
First-Order Under-Approximations of
Consistent Query Answers

Floris Geerts1, Fabian Pijcke2, and Jef Wijsen2

1 Universiteit Antwerpen, Antwerpen, Belgium
2 Université de Mons, Mons, Belgium

Abstract. Consistent Query Answering (CQA) has by now been widely
adopted as a principled approach for answering queries on inconsistent
databases. The consistent answer of a query q on an inconsistent database
db is the intersection of the answers to q on all repairs, where a repair
is any consistent database that is maximally close to db. Unfortunately,
computing consistent answers under primary key constraints has already
exponential data complexity for very simple conjunctive queries, which
is completely impracticable.

In this paper, we propose a new framework for divulging an inconsistent
database to end users, which adopts two access restrictions. The first
restriction complies with CQA and states that inconsistencies should
never be divulged to end users. Therefore, end users should only get
consistent query answers. The second restriction states that the data
complexity of user queries must remain tractable (i.e., in P or even in
FO). User queries with exponential data complexity will be rejected. We
investigate which consistent query answers can still be obtained under
such access restrictions.

1 Introduction

Inconsistent, incomplete and uncertain data is widespread in the internet and
social media era. This has given rise to a new paradigm for query answering,
called Consistent Query Answering (CQA). This paradigm starts with the notion
of repair , which is a new consistent database that minimally differs from the
original inconsistent database. In general, an inconsistent database can have
many repairs. In this respect, database repairing is different from data cleaning
which aims at a unique cleaned database.

In this paper, we assume that the only constraints are primary keys, one
per relation. A repair of an inconsistent database db is a maximal subset of db
that satisfies all primary key constraints. Primary keys will be underlined. For
example, the database of Fig. 1 stores ages and cities of residence of male and
female persons. For simplicity, assume that persons have unique names (attribute
N). Every person has exactly one age (attribute A) and city (attribute C).
However, distinct tuples may agree on the primary key N , because there can be
uncertainty about ages and cities. In the database of Fig. 1, there is uncertainty

2

M N A C
Ed 48 Mons
Ed 48 Paris

Dirk 29 Mons

F N A C
An 37 Mons
Iris 37 Paris

Fig. 1. Example database with primary key violations.

about the city of Ed (it can be Mons or Paris). The database can be repaired in
two ways: delete either M(Ed, 48,Mons) or M(Ed, 48,Paris).

When database repairing results in multiple repairs, CQA shifts from stan-
dard semantics to certainty semantics. Given a query, the certain answer (also
called consistent answer) is defined as the intersection of the answers on all re-
pairs. That is, for a query q on an inconsistent database db, CQA replaces the
standard query answer q(db) with the certain answer, defined by the following
intersection: ⋂

{q(r) | r is a repair of db}. (1)

Thus, the certainty semantics exclusively returns answers that hold true in every
repair. Given a query q, we will denote by bqc the query that maps a database
to the answer defined by (1).

A practical obstacle to CQA is that the shift to certainty semantics involves
a significant increase of complexity. When we refer to complexity in this paper,
we mean data complexity, i.e., the complexity in terms of the size of the database
(for a fixed query) [1, p. 422]. It is known for long [7] that there exist conjunctive
queries q that join two relations such that the data complexity of bqc is already
coNP-hard. If this happens, CQA is completely impracticable.

This paper investigates ways to circumvent the high data complexity of CQA
in a realistic setting, which is based on the following assumptions:

– If a query returns an answer to a user, then every tuple in that answer should
belong to the certain answer. In Libkin’s terminology [16], query answers
must not contain false positives, i.e., tuples that are not certain.

– The only queries that can be executed in practice are those with data com-
plexity in P or, even better, in FO. FO is the descriptive complexity class
that captures all queries expressible in relational calculus.

Therefore, if the data complexity of a query bqc is not in P, then the best
we can go for is an approximation without false positives (also called under-
approximation), computable in polynomial time. The term strategy will be used
for queries that compute such approximations.

For readability, we depict our setting by the following scenario with two
persons, called Bob and Alice. The person called Bob owns a database that is
publicly accessible only via a query interface which restricts the syntax of the
queries that can be asked. Our main results concern the case where the interface
is restricted to self-join-free conjunctive queries. The database schema including
all primary key constraints is publicly available. However, Bob is aware that
his database contains many mistakes which should not be divulged. Therefore,

3

whenever some end user asks a query q, Bob will actually execute the query
bqc. That is, end users will get exclusively consistent answers. But, for feasibility
reasons, Bob will reject any query q for which the data complexity of bqc is too
high. In this paper, we assume that Bob considers that data complexity is too
high when it is beyond FO. The person called Alice interrogates Bob’s database,
and she will be happy to get exclusively consistent answers. Unfortunately, her
query q will be rejected by Bob if the data complexity of bqc is too high (i.e., not
in FO). If this happens, Alice has to change strategy. Instead of asking q, she
can ask a finite number of queries q1, q2, . . . , q` such that for every i ∈ {1, . . . , `},
the data complexity of bqic is in FO, and hence the query qi will be accepted
by Bob. No restriction is imposed on the number ` of queries that can be asked.
The best Alice can hope for is that she can compute herself the answer to bqc
(or even to q) from Bob’s answers to bq1c, . . . , bq`c. The question addressed in
this paper is: Given that Alice wants to answer q, what queries should she ask
to Bob?

Here is a concrete example. Assume Bob owns the database of Fig. 1. Inter-
ested in stable couples3, Alice submits the query q1 which asks “Get pairs of
ages of men and women living in the same city”:

q1 = {y, w | ∃x∃u∃z (M(x, y, z) ∧ F (u,w, z))}.

The consistent answer is {(48, 37), (29, 37)}. However, the query bq1c that re-
turns the certain answer is known to have coNP-hard data complexity [14,13].
Therefore, Bob will reject q1. Alice changes strategy and asks the query q2 which
asks “Get pairs of ages and city of men and women living in the same city”:

q2 = {y, w, z | ∃x∃u (M(x, y, z) ∧ F (u,w, z))}. (2)

Since the data complexity of bq2c is known to be in FO [14,13], Bob will ex-
ecute bq2c. The query q2 returns {(29,37,Mons), (48,37,Mons)} on one repair,
and {(29,37,Mons), (48,37,Paris)} on the other repair, so the certain answer is
{(29, 37,Mons)}. This in turn allows Alice to derive a certain answer to the
original query: since (29, 37,Mons) belongs to the answer to bq2c, it is correct to
conclude that (29, 37) belongs to the answer to bq1c. An interesting question is
whether Alice has a better strategy that divulges even more answers to bq1c.

The technical contributions of this paper are as follows. We first show that
the following problem is undecidable: Given a relational calculus query q, is
bqc in FO? In view of this undecidability result, we then limit our attention
to strategies that are first-order combinations (using disjunction and existential
quantification) of queries bqc that are known to be in FO. We show how to build
optimal strategies under such syntax restrictions.

This paper is organized as follows. Section 2 discusses related work. Section 3
provides some mathematical definitions. Section 4 introduces our new framework
for studying consistent query answering under primary key constraints, and in-
troduces the problem OPTSTRATEGY. Intuitively, OPTSTRATEGY asks, given

3 According to [6], marital stability is higher when the wife is 5+ years younger than
her husband.

4

a query q, to find a new query q′ that gets the largest subset of consistent an-
swers while still obeying the restrictions imposed by our framework. Section 5
provides ways to solve OPTSTRATEGY in restricted settings. Finally, Section 6
concludes the paper.

2 Related Work

Consistent query answering (CQA) was proposed in [2] as a principled approach
to handle data quality problems that arise from violations of integrity con-
straints. See the textbooks [10] and [3] for comprehensive overviews of these
domains.

Fuxman and Miller [11] were the first ones to focus on CQA under the re-
strictions that consistency is only with respect to primary keys and that queries
are self-join-free conjunctive. See [21] for a survey on consistent query answering
to conjunctive queries under primary key constraints. Some recent results not
covered by this survey can be found in [14,13].

Instead of returning the query answers true in every repair, one could return
the query answers true in, e.g., a majority of repairs. This leads to the count-
ing variant of CQA, which has been studied in [17,18]. As observed in [20], the
counting variant of CQA under primary key constraints is closely related to query
answering in block-independent-disjoint (BID) probabilistic databases [8,9]. Al-
ternatively, one can obtain approximations by restricting the set of repairs. This
approach has been considered in [5] in the setting of ontology-based data access.

Our work can also be regarded as querying “consistent views,” in the sense
that Bob returns exclusively consistent answers. It has been observed long ago [19]
that consistent views are not closed under relational calculus. In other words,
the position of the b·c construct in a query does matter. For example, the query
{x | ∃y∃zbM(x, y, z)c} returns only Dirk, while b{x | ∃y∃zM(x, y, z)}c returns
both Ed and Dirk. Bertossi and Li [4] have used views to protect the secrecy of
data in a database. In our setting, the query answers that are to be hidden from
end users are those that are not true in every repair.

3 Preliminaries

We assume disjoint sets of variables and constants. If x is a sequence containing
variables and constants, then vars(x) denotes the set of variables that occur in
x. A valuation over a set U of variables is a total mapping θ from U to the set
of constants.

Atoms and key-equal facts. Each relation name R of arity n, n ≥ 1, has
a unique primary key which is a set {1, 2, . . . , k} where 1 ≤ k ≤ n. We say that
R has signature [n, k] if R has arity n and primary key {1, 2, . . . , k}. We say
that R is all-key if n = k. For all positive integers n, k such that 1 ≤ k ≤ n, we
assume denumerably many relation names with signature [n, k].

5

If R is a relation name with signature [n, k], then R(s1, . . . , sn) is called
an R-atom (or simply atom), where each si is either a constant or a variable
(1 ≤ i ≤ n). Such an atom is commonly written as R(x,y) where the primary key
value x = s1, . . . , sk is underlined and y = sk+1, . . . , sn. An R-fact (or simply
fact) is an R-atom in which no variable occurs. Two facts R1(a1, b1), R2(a2, b2)
are key-equal if R1 = R2 and a1 = a2.

We will use letters F,G,H for atoms. For an atom F = R(x,y), we denote
by key(F) the set of variables that occur in x, and by vars(F) the set of variables
that occur in F , that is, key(F) = vars(x) and vars(F) = vars(x) ∪ vars(y).

Uncertain databases, blocks, and repairs. A database schema is a finite
set of relation names. All constructs that follow are defined relative to a fixed
database schema.

A database is a finite set db of facts using only the relation names of the
schema. We often refer to databases as “uncertain databases” to stress that such
databases can violate primary key constraints.

A block of db is a maximal set of key-equal facts of db. The term R-block
refers to a block of R-facts, i.e., facts with relation name R. An uncertain data-
base db is consistent if no two distinct facts are key-equal (i.e., if every block of
db is a singleton). A repair of db is a maximal (with respect to set containment)
consistent subset of db. We write rset(db) for the set of repairs of db.

Queries and Consistent Query Answering. We assume that the reader is
familiar with relational calculus [1, Chapter 5] and with the notion of queries [15,
Definition 2.7]. By FO, we denote the descriptive complexity class that contains
the queries expressible in relational calculus.

For every m-ary (m ≥ 0) relational calculus query q, we define bqc as the
m-ary query that maps every database db to

⋂
{q(r) | r ∈ rset(db)}. Clearly, if

db is a consistent database, then bqc(db) = q(db).
Given two m-ary queries q1 and q2, we say that q1 is contained in q2, denoted

by q1 v q2 if for every database db, q1(db) ⊆ q2(db). We write q1 @ q2, if q1 v q2
and q2 6v q1. We say that q1 and q2 are equivalent , denoted by q1 ≡ q2, if q1 v q2
and q2 v q1.

A 0-ary query is called Boolean. If q is a Boolean query, then q maps any
database to either {〈〉} or {}, corresponding to true and false respectively.

A conjunctive query is a relational calculus query of the form {z | ∃yB} where
B is a conjunction of atoms. The conjunction B and the query are said to be self-
join-free if no relation name occurs more than once in B. We write vars(B) for
the set of variables that occur in B. By a slight abuse of notation, we denote by B
also the set of conjuncts that occur in B. For example, if B1 = R(x)∧R(x)∧R(y)
and B2 = R(x) ∧R(y) ∧R(z), then we may write B1 ⊆ B2.

Significantly, the following example shows that bqc may not be expressible in
relational calculus, even if q is self-join-free conjunctive.

Example 1. Let q1 = {〈〉 | ∃x∃y∃z
(
R(x, z) ∧ S(y, z)

)
}. The query q1 is self-join-

free conjunctive. It follows from [13] that bq1c is not in FO (i.e., not expressible
in relational calculus).

6

Let q2 = {〈〉 | ∃x∃y
(
R(x, y) ∧ S(y, b)

)
}, where b is a constant. Then, bq2c is

equivalent to the following relational calculus query:

∃x∃y(R(x, y)∧
∀y
(
R(x, y)→

(
S(y, b) ∧ ∀z

(
S(y, z)→ z = b

))))
. ut

4 A Framework for Divulging Inconsistent Databases

In this section, we formalize the setting that was described and illustrated in
Section 1. The setting is captured by the language called CQAFO, which consists
of first-order quantification and Boolean combinations of atomic formulas of the
form bqc, where q is any relational calculus query. The atomic formulas bqc cap-
ture that the database owner Bob only returns certain answers. Subsequently, the
end user Alice, who interrogates Bob’s database, can do some post-processing on
Bob’s outputs. In our setting, we assume that Alice uses first-order quantification
and Boolean combinations of Bob’s answers.

Example 2. The scenario in Section 1 is captured by the CQAFO query

{y, w | ∃Zb∃x∃u (M(x, y, Z) ∧ F (u,w,Z))c}.

The formula within b·c is the query (2). The quantification ∃Z corresponds to
Alice projecting away the cities column returned by Bob. For readability, we will
often use upper case letters for variables that are quantified outside the range of
b·c. ut
Example 3. The following query allows Alice to find the names of men with more
than two cities in the database:

{x | b∃y∃zM(x, y, z)c ∧ ¬∃Zb∃yM(x, y, Z)c}.

To understand this query, it may be helpful to notice that {x, Z | b∃yM(x, y, Z)c}
returns tuple (n, c) whenever c is the only city of residence encoded for the per-
son named n. ut

4.1 The Language CQAFO

Syntax of CQAFO

– If q is a relational calculus query, then bqc is a CQAFO formula.
– If ϕ1 and ϕ2 are CQAFO formulas, then ϕ1∧ϕ2, ϕ1∨ϕ2, and ¬ϕ1 are CQAFO

formulas.
– If ϕ is a CQAFO formula, then ∃xϕ and ∀xϕ are CQAFO formulas.

If ϕ is a CQAFO formula, then free(ϕ) denotes the set of free variables of ϕ (i.e.,
the variables not bound by a quantifier). If x is a tuple containing all the free
variables of ϕ, we write ϕ(x).

A CQAFO query is an expression of the form {x | ϕ}, where x is a sequence
of variables and constants containing each variable of free(ϕ). If x contains no
constants and no double occurrences of the same variable, then such query is
also denoted ϕ(x).

7

Semantics Let db be an uncertain database. Let ϕ(x) be a CQAFO formula,
and a be a sequence of constants (of same length as x). We inductively define
db |= ϕ(a).

– If ϕ(x) = bq(x)c for some relational calculus query q(x), then db |= ϕ(a) if
for every repair r of db, r |= q(a);4

– db |= ¬ϕ(a) if db 6|= ϕ(a);
– db |= ϕ1 ∧ ϕ2 if db |= ϕ1 and db |= ϕ2;
– db |= ϕ1 ∨ ϕ2 if db |= ϕ1 or db |= ϕ2;
– if ψ(x) = ∃yϕ(y,x), then db |= ψ(a) if db |= ϕ(a′,a) for some a′;
– if ψ(x) = ∀yϕ(y,x), then db |= ψ(a) if db |= ϕ(a′,a) for all a′.

Let Q = {x′ | ϕ(x)} be a CQAFO query. The answer Q(db) is the smallest
set containing θ(x′) for every valuation θ over vars(x) such that for some a,
θ(x) = a and db |= ϕ(a). Notice that vars(x′) = vars(x), but x′, unlike x, can
contain constants and multiple occurrences of the same variable. If x′ contains
no variables, then Q is Boolean.

4.2 Restrictions on Data Complexity

The language CQAFO of Section 4.1 captures our first access restriction which
states that the database owner Bob returns exclusively certain answers. But we
do not prohibit that end user Alice does some post-processing on Bob’s answers.
In this section, we will add our second access restriction which states that Bob
rejects queries q if the data complexity of bqc is not in FO. Unfortunately, Bob
has to face the following undecidability result.

Theorem 1. The following problem is undecidable. Given a relational calculus
query q, is bqc in FO?

Proof. Let q1 = {〈〉 | ∃x∃y∃z
(
R(x, z) ∧ S(y, z) ∧ ϕ

)
} where ϕ is a closed rela-

tional calculus formula such that all relation names in ϕ are all-key. We show
hereinafter that bqc is in FO if and only if ϕ is unsatisfiable. The desired re-
sult then follows by [1, Theorem 6.3.1], which states that (finite) satisfiability of
relational calculus queries is undecidable.

Obviously, if ϕ is unsatisfiable, then bq1c ≡ false, and hence bq1c is in FO.
We show next that if ϕ is satisfiable, then bq1c is not in FO. Assume that ϕ is

satisfiable. Let q0 = ∃x∃y∃z
(
R(x, z) ∧ S(y, z)

)
. Let CERTAIN0 and CERTAIN1

be the problems defined next.

– CERTAIN0: Given a database db, determine whether every repair of db
satisfies q0.

– CERTAIN1: Given a database db, determine whether every repair of db
satisfies q1.

4 r |= q(a) is defined in the standard way.

8

Let db0 be a database that is input to CERTAIN0. We show a polynomial-
time many-one reduction from CERTAIN0 to CERTAIN1. Let S be the database
schema that contains the relation names occurring in ϕ. An algorithm can con-
sider systematically every finite database db′ over S and test db′ |= ϕ, until a
database db′ is found such that db′ |= ϕ. The algorithm terminates because ϕ is
satisfiable. Since the computation of db′ does not depend on db0, it takes O(1)
time. Since all relation names in db′ are all-key, we have that db′ is consistent.
Clearly, q0 is true in every repair of db0 if and only if q1 is true in every repair of
db0 ∪ db′. So we have established a polynomial-time many-one reduction from
CERTAIN0 to CERTAIN1. Since CERTAIN0 is coNP-hard [13], it follows that
CERTAIN1 is coNP-hard. Since FO (coNP [12], it follows that CERTAIN1 is
not in FO. ut

By Theorem 1, there exists no algorithm that allows Bob to decide whether
he has to accept or reject a relational calculus query. In general, little is known
about the complexity of bqc for relational calculus queries q. One of the stronger
known results is the following.

Theorem 2 ([13]). The following problem is decidable in polynomial time.
Given a self-join-free conjunctive query q, is bqc in FO? Moreover, if bqc is
in FO, then a relational calculus query equivalent to bqc can be effectively con-
structed.

In view of Theorems 1 and 2, the following scenario is the best we can go for
with the current state of art.

1. The database owner Bob only accepts self-join-free conjunctive queries q such
that bqc is in FO. Thus, Bob rejects every query that is not self-join-free
conjunctive, and rejects a self-join-free conjunctive query q if bqc is not in
FO.

2. As before, Alice can do some first-order post-processing on the answers ob-
tained from Bob.

Under these restrictions, we focus on the following research task: given that Alice
wants to answer a self-join-free conjunctive query q on a database owned by Bob,
develop a strategy for Alice to get a subset (the greater, the better) of certain
answers. A formal definition follows.

Our framework applies to Boolean queries: {〈〉} (true) and {} (false) are
two under-approximations of {〈〉}, while {} is the only under-approximation of
itself.

4.3 Strategies

Strategies for a query q are defined next as relational calculus queries that can
be expressed in CQAFO and that are contained in bqc.

9

Definition 1. Let q be a self-join-free conjunctive query. A strategy for q is a
CQAFO query ϕ such that ϕ v bqc and for every atomic formula bq′c in ϕ, we
have that q′ is a self-join-free conjunctive query such that bq′c is in FO.

A strategy ϕ for q is optimal if for every strategy ψ for q, we have ψ v ϕ.
The problem OPTSTRATEGY takes in a self-join-free conjunctive query q and
asks to determine an optimal strategy for q.

Some observations are in place.

– If the input to OPTSTRATEGY is a self-join-free conjunctive q such that bqc
is in FO, then the CQAFO query bqc is itself an optimal strategy.

– Every strategy ϕ is in FO, because all atomic formulas bq′c are required to
be in FO. Therefore, if Alice wants to answer a query q such that bqc is not
in FO, then there is no strategy ϕ such that ϕ ≡ bqc.

– There is no fundamental reason why the input query to OPTSTRATEGY is
required to be self-join-free conjunctive query. However, developing strategies
for more expressive queries is left as an open question.

5 How to Construct Good Strategies?

Let q be a self-join-free conjunctive query. In this section, we investigate ways
for constructing good (if not optimal) strategies for q of a particular syntax. In
Section 5.1, we take the most simple approach: take the union of queries bqic
contained in bqc, where qi is self-join-free conjunctive and bqic is in FO. We then
show that the strategies obtained in this way cannot be optimal. Therefore, an
enhanced approach is developed in Section 5.2.

5.1 Post-Processing by Unions Only

Assume that the input to OPTSTRATEGY is a self-join-free conjunctive query
q(z). In this section, we look at strategies of the form

⋃̀
i=1

bqic, (3)

where each qi is of the form {zi | ∃yiBi} in which zi has same length as z and
Bi is a self-join-free conjunction of atoms.5

We use union (with its standard semantics) instead of disjunction to avoid
notational difficulties. For example, the union

{x, a | bR(x, a)c} ∪ {x, y | bS(x, y)c},

where a is a constant, is semantically clear, and is equivalent to

{x, y | bR(x, y) ∧ y = ac ∨ bS(x, y)c},
5 Notice that is can be easily verified that b{zi | ∃yiBi}c ≡ {zi | b∃yiBic}.

10

in which equality is needed. It would be wrong to write {x, y | bR(x, a)c ∨
bS(x, y)c}, an expression that is even not domain independent [1, p. 79].

Clearly, a formula of the form (3) is a strategy if for every i ∈ {1, . . . , `}, bqic
is in FO and bqic v bqc. The latter condition is equivalent to qi v q as shown
next.

Lemma 1. Let q and q′ be self-join-free m-ary conjunctive queries. Then, q v q′
if and only if bqc v bq′c.

Proof. Let q = {z | ∃yB} and q′ = {z′ | ∃y′B′}, where z and z′ both have the
same length m.

=⇒ Straightforward. ⇐= Assume bqc v bq′c. Let µ be an injective
mapping with domain vars(B) that maps each variable to a fresh constant not
occurring elsewhere. Since µ is injective, its inverse µ−1 is well defined. Let
db = µ(B). Clearly, db is consistent and q(db) = {µ(z)} = bqc(db). From
bqc v bq′c, it follows µ(z) ∈ q′(db) = bq′c(db). Then, there exists a valuation
θ over vars(B′) such that θ(B′) ⊆ db and θ(z′) = µ(z). Then µ−1 ◦ θ(B′) ⊆ B
and µ−1 ◦ θ(z′) = z. Since µ−1 ◦ θ is a homomorphism from q′ to q, it follows
q v q′ by the Homomorphism Theorem [1, Theorem 6.2.3]. ut

Lemma 1 does not hold for conjunctive queries with self-joins, as shown next.

Example 4. Let q = {〈〉 | R(a, b) ∧ R(a, c)}. For every uncertain database db,
bqc(db) = {}. Let q′ be a query such that q 6v q′ (such query obviously exists).
Then, bqc v bq′c and q 6v q′. ut

Lemma 1 allows us to construct strategies of the form (3), as follows. Assume
that the input to OPTSTRATEGY is a self-join-free conjunctive query q(z). For
some positive integer `, generate self-join-free conjunctive queries q1, . . . , q` such
that for each i ∈ {1, . . . , `}, qi v q and bqic is in FO. The condition qi v q is
decidable by [1, Theorem 6.2.3]; the condition that bqic is in FO is decidable

by Theorem 2. Then by Lemma 1,
⋃`

i=1bqic is a strategy for q.
Unfortunately, Theorem 3 given hereinafter states that there are cases where

no strategy of the form (3) is optimal. We first generalize Lemma 1 to unions.

Lemma 2. Let q0, q1, . . . q` be self-join-free m-ary conjunctive queries. Then,
bq0c v

⋃`
i=1bqic if and only if for some i ∈ {1, . . . , `}, q0 v qi.

Proof. ⇐= Straightforward. =⇒ Assume bq0c v
⋃`

i=1bqic. Let q0 = {z0 |
∃y0B0}, where B0 is self-join-free. Let µ be an injective mapping with domain
vars(B0) that maps each variable to a fresh constant not occurring elsewhere.
Since µ is injective, its inverse µ−1 is well defined. Let db = µ(B0). Clearly,

db is consistent and q0(db) = {µ(z0)} = bq0c(db). From bq0c v
⋃`

i=1bqic, it
follows that we can assume i ∈ {1, . . . , `} such that µ(z0) ∈ qi(db) = bqic(db).
Let qi = {zi | ∃yiBi}. Then, there exists a valuation θ over vars(Bi) such that
θ(Bi) ⊆ db and θ(zi) = µ(z0). Then µ−1 ◦ θ(Bi) ⊆ B0 and µ−1 ◦ θ(zi) = z0.
Since µ−1 ◦ θ is a homomorphism from qi to q0, it follows q0 v qi. ut

11

Theorem 3. There exists a self-join-free conjunctive query q such that for every
strategy ϕ of the form (3) for q, there exists another strategy ψ of the form (3)
for q such that ϕ @ ψ.

Proof. Let q = {〈〉 | ∃x∃y∃z
(
R(x, z) ∧ S(y, z)

)
}. Then bqc is not in FO [14]. For

every constant c, let qc be the query defined by {〈〉 | ∃y∃z
(
R(c, z) ∧ S(y, z)

)
}.

For every constant c, we have that bqcc v bqc and bqcc is in FO.
Let ϕ be a strategy for q of the form (3). Let A be the greatest set of constants

such that for all c ∈ A, there exists some i ∈ {1, . . . , `} such that qi ≡ qc. Let b
be a constant such that b 6∈ A. Clearly ϕ v ϕ ∪ bqbc v bqc. It suffices to show
that ϕ @ ϕ ∪ bqbc, meaning that ϕ is not optimal.

Assume towards a contradiction that bqbc v ϕ. By Lemma 2, there ex-
ists i ∈ {1, . . . , `} such that qb v qi v q. Let qi be the existential closure of
(R(s, t) ∧ S(u, v)). From qi v q, it follows that t = v. From qb v qi and b 6∈ A, it
follows that s, t, u are pairwise distinct variables. But then qi ≡ q, contradicting
that bqic is in FO. We conclude by contradiction that ϕ @ ϕ ∪ bqbc. ut

5.2 Post-Processing by Unions and Quantification

The proof of Theorem 3 indicates that strategies of the form (3) lack expressive-
ness because the number of constants in such strategies is bounded. An obvious
extension is to look for strategies that replace constants with existentially quan-
tified variables. The following example shows how such extension solves the lack
of expressiveness that underlies the proof of Theorem 3.

Example 5. Let q = ∃x∃y∃z
(
R(x, z) ∧ S(y, z)

)
. Let ϕ be the CQAFO formula

defined by ϕ := ∃Xb∃y∃z
(
R(X, z) ∧ S(y, z)

)
c. It can be shown that ϕ is a

strategy for q, i.e., ϕ v bqc and b∃y∃z
(
R(X, z) ∧ S(y, z)

)
c is in FO. Recall from

Example 2 that the use of upper case X is for readability. ut

Assume that the input to OPTSTRATEGY is a self-join-free conjunctive query
q(z). In this section, we investigate strategies of the form

⋃̀
i=1

Qi, (4)

where for each i ∈ {1 . . . , `}, Qi is a CQAFO query of the form

{zi | ∃Xib∃yiBic}, (5)

in which zi has the same length as z, and Bi is a self-join-free conjunction
of atoms. It is understood that zi, Xi, and yi have, pairwise, no variables in
common, and that vars(ziXiyi) = vars(Bi). For readability, we will use upper
case Q to refer to CQAFO queries of the form (5). The main tools for constructing
strategies of the form (4) are provided by Theorems 4 and 5.

12

Theorem 4. The following problem is decidable in polynomial time. Given a
CQAFO query Q of the form (5), is Q in FO? Moreover, if Q is in FO, then a
relational calculus query equivalent to Q can be effectively constructed.

Proof. A CQAFO query Q of the form (5) is in FO if and only if b∃yiBic is in
FO. The latter condition is decidable by Theorem 2.

Theorem 5. Given a self-join-free conjunctive query q1 and a CQAFO query
Q2 of the form (5), it can be decided whether Q2 v bq1c.

Proof. (Crux.) Let q1 = {z1 | ∃y1B1} and Q2 = {z2 | ∃X2b∃y2B2c}. It can be
shown that Q2 v bq1c if and only if there exists a valuation θ over vars(B1) such
that θ(z1) = z2 and θ(B1) ⊆ B2. ut

We point out that Theorem 5 is interesting in its own right. It is well known [1,
Corollary 6.3.2] that containment of relational calculus queries is undecidable.
A large fragment for which containment is decidable is the class of unions of
conjunctive queries. Notice, however, that the queries in the statement of The-
orem 5 need not be monotone (and even not first-order), and that decidability
of query containment for such queries is not obvious.

Example 6. Let Q = {x | ∃Y bR(x, Y)c}. Let db = {R(a, 1)} and db′ =
{R(a, 1), R(a, 2)}. Then db ⊆ db′, but Q(db) = {a} is not contained in
Q(db) = {}. Hence Q is not monotone. We have that Q is equivalent to the
following relational calculus query:

{x | ∃y (R(x, y) ∧ ∀y′ (R(x, y′)→ y = y′))}. ut

Assume that the input to OPTSTRATEGY is a self-join-free conjunctive query
q(z). Theorem 5 allows us to build a strategy of the form (4) for q as follows.
Let A be the set of constants that occur in q. Let ϕ be the disjunction of all (up
to variable renaming) CQAFO formulas Qi of the form (5) that use exclusively
constants from A such that Qi v bqc and Qi is in FO. Clearly, there are at most
finitely many such formulas (up to variable renaming). Containment of Qi in bqc
is decidable by Theorem 5. Finally, the condition that Qi is in FO is decidable
by Theorem 4. The following theorem remedies the negative result of Theorem 3.

Theorem 6. For every self-join-free conjunctive query q, there exists a com-
putable strategy ϕ of the form (4) for q, such that for every strategy ψ of the
form (4) for q, ψ v ϕ.

Proof. Assume that the input to OPTSTRATEGY is a self-join-free conjunc-
tive query q(z). Let ϕ be the strategy defined in the paragraph preceding this
theorem. Let Q = {z0 | ∃Xb∃yBc} be a query of the form (5) where B is a self-
join-free conjunction of atoms such that Q is in FO and Q v bqc. If all constants
that occur in B also occur in q, then Q is already contained in some disjunct of
ϕ (by construction of ϕ). Assume next that B contains some constants that do
not occur in q, and let these constants be a1, . . . , am. For i ∈ {1, . . . ,m}, let Xi

13

be a new fresh variable. Let B′ be the conjunction obtained from B by replacing
each occurrence of each ai with Xi. Let Q′ = {z0 | ∃X∃X1 · · · ∃Xmb∃yB′c}.
From the proof of Theorem 2, it follows Q′ v bqc. It can be easily seen that
Q v Q′. Furthermore, from [13], it follows that Q′ is in FO. Since all constants
that occur in B′ also occur in q, we have that Q′ is already contained in some
disjunct of ϕ (by construction of ϕ).

To conclude, whenever Q = {z0 | ∃Xb∃yBc} is a query of the form (5) where
B is a self-join-free conjunction of atoms such that Q is in FO and Q v bqc, we
have that ϕ ∪Q v ϕ. ut

So far, we have imposed no restrictions on the size of the computable strategy
ϕ in the statement of Theorem 6. From a practical point of view, it is interesting
to construct, among all optimal strategies ϕ of the form (4), the one with the
smallest number ` of disjuncts. It is an open question, however, how to minimize
strategies of the form (4).

6 Conclusion

We have studied a realistic setting for divulging an inconsistent database to
end users. In this setting, users access the database exclusively via syntactically
restricted queries, and get exclusively consistent answers computable in FO data
complexity. If the data complexity is higher, then the query will be rejected, in
which case users have to fall back on strategies that obtain a large (the larger,
the better) subset of the consistent answer. Such strategies combine answers
obtained from several “easier” queries.

Although our setting applies to arbitrary queries and constraints, we searched
for strategies when constraints are primary keys, and the database is accessible
only via self-join-free conjunctive queries for which consistent query answering
is in FO. Under these access restrictions, we showed how to construct strate-
gies that combine answers by means of union and quantification. It is an open
question whether our strategies can still be improved, e.g., by using negation.

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

2. M. Arenas, L. E. Bertossi, and J. Chomicki. Consistent query answers in inconsis-
tent databases. In PODS, pages 68–79. ACM Press, 1999.

3. L. E. Bertossi. Database Repairing and Consistent Query Answering. Synthesis
Lectures on Data Management. Morgan & Claypool Publishers, 2011.

4. L. E. Bertossi and L. Li. Achieving data privacy through secrecy views and null-
based virtual updates. IEEE Trans. Knowl. Data Eng., 25(5):987–1000, 2013.

5. M. Bienvenu and R. Rosati. Tractable approximations of consistent query answer-
ing for robust ontology-based data access. In IJCAI. IJCAI/AAAI, 2013.

6. N. V. Cao, E. Fragnire, J.-A. Gauthier, M. Sapin, and E. D. Widmer. Optimizing
the marriage market: An application of the linear assignment model. European
Journal of Operational Research, 202(2):547 – 553, 2010.

14

7. J. Chomicki and J. Marcinkowski. Minimal-change integrity maintenance using
tuple deletions. Inf. Comput., 197(1-2):90–121, 2005.

8. N. N. Dalvi, C. Ré, and D. Suciu. Probabilistic databases: diamonds in the dirt.
Commun. ACM, 52(7):86–94, 2009.

9. N. N. Dalvi, C. Re, and D. Suciu. Queries and materialized views on probabilistic
databases. J. Comput. Syst. Sci., 77(3):473–490, 2011.

10. W. Fan and F. Geerts. Foundations of Data Quality Management. Synthesis
Lectures on Data Management. Morgan & Claypool Publishers, 2012.

11. A. Fuxman and R. J. Miller. First-order query rewriting for inconsistent data-
bases. In ICDT, volume 3363 of Lecture Notes in Computer Science, pages 337–351.
Springer, 2005.

12. N. Immerman. Descriptive complexity. Graduate texts in computer science.
Springer, 1999.

13. P. Koutris and J. Wijsen. The data complexity of consistent query answering for
self-join-free conjunctive queries under primary key constraints. In PODS, pages
17–29. ACM, 2015.

14. P. Koutris and J. Wijsen. A trichotomy in the data complexity of certain query
answering for conjunctive queries. CoRR, abs/1501.07864, 2015.

15. L. Libkin. Elements of Finite Model Theory. Springer, 2004.
16. L. Libkin. SQL’s three-valued logic and certain answers. In ICDT, volume 31 of

LIPIcs, pages 94–109. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.
17. D. Maslowski and J. Wijsen. A dichotomy in the complexity of counting database

repairs. J. Comput. Syst. Sci., 79(6):958–983, 2013.
18. D. Maslowski and J. Wijsen. Counting database repairs that satisfy conjunctive

queries with self-joins. In ICDT, pages 155–164. OpenProceedings.org, 2014.
19. J. Wijsen. Making more out of an inconsistent database. In ADBIS, volume 3255

of Lecture Notes in Computer Science, pages 291–305. Springer, 2004.
20. J. Wijsen. Charting the tractability frontier of certain conjunctive query answering.

In PODS, pages 189–200. ACM, 2013.
21. J. Wijsen. A survey of the data complexity of consistent query answering under

key constraints. In FoIKS, volume 8367 of Lecture Notes in Computer Science,
pages 62–78. Springer, 2014.

	First-Order Under-Approximations of Consistent Query Answers

