ v, the list of nodes in v satisfies π.

Definition 3.1 (Value property). We distinguish the following properties: no2d, gen, ord and
nodup. If a value v over an store S has a property π then we denote this as v : π. The semantics
of these properties is defined as follows:

• v : no2d iff there are not two distinct nodes in v

• v : gen iff all nodes in v belong the the same generation of a tree in S

• v : ord iff v is ordered in the document order of S

• v : nodup iff every node appears at most once in v

Definition 3.2 (Property table). An property table T is a function that maps variable names
to sets of value properties. A value assignment Γ is said to satisfy T if for every variable $x and
every π ∈ T ($x) it holds that Γ($x) : π.

The result of an expression v can be bound to a variable, in which case the variable is said to
have the same properties as v. In order to derive properties for subexpressions that use variable
references, we need to map every in-scope variable to a set of properties as follows.

Definition 3.3 (Expression property). We say that a CXQ expression e has property π under the
property table T , denoted as T ` e : π, if it holds for every store S and every value assignment Γ
over S that satisfies T that if S, Γ ` e ⇒ x then x : π.

In the following we define the notion of root variable of an expression which can be informally
described as the variable from which the expression starts to navigate in order to obtain the
resulting nodes.

Definition 3.4 (Root variable). The root variable of a CXQ expression e, denoted as rv(e), is
inductively defined as follows:

• rv($x) = $x

• rv(a::n) = $dot

• rv(ddo(e)) = rv(e)

• rv(if e1 then e2) = rv(e2)

• rv(for $x in e1 return e2) =
{

rv(e1) if rv(e2) = $x
rv(e2) if rv(e2) 6= $x

7

Name Premises Conclusion

Var π ∈ T ($x) T ` $x : π
VarClos T ` $x : no2d T ` $x : ord, gen

Dot T ` $dot : no2d, nodup
DdoStep a ∈ {child, desc, d-o-s} T ` a::n : ord, nodup

ChildStep T ` child::n : gen
DdoSet π ∈ {no2d, gen} ∧ T ` e : π T ` ddo(e) : π
DdoSeq T ` ddo(e) : ord, nodup

If π ∈ {no2d, gen, ord, nodup} ∧ T ` e2 : π T ` if e1 then e2 : π
Let P = {π | T ` e1 : π} ∧ T [$x 7→ P] ` e2 : π T ` let $x := e1 return e2 : π

ForSetRv π ∈ {no2d, gen} ∧ T ` e1 : π ∧ T ` for $x in e1 return e2 : π
T [$x 7→ {no2d, nodup}] ` e2 : π

ForSetNoRv π ∈ {no2d, gen} ∧ rv(e2) 6= $x ∧ T ` for $x in e1 return e2 : π
T [$x 7→ {no2d, nodup}] ` e2 : π

ForOrdRv1 rv(e2) = $x ∧ T ` e1 : ord ∧ T ` for $x in e1 return e2 : ord
T [$x 7→ {no2d, nodup}] ` e2 : no2d

ForOrdRv2 rv(e2) = $x ∧ T ` e1 : ord, gen, nodup ∧
T [$x 7→ {no2d, nodup}] ` e2 : ord

T ` for $x in e1 return e2 : ord

ForOrdNoRv1 rv(e2) 6= $x ∧ T [$x 7→ {no2d, nodup}] `
e2 : no2d

T ` for $x in e1 return e2 : ord

ForOrdNoRv2 T ` e1 : no2d, nodup ∧
T [$x 7→ {no2d, nodup}] ` e2 : ord

T ` for $x in e1 return e2 : ord

ForNodupRv1 rv(e2) = $x ∧ T ` e1 : nodup, gen ∧
T [$x 7→ {no2d, nodup}] ` e2 : nodup

T ` for $x in e1 return e2 : nodup

ForNodupRv2 rv(e2) = $x ∧ T ` e1 : nodup ∧
T [$x 7→ {no2d, nodup}] ` e2 : nodup, gen

T ` for $x in e1 return e2 : nodup

ForNodupNoRv T ` e1 : no2d, nodup ∧
T [$x 7→ {no2d, nodup}] ` e2 : nodup

T ` for $x in e1 return e2 : nodup

Figure 3: Inference rules for deriving the ord and nodup properties for expressions in CXQ.

• rv(let $x := e1 return e2) =
{

rv(e1) if rv(e2) = $x
rv(e2) if rv(e2) 6= $x

The meaning of rv(e) can be made more precise by the following claim:

Theorem 3.1. For every CXQ expression e there is a CXQ expression e′ such that (1) ddo(e) ≡
ddo(e′) and (2) FV (e′) = {rv(e)} or e′ is of the form if e′1 then e′2 such that FV (e′2) = {rv(e)}.

This will be proven formally in Section 4.

3.1 The algorithm

The algorithm for deriving the properties for a CXQ expression is defined by the set of inference
rules given in Figure 3. In these rules the variables e, e1, . . . range over expressions in CXQ, not
all XQuery expressions. Indeed, not all of the rules are sound for arbitrary XQuery expressions.

Note that in the rules ForOrdNoRv2 and ForNodupNoRv the premisse rv(e2) 6= $x, which
is present in ForSetNoRv and ForOrdNoRv1, is omitted because it is unnecessary.

Example 3.1. We now illustrate the algorithm with a simple example. Consider the following
XQuery expression:

for $x in $d/item[description] return $x//listitem

This expression is normalized into CXQ as follows:

for $x in ddo(
for $dot in ddo(

8

for $dot in $d return child::item)
return

if child::description then $dot)
return ddo(

for $dot in ddo(
for $dot in $x return d-o-s::*)

return child::listitem)

Assume $d: no2d, nodup, then by VarClos we also know that $d: ord, gen. From DdoStep
and ChildStep we know that child::item: ord, nodup, gen. From ForSetRc, ForOrdRv2 and
ForNodupRv2 we know that

for $dot in $d return child::item: ord, nodup, gen

All these properties are preserved by the surrounding ddo operation (DdoSet, DdoSeq) and
they also hold for the surrounding for expression because of Dot, If, ForOrdRv1 and ForN-
odupRv2. Similarly, we can derive that

ddo(
for $dot in

ddo(for $dot in $x return d-o-s::*)
return child::listitem

) : ord, nodup.

Finally, we use ForOrdRv2 and ForNodupRv1 to derive ord and nodup for the entire
expression.

The following theorem states that our algorithm is both sound and complete for CXQ, i.e., we
derive ord (nodup) for a CXQ expression e iff for every XML store S and variable assignment over
S it holds that the result of e is in document order (without duplicates).

Theorem 3.2 (Soundness and Completeness). The inference rules in Figure 3 are sound and
complete w.r.t. the ord and nodup properties for expressions in CXQ.

The proof of this theorem is given in the following subsection.

3.2 Proof of Soundness and Completeness

We show for each type of expression that the presented rules are sound and complete. The proof
proceeds by induction upon the structure of the expression.

3.2.1 Variable

Soundness for Var follows from the fact that Γ($x) satisfies the properties in T ($x). Soundness
for VarClos holds since if all the nodes in Γ($x) are the same then $x is sorted in document order
and all the nodes belong to the same generation. Soundness for Dot holds since every assignment
maps $dot to a single node.

For completeness we consider each property:

no2d If no2d is not derived then $x 6= $dot and T ($x) is a subset of {gen, ord, nodup} and it is
easy to construct a store S and a value v over S such that v : π for each π ∈ T ($x) but not
v : no2d as follows. In S a tree with root n1 and two children n2 and n3, and v = 〈n2, n3〉.

gen If gen is not derived then $x 6= $dot and T ($x) is a subset of {ord, nodup} and it is easy to
construct a store S and a value v over S such that v : π for each π ∈ T ($x) but not v : gen
as follows. In S a tree with root n1 and child n2, and v = 〈n1, n2〉.

9

ord If ord is not derived then $x 6= $dot and T ($x) is a subset of {gen, nodup} and it is easy to
construct a store S and a value v over S such that v : π for each π ∈ T ($x) but not v : ord
as follows. In S a tree with root n1 and two children n2 and n3, and v = 〈n3, n2〉.

nodup If nodup is not derived then $x 6= $dot and T ($x) is a subset of {no2d, gen, ord} and it is
easy to construct a store S and a value v over S such that v : π for each π ∈ T ($x) but not
v : nodup as follows. In S a tree with root n1, and v = 〈n1, n1〉.

3.2.2 Step Expression

Soundness of DdoStep follows from the fact that after each step of a path expression the result
is sorted in document order and duplicates are removed. The soundness of ChildStep follows
from the child axis preserves the gen property.

For completeness we consider each property:

no2d The property no2d is never derived, which is correct since we can construct a store S and
an assignment Γ that maps $dot to a value v over S and satisfies all tables T but the result
of a::n under Γ does not have property no2d as follows. In S a tree with root n1 and two
children n2 and n3, and v = 〈n1〉.

gen For the axes desc and d-o-s the property gen is never derived, which is correct since we can
construct a store S and an assignment Γ over S that maps $dot to a value v over S and
satisfies all tables T but the result of a::n under Γ does not have property gen as follows. In
S a tree with root n1 and a child n2 which again has a child n3, and v = 〈n1〉. For the axis
child the property gen is always derived.

ord The property ord is always derived.

nodup The property nodup is always derived.

3.2.3 The ddo operation

Since no2d and gen are properties of the set of nodes in a sequence and this set is not changed by
the ddo operation it follows that DdoSet is sound and complete for these properties. Since the
result of the ddo operation is always sorted in document order and without duplicates, the rule
DdoSeq is also sound and complete.

3.2.4 The if expression

Soundness of If follows from that fact that the expression either returns the result of e2, which
has property π by induction, or the empty sequence, which has all properties in the mentioned
set.

Completeness of the rule If follows from two observations: The first is that, as shown by
Lemma 3.3, given a store S and assignment Γ over S that satisfies T we can always construct a
super-store S′ and a super-assignment Γ′ over S′ such that e1 returns a non-empty result and Γ′

also satisfies T . The second observation, as shown by Lemma 3.2, is that the result of e2 under
S′ and Γ′ will be a super-value of the result under S and Γ. Therefore, since the properties no2d,
gen, ord and nodup are monotonic in the sense that if they do not hold for a value v then they
also do not for all super-values of v, it holds that if they did not hold for the result of e2 under S
and Γ then they also not hold for the result of e under S′ and Γ′.

3.2.5 The let expression

Soundness of the rule Let can be shown as follows. By induction we know that for a store S and
assignment Γ over S that satisfies a property table T all properties in P hold for the result v of e1.
It follows that the assignment Γ[$x 7→ v] satisfies the property table T [$x 7→ P], and by induction

10

it follows that if we derive T [$x 7→ P] ` e2 : π then π indeed holds for the result of e2 under S
and Γ[$x 7→ v], and therefore for the result of e.

Completeness of Let is based on two observations. The first is that for CXQ expressions it
holds that (let $x := e1 return e2) ≡ (e2[$x/e1]) where e2[$x/e1] is expression e2 with all free
occurrences of $x replaced with e1. The second observation is that for every property π it holds
that the rules derive let $x := e1 return e2 : π iff they derive that e2[$x/e1] : π. It follows that if
the rules without the rule Let are complete for CXQ without let expressions then the rules with
Let are complete for CXQ.

3.2.6 The for expression

We consider each property separately:

Property no2d. Soundness of ForSetRv for no2d follows by induction and Lemma 3.1. Indeed
for the node in the result of e1, if it exists, the result of e2 contains always the same node if it is
non-empty. Soundness of ForSetNoRv for no2d follows also by induction and Lemma 3.1 and
Lemma 3.1. The two lemmas together show that for every possible value of $x the result of e2

contains the same node if it is non-empty.
Completeness: if no2d is not derived for a for expression, then from the inference rules the

following should be true

(T ` e1 : ¬no2d ∨ T [$x 7→ {no2d, nodup}] ` e2 : ¬no2d)
∧

(rv(e2) 6= $x ∨ T [$x 7→ {no2d, nodup}] ` e2 : ¬no2d)

which is equivalent to

T ` e1 : ¬no2d ∧ rv(e2) 6= $x∨
T ` e1 : ¬no2d ∧ T [$x 7→ {. . .}] ` e2 : ¬no2d∨
T [$x 7→ {. . .}] ` e2 : ¬no2d ∧ rv(e2) 6= $x∨
T [$x 7→ {. . .}] ` e2 : ¬no2d

where the second and third conjunctions are subsumed by the last condition. Thus we need to
show that for some instance S and an assignment Γ over S that satisfies T :

for $x in e1 return e2 : ¬no2d∧
T [$x 7→ {no2d, nodup}] ` e2 : no2d

⇒
rv(e2) = $x ∧ T ` e1 : ¬no2d

If e1: no2d, then by Lemma 3.1, it follows that the for expression also has the no2d property,
which is a contradiction. On the other hand, if rv(e2) 6= $x, then it follows that the result of e2

is repeated one or more times, which does not affect the no2d property. So once again, the for
expression has the no2d property, which is a contradiction.

Property gen. Soundness of ForSetRv for gen follows by induction, Lemma 3.1, Lemma 3.1
and the observation that if gen is derived for a CXQ expression e with a single free variable $x
then the set of nodes in the result of e is a subset of the set of nodes in the result of $x(/child::*)n

for some n ≥ 0. Soundness of ForSetNoRv for gen follows also by induction and Lemma 3.1
and Lemma 3.1. The two lemmas together show that for every possible value of $x the result of
e2 contains the same set of nodes if it is non-empty.

Completeness: Analogous to no2d, we need to show that

for $x in e1 return e2 : ¬gen∧
T [$x 7→ {no2d, nodup}] ` e2 : gen

⇒
rv(e2) = $x ∧ e1 : ¬gen

11

If e1: gen, then by Lemma 3.1 and by the observation that if gen is derived for a CXQ
expression e with a single free variable $x then the set of nodes in the result of e is a subset of the
set of nodes in the result of $x(/child::*)n for some n ≥ 0, it follows that the for expression also
has the gen property, which is a contradiction. On the other hand, if rv(e2) 6= $x, then it follows
that the result of e2 is repeated one or more times, which does not affect the gen property. So
once again, the for expression has the gen property, which is a contradiction.

Property ord.

Lemma 3.4. For every instance S and an assignment Γ over S that satisfies T , if for a CXQ
expression e it holds that rv(e) = $x, where T ` $x : no2d, nodup and the rules derive that
T ` e : no2d then the result of e will either be empty or equal to $x.

Proof. By induction on the subexpressions of e.

• Suppose e is a step: This is impossible, because there are no rules that derive no2d for a
step expression;

• Suppose e is a variable reference: In that case, since rv(e) = $x, e must be $x itself.
Obviously, only $x is returned here.

• Suppose e is if e1 then e2: We know that the lemma holds for e1 and e2 separately. It is easy
to see that, depending on the outcome of e1 and since rv(e) = $x, e2 will either return the
node in $x or the empty sequence.

• Suppose e is for $l in e1 return e2. If rv(e2) = $l then rv(e1) = $x, but since T ` e2 : no2d, by
induction it can only return either $l, which contains the node in $x or the empty sequence.
If rv(e2) 6= $l then rv(e2) = $x and e2 by induction only returns nodes from $x.

• Suppose e is let $l := e1 return e2. If rv(e2) = $l then rv(e1) = $x, but since T ` e2 : no2d, by
induction it can only return either $l, which contains the node in $x or the empty sequence.
If rv(e2) 6= $l then rv(e2) = $x and e2 by induction only returns nodes from $x.

Lemma 3.5. For every instance S and an assignment Γ over S that satisfies T , if for a CXQ
expression e it holds that rv(e) = $x, where T ` $x : no2d, nodup then set of nodes in the result
of e will be a subset of the set of nodes in the result of $x/d-o-s::*.

Proof. By induction on the subexpressions of e.

• Suppose e is a step or a variable reference, then the Lemma holds, since any step in CXQ
only selects descendants of $x.

• Suppose e is if e1 then e2: It is easy to see that since rv(e) = $x, e2 by induction returns a
subset of the result of $x/d-o-s::*, possibly the empty sequence depending on the outcome
of e1.

• Suppose e is for $l in e1 return e2. If rv(e2) = $l then rv(e1) = $x, then by induction e2

returns only descendants of $x, possibly including $x or the empty sequence. If rv(e2) 6= $l
then rv(e2) = $x and the same holds.

• Suppose e is let $l := e1 return e2. If rv(e2) = $l then rv(e1) = $x, then by induction e2

returns only descendants of $x possibly including $x, or the empty sequence. If rv(e2) 6= $l
then rv(e2) = $x and the same holds.

12

The ord property is derived by four rules: ForOrdRv1, ForOrdRv2, ForOrdNoRv1 and
ForOrdNoRv2. Soundness of ForOrdRv1 follows by induction and the fact that if rv(e2) = $x
and the rules derive that T [$x 7→ {no2d, nodup}] ` e2 : no2d then the set of nodes in the result of e2

is a subset of the set of nodes in the result of $x, see Lemma 3.4. Soundness of ForOrdRv2 follows
by induction and the fact that if rv(e2) = $x then the set of nodes in the result of e2 is a subset of
the set of nodes in the result of $x/d-o-s::*, see Lemma 3.5. Soundness of ForOrdNoRv1 follows
by induction and Lemma 3.1 and Lemma 3.1. Indeed, the result of e2 will, if it is non-empty,
contain the same node for each node in the result of e1. Soundness of ForOrdNoRv2 follows by
induction and the fact that the result of e1 will be empty or a singleton sequence.

Completeness: From the inference rules ForOrdRv1, ForOrdRv2, ForOrdNoRv1 and
ForOrdNoRv2, we need to show that

(rv(e2) 6= $x ∨ e1 : ¬ord ∨ e2 : ¬ord)
∧ (rv(e2) 6= $x ∨ e1 : ¬ord ∨ e1 : ¬gen ∨ e1 : ¬nodup ∨ e2 : ¬ord)
∧ (rv(e2) = $x ∨ e2 : ¬no2d)
∧ (rv(e2) = $x ∨ e1 : ¬no2d ∨ e1 : ¬nodup ∨ e2 : ¬ord)
⇒ (for $x in e1 return e2) : ¬ord

This can be rewritten as
(rv(e2) 6= $x ∧ e1 : ¬no2d ∧ e2 : ¬no2d)
∨ (rv(e2) = $x ∧ e1 : ¬ord) ∨ (e1 : ¬ord ∧ e2 : ¬no2d)
∨ (e1 : ¬gen ∧ e2 : ¬no2d) ∨ (e1 : ¬nodup ∧ e2 : ¬no2d)
∨ e2 : ¬ord
⇒ (for $x in e1 return e2) : ¬ord

• if rv(e2) 6= $x ∧ e1 : ¬no2d ∧ e2 : ¬no2d then, since the result of e1 can contain multiple
nodes, the result of e2 - also having multiple nodes - will possibly be concatenated multiple
times resulting in an out of order sequence;

• if rv(e2) = $x ∧ e1 : ¬ord then either the nodes bound to $x or a subset of the nodes in
the results of $x/d-o-s::* are returned. If the nodes in the result of e1 are out of document
order, then so is the concatenation of the corresponding sets of descendants;

• if e1 : ¬ord ∧ e2 : ¬no2d, then there are two possibilities: if rv(e2) = $x, then the problem
is a special case of the previous one, otherwise, since e1 : ¬ord, the result of e1 may contain
several nodes, causing the result of e2 to be concatenated several times;

• if e1 : ¬gen ∧ e2 : ¬no2d: analogous to the previous case;

• if e1 : ¬nodup ∧ e2 : ¬no2d: analogous to the previous case;

• if e2 : ¬ord then the result is trivially out of document order.

Property nodup. The nodup property is derived by three rules: ForNodupRv1, ForNodupRv2
and ForNodupNoRv. The soundness of ForNodupRv1 follows by induction and the fact that
if rv(e2) = $x then the set of nodes in the result of e2 is a subset of the set of nodes in the result of
$x/d-o-s::*. The soundness for ForNodupRv2 follows from the fact that if a set of nodes contain
no duplicates, then the set of nodes, obtained from taking all the children from the nodes in the
first set, will aslo be free of duplicates. The soundness of ForNodupNoRv follows by induction
and the fact that the result of e1 will be empty or a singleton sequence.

Completeness: From the inference rules ForNodupRv1, ForNodupRv2 and ForNodup-
NoRv, we need to show that

(rv(e2) 6= $x ∨ e1 : ¬nodup ∨ e1 : ¬gen ∨ e2 : ¬nodup)
∧ (rv(e2) 6= $x ∨ e1 : ¬nodup ∨ e2 : ¬nodup ∨ e2 : ¬gen)

13

∧ (rv(e2) = $x ∨ e1 : ¬no2d ∨ e1 : ¬nodup ∨ e2 : ¬nodup)
⇒ (for $x in e1 return e2) : ¬nodup

which can be rewritten as
(rv(e2) 6= $x ∧ e1 : ¬no2d) ∨ (e1 : ¬gen ∧ e1 : ¬gen)
∨e1 : ¬nodup ∨ e2 : ¬nodup
⇒ (for $x in e1 return e2) : ¬nodup

• if rv(e2) 6= $x∧ e1 : ¬no2d, then since the result of e1 can contain multiple nodes, the result
of e2 will be repeated multiple times;

• if e1 : ¬gen∧ e1 : ¬gen then the for expression can contain duplicates because (1) if ¬gen is
derived for an expression, then this is due to the following of one or more desc or desc-or-self
steps (2) thus, the result of e1 will contain ancestor-descendant related nodes, (3) for such
nodes, following either the desc or desc-or-self step again, will result in duplicates;

• if e1 : ¬nodup then since e1 contains multiple nodes, the result of the for expression can
contain duplicates, even if rv(e2) 6= $x;

• if e2 : ¬nodup then the result of the for expression can trivially contain duplicates.

From the definition of the semantics of forest patterns it is clear that the ord and nodup
properties are necessary properties in order for an expression to be equivalent with a forest pattern.
In fact, as will be shown in the following section, this is also a sufficient condition and therefore
the following theorem holds.

Theorem 3.3. A CXQ expresssion is equivalent with a forest pattern iff it has the ord and nodup
properties.

The proof of this theorem proceeds by demonstrating that every CXQ expressions of the form
ddo(e) can be rewritten to a normal form that directly corresponds to and is equivalent with
certain forest patterns. Because of this theorem the presented inference rules are effectively an
algorithm for deciding whether an expression is equivalent with a forest pattern.

4 Recognizing Forest Patterns

In this section we show that all CXQ expressions which are both ord and nodup correspond to
a tree pattern and we give an algorithm to obtain this tree pattern. This algorithm is based on
rewrite rules that reduce the expression to some normal form. These rewrite rules also derive
information about to what extent the exact result of certain subexpression is relevant for the final
result of the expression. For example, in an expression of the form ddo(e) the result of e can be
changed by adding and/or remove duplicates or change the order of the nodes without affecting
the result of the whole expression. Another example is an expression of the form if e1 then e2

where the result of e1 can be changed as long as it is the empty sequence iff the original result
of e1 was empty without affecting the final result. To indicate these properties allow expressions
to be annotated. An expression e annotated by α is denoted as αe with α either ·, ∪ or ∨ which
represent the list concatenation, set union and boolean disjunction, respectively. Informally they
can be interpreted as saying that the value of the result of e may not be changed (for ·), the order
may be changed and duplicates may be added and removed (for ∪), and the result may be changed
as long as it stays non-empty iff it was non-empty (for ∨). We use variables α, β, etc. to range
over annotations. We use variables e, e1 etc. to range over the expression part of an annotated
expression.

For each annotation α we define an interpretation function Iα that is defined such that (1)
I ·(x) = x, (2) I∪(x) is the set that contains exactly all nodes in x and (3) I∨(x) is false if x is

14

the empty sequence and true otherwise. These functions define for each annotation equivalence
classes over sequences. Observe that for all annotations α it holds that Iα(e1)αIα(e2) = Iα(e1 ·e2).
The semantics of αe is then formally defined as the result of e which is mapped to an α-equivalent
sequence. Note that this leads to a non-deterministic semantics.

We define a strict total ordering ≺ on the annotations such that · ≺ ∪ ≺ ∨.

Definition 4.1 (CXQ+). The fragment CXQ+ is defined as CXQ extended with annotations.

The notion of variable substitution is generalized for CXQ+ such that α$x[$x/βe] = γe with γ
the maximum of α and β.

4.1 The Tree Pattern Normal Form

In this section we define the normal form to which we would like to normalize. The fundamental
starting point is that we uniquely would like to find the forest pattern that is expressed by a CXQ
expression with a ddo function applied to it. However, to understand the syntax to which we
should normalize we first consider what would be the expected mapping from a forest pattern to
a CXQ+ expression.

4.1.1 A Mapping From Forest Patterns to CXQ+

We start with describing how we expect that forest patterns are mapped to expressions in CXQ+

with the mappings X∪ for output patterns and X∨ for condition patterns:

1. Xα({t1, . . . , tn}) = αif T ∨(t1) then Xα({t2, . . . , tn})
if n > 1 and there is no output node in t1

2. Xα({t}) = T α(t)

and T ∪ for output trees and T ∪ for condition trees:

1. T ∪(lout) = ∪l

2. T ∨(l) = ∨l

3. T ∪(lout{t1, . . . , tn}) = ∪for $dot in ∪l return X∪({t1, . . . , tn, $dotout})
if n > 0 and l 6= $dot

4. T α(l{t1, . . . , tn}) = αfor $dot in ∪l return Xα({t1, . . . , tn})
if n > 0 and l 6= $dot

5. T α($dot{t}) = T α(t)

Recall that nodes labeled $dot have no children if they are output node, and one child if they are
not, so T ∪ and T ∨ are indeed defined for all output trees and condition trees, respectively. Observe
that X∪ preserves the semantics of the expression. Also observe that it is non-deterministic since
it picks an order for the subtrees.

Example 4.1. We now illustrate the mapping X with a simple example. Consider the following
output patterns:

$x { desc::person {
child::emailaddress,
child::nameout {

child::middlename } } }

This expression is mapped by X to CXQ+ as follows:

15

∪for $dot in ∪$x return (
∪for $dot in ∪desc::person return (

∪if ∨child::emailaddress
then (

∪for $dot in ∪child::name return (
∪if ∨child::middlename then ∪$dot))))

The correctness of X∪ is established by the following theorem.

Theorem 4.1. For all forest patterns f and values x, S, Γ ` f ⇒ x iff S, Γ ` ddo(X∪(f)) ⇒ x.

Proof. We prove with induction upon the structure of f that (1) S, Γ ` f ⇒ x iff S, Γ `
ddo(X∪(f)) ⇒ x and (2) there is an embedding of f under S and Γ iff S, Γ ` X∨(f) ⇒ x
for seme non-empty sequence x. We extend the textual notation with explicit node identifiers
as in $x(n1){desc::person(n2){child::emailaddress(n3), child::nameout(n4)}}. Consider the cases for
Xα:

1. X∪({t1, . . . , tn}) = ∪if T ∨(t1) then X∪({t2, . . . , tn}) if n > 1 and there is no output node
in t1. A node n′ is in the result of {t1, . . . , tn} iff there is an embedding that maps the
output node of {t1, . . . , tn} to v′. This is true iff there is am embedding of t1 and v′ is in the
result of {t2, . . . , tn}. By induction it holds that this is true iff X∨(t1) returns a non-empty
sequence and v′ is in the result of X∪({t1, . . . , tn}). This is true iff v′ is in the result of
∪if T ∨(t1) then X∪({t2, . . . , tn}).

2. X∨({t1, . . . , tn}) = ∨if T ∨(t1) then X∨({t2, . . . , tn}) if n > 1 and there is no output node in
t1. There is an embedding of {t1, . . . , tn} iff there is an embedding of t1 and of {t2, . . . , tn}.
By induction it holds that this is true iff both T ∨(t1) and X∨({t2, . . . , tn}) return a non-
empty sequence. This is true iff ∨if T ∨(t1) then X∨({t2, . . . , tn}) returns a non-empty se-
quence.

3. X∪({t}) = T ∪(t). Follows by induction.

4. X∨({t}) = T ∨(t). Follows by induction.

Consider the cases for T α:

1. T ∪(lout(n)) = ∪l. If l is of the form $x then it is clear that a node n′ is in the result of ∪$x
iff there is am embedding of $xout(n) that maps n to n′. If l is of the form ax::nt then node
n′ is in the result of ∪ax::nt iff n′ is labeled with nt if nt is a node name and has in S the ax
relationship with Γ($dot). The latter is true iff there is am embedding of ax::ntout(n) that
maps n to n′.

2. T ∨(l(n)) = ∨l. If l is of the form $x then it is clear that the result of ∨$x is non-empty
iff there is am embedding of $x(n). If l is of the form ax::nt then the result of ∨ax::nt is
non-empty iff there is a node n′ in S that is labeled with nt if nt is a node name and has
the ax relationship with Γ($dot). The latter is true iff there is am embedding of ax::nt(n).

3. T ∪(lout(n){t1, . . . , tn}) = ∪for $dot in ∪l return X∪({t1, . . . , tn, $dotout}) if n > 0 and l 6=
$dot. Consider the proposition that node v′ in S is in the result of lout(n){t1, . . . , tn}. This
is true iff there is an embedding of lout(n){t1, . . . , tn} that maps n to n′. This is true iff n′

is in the output of lout(n) and there is an embedding for {t1, . . . , tn} under the assignment
Γ′ = Γ[$dot 7→ n′]. This is true iff n′ is in the output of lout(n) and in the output of
{t1, . . . , tn, $dotout} under Γ′. By induction this is true iff n′ is in the result of ∪l and in
the result of X∪({t1, . . . , tn, $dotout}) under Γ′. This, then, is true iff n′ is in the result of
∪for $dot in ∪l return X∪({t1, . . . , tn, $dotout}).

4. T ∪(l(n){t1, . . . , tn}) = ∪for $dot in ∪l return X∪({t1, . . . , tn}) if n > 0 and l 6= $dot. Con-
sider the proposition that node v′ in S is in the result of l(n){t1, . . . , tn}. This is true iff

16

there is an embedding of l(n){t1, . . . , tn} that maps the output node to n′. This is true iff
there is a node n′′ in the output of lout(n) such that n′ is in the result of {t1, . . . , tn} under
the assignment Γ′ = Γ[$dot 7→ n′′]. By induction this is true iff there is a node n′′ is in the
result of ∪l such that n′ is in the result of X∪({t1, . . . , tn}) under Γ′. This, then, is true iff
n′ is in the result of ∪for $dot in ∪l return X∪({t1, . . . , tn}).

5. T ∨(l(n){t1, . . . , tn}) = ∨for $dot in ∪l return X∨({t1, . . . , tn}) if n > 0 and l 6= $dot. This
proof proceeds similar to the previous point except that the fact that n′ is in the result is
replaced with the fact that the result is non-empty.

6. T ∪($dot(n){t}) = T ∪(t). Consider the proposition that there is an embedding of $dot(n){t}
that maps the output node to n′. Since the root of t must be labeled with a label of the
form ax::nt this is true iff there is an embedding of t that maps its output node to n′. By
induction it follows that this is true iff n′ is in the result of T ∪(t).

7. T ∨($dot(n){t}) = T ∨(t). This proof proceeds similar to the previous point except that the
fact that n′ is in the result is replaced with the fact that the result is non-empty.

We proceed with defining the syntax of the CXQ+ fragment onto which forest patterns are
mapped by X∪. We will attempt to define this syntax such that (1) for every forrest pattern the
result of X∪ is in the syntax and (2) for every expression in the syntax there is forrest pattern
that is mapped to it. That (1) holds can by readily observed by noting that the following holds for
the non-terminals: fp describes the range of X∪, tp describes the range of T ∨, otp describes the
range of T ∪, atp describes the range of T ∨ restricted to trees with a $dot root, and aotp describes
the range of T ∪ restricted to trees with other roots.

Definition 4.2 (TPNF). Defined by the syntax:
fp ::= otp | ∪if tp then fp
tp ::= atp | ∨$x | otp ::= aotp | ∪$x | ∪$dot |

∨for $dot in ∪$x return rc ∪for $dot in ∪$x return orc
atp ::= ∨ax::nt | aotp ::= ∪ax::nt |

∨for $dot in ∪ax::nt return rc ∪for $dot in ∪ax::nt return orc
rc ::= atp | ∨if atp then rc orc ::= aotp | ∪if atp then (orc | ∪$dot)

where $x refers to the set of variables minus $dot.

4.1.2 From TPNF to Forest Patterns

Since the claim is that the normal form allows us to easily recognize forest patterns, we now
investigate the inverse of X∪. This is defined by the mapping F that maps subexpressions of
TPNF expressions to forest patterns such that expressions associated with tp, atp and rc are
mapped to a condition pattern, and expressions associated with fp, otp and aotp are mapped to
an output pattern:

1. F(∪$x) = $xout

2. F(∨$x) = $x

3. F(∪a::n) = $dot{a::nout}

4. F(∨a::n) = $dot{a::n}

5. F(αif ∨e1 then αe2) = F(∨e1) + F(αe2)

6. F(αfor $dot in ∪$x return αe1) = $x{t1, . . . , tn}
if F(αe1) = {$dot{t1}, . . . , $dot{tn}}

17

7. F(∪for $dot in ∪$x return ∪e1) = $xout{t1, . . . , tn}
if F(∪e1) = {$dot{t1}, . . . , $dot{tn}, $dotout}

8. F(αfor $dot in ∪a::n return αe1) = $dot{a::n{t1, . . . , tn}}
if F(αe1) = {$dot{t1}, . . . , $dot{tn}}

9. F(∪for $dot in ∪a::n return ∪e1) = $dot{a::nout{t1, . . . , tn}}
if F(∪e1) = {$dot{t1}, . . . , $dot{tn}, $dotout}

Observe that F is deterministic and is defined on all TPNF expressions and their subexpres-
sions. The latter can be shown with induction on the abstract syntax tree of an expression and
the observation that for expressions associated with the nonterminal rc the result of F is always of
the form {$dot{t1}, . . . , $dot{tn}} and the result of an expression associated with the nonterminal
orc is of this form or of the form {$dot{t1}, . . . , $dot{tn}, $dotout}.

The relationship with X∪ is established by the following theorem.

Theorem 4.2. The function F is the inverse of X∪, i.e., for every expression ∪e in TPNF it
holds that F(∪e) = f iff X∪(f) = ∪e.

Proof. We prove with induction upon the abstract syntax tree of the TPNF expression that it
holds for each subexpression αe of a TPNF expression it holds that F(αe) = f iff Xα(f) = αe.
Observe that for expressions associated with the nonterminals fp, otp and aotp it holds that α = ∪
and for the nonterminals tp and atp it is ∨.

We first consider the cases for fp:

• Assume fp = otp. Then by induction F∪(otp) = f iff X (f) = otp.

• Assume fp = ∪if tp1 then fp2. Then F(∪if tp1 then fp2) = f iff it holds that there are f1

and f2 such that f1 = F(tp1) and f2 = F(fp2) and f1 is a condition pattern with one
root, f2 is an output pattern and f = f1 + f2. By induction it holds that F(tp1) = f1 iff
X∨(f1) = tp1 and F(fp2) = f2 iff X∪(f2) = fp2. It follows by the definition of X that this
is then true iff X∪(f) = ∪if X∨(tp1) then X∪(fp2).

Next we consider the cases for otp:

• Assume otp = aotp. By induction F∪(aotp) = f iff X (f) = aotp.

• Assume otp = ∪$x such that $x 6= $dot. Then F∪(∪$x) = $xout and X∪($xout) = ∪$x.

• Assume otp = ∪$dot. Then F∪(∪$dot) = $dotout and X∪($dotout) = ∪$dot.

• Assume otp = ∪for $dot in ∪$x return orc1. Then F(orc1) is either of the form
{$dot{t1}, . . . , $dot{tn}} or {$dot{t1}, . . . , $dot{tn}, $dotout}.
In the first case F∪(∪for $dot in ∪$x return orc1) = $x{t1, . . . , tn}. By induction this is
equivalent with M∪({$dot{t1}, . . . , $dot{tn}}) = orc1 and since
X∪({$dot{t1}, . . . , $dot{tn}}) = X∪({t1, . . . , tn}) this is equivalent with X∪($x{t1, . . . , tn}) =
∪for $dot in ∪$x return orc1.

In the second case F∪(∪for $dot in ∪$x return orc1) = $xout{t1, . . . , tn}. By induction this
is equivalent with X∪({$dot{t1}, . . . , $dot{tn}, $dotout}) = orc1 and since
X∪({$dot{t1}, . . . , $dot{tn}}) = X∪({t1, . . . , tn}) this is equivalent with X∪($x{t1, . . . , tn}) =
∪for $dot in ∪$x return orc1.

Next we consider the cases for aotp:

• Assume aotp = ∪a::n. Then F(∪a::n) = $dot{a::nout} and M∪(a::nout) = ∪a::n.

18

• Assume aotp = ∪for $dot in ∪a::n return orc1. Then F(orc1) is either of the form
{$dot{t1}, . . . , $dot{tn}} or {$dot{t1}, . . . , $dot{tn}, $dotout}.
In the first case F∪(∪for $dot in ∪a::n return orc1) = $dot{a::n{t1, . . . , tn}}. By induction
this is equivalent with M∪({$dot{t1}, . . . , $dot{tn}}) = orc1 and since
X∪({$dot{t1}, . . . , $dot{tn}}) = X∪({t1, . . . , tn}) this is equivalent with
X∪($dot{a::n{t1, . . . , tn}}) = X∪(a::n{t1, . . . , tn}) = ∪for $dot in ∪a::n return orc1.

In the second case F∪(∪for $dot in ∪a::n return orc1) = $dot{a::nout{t1, . . . , tn}}. By induc-
tion this is equivalent with X∪({$dot{t1}, . . . , $dot{tn}, $dotout}) = orc1 and since
X∪({$dot{t1}, . . . , $dot{tn}}) = X∪({t1, . . . , tn}) this is equivalent with
X∪($dot{a::n{t1, . . . , tn}}) = X∪(a::n{t1, . . . , tn}) = ∪for $dot in ∪a::n return orc1.

Next we consider the cases for tp:

• Assume tp = atp. Then by induction F(atp) = f iff X∨(f) = atp.

• Assume tp = ∨$x such that $x 6= $dot. Then F(∨$x) = $x and X∨($x) = ∨$x.

• Assume tp = ∨for $dot in ∪$x return rc1. Then F(rc1) is of the form {$dot{t1}, . . . , $dot{tn}}.
Then F(∨for $dot in ∪$x return rc1) = $x{t1, . . . , tn}. By induction this is equivalent with
M∨({$dot{t1}, . . . , $dot{tn}}) = rc1 and since X∨({$dot{t1}, . . . , $dot{tn}}) = X∨({t1, . . . , tn})
this is equivalent with X∨($x{t1, . . . , tn}) = ∨for $dot in ∪$x return rc1.

Finally we consider the cases for atp:

• Assume atp = ∨a::n. Then F(∨a::n) = $dot{a::n} and X∨($dot{a::n}) = X∨(a::n) = ∨a::n.

• Assume atp = ∨for $dot in ∪a::n return rc1. Then F(rc1) is of the form {$dot{t1}, . . . , $dot{tn}}.
Then F(∨for $dot in ∪a::n return rc1) = $dot{a::n{t1, . . . , tn}}. By induction this is equiv-
alent with M∨({$dot{t1}, . . . , $dot{tn}}) = rc1 and since X∨({$dot{t1}, . . . , $dot{tn}}) =
X∨({t1, . . . , tn}) this is equivalent with X∨($dot{a::n{t1, . . . , tn}}) = X∨(a::n{t1, . . . , tn}) =
∨for $dot in ∪a::n return rc1.

Since it was already established that the range of X∪ was a subset of TPNF it now follows
that TPNF is exactly this range. Moreover, with F we are given a simple procedure to recognize
which forest pattern is represented by a certain TPNF expression, which motivates why TPNF is
an interesting normal form for recognizing forest patterns.

4.2 Normalization Rules

The normalization rules for rewriting an expression to TPNF are given in Figure 4 and Figure 5.
A rewrite rule can be applied if the source matches a certain expression and the specified condition
is satisfied.

The rules in Figure 4 mainly introduce and propagate annotations but do not change the
structure of the expression. The only exception is the final rule a ddo operation if the annotation
tells us that it is not necessary. Observe that in an expression with only · annotations the first
two rules will usually start with introducing annotations and the other rules will propagate these
annotations to subexpression. There are two important exceptions: a ∨ annotation is propagated
in the form of a ∪ annotation to the expression in the for clause of a for expression, and no
annotation is propagated to the let clause of a let expression.

The rules in Figure 5 actually change the structure of the expression. The first rule is the
substitution rule that remove a let expression. Note that this rule is not sound for general
XQuery expressions due to possible side effects of node construction, so the condition restricts
this rule to only CXQ+ expression for which it is in fact correct. All the other rules are correct for
arbitrary XQuery expressions, provided they are correctly annotated. Although the substitution

19

Annotation Introduction and Propagation, and ddo Removal

Source Result Condition

·ddo(·e) ·ddo(∪e)

αif βe1 then γe2
αif ∨e1 then γe2 β ≺ ∨

αfor $x in ·e1 return γe2
αfor $x in ∪e1 return γe2 · ≺ α

αfor $x in βe1 return γe2
αfor $x in βe1 return αe2 γ ≺ α

αlet $x := βe1 return γe2
αlet $x := βe1 return αe2 γ ≺ α

αif βe1 then γe2
αif βe1 then αe2 γ ≺ α

αddo(βe) αe · ≺ α ∧ β � α

Figure 4: An overview of the propagation rules for annotations and the ddo removal rule.

rule may lead to duplication of expressions, and therefore a less efficient query plan, it is only
applied to ∪ annotated CXQ expressions and therefore the result is guaranteed to be a forest
pattern for which there is probably an efficient physical query plan. On the other hand it can be
shown that a more conservative substitution rule that only substitutes when the variable appears
once in e2 is not sufficient. Consider, for example, an expression of the form

for $x in $y/p1 return
let $z := $x/p2 return

if $z/p3 then $z/p4

where $y/p1, $x/p2, $z/p3 and $z/p4 denote TPNF expressions with the indicated variable as
the only free variable. This let expression would then not be removed, and TPNF would not be
reached, although it is equivalent with the path expression $y/p1[p2/p3]/p2/p4.

The rules after substitution all presume that the expression is already in some intermediate
normal form, which is defined by the following lemma.

Lemma 4.1. When the rules in Figure 4 and the Substitution rule from Figure 5 are applied
exhaustively to a CXQ+ expression of the form ∪e where all subexpressions in e are annotated with
· then the result is in the following syntax:
se ::= ∪$x | ∪ax::nt | ∪if be then se | ∪for $x in se return se
be ::= ∨$x | ∨ax::nt | ∨if be then be | ∨for $x in se return be
nt ::= label | *
ax ::=child | desc | d-o-s

Informally the non-terminal se defines the set expressions and be the boolean expressions.

4.3 Soundness and Completeness of the Rewrite Rules

The soundness of the rewrite rules, i.e., they preserve the semantics of the expressions, is easily
verified. However, we also need to show that when applied exhaustively they rewrite any CXQ+

expression of the form ∪e to an expression in TPNF.

Lemma 4.2. If no rewrite rule applies to a CXQ+ expression ∪e then it is in TPNF.

Proof. If no rewrite rule applies then we may assume that the expression is in the normal form
of Lemma 4.1. We proceed to show that for every such expression where all the subexpressions
are in TPNF it holds that the full expression is either already in TPNF or there is at least one
rewrite rule that applies.

Let e be of the form

20

Structural Manipulation

Name Source Result Condition

Substitution αlet $x := βe1 return αe2
αe2[$x/βe1] βe1,

αe2 ∈
CXQ+,∪ � α

Loop Fusion
αfor $dot in

∪for $dot in ∪e1

return ∪e2

return αe3

αfor $dot in ∪e1

return
αfor $dot in ∪e2

return αe3

∪ � α

Condition Detection αfor $x in ∪e1 return αe2
αif ∨e1 then αe2 ∪ � α and

$x /∈ FV (e2)

Condition Shift
αif (∨if ∨e1 then ∨e2)
then αe3

αif ∨e1 then
αif ∨e2 then αe3

none

Return Condition Lift
αfor $x in ∪e1

return (αif ∨e2 then αe3)

αif ∨e2 then
(αfor $x in ∪e1 return αe3)

∪ � α and
$x /∈ FV (e2)

Nested Return Cond.

Lift

αfor $x in ∪e1

return
(αif ∨e2 ∧ . . . ∧ ∨en

then αen+1)

αif ∨en then
(αfor $x in ∪e1

return
(αif ∨e2 ∧ . . . ∧ ∨en−1

then αen+1))

∪ � α and
n > 2 and
$x /∈ FV (en)

Return Result Lift
αfor $x in ∪e1

return
αif ∨e2 then αe3

αif (∨for $x in ∪e1

return ∨e2)
then αe3

∪ � α and
$x /∈ FV (e3)

Nested Return Result

Lift

αfor $x in ∪e1

return
(αif ∨e2 ∧ . . . ∧ ∨en

then αen+1)

αif (∨for $x in ∪e1

return
(∨if ∨e2 ∧ . . . ∧ ∨en−1

then ∨en))
then αen+1

∪ � α and
n > 2 and
$x /∈ FV (en+1)

For Condition Lift
αfor $x in

(∪if ∨e1 then ∪e2)
return αe3

αif ∨e1 then
αfor $x in ∪e2

return αe3

∪ � α

Trivial Dot Condition αif ∨$dot then αe2
αe2 None

Trivial Loop αfor $x in ∪e return α$x αe ∪ � α

Introduction of Dot
αfor $x in ∪e1

return αe2

αfor $dot in ∪e1

return αe2[$x/∪$dot]
$dot 6∈ FV (e2)
and $x 6= $dot

Dot Loop αfor $dot in ∪$dot return αe1
αe1 ∪ � α

Shortening Condition ∨if ∨e then ∨$dot ∨e None

Figure 5: An overview of the structural rewrites.

21

• ∪$x (OK)

• ∪ax::nt (OK)

• ∪if be then se

– if be is a tp in TPNF (OK)

– else if be is a $dot (Trivial Dot Condition)

– else if be is of the form ∨if tp1 ∧ . . . ∧ tpn then tpn+1 (Condition Shift)

• ∪for $x in se1 return se2

– let $x 6= $dot

∗ if $dot 6∈ FV (se2) (Dot Introduction)
∗ if $x 6∈ FV (se2) (Condition Detection)
∗ else, since {$dot, $x} ⊂ FV (se2) we know that se2 is of the form: if tp1 ∧ . . . ∧ tpn

then otp, and $x is either in FV (tpi), i ≤ n or FV (otp)
· if $x 6∈ FV (tpi), i ≤ n ((Nested) Return Condition Lift)
· else if $x 6∈ FV (otp) ((Nested) Return Result Lift)

– let $x = $dot

∗ $y 6= $dot and $y ∈ FV (se2)
· se2 is of form otp and $y is in FV (otp) (Condition Detection)
· se2 is of the form if tp1 ∧ . . . ∧ tpn then otp and $y is in FV (otp) ((Nested)

Return Result Lift)
· se2 is of the form if tp1 ∧ . . . ∧ tpn then otp and $y is in FV (tpi), i 6= n ((Nested)

Return Condition Lift)
∗ FV (se2) = {$dot}, thus se2 is an orc

· se1 is of form if tp1 ∧ . . . ∧ tpn then otp (For Condition Lift)
· se1 is of the form otp

* if otp = $y (OK)
* else if otp = $dot (Dot Loop)
* else if otp =ax::nt (OK)
* else if otp = for $dot in $x return orc (Loop Fusion)
* else if otp = for $dot in ax::nt return orc (Loop Fusion)

• ∨$x

– if $x 6= $dot (OK)

– else if $x = $dot (OK)

• ∨ax::nt (OK)

• ∨if be1 then be2

– if be1 is a $dot (Trivial Dot Condition)

– else if be1 is a tp

∗ if be2 is a $dot (Condition Shortening)
∗ else if be2 is a tp (OK)
∗ else if be2 is of the form if tp1 ∧ . . . ∧ tpn then tpn+1 (OK)

– else be1 is of the form if tp1 ∧ . . . ∧ tpn then tpn+1 (Condition Shift)

• ∨for $x in se retrun be

22

– let $x 6= $dot

∗ if $dot 6∈ FV (be) then (Dot Introduction)
∗ else if $x 6∈ FV (be) then (Condition Detection)
∗ else, since {$dot, $x} ⊂ FV (be) we know that se2 is of the form if tp1 ∧ . . . ∧ tpn then tpn+1

and $x is either in FV (tpi) or FV (otp)
· if $x 6∈ FV (tpi) ((Nested) Return Condition Lift)
· else if $x 6∈ FV (tpn+1) ((Nested) Return Result Lift)

– let $x = $dot

∗ if be is a $dot (Trivial Loop)
∗ else if $y 6= $dot and $y ∈ FV (be)

· if be is of the form tp and $y ∈ FV (tp) (Condition Detection)
· else if be is of the form if tp1 ∧ . . . ∧ tpn then tpn+1 and $y ∈ FV (tpn+1) ((Nested)

Return Result Lift)
· else be is of the form if tp1 ∧ . . . ∧ tpn then tpn+1 and $y ∈ FV (tpi) ((Nested)

Return Condition Lift)
∗ if FV (be) = {$dot}, then be is an rc

· if se is of the form if tp1 ∧ . . . ∧ tpn then tpn+1 (For Condition Lift)
· if se is of the form tp

* if tp is a $y (OK)
* else if tp is a ax::nt (OK)
* else if tp is of the form for $dot in $x return orc (Loop Fusion)
* else if tp is of the form for $dot in ax::nt return orc (Loop Fusion)

Lemma 4.3. If a CXQ+ expression is in TPNF, then none of the rewrite rules apply.

Proof. We consider every rewrite rule separately:

• Loop Fusion: In TPNF, in-clauses of for-expressions cannot contain a for-expression;

• Condition Detection In TPNF, $dot is always the loop variable, and all rc/orc expressions
have $dot as the free variable;

• Condition Shift In TPNF, if-clauses are not allowed to occur recursively;

• (Nested) Return Condition Lift In TPNF, the if-clause in a return-clause must be an
atp and the free variable of an atp-expression always is $dot;

• (Nested) Return Result Lift In TPNF, the then-clause in a return-clause must be an rc,
orc or $dot. The free variable in an rc, orc, $dot always is $dot;

• For Condition Lift In TPNF, the in-clause may not contain an if-expression;

• Trivial Dot Condition In TPNF, the if-clause contains tp or atp expressions and tp/atp
expressions cannot be $dot;

• Trivial Loop In TPNF, no variable reference is allowed to occur directly in the return-clause;

• Introduction of Dot In TPNF, every loop variable is $dot;

• Shortening Condition In TPNF, $dot in a then-clause is only allowed in orc-expressions,
but orc never has an existentional annotation.

23

Lemma 4.4. The rewriting process of a CXQ+ expression always stops after a finite number of
rewrites.

Proof. We show this lemma by associating with each CXQ+ expression a structural cost and
an annotation cost. All structural manipulations strictly reduce the structural cost, while the
annotation propagation does not change the structural cost (because the structure is not changed),
but reduces the annotation cost.

A structural cost function c is defined by a 15-tuple 〈w1, . . . , w15〉 of natural numbers and maps
CXQ expressions to a natural number in the following way:
c(for $x in e1 return e2) = w1 ∗ c(e1) + w2 ∗ c(e2) + w3

c(for $dot in e1 return e2) = w4 ∗ c(e1) + w5 ∗ c(e2) + w6

c(if e1 then e2) = w7 ∗ c(e1) + w8 ∗ c(e2) + w9

c(ax::nt) = w10

c($x) = w11

c($dot) = w12

c(let $x := e1 return e2) = w13 ∗ c(e1) + w14 ∗ c(e2) + w15

where we assume that $x 6= $dot. Based on this notion of cost function, we define a combined
cost function C by an n-tuple of cost functions 〈c1, . . . , cn〉, where C(e) = 〈c1(e), . . . , cn(e)〉.

We now give a combined cost function C define by a 5-tuple 〈c1, c2, c3, c4, c5〉 for which it holds
that, when looking at the lexicographical order, the cost for all expressions e diminishes when
applying a rewrite rule, i.e., if e1 if rewritten to e2 then it holds for some ci that ci(e2) < ci(e1)
and for all cj with j < i it holds that ci(e2) = ci(e1).

The first cost function is defined by 〈1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1〉 and counts the number
of let expressions. It is clear that the value of c1(e) strictly diminishes when applying the substition
rule and does not change when applying any other structural manipulation rule.

The second cost function c2 is defined by 〈1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0〉 and intuitively
indicates the size of the expression. The value of c2(e) strictly diminishes when applying:

• condition detection: c2(e1) + c2(e2) + 1 ; c2(e1) + c2(e2)

• trivial dot condition: c2(e2) + 1 ; c2(e2)

• trivial loop: c2(e) + 2 ; c2(e)

• introduction of dot: c2(e1) + c2(e2) + 1 ; c2(e1) + c2(e2)

• dot loop: c2(e1) + 1 ; c2(e1)

• shortening condition: c2(e1) + 1 ; c2(e1)

The value of c2(e) remains the same when applying:

• loop fusion: c2(e1) + c2(e2) + c2(e3) + 2 ; c2(e1) + c2(e2) + c2(e3) + 2

• condition shift: c2(e1) + c2(e2) + c2(e3) ; c2(e1) + c2(e2) + c2(e3)

• (nested) return condition lift: c2(e1)+c2(e2)+ . . .+c2(en)+c2(en+1)+1 ; c2(e1)+c2(e2)+
. . . + c2(en) + c2(en+1) + 1

• (nested) return result lift: c2(e1) + c2(e2) + . . . + c2(en) + c2(en+1) + 1 ; c2(e1) + c2(e2) +
. . . + c2(en) + c2(en+1) + 1

• for condition lift: c2(e1) + c2(e2) + c2(e3) + 1 ; c2(e1) + c2(e2) + c2(e3) + 1

The third cost function c3 is defined by 〈2, 1, 1, 2, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0〉 and intuitively states
that we want to make the in-clauses of for-loops as simple as possible. The value of c3(e) strictly
diminishes when applying:

• loop fusion: 4 ∗ c3(e1) + 2 ∗ c3(e2) + c3(e3) + 3 ; 2 ∗ c3(e1) + 2 ∗ c3(e2) + c3(e3) + 2

24

• for condition lift: c3(e1) + c3(e2) + c3(e3) + 1 ; c3(e1) + c3(e2) + c3(e3) + 1

The value of c3(e) remains the same when applying:

• condition shift: c3(e1) + c3(e2) + c3(e3) ; c3(e1) + c3(e2) + c3(e3)

• (nested) return condition lift: 2 ∗ c3(e1) + c3(e2) + . . . + c3(en) + c3(en+1) + 1 ; 2 ∗ c3(e1) +
c3(e2) + . . . + c3(en) + c3(en+1) + 1

• (nested) return result lift: 2 ∗ c3(e1) + c3(e2) + . . . + c3(en) + c3(en+1) + 1 ; 2 ∗ c3(e1) +
c3(e2) + . . . + c3(en) + c3(en+1) + 1

The fourth cost function c4 is defined by 〈2, 2, 1, 2, 2, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0〉 and intuitively
states that we want to get as much subexpressions as possible outside of for-loops. The value of
c4(e) strictly diminishes when applying:

• (nested) return condition lift: 2 ∗ c4(e1) + 2 ∗ c4(e2) + . . . + 2 ∗ c4(en) + 2 ∗ c4(en+1) + 1 ;

2 ∗ c4(e1) + 2 ∗ c4(e2) + . . . + 2 ∗ c4(en−1) + c4(en) + 2 ∗ c4(en+1) + 1

• (nested) return result lift: 2 ∗ c4(e1) + 2 ∗ c4(e2) + . . . + 2 ∗ c4(en) + 2 ∗ c4(en+1) + 1 ;

2 ∗ c4(e1) + 2 ∗ c4(e2) + . . . + 2 ∗ c4(en) + c4(en+1) + 1

The value of c4(e) remains the same when applying:

• condition shift: c4(e1) + c4(e2) + c4(e3) ; c4(e1) + c4(e2) + c4(e3)

Finally, the fifth cost function c5 is defined by 〈1, 1, 1, 1, 1, 1, 2, 1, 0, 1, 1, 1, 1, 1, 0〉, which intu-
itively states that we want to push as much as possible out of the if-clause. The value of c3(e)
strictly diminishes when applying:

• condition shift: 4 ∗ c5(e1) + 2 ∗ c5(e2) + c5(e3) ; 2 ∗ c5(e1) + 2 ∗ c5(e2) + c5(e3)

This concludes the proof for the structural manipulation. We now show that the annotation
propagation also terminates. Associate with each annotation symbol a cost, such that stronger
annotations have a smaller cost. If the total annotation cost is the sum of all individual annotation
costs, then it is clear that this cost strictly diminishes after each annotation propagation.

Combining these lemmas we then obtain the desired theorem.

Theorem 4.3. When applied in an arbitrary order the rewrite rules rewrite every CXQ+ expres-
sion of form ∪e to an equivalent expression in TPNF within a finite number of steps.

Proof. This follows from Lemma 4.2, Lemma 4.3 and Lemma 4.4, and the observation that each
rewrite rule preserves the semantics of the rewritten expression.

Observe that as a corollary we obtain Theorem 3.3 because if a CXQ expression e has the
properties ord and nodup then it is equivalent with ·ddo(·e) where ·e is equal to e except that
all subexpressions are annotated with ·. The rewrite process will rewrite this to the equivalent
·ddo(∪e′) where ∪e′ is in TPNF. By Theorem 4.1 we know that this is equivalent with the se-
mantics of a forest pattern. By the same argument we also get the proof for Lemma 3.1 since
the expression ∪e′ will be either of the form otp or of the form if tp1 ∧ . . . ∧ tpn then otp. In
the first case it holds that FV (∪e′) is a single variable which must be rv(e) since the rewrite
rules do not change the set of free variables, and in the second case ∪e′ is either equivalent with
if (if tp1 ∧ . . . ∧ tpn−1 then tpn) then otp if n > 1, or if tp1 then otp if n = 1. Since the rewrite
rules do not change the root variable of an expression, it follows that rv(e) = rv(e′) = rv(otp)
which is the only element in FV (otp) because it has at most one free variable.

25

4.4 Proof of Confluence

The presented set of rewriting rules is strictly speaking not confluent because, for example, if the
order in which conditions are lifted by the Nested Return Condition Lift is changed the final
result might be different. However it can be shown that the result will be a unique tree pattern if
after rewriting the result is transformed into a tree pattern with the function F .

We introduce the following operations for forest patterns:

• ∅ denotes the empty forest pattern.

• c(f) removes from f the output marking of the output node. If this leaves a $dot node with
no children it is removed.

• f1 +f2 defines the disjoint union of f1 and f2. Only defined if f1 and f2 are not both output
patterns.

• f1 / f2 adds the children of roots in f2 children under the output node in f1 and removes
the output marking from the output node of f1 except if one of the roots of f2 is an output
node.

• f1 /∗ f2 is defined such that f1 /∗ {t1, . . . , tn} = f1 / {t1}+ . . . + f1 / {tn} and f1 /∗ ∅ = ∅.

• f$x selects from f the trees roots labeled $x.

• f−$x selects from f the trees with a root not labeled $x.

Lemma 4.5. For the operations the following algebraic identities hold (vp denotes something of
the form $x or −$x):

f1 + f2 = f2 + f1 f1 + ∅ = f1

f1 + (f2 + f3) = (f1 + f2) + f3 c(f1 + f2) = c(f2) + c(f1)
c(c(f)) = c(f) (f1 + f2) / f3 = (f1 / f3) + (f2 / f3)

(f1 / f2)vp = fvp
1 / f2 (f1 + f2) /∗ f3 = (f1 / f3) + (f2 /∗ f3)

(f1 /∗ f2)vp = fvp
1 /∗ f2 f1 /∗ (f2 + f3) = (f1 /∗ f2) + (f1 /∗ f3)

(f1 + f2)vp = fvp
1 + fvp

2 f1 / (f2 / f3) = (f1 / f2) / f3

c(f)vp = c(fvp) f1 /∗ (f2 /∗ f3) = (f1 /∗ f2) /∗ f3

(f$x)−$x = ∅ f1 / (f2 /∗ f3) = (f1 / f2) /∗ f3

(f$x)$y = ∅ (if $x 6= $y) f1 /∗ (f2 / f3) = (f1 /∗ f2) / f3

(fvp)vp′
= (fvp′

)vp f / ∅ = c(f)
(fvp)vp = fvp c(∅) = ∅
f /∗ ∅ = ∅ c(f1 / f2) = f1 / c(f2)

c(f1 /∗ f2) = f1 /∗ c(f2) c(f1) / f2 = c(f1)
f = (f$x + f−$x) (f−$x)$y = f$y (if $x 6= $y)

Proof. The identities follow straightforwardly from the definitions of the operations.

We then define the mapping M from CXQ+ expressions to forest patterns as follows. For
expressions annotated with α � ∪ we define M such that:

• M(α$x) = $xout

• M(αa::n) = $dot{a::nout}

• M(αddo(βe)) = M(βe)

• M(αif βe1 then γe2) = c(M(βe1)) +M(γe2)

• M(αfor $x in βe1 return γe2) = M(γe2)−$x + (M(βe1) /M(γe2)$x)

• M(αlet $x := βe1 return γe2) = M(γe2)−$x + (M(βe1) /∗M(γe2)$x)

26

And for expressions annotated with ∨ we define M such that M(∨e) = c(M(∪e)).
Observe that in all cases the result is a well-defined output pattern. For example, in the

rule for M(for $x in e1 return e2) it holds that either M(e2)−$x or M(e2)$x is an output pattern
and since M(e1) / M(e2)$x is an output pattern iff M(e2)$x is an output pattern, the expression
M(e2)−$x + (M(e1) /M(e2)$x) has a well-defined result.

Lemma 4.6. if $x 6∈ FV (e) then M(e)$x = ∅ and M(e)−$x = M(e).

Proof. It can be proven with induction on the structure of e that M(e) will not contain any roots
labeled with $x.

Lemma 4.7. For all rewrite rules it holds that if they rewrite e1 to e2 then M(e1) = M(e2).

Proof. We show this separately for each of the rules using Lemma 4.5 and Lemma 4.6.

Annotation Introduction Consider the two rules:

• By definition M(·ddo(·e)) = M(·e) = M(∪e) = M(·ddo(∪e)).

• Assume that α � ∪ thenM(αif βe1 then γe2) = c(M(βe1))+M(γe2) = M(∨e1)+M(γe2) =
c(M(∨e1)) +M(γe2) = M(αif ∨e1 then γe2).

Annotation Propagation Consider the four rules:

• Since M(·e1) = M(∪e1) then M(αfor $x in ·e1 return γe2) = M(αfor $x in ∪e1 return γe2).

• First consider the case where α ≺ ∨ and therefore also γ ≺ ∨. Then it follows that
M(αfor $x in βe1 return γe2) = M(γe2)−$x+(M(βe1)/M(γe2)$x) = M(αe2)−$x+(M(βe1)/
M(αe2)$x) = M(αfor $x in βe1 return αe2). Next consider the case where α = ∨. Then
M(∨for $x in βe1 return γe2) = c(M(γe2)−$x + (M(βe1) /M(γe2)$x)) = c(c(M(γe2)−$x +
(M(βe1) / M(γe2)$x))) = c(c(M(γe2)−$x) + c((M(βe1) / M(γe2)$x))) = c(M(∨e2)−$x +
(M(βe1) / c(M(γe2)$x))) = c(M(∨e2)−$x + (M(βe1) /M(∨e2)$x)) =
M(∨for $x in βe1 return ∨e2).

• By the same argument as in the previous point except replacing / with /∗ it holds that
M(αlet $x := βe1 return γe2) = M(αlet $x := βe1 return αe2)

• First consider the case where α ≺ ∨ and therefore also γ ≺ ∨, then M(γe2) = M(αe2)
and therefore M(αif βe1 then γe2) = M(αif βe1 then αe2). Then consider the case where
α = ∨. Then M(∨if βe1 then γe2) = c(c(M(βe1))+M(γe2)) = c(c(M(βe1))+c(M(γe2))) =
c(c(M(βe1)) +M(∨e2)) = M(∨if βe1 then ∨e2)

Removal of ddo Assume that α ≺ ∨ and therefore β ≺ ∨. Then M(αddo(βe)) = M(βe) =
M(αe). Assume that α = ∨. Then M(∨ddo(βe)) = c(M(βe)) = M(∨e).

Substitution We have to show that M(αlet $x := βe1 return αe2) = M(αe2[$x/βe1]). Since
M(∨let $x := βe1 return ∨e2) = c(M(∨e2)−$x + (M(βe1) /∗ M(∨e2)$x)) = c(c(M(∪e2))−$x +
(M(βe1) /∗ c(M(∪e2))$x)) = c(M(∪e2)−$x + (M(βe1) /∗M(∪e2)$x)) =
c(M(∪let $x := βe1 return ∪e2)) and M(∨e2[$x/βe1]) = c(M(∪e2[$x/βe1])) it is sufficient to show
this for α ≺ ∨. We do this by induction on the structure of e2. For brevity we omit the annotations
of the expressions. Consider the cases:

• Assume e2 = $y. If $x = $y then M(e2[$x/e1]) = M(e1) and M(let $x := e1 return e2) =
($xout)−$x + (M(e1) /∗ ($xout)$x) = ∅ + (M(e1) / ($xout)) = M(e1). If $x 6= $y then
M(e2[$x/e1]) = M($y) = $yout and M(let $x := e1 return e2) = M($y)−$x + (M(e1) /∗

M($y)$x) = $yout + (M(e1) /∗ ∅) = $yout + ∅ = $yout.

27

• Assume e2 = a::n. Then M(e2[$x/e1]) = M(a::n) = $dot{a::nout} and
M(let $x := e1 return e2) = ($dot{a::nout})−$x + (M(e1) /∗ ($dot{a::nout})$x). Since by
definition of CXQ it holds that $x 6= $dot this equals ($dot{a::nout}) + (M(e1) /∗ ∅) =
$dot{a::nout}+ ∅ = $dot{a::nout}.

• Assume e2 = ddo(e3). Then M(e2[$x/e1]) = M(ddo(e3[$x/e1])) = M(e3[$x/e1]) and
M(let $x := e1 return e2) = M(let $x := e1 return e3), and by induction M(e3[$x/e1]) =
M(let $x := e1 return e3).

• Assume e2 = if e3 then e4. Then M(e2[$x/e1]) = M(if e3[$x/e1] then e4[$x/e1])) =
c(M(e3[$x/e1]))+M(e4[$x/e1]). By induction this is equal to c(M(let $x := e1 return e3))+
M(let $x := e1 return e4)
= c(M(e3)−$x + (M(e1) /∗M(e3)$x)) + (M(e4)−$x + (M(e1) /∗M(e4)$x))
= c(M(e3))−$x + (M(e1) /∗ c(M(e3))$x) +M(e4)−$x + (M(e1) /∗M(e4)$x)
= c(M(e3))−$x +M(e4)−$x + (M(e1) /∗ c(M(e3))$x) + (M(e1) /∗M(e4)$x)
= c(M(e3))−$x +M(e4)−$x + (M(e1) /∗ (c(M(e3))$x +M(e4)$x))
= (c(M(e3)) +M(e4))−$x + (M(e1) /∗ (c(M(e3)) +M(e4))$x)
= M(let $x := e1 return e2).

• Assume e2 = for $y in e3 return e4. If $x = $y then it holds that M(e2[$x/e1]) =
M(for $y in e3[$x/e1] return e4) = M(e4)−$y +(M(e3[$x/e1])/M(e4)$y). By induction this
is equal to M(e4)−$y + (M(let $x := e1 return e3) / (M(e4)$y))
= M(e4)−$y + ((M(e3)−$x + (M(e1) /∗M(e3)$x)) / (M(e4)$y))
= M(e4)−$y + ((M(e3)−$x / (M(e4)$y)) + ((M(e1) /∗M(e3)$x) / (M(e4)$y)))
= (M(e4)−$y + (M(e3) /M(e4)$y))−$x + (M(e1) /∗ (M(e4)−$y + (M(e3) /M(e4)$y))$x)
= M(let $x := e1 return e2).

If $x 6= $y then we may assume w.l.o.g. that $y is not in FV (e1) since the mapping M is
invariant under the choice of iteration variables. Then M(e2[$x/e1]) =
M(for $y in e3[$x/e1] return e4[$x/e1]) = M(e4[$x/e1])−$y+(M(e3[$x/e1])/M(e4[$x/e1])$y).
By induction this is equal to M(let $x := e1 return e4)−$y + (M(let $x := e1 return e3) /
(M(let $x := e1 return e4)$y))
= (M(e4)−$x +(M(e1)/∗M(e4)$x))−$y +((M(e3)−$x +(M(e1)/∗M(e3)$x))/(M(e4)−$x +
(M(e1) /∗M(e4)$x))$y)
= (M(e4)−$x,−$y+(M(e1)−$y/∗M(e4)$x))+((M(e3)−$x+(M(e1)/∗M(e3)$x))/(M(e4)$y+
(M(e1)$y /∗M(e4)$x)))
= (M(e4)−$x,−$y+(M(e1)−$y/∗M(e4)$x))+((M(e3)−$x+(M(e1)/∗M(e3)$x))/(M(e4)$y+
(∅ /∗M(e4)$x)))
= (M(e4)−$x,−$y+(M(e1)−$y/∗M(e4)$x))+((M(e3)−$x+(M(e1)/∗M(e3)$x))/(M(e4)$y+
∅))
= (M(e4)−$x,−$y +(M(e1)−$y /∗M(e4)$x))+((M(e3)−$x+(M(e1)/∗M(e3)$x))/M(e4)$y)
= (M(e4)−$x,−$y+(M(e1)−$y/∗M(e4)$x))+(((M(e3)−$x/M(e4)$y)+((M(e1)/∗M(e3)$x)/
M(e4)$y)))
= (M(e4)−$y,−$x+(M(e3)−$x/M(e4)$y))+(((M(e1)/∗M(e4)−$y,$x)+(M(e1)/∗(M(e3)$x/
M(e4)$y))))
= (M(e4)−$y,−$x+(M(e3)−$x/M(e4)$y))+(M(e1)/∗((M(e4)−$y,$x)+(M(e3)$x/M(e4)$y)))
= (M(e4)−$y + (M(e3) /M(e4)$y))−$x + (M(e1) /∗ (M(e4)−$y + (M(e3) /M(e4)$y))$x)
= M(let $x := e1 return e2).

• Assume e2 = let $y := e3 return e4. The proof is as for e2 = for $y in e3 return e4.

Loop Fusion We need to show that M(αfor $dot in (∪for $dot in ∪e1 return ∪e2) return αe3) is
equal to M(αfor $dot in ∪e1 return (αfor $dot in ∪e2 return αe3)). Observe that
M(∨for $dot in (∪for $dot in ∪e1 return ∪e2) return ∨e3) =
c(M(∪for $dot in (∪for $dot in ∪e1 return ∪e2) return ∪e3)) and
M(∨for $dot in ∪e1 return (∨for $dot in ∪e2 return ∨e3)) =

28

c(M(∪for $dot in ∪e1 return (∪for $dot in ∪e2 return ∪e3))). Therefore it is sufficient to prove this
for α = ∪. For brevity we omit the ∪ annotations in the following.

M(for $dot in (for $dot in e1 return e2) return e3)
= M(e3)−$dot + (M(for $dot in e1 return e2) /M(e3)$dot)
= M(e3)−$dot + ((M(e2)−$dot + (M(e1) /M(e2)$dot)) /M(e3)$dot)
= M(e3)−$dot + ((M(e2)−$dot /M(e3)$dot) + ((M(e1) /M(e2)$dot) /M(e3)$dot))
= M(e3)−$dot + (M(e2)−$dot /M(e3)$dot) + (M(e1) /M(e2)$dot /M(e3)$dot)
= (M(e3)−$dot + (M(e2)−$dot /M(e3)$dot)) + (M(e1) / ((M(e2)$dot /M(e3)$dot)))
= (M(e3)−$dot,−$dot + (M(e2)−$dot / M(e3)$dot)) + (M(e1) / (M(e3)−$dot,$dot + (M(e2)$dot /
M(e3)$dot)))
= (M(e3)−$dot + (M(e2) /M(e3)$dot))−$dot + (M(e1) / (M(e3)−$dot + (M(e2) /M(e3)$dot))$dot)
= M(for $dot in e2 return e3)−$dot + (M(e1) /M(for $dot in e2 return e3)$dot)
= M(for $dot in e1 return (for $dot in e2 return e3))

Condition Detection We need to show that under the assumption that $x /∈ FV (e2) it holds
that M(αfor $x in ∪e1 return αe2) equals M(αif ∨e1 then αe2). Observe that
M(∨for $x in ∪e1 return ∨e2) = c(M(∪for $x in ∪e1 return ∪e2)) and M(∨if ∨e1 then ∨e2) =
c(M(∪if ∪e1 then ∪e2)). Therefore it is sufficient to prove this for α = ∪. For brevity we omit the
∪ annotations in the following.

M(for $x in e1 return e2) = M(e2)−$x + (M(e1) / M(e2)$x) = M(e2)−$x + (M(e1) / ∅) =
M(e2)−$x + c(M(e1)) = c(M(e1)) +M(e2) = M(if e1 then e2)

Condition Shift We need to show that M(αif (∨if ∨e1 then ∨e2) then αe3) equals
M(αif ∨e1 then (αif ∨e2 then αe3)). Observe that M(∨if (∨if ∨e1 then ∨e2) then ∨e3) =
c(M(∪if (∪if ∪e1 then ∪e2) then ∪e3)) and M(∨if ∨e1 then (∨if ∨e2 then ∨e3)) =
c(M(∪if ∪e1 then (∪if ∪e2 then ∪e3))). Therefore it is sufficient to prove this for α = ∪. For
brevity we omit the ∪ annotations in the following.

M(if (if e1 then e2) then e3) = c(c(M(e1)) + M(e2)) + M(e3) = (c(M(e1)) + c(M(e2))) +
M(e3) = c(M(e1)) + (c(M(e2)) +M(e3)) = M(if e1 then (if e2 then e3))

Return Condition Lift We need to show that under the assumption that $x /∈ FV (e2) it holds
that M(αfor $x in ∪e1 return (αif ∨e2 then αe3)) is equal to
M(αif ∨e2 then (αfor $x in ∪e1 return αe3)). Observe that
M(∨for $x in ∪e1 return (∨if ∨e2 then ∨e3)) = c(M(∪for $x in ∪e1 return (∪if ∪e2 then ∪e3))) and
M(∨if ∨e2 then (∨for $x in ∪e1 return ∨e3)) = c(M(∪if ∪e2 then (∪for $x in ∪e1 return ∪e3))). There-
fore it is sufficient to prove this for α = ∪. For brevity we omit the ∪ annotations in the following.

M(for $x in e1 return (if e2 then e3))
= M(if e2 then e3)−$x + (M(e1) /M(if e2 then e3)$x)
= (c(M(e2)) +M(e3))−$x + (M(e1) / (c(M(e2)) +M(e3))$x)
= (c(M(e2)−$x) +M(e3)−$x) + (M(e1) / (c(M(e2)$x) +M(e3)$x))
= (c(M(e2)) +M(e3)−$x) + (M(e1) /M(e3)$x)
= c(M(e2)) + (M(e3)−$x + (M(e1) /M(e3)$x))
= c(M(e2)) +M(for $x in e1 return e3)
= M(if e2 then (for $x in e1 return e3))

Nested Return Condition Lift We need to show that under the assumption that $x /∈ FV (en)
it holds that M(αfor $x in ∪e1 return (αif ∨e2 ∧ . . . ∧ ∨en then αen+1)) is equal to
M(αif ∨en then (αfor $x in ∪e1 return (αif ∨e2 ∧ . . . ∧ ∨en−1 then αen+1))). Observe that
M(∨for $x in ∪e1 return (∨if ∨e2 ∧ . . . ∧ ∨en then ∨en+1)) =
c(M(∪for $x in ∪e1 return (∪if ∪e2 ∧ . . . ∧ ∪en then ∪en+1))) and
M(∨if ∨en then (∨for $x in ∪e1 return (∨if ∨e2 ∧ . . . ∧ ∨en−1 then ∨en+1))) =
c(M(∨if ∨en then (∨for $x in ∪e1 return (∨if ∨e2 ∧ . . . ∧ ∨en−1 then ∨en+1)))). Therefore it is suf-
ficient to prove this for α = ∪. For brevity we omit the ∪ annotations in the following.

29

M(for $x in e1 return (if e2 then e3))
= M(if e2 ∧ . . . ∧ en then en+1)−$x + (M(e1) /M(if e2 ∧ . . . ∧ en then en+1)$x)
= (c(M(e2))+. . .+c(M(en))+M(en+1))−$x+(M(e1)/(c(M(e2))+. . .+c(M(en))+M(en+1))$x)
= (c(M(e2)−$x)+. . .+c(M(en)−$x)+M(en+1)−$x)+(M(e1)/(c(M(e2)$x))+. . .+c(M(en)$x))+
M(en+1)$x))
= (c(M(e2)−$x) + . . . + c(M(en−1)−$x + c(M(en)) + M(en+1)−$x) + (M(e1) / (c(M(e2)$x)) +
. . . + c(M(en−1)$x)) +M(en+1)$x))
= c(M(en)) + (c(M(e1)) + . . . + c(M(en−1)) + M(en+1))−$x + (M(e1) / (c(M(e1)) + . . . +
c(M(en−1)) +M(en+1))$x)
= c(M(en)) +M(if e1 ∧ . . . ∧ en−1 then en+1)−$x + (M(e1) /M(if e1 ∧ . . . ∧ en−1 then en+1)$x)
= c(M(en)) +M(for $x in e1 return (if e1 ∧ . . . ∧ en−1 then en+1))
= M(if en then (for $x in e1 return (if e1 ∧ . . . ∧ en−1 then en+1)))

Return Result Lift We need to show that if $x /∈ FV (e3) then it holds that
M(αfor $x in ∪e1 return (αif ∨e2 then αe3)) is equal toM(αif (∨for $x in ∪e1 return ∨e2) then αe3).
Observe that M(∨for $x in ∪e1 return (∨if ∨e2 then ∨e3)) =
c(M(∪for $x in ∪e1 return (∪if ∪e2 then ∪e3))) and M(∨if (∨for $x in ∪e1 return ∨e2) then ∨e3) =
c(M(∪if (∪for $x in ∪e1 return ∪e2) then ∪e3)). Therefore it is sufficient to prove this for α = ∪.
For brevity we omit the ∪ annotations in the following.

M(for $x in e1 return (if e2 then e3))
= M(if e2 then e3)−$x + (M(e1) /M(if e2 then e3)$x)
= (c(M(e2)) +M(e3))−$x + (M(e1) / (c(M(e2)) +M(e3))$x)
= (c(M(e2)−$x) +M(e3)−$x) + (M(e1) / (c(M(e2)$x) +M(e3)$x))
= (c(M(e2)−$x) +M(e3)) + (M(e1) / c(M(e2)$x))
= c(M(e2)−$x) + (M(e1) / c(M(e2)$x)) +M(e3)
= c(M(e2)−$x + (M(e1) /M(e2)$x)) +M(e3)
= c(M(for $x in e1 return e2)) +M(e3)
= M(if (for $x in e1 return e2) then e3)

Nested Return Result Lift We have to show that if $x /∈ FV (en+1) then
M(αfor $x in ∪e1 return (αif ∨e2 ∧ . . . ∧ ∨en then αen+1)) is the same output pattern as
M(αif (∨for $x in ∪e1 return (∨if ∨e2 ∧ . . . ∧ ∨en−1 then ∨en)) then αen+1). Observe that it holds
that M(∨for $x in ∪e1 return (∨if ∨e2 ∧ . . . ∧ ∨en then ∨en+1)) =
c(M(∪for $x in ∪e1 return (∪if ∪e2 ∧ . . . ∧ ∪en then ∪en+1))) and
M(∨if (∨for $x in ∪e1 return (∨if ∨e2 ∧ . . . ∧ ∨en−1 then ∨en)) then ∨en+1) =
c(M(∪if (∪for $x in ∪e1 return (∪if ∪e2 ∧ . . . ∧ ∪en−1 then ∪en)) then ∪en+1)). Therefore it is suf-
ficient to prove this for α = ∪. For brevity we omit the ∪ annotations in the following.

M(for $x in e1 return (if e2 ∧ . . . ∧ en then en+1))
= M(if e2 ∧ . . . ∧ en then en+1)−$x + (M(e1) /M(if e2 ∧ . . . ∧ en then en+1)$x)
= (c(M(e2))+. . .+c(M(en))+M(en+1))−$x+(M(e1)/(c(M(e2))+. . .+c(M(en))+M(en+1))$x)
= c(M(e2)−$x) + . . . + c(M(en)−$x) +M(en+1)−$x + (M(e1) / (c(M(e2)$x) + . . . + c(M(en)$x) +
M(en+1)$x))
= c(M(e2)−$x) + . . . + c(M(en)−$x) +M(en+1) + (M(e1) / (c(M(e2)$x) + . . . + c(M(en)$x)))
= c(M(e2)−$x) + . . . + c(M(en)−$x) + (M(e1) / (c(M(e2)$x) + . . . + c(M(en)$x))) +M(en+1)
= c((c(M(e2)−$x)+. . .+c(M(en−1)−$x)+M(en)−$x)+(M(e1)/(c(M(e2)$x)+. . .+c(M(en−1)$x)+
M(en)$x))) +M(en+1)
= c((c(M(e2)) + . . . + c(M(en−1)) + M(en))−$x + (M(e1) / (c(M(e2)) + . . . + c(M(en−1)) +
M(en))$x)) +M(en+1)
= c(M(if e2 ∧ . . . ∧ en−1 then en)−$x + (M(e1) /M(if e2 ∧ . . . ∧ en−1 then en)$x)) +M(en+1)
= c(M(for $x in e1 return (if e2 ∧ . . . ∧ en−1 then en))) +M(en+1)
= M(if (for $x in e1 return (if e2 ∧ . . . ∧ en−1 then en)) then en+1).

30

For Condition Lift We have to show that M(αfor $x in ∪(if ∨e1 then ∪e2) return αe3) is equal
to M(αif ∨e1 then (αfor $x in ∪e2 return αe3)). Observe that it holds that
M(∨for $x in ∪(if ∨e1 then ∪e2) return ∨e3) = c(M(∪for $x in ∪(if ∪e1 then ∪e2) return ∪e3)) and
M(∨if ∨e1 then (∨for $x in ∪e2 return ∨e3)) = c(M(∪if ∪e1 then (∪for $x in ∪e2 return ∪e3))). There-
fore it is sufficient to prove this for α = ∪. For brevity we omit the ∪ annotations in the following.

M(for $x in (if e1 then e2) return e3) = M(e3)−$x+(M(if e1 then e2)/M(e3)$x) = M(e3)−$x+
((c(M(e1)) +M(e2)) /M(e3)$x) = M(e3)−$x + ((c(M(e1)) /M(e3)$x) + (M(e2) /M(e3)$x)) =
M(e3)−$x + (c(M(e1)) + (M(e2) /M(e3)$x)) = c(M(e1)) + (M(e3)−$x + (M(e2) /M(e3)$x)) =
c(M(e1)) +M(for $x in e2 return e3) = M(if e1 then (for $x in e2 return e3)):

Trivial Dot Condition We have to show that M(αif ∨$dot then αe2) is equal to M(αe2). Ob-
serve that M(∨if ∨$dot then ∨e2) = c(M(∪if ∪$dot then ∪e2)) and M(∨e2) = c(M(∪e2)). There-
fore it is sufficient to prove this for α = ∪. For brevity we omit the ∪ annotations in the following.

M(if $dot then e2) = c(M($dot)) +M(e2) = c({$dotout}) +M(e2) = ∅+M(e2) = M(e2)

Trivial Loop We have to show that M(αfor $x in ∪e return α$x) is equal to M(αe). Observe
that M(∨for $x in ∪e return ∨$x) = c(M(∪for $x in ∪e return ∪$x)) and M(∨e) = c(M(∪e)).
Therefore it is sufficient to prove this for α = ∪. For brevity we omit the ∪ annotations in
the following.

M(for $x in e return $x) = M($x)−$x + (M(e) /M($x)$x) = ∅+ (M(e) / $xout) = M(e).

Introduction of Dot We have to show that if $dot 6∈ FV (e2) thenM(αfor $x in ∪e1 return αe2)
is equal toM(αfor $dot in ∪e1 return αe2[$x/∪$dot]). Observe thatM(∨for $x in ∪e1 return ∨e2) =
c(M(∪for $x in ∪e1 return ∪e2)) and M(∨for $dot in ∪e1 return ∨e2[$x/∪$dot]) =
c(M(∪for $dot in ∪e1 return ∪e2[$x/∪$dot])). Therefore it is sufficient to prove this for α = ∪. For
brevity we omit the ∪ annotations in the following.

It can be shown with induction upon the structure of e2 that M(e2[$x/$dot]) is equal to M(e2)
except that roots labeled with $x are relabeled with $dot. It then follows that:
M(for $x in e1 return e2) = M(e2)−$x + (M(e1) / M(e2)$x) = M(e2) + (M(e1) / M(e2)$x) =
M(e2)+ (M(e1) /M(e2[$x/$dot])$dot) = M(e2[$x/$dot])−$dot +(M(e1) /M(e2[$x/$dot])$dot) =
M(for $dot in e1 return e2[$x/$dot]).

Dot Loop We have to show thatM(αfor $dot in ∪$dot return αe1) equalsM(αe1). Observe that
M(∨for $dot in ∪$dot return ∨e1) = c(M(∪for $dot in ∪$dot return ∪e1)) andM(∨e1) = c(M(∪e1)).
Therefore it is sufficient to prove this for α = ∪. For brevity we omit the ∪ annotations:
M(for $dot in $dot return e1) = M(e1)−$dot+(M($dot)/M(e1)$dot) = M(e1)−$dot+M(e1)$dotM(e1)

Shortening Condition We have to show that M(∨if ∨e then ∨$dot) equals M(∨e):
M(∨if ∨e then ∨$dot) = c(c(M(∨e)) + M(∨$dot)) = c(M(∨e) + c(M(∨$dot))) = c(M(∨e) +
c(c(M(∪$dot)))) = M(∨e) + c(∅) = M(∨e)

Lemma 4.8. For every CXQ+ expression ∪e it holds that if F(∪e) is defined then F(∪e) = M(∪e).

Proof. We prove with induction upon the structure of ∪e that for all CXQ+ expressions αe it holds
that if F(αe) is defined then F(αe) = M(αe).

• Assume αe = ∪$x. Then F(∪$x) = $xout = M(∪$x).

• Assume αe = ∨$x. Then F(∨$x) = $x = c($xout)) = c(M(∪$x)) = M(∨$x).

• Assume αe = ∪a::n. Then F(∪a::n) = $dot{a::nout} = M(∪$x).

31

• Assume αe = ∨a::n. Then F(∨a::n) = $dot{a::n} = c($dot{a::nout}) = c(M(∪$x)) =
M(∨$x).

• Assume αe = ∪if ∨e1 then ∪e2. Then F(∪if ∨e1 then ∪e2) = F(∨e1) + F(∪e2) which by
induction equals M(∪e1) +M(∪e2). Since the result of F(∨e1) is a condition pattern this
is equal to c(M(∨e1)) +M(∪e2) = M(∪if ∨e1 then ∪e2)

• Assume αe = ∨if ∨e1 then ∨e2. Then F(∨if ∨e1 then ∨e2) = F(∨e1) + F(∪e2) which by
induction equals M(∪e1) +M(∪e2). Since the result of F(∨ei) is a condition pattern this is
equal to c(M(∨e1)) + c(M(∪e2)) = c(c(M(∨e1)) +M(∪e2)) = M(∨if ∨e1 then ∪e2)

• Assume αe = ∪for $dot in ∪$x return ∪e1 and F(∪e1) = {$dot{t1}, . . . , $dot{tn}}. Then
F(∪for $dot in ∪$x return ∪e1) = $x{t1, . . . , tn}. Since F(∪e1) produces an output pattern
this is equal to $xout /F(∪e1) = F(∪e1)−$dot +($xout /F(∪e1)$dot). By induction this equals
M(∪e1)−$dot + ($xout /M(∪e1)$dot) = M(∪for $dot in ∪$x return ∪e1).

• Assume αe = ∨for $dot in ∪$x return ∨e1 and F(∨e1) = {$dot{t1}, . . . , $dot{tn}}. Then
F(∨for $dot in ∪$x return ∨e1) = $x{t1, . . . , tn}. Since F(∨e1) produces a condition pattern
this is equal to $xout/c(F(∪e1)) = c(F(∪e1)−$dot)+($xout/c(F(∪e1)$dot)). By induction this
equals c(M(∪e1)−$dot)+($xout /c(M(∪e1)$dot)) = c(M(∪e1)−$dot +($xout /M(∪e1)$dot)) =
M(∨for $dot in ∪$x return ∨e1).

• Assume αe = ∪for $dot in ∪a::n return ∪e1 and F(∪e1) = {$dot{t1}, . . . , $dot{tn}}. Then
F(∪for $dot in ∪a::n return ∪e1) = $dot{a::n{t1, . . . , tn}}. Since F(∪e1) produces an output
pattern this is equal to $dot{a::nout} /F(∪e1) = F(∪e1)−$dot +($dot{a::nout} /F(∪e1)$dot).
By induction this equals M(∪e1)−$dot + ($dot{a::nout} /M(∪e1)$dot) =
M(∪for $dot in ∪a::n return ∪e1).

• Assume αe = ∨for $dot in ∪a::n return ∨e1 and F(∨e1) = {$dot{t1}, . . . , $dot{tn}}. Then
F(∨for $dot in ∪a::n return ∨e1) = $dot{a::n{t1, . . . , tn}}. Since F(∨e1) produces a condi-
tion pattern this is equal to $dot{a::nout} / c(F(∪e1)) = c(F(∪e1)−$dot) + ($dot{a::nout} /
c(F(∪e1)$dot)). By induction this equals c(M(∪e1)−$dot)+($dot{a::nout}/c(M(∪e1)$dot)) =
c(M(∪e1)−$dot + ($dot{a::nout} /M(∪e1)$dot)) = M(∨for $dot in ∪a::n return ∨e1).

• Assume αe = ∪for $dot in ∪$x return ∪e1 and F(∪e1) = {$dot{t1}, . . . , $dot{tn}, $dotout}.
Then F(∪for $dot in ∪$x return ∪e1) = $xout{t1, . . . , tn}. Since F(∪e1) produces an out-
put pattern where a root is output node this is equal to $xout / F(∪e1) = F(∪e1)−$dot +
($xout / F(∪e1)$dot). By induction this equals M(∪e1)−$dot + ($xout / M(∪e1)$dot) =
M(∪for $dot in ∪$x return ∪e1).

• Assume αe = ∪for $dot in ∪a::n return ∪e1 and F(∪e1) = {$dot{t1}, . . . , $dot{tn}, $dotout}.
Then F(∪for $dot in ∪a::n return ∪e1) = $dot{a::nout{t1, . . . , tn}}. Since F(∪e1) produces
an output pattern where a root is output node this is equal to $dot{a::nout} / F(∪e1) =
F(∪e1)−$dot + ($dot{a::nout} / F(∪e1)$dot). By induction this equals
M(∪e1)−$dot + ($dot{a::nout} /M(∪e1)$dot) = M(∪for $dot in ∪a::n return ∪e1).

Theorem 4.4. If a CXQ+ expressions ∪e can be rewritten to the TPNF expressions ∪e1 and ∪e2

then F(∪e1) = F(∪e2).

Proof. By Lemma 4.7 the result of mapping M remains the same after every rewrite and therefore
M(∪e) = M(∪e1) = M(∪e2). It then follows by Lemma 4.8 that F(∪e1) = F(∪e2).

5 An Alternative Normal Form

If we apply the loop fusion rules in the other direction we get an alternative normal form. To be
exact we substitute the loop fusion rule with the following rules:

32

Loop Split

αfor $dot in ∪e1

return (αfor $dot in ∪e2 return αe3)
;

αfor $dot in
(∪for $dot in ∪e1 return ∪e2)

return αe3

If ∪ � α.

Nested Loop Split

αfor $dot in ∪e1

return
(αif ∨e2 ∧ . . . ∧ ∨en

then
(αfor $dot in ∪en+1

return αen+2))

;

αfor $dot in
(∪for $dot in ∪e1

return
(∪if ∨e2 ∧ . . . ∧ ∨en

then ∪en+1))
return αen+2

If ∪ � α, n > 1.

Filter Fusion
αfor $dot in

(∪for $dot in ∪e1

return
(∪if ∨e2 ∧ . . . ∧ ∨en

then ∪$dot))
return αen+1

;

αfor $dot in ∪e1

return (
αif ∨e2 ∧ . . . ∧ ∨en

then αen+1)

If ∪ � α.

We conjecture that the resulting set of rules also terminates when applied exhaustively to a
CXQ+ expression of the form ∪e and results in an expression in the following normal form.

Definition 5.1 (TPNF’). Defined by the syntax:
fp ::= otp | ∪if tp then fp
tp ::= atp | ∨$x | otp ::= aotp | ∪$x | ∪$dot |

∨for $dot in tp return rc ∪for $dot in tp return orc
atp ::= ∨ax::nt | aotp ::= ∪ax::nt |

∨for $dot in atp return rc ∪for $dot in atp return orc
rc ::= ∨ax::nt | ∨if atp then rc orc ::= ∪ax::nt | ∪if atp then (orc | ∪$dot)

where $x refers to the set of variables minus $dot.

6 Related Literature

Detecting and identifying tree patterns within XQuery expressions has gained importance as a
result of two – not entirely unrelated – technical evolutions. First, many XQuery algebra systems
are capable of expressing tree patterns with an algebraic operator, like TAX [Jagadish et al., 2001]
or Galax [Michiels et al., 2007] and second, a growing number of advanced evaluation strategies
and accompanying indexing systems for tree patterns is being published, for instance the staircase
join [Grust et al., 2003] and holistic twig joins [Bruno et al., 2002].

More closely related to our work, the framework presented in [Deutsch et al., 2004] and ex-
tended in [Wang et al., 2005], focusses on minimizing navigation within nested subqueries. In con-
trast to our work, they do not focus on discovering tree patterns inside queries and they ignore exis-
tential XPath queries. Hence their approach is fully complementary to our normalization strategy.
Quite similarly, a proposed technique for identifying tree patterns [Arion et al., 2006], uses tree

33

patterns as a way of identifying the set of views that can be used during query evaluation. This is
in contrast with our approach, where we try to identify the parts of the query that can be evaluated
using optimal XPath evaluation strategies. Similar strategies have been proposed to project out
those parts of XML document trees that are not accessed by a query [Marian and Siméon, 2003].

Another seemingly useful and promising means for XQuery normalization in general, is to the
monoid calculus as described for object base query languages [Fegaras and Maier, 2000]. The use
of this approach is the subject of further research. In more general terms, the relevance of our work
is illustrated by [Wong, 1993], where normal forms open up the road to a better understanding of
some formal properties of functional query languages,as well as further optimization opportunities.

7 Conclusion

We have presented a method for detecting tree pattern expressions in arbitrary XQuery expres-
sions. It remains to be noted that many of the rules for deriving the ord and nodup properties for
the supported CXQ fragment of XQuery can be generalized. Similarly, some of the normalization
rules can be generalized to operate over the entire language and in the absence of annotations. The
extent of this robustness is the subjkect of further research. The proposed strategy is complete
for an important fragment of the XQuery language and it is complementatry to other query opti-
mization approaches like those in NEXT [Deutsch et al., 2004], Galax [Marian and Siméon, 2003]
or the view-based rewrites in [Arion et al., 2006]. Our normalization algorithms are capable of
identifying and extracting tree pattern expressions from queries, enabling the use of specialized
algorithms to evaluate them. To our knowledge, this paper is the first to present a complete
aproach towards the identification and normalization of tree pattern expressions. The presented
techniques are designed to easily fit inside any XQuery compiler.

References

[Arion et al., 2006] Arion, A., Benzaken, V., Manolescu, I., Papakonstantinou, Y., and Vijay, R.
(2006). Algebra-based identification of tree patterns in XQuery. In FQAS, pages 13–25.

[Bruno et al., 2002] Bruno, N., Koudas, N., and Srivastava, D. (2002). Holistic twig joins: Optimal
XML pattern matching. In SIGMOD, pages 310–321, Madison, Wisconsin.

[Chen et al., 2004] Chen, T., Ling, T. W., and Chan, C. Y. (2004). Prefix path streaming: A new
clustering method for optimal holistic XML twig pattern matching. In DEXA, pages 801–810.

[Chien et al., 2002] Chien, S., Vagena, Z., Zhang, D., Tsotras, V., and Zaniolo, C. (2002). Efficient
structural joins on indexed XML documents. In VLDB, Hong Kong, China.

[Chin-Wan Chung and Shim, 2002] Chin-Wan Chung, J.-K. M. and Shim, K. (2002). APEX : An
adaptive path index for XML data. SIGMOD, 15(5):121–132.

[Choi et al., 2003] Choi, B., Mahoui, M., and Wood, D. (2003). On the optimality of holistic
algorithms for twig queries. In DEXA, pages 28–37.

[Deutsch et al., 2004] Deutsch, A., Papakonstantinou, Y., and Xu, Y. (2004). The NEXT logical
framework for XQuery. In VLDB, pages 168–179, Toronto, Canada.

[Draper et al., 2005] Draper, D., Fankhauser, P., Fernandez, M., Malhotra, A., Rose, K., Rys, M.,
Simeon, J., and Wadler, P. (2005). XQuery 1.0 and XPath 2.0 formal semantics, W3C working
draft. Candidate Recommendation.

[Fegaras and Maier, 2000] Fegaras, L. and Maier, D. (2000). Optimizing object queries using an
effective calculus. ACM Trans. Database Syst., 25(4):457–516.

34

[Fernández et al., 2005] Fernández, M., Hidders, J., Michiels, P., Siméon, J., and Vercammen, R.
(2005). Optimizing sorting and duplicate elimination in XQuery path expressions. volume 3588
of Lecture Notes in Computer Science, pages 554–563, Copenhagen, Denmark.

[Fontoura et al., 2005] Fontoura, M., Josifovski, V., Shekita, E., and Yang, B. (2005). Optimizing
cursor movement in holistic twig joins. In CIKM, pages 784–791, New York, NY, USA. ACM
Press.

[Gottlob et al., 2002] Gottlob, G., Koch, C., and Pichler, R. (2002). Efficient algorithms for
processing XPath queries. In VLDB, pages 95–106.

[Grust et al., 2004] Grust, T., Keulen, M. V., and Teubner, J. (2004). Accelerating XPath evalu-
ation in any RDBMS. ACM Trans. Database Syst., 29(1):91–131.

[Grust et al., 2003] Grust, T., van Keulen, M., and Teubner, J. (2003). Staircase join: Teach a
relational dbms to watch its (axis) steps. In VLDB, pages 524–525.

[Jagadish et al., 2001] Jagadish, H. V., Lakshmanan, L. V. S., Srivastava, D., and Thompson, K.
(2001). Tax: A tree algebra for xml. In DBPL, pages 149–164.

[Jiang et al., 2004] Jiang, H., Lu, H., and Wang, W. (2004). Efficient processing of twig queries
with or-predicates. In SIGMOD, pages 59–70.

[Jiang et al., 2003] Jiang, H., Wang, W., Lu, H., and Yu, J. X. (2003). Holistic twig joins on
indexed XML documents. In VLDB, pages 273–284.

[Li and Moon, 2001] Li, Q. and Moon, B. (2001). Indexing and querying XML data for regular
path expressions. In VLDB.

[Lu et al., 2005a] Lu, J., Ling, T. W., Chan, C. Y., and Chen, T. (2005a). From region encoding
to extended Dewey: On efficient processing of XML twig pattern matching. In VLDB, pages
193–204.

[Lu et al., 2005b] Lu, J., Ling, T. W., Yu, T., Li, C., and Ni, W. (2005b). Efficient processing of
ordered XML twig pattern. In DEXA, pages 300–309.

[Marian and Siméon, 2003] Marian, A. and Siméon, J. (2003). Projecting xml documents. In
VLDB, pages 213–224.

[Michiels et al., 2007] Michiels, P., Mihăilă, G. A., and Siméon, J. (2007). Put a tree pattern in
your tuple algebra. In ICDE. to appear.

[Wang et al., 2005] Wang, S., Rundensteiner, E. A., and Mani, M. (2005). Optimization of nested
XQuery expressions with orderby clauses. In ICDE Workshops, page 1277.

[Wong, 1993] Wong, L. (1993). Normal forms and conservative properties for query languages
over collection types. In PODS, pages 26–36, Washington, D.C., United States.

35

