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ABSTRACT
We show that the evaluation of SPARQL algebra queries on var-
ious notions of annotated RDF graphs can be seen as particular
cases of the evaluation of these queries on RDF graphs annotated
with elements of so-called spm-semirings. Spm-semirings extend
semirings, used for positive relational algebra queries on annotated
relational data, with a new operator to capture the semantics of the
non-monotone SPARQL operator OPTIONAL. Furthermore, spm-
semiring-based annotations ensure that desired SPARQL query
equivalences hold when querying annotated RDF. In addition to in-
troducing spm-semirings, we study their properties and provide an
alternative characterization of these structures in terms of semirings
with an embedded boolean algebra (or seba-structure for short).
This characterization allows to construct spm-semirings and to
identify a universal object in the class of spm-semirings. Finally,
we show that this universal object provides a concise provenance
representation and can be used to evaluate SPARQL queries on ar-
bitrary spm-semiring-annotated RDF graphs.

Categories and Subject Descriptors: H.2.1 [Database Manage-
ment]: Logical Design – Data models.

General Terms: Theory, Languages.
Keywords: RDF, annotations, provenance models, query lan-
guages.

1. INTRODUCTION
In recent years, the W3C Linked Open Data (LOD) Initiative

(linkeddata.org) has boosted the publication and interlinkage of
massive amounts of scientific, corporate, government and data sets
on the emerging Data Web for open access, in the form of RDF
data [21] queried with the SPARQL query language [24]. In such
settings, where RDF data is freely exchanged, integrated, and mate-
rialized in distributed repositories, it is crucial to be able assess the
quality of replicated and, possibly, incomplete or uncertain data.

Towards this end, several models for annotated RDF data have
been proposed [18, 22, 19, 8], for representing various dimensions
of data quality such as trust, truth of imprecise information or prob-
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ability of its validity. In all these cases, when annotated data is
transformed through SPARQL queries, one needs to compute ap-
propriate annotations for the query results. For instance, in the
case of trust assessment [4, 18] the trustworthiness of query re-
sults is determined based on the trustworthiness of source datasets
from which they were derived. Similarly, for uncertain and fuzzy
data sets, the probabilities of query results are derived based on the
probabilities associated with the original data [22, 19].

If source annotations were static and common for all users, this
computation could be done during query evaluation [18, 22, 19].
However, in general, different users may have different beliefs
about e.g., the trustworthiness of specific RDF source triples, and
their beliefs may change over time, even when the relationship of
query results with the source data remains unchanged. For this
reason, abstract provenance models [16] are used to capture this
relationship along with the query operators that combined source
data to derive query results.

In the relational setting, provenance models that are capable of
abstracting the query evaluation on annotated relational data, have
been put forward for the positive fragment of the relational algebra.
In particular, the modeling of annotations by means of semirings
has shown great promise [16], both as a platform for theoretical
study and as a representation employed in systems that record in
the hosting repository when the data is imported [15], and use it
to compute appropriate annotations for different applications and
users at a later time [20].

For annotated RDF data and positive SPARQL queries one
can verify, similarly to the relational case, that semirings suf-
fice as the annotation structure [26]. However, when the non-
monotone SPARQL operator OPTIONAL is brought into the pic-
ture, it can be easily verified that extensions of semirings have
to be considered. Indeed, the SPARQL algebra semantics [23]
of OPTIONAL is defined in terms of a left-outer join that in-
volves a non-monotone DIFFERENCE operator. More specifically,
for any two RDF data sets G1 and G2, (G1OPTIONALG2) can
be written as (G1ANDG2) UNION (G1DIFFERENCEG2) [23].
Thus, although DIFFERENCE is –strictly speaking– not part of the
SPARQL 1.0 specification,1 we add it for convenience.

However, as will be explained in Section 2, the semantics of
DIFFERENCE and OPTIONAL is not the same as that of rela-
tional difference and (left-)outer join, respectively. Thus, exten-
sions to the semiring framework intended to cope with the latter
[12, 1, 2, 13] cannot be applied directly to capture the provenance
of SPARQL queries. Recent work [9] suggests that it may be pos-

1In Section 9 we discuss the connection with other non-monotone
operators recently introduced in SPARQL 1.1 [17].



sible to express the SPARQL difference in terms of relational oper-
ators, in order to leverage the structure of m-semirings, an exten-
sion of semirings for relational queries involving difference [12].
However, while a provenance model based on the so-called univer-
sal m-semiring exists, this model does not allow for a concise and
simple representation of its expressions [12]. Its practical usability
as a provenance model is, therefore, rather limited.

For these reasons, in this paper we propose a new algebraic struc-
ture for capturing the semantics of the SPARQL DIFFERENCE
(and thus also OPTIONAL). More specifically, we identify a set
of SPARQL query equivalences that involve DIFFERENCE and
that hold under both the bag and set semantics, and show that
these equivalences also hold when evaluating SPARQL queries on
a wide variety of annotated RDF data. Then, we define so-called
spm-semirings, an extension of semirings with a new operation
	, based on identities derived from the aforementioned SPARQL
equivalences. Furthermore, we show that spm-semirings do have
a universal structure that provides a concise representation of the
provenance of RDF data and SPARQL queries involved.

The underlying techniques rely on a characterization of spm-
semirings in terms of semirings with an embedded boolean algebra,
of seba-structure for short. This characterization is non-trivial and
interesting in its own right. Furthermore, the spm-semiring-based
provenance expressions can indeed be used to compute appropriate
annotations in a wide variety of application domains. We thus pro-
vide a complete picture of SPARQL query evaluation on annotated
RDF and propose an abstract provenance model that incorporates
non-monotone SPARQL operators, something that is still open for
queries with difference in the relational case.
In summary, we make the following contributions:
1. We illustrate that the semantics of SPARQL on various notions
of annotated RDF have a great commonality (Section 2). Based on
this, we generalize the semantics of SPARQL algebra expressions
to RDF data annotated with values from some arbitrary annotation
domainK, orK-annotated RDF for short (Section 3). For this pur-
pose, K is equipped with binary operations ⊕, ⊗ and 	, and con-
stants 0 and 1, that accommodate all SPARQL algebra operators.
2. We identify a set of SPARQL algebra equivalences (some in-
volving DIFFERENCE) that are desirable to hold on K-annotated
RDF (Section 4). We show that for these equivalences to hold,
(K,⊕,⊗,	,0,1) must be an spm-semiring, and vice versa. A
minimal set of identities defining spm-semirings is provided.
3. An alternative characterization of spm-semirings is given
in Section 5, based on semirings with an embedded boolean
algebra, or seba-structures for short. We prove the correctness
of this characterization and show how it can be used to construct
spm-semirings based on semirings commonly used in practice.
4. We identify a universal object in the class of spm-semirings
(Section 6), leveraging the characterization in terms of seba-
structures, and show that the evaluation of SPARQL queries on
spm-semiring annotated RDF factors through the evaluation of
RDF annotated with elements in the universal object. The universal
object is therefore proposed in Section 7 as provenance model for
annotated RDF and SPARQL.

Finally, we compare spm-semirings with related work in the re-
lational and Semantic Web context in Section 8, and conclude with
directions for future work in Section 9.

2. QUERYING ANNOTATED RDF
In this section, we provide examples of the evaluation of

SPARQL queries on annotated RDF data. We first recall RDF [21]
and SPARQL [24], with the standard bag semantics in which we

represent multiplicities as annotations. We then observe that, sim-
ilar to the relational case, the semantics of SPARQL on various
forms of annotated RDF have a great commonality.

RDF and SPARQL in a nutshell. RDF is the standard model
for representing Semantic Web data as sets of triples of the form
(subject, predicate, object). Intuitively, each triple contains some
information about the resource in its subject. For instance, Table
(a) of Fig. 1 shows an example of an RDF triple set, denoted by
G, where the columns stand for the corresponding components of
each triple. SPARQL is the standard language used to query RDF
data. We present the SPARQL semantics based on the algebra of
Perez et al. [23]. The operators of this algebra manipulate bags
of mappings and include a) unary operators σ and π that corre-
spond to the SPARQL constructs FILTER and SELECT, respec-
tively, and b) binary operators ∪, 1, and 1 for the SPARQL con-
structs UNION, AND, and OPTIONAL, respectively. The operator
1 can be defined in terms of ∪, 1 and \, the algebraic counter-
part of DIFFERENCE [23]. The following example illustrates the
standard bag semantics of SPARQL queries.

EXAMPLE 1 (BAGS). The evaluation of a triple pattern on a
set of triples is a bag of mappings. Figure 1 depicts the following:

Table (b) shows the mapping bag Ω derived from the evaluation
of the SPARQL pattern (?x,?y,?z) over G. Here, ?x, ?y and ?z
denote variables that are bound to constants in triple patterns. The
pattern (?x,?y,?z) selects all triples from the RDF graph and the
result of its evaluation on G is denoted by [[(?x,?y,?z)]]G.
To simplify the presentation, we will use the tabular representa-
tion of the mapping bags shown in Table (b), where the first three
columns correspond to variables in the mappings and the fourth
column (#) represents the multiplicity of the mapping. The last two
columns (tr(ust) and fu(zzy)) can be ignored for now, as can be
the gray shaded entries in Tables (h) and (i). We further employ
symbols µi to identify individual mappings.
Tables (c–e) illustrate the evaluation of the operators σ and π.
The output mapping bags are denoted by Ω1, Ω2 and Ω3. For
instance, mapping µ11 of Ω3, has two derivations originating from
mappings in Ω, namely one by projecting µ4 and another one by
projecting µ5. The multiplicity of µ11 is obtained by adding the
multiplicities of µ4 and µ5.
Table (f) shows the result of Ω4 =Ω2∪Ω3, where Ω2 and Ω3 are
shown in Tables (d) and (e), respectively. Note that unlike the
relational union, the SPARQL union can be applied on bags of
mappings defined on different variables. In Ω4, mapping µ12 has
two derivations, both of them originating from Ω3, while the two
derivations of µ13 originate from Ω2 (µ8) and Ω3 (µ10). The multi-
plicity of µ13 is obtained by adding the multiplicities of µ8 and µ10.
Table (g) depicts the result of Ω41Ω1. For instance, mapping
µ16 is derived by joining µ13∈Ω4 and µ6∈Ω1. Mappings can be
joined only if they are compatible [23]. In our example, µ6 and µ13

are compatible because they agree on their common variable, i.e.,
they both bind ?y to b. The multiplicity of µ16 is computed as the
product of the multiplicities of the two input mappings (1×2=2).
Table (h) illustrates an example of the difference operator, i.e.,
Ω4\Ω1. Note that neither µ12 nor µ13 in Ω4 are in the result –
recall that we ignore the gray shaded entries for now – because Ω1

contains a mapping (µ6) that is compatible with the mappings µ12

and µ13 in Ω4. On the other hand, there is no mapping in Ω1 that is
compatible with µ14. As a consequence, µ14 appears in the result
as µ19 in Table (h). Similarly to the union, the difference operator
can be applied on bags of mappings defined on different variables.
Finally, Table (i) depicts the result of Ω4 1Ω1, which
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?x ?y ?z # tr fu
�1 W a b c 1 �1 p1
�2 W c d c 1 �2 p2
�3 W a e f 1 �3 p3
�4 W g b d 1 �4 p4
�5 W h b d 1 �5 p5

?x ?y # tr fu
�6 W a b 1 �1 p1
�7 W c d 1 �2 p2

?y ?z # tr fu
µ8 : b c 1 �1 p1

µ9 : e f 1 �3 p3

?y ?z # trust fuzzy
�10 W b c 1 �1 p1
�11 W b d 2 �4 _ �5 max.p4; p5/

?y ?z # trust fuzzy
�12 W b c 2 �1 p1
�13 W b d 2 �4 _ �5 max.p4; p5/
�14 W e f 1 �3 p3

?x ?y ?z # trust fuzzy
�15 W a b c 2 �1 p1
�16 W a b d 2 .�4 _ �5/ ^ �1 min.max.p4; p5/; p1/

?x ?y ?z # trust fuzzy
�20 W a b c 2 �1 p1
�21 W a b d 2 .�4 _ �5/ ^ �1 min.max.p4; p5/; p1/
�22 W � b c 0 false 0
�23 W � b d 0 .�4 _ �5/ �trust �1 max.p4; p5/ �fuzzy p1
�24 W � e f 1 �3 p3

(a) (b)

(c) (d) (e)

(g)

(h)

(i)

Triple Set G

�1 D⇡‹x;‹y.�‹zDc.�// �2 D⇡‹y;‹z.�‹xDa.�// �3 D⇡‹y;‹z.�‹yDb.�//

�4 D �2 [�3

�4 � �1

⌦ =[[(?x, ?y, ?z)]]G

�4 � �1

?y ?z # trust fuzzy
�17 W b c 0 false 0
�18 W b d 0 .�4 _ �5/ �trust �1 max.p4; p5/ �fuzzy p1
�19 W e f 1 �3 p3

�4 n�1

(f)

Figure 1: Example of RDF graph and evaluation of SPARQL algebra operators (bag/trust/fuzzy semantics).

contains all mappings from Tables (g) and (h). Indeed,
Ω4 1Ω1 =(Ω41Ω1)∪(Ω4\Ω1). The symbol “−” denotes that
?x is not bound to a constant in the mappings µ22, µ23 and µ24. 2

The previous example shows that the multiplicities of mappings
in the result of σ, π, ∪ and 1 SPARQL algebra operators are com-
puted in a similar way as when evaluating the corresponding op-
erators of the relational algebra under bag semantics [16]. In par-
ticular, in the case of alternative derivations (e.g., for π or ∪) of a
mapping, its multiplicity equals the sum of the multiplicities of the
different derivations. In the case of 1, the multiplicity of the result
mapping equals the product of the multiplicities of the two input
mappings that were combined.

However, the multiplicities of the result mappings of the \
operator are computed differently from the corresponding case
of the difference operator (\ra) in the relational algebra under
bag semantics. Indeed, let R and S be two relations and denote
by R(t) and S(t) the multiplicity of a tuple t in R and S,
respectively. Then, (R\raS)(t) :=max

(
0,R(t)−S(t)

)
in the

bag semantics of the relational algebra [16]. In contrast, the
SPARQL difference (\) is defined in terms of compatibility, not
equality. Indeed, Table (h) shows that when considering the
SPARQL difference Ω4\Ω1, a tuple (mapping) t in Ω4 is in the
output as long as there is no mapping in Ω1 that is compatible with
it. That is, (Ω4\Ω1)(t)=Ω4(t)−bag Σt′∼tΩ1(t′), where for any
two natural number n and m, n−bagm=n in case that m=0,
and n−bagm=0 otherwise. Thus, SPARQL follows the standard
relational bag semantics for its positive operators but uses a
different semantics for \. Similarly, relational left-outer join which
is defined as a union between a join and a relational difference,
also uses a different semantics than SPARQL OPTIONAL.

EXAMPLE 2 (BAGS CONT’D ). Consider Tables (c), (f) and
(h) of Fig. 1. Observe that although µ12 and µ13 both have multi-
plicity 2 in Ω4, and the compatible mappings µ6 and µ7 in Ω1 have
multiplicity 1, neither µ12 nor µ13 is present in Ω4\Ω1. In contrast,
in the relational bag semantics for \ra, both µ12 and µ13 would be
in the result with multiplicity 1, as given by max(0,2−1). 2

SPARQL on annotated RDF. We next consider the semantics of
SPARQL when RDF is adorned with trust information [18]. In this
setting, for a given SPARQL query, the goal is to find which result
mappings are trusted based on the trustworthiness of the input map-
pings. More specifically, in case of mappings with multiple deriva-
tions, a single trusted derivation suffices to infer that the result map-
ping is trusted. When two mappings are combined in a derivation,
both of them should be trusted in order for the result mapping to be

trusted. Based on this semantics, which has also been studied in the
relational context [15, 16], one can compute the trusted result map-
pings by answering the query over the subset of the input consisting
of trusted triples only. This semantics also coincides with the set
semantics of SPARQL [23] in which a trusted mapping belongs to
the output mapping set and an untrusted mapping does not.

EXAMPLE 3 (TRUST, SET). Consider Fig. 1 where instead of
the # column, we now focus on the annotations in the tr(ust) col-
umn. For example, each triple in Table (b) comes with a boolean
trust value (τi) that is true if the triple is trusted, and is false oth-
erwise. It is readily verified that the desired trust semantics is ob-
tained for the example SPARQL queries in Fig. 1 by combining
trust values through disjunction (∨) and conjunction (∧), instead
of addition and multiplication, respectively, used to compute multi-
plicities in Example 1. For example, µ11 in Table (e) is trusted only
if one of the mappings µ4 or µ5 is trusted. Similarly, µ16 in Table
(g) is trusted if µ1 is trusted and either µ4 or µ5 is trusted. To deal
with \, we consider boolean negation (denoted by τ̄ for a trust vari-
able τ ). Indeed, consider the gray shaded entry µ18 in Table (h).
This mapping is trusted only if µ1 is untrusted and either µ4 or µ5

is trusted. This is expressed by (τ4∨τ5)−trust τ̄1. Hence, the gray
shaded mappings can be part of the result depending on the trust
information of the source mappings. In general, if ϕ and ψ are two
propositional formulas over boolean variables, then their difference
is defined as ϕ−trustψ :=ϕ∧ψ̄. Note that this is similar to the no-
tion of difference given in the bag semantics (cf. Example 1): ϕ∧ψ̄
equals ϕ in case that ψ is false, and equals false otherwise. 2

We conclude this section by considering SPARQL on fuzzy RDF
data [22]. In this setting, every mapping is annotated with a
real number in the range [0,1], where the annotation denotes the
probability that the mapping exists in the particular mapping set.
Mappings annotated with 0 certainly do not exist in the mapping
set, while those annotated with 1 certainly exist. In the case
of mappings with alternative derivations, the probability of the
mapping is that of the derivation with the highest probability, while
the probability of a composite derivation equals the minimum of
the probabilities over the two input mappings.

EXAMPLE 4 (FUZZY). Consider Fig. 1 where instead of the #
column, we now focus on the fu(zzy) column. For example, each
triple in Table (b) comes with a probability (pi) that is a real num-
ber in [0,1]. It is readily verified that the desired fuzzy semantics is
obtained for the example SPARQL queries in Fig. 1 if we take the
maximum (max) and minimum (min) instead of addition and mul-
tiplication, respectively, as used for bag semantics (cf. Example 1).



To deal with \, we need to consider an additional operator−fuzzy on
probabilities that is defined as p−fuzzyq :=0 in case that q 6=0, and
p−fuzzyq :=p otherwise. For example, the gray shaded entry µ18 in
Table (h) appears with probability max(p4,p5)−fuzzyp1. That is, if
µ1 has non-zero probability, then µ18 will not appear in the query
result. Similarly, if both p4 and p5 have zero probability, then µ18

is not part of the output. In all other cases, µ18 is a result mapping
with probability max(p4,p5). Note again the similarity between
−fuzzy, −bag and −trust. 2

Summary and lookahead. The previous examples suggest a
commonality between the different semantics of SPARQL on an-
notated RDF. Similar to the semiring-based approach for annotated
relational data we unify the semantics of SPARQL for a wide range
of annotations as follows: First, we extend mappings to annotated
mappings that take values in some abstract set K of annotations;
Second, we enrich K with operations for capturing the semantics
of the query language operators. More specifically, we enrich K
with the following three binary operations:
• A binary operator ⊕ for modeling +, ∨ and max, among

others, for the operators π and ∪;
• A binary operator ⊗ for modeling ×, ∧ and min, among

others, for the operators 1 and 1; and
• A binary operator 	 for modeling −bag, −trust and −fuzzy,

among others, for the operators \ and 1.

Finally, based on SPARQL query equivalences that are known to
hold in the bag, trust (set) and fuzzy setting, among others, we
identify a set of additional properties that the algebraic structure
consisting of K, ⊕, ⊗ and 	 must have, and provide a charac-
terization of these structures. We provide additional examples of
annotated RDF, commonly used in practice, in Section 5 and show
that these are all unified by our approach.

3. SEMANTICS OF SPARQL ON ANNO-
TATED RDF

We next formalize the semantics of SPARQL on annotated RDF.
First we extend RDF with annotations and then extend the seman-
tics of SPARQL correspondingly.

Let I , B and L be pairwise disjoint infinite sets of Interna-
tionalized Resource Identifiers (IRIs), blank nodes, and literals,
respectively. A triple (s,p,o)∈ (I∪B)×I×(I∪B∪L) is called
an RDF triple. As mentioned before, s is the subject, p the pred-
icate and o the object. An RDF graph is a finite set of RDF triples.

DEFINITION 1. Let K be a set of annotations, disjoint from I ,
B and L. A K-annotated RDF triple is of the form (s,p,o) 7→k
where (s,p,o) is an RDF triple and k∈K. A finite set of anno-
tated RDF triples is called aK-annotated RDF graph if every triple
(s,p,o) has a single annotation in K. 2

A SPARQL graph pattern expression is defined inductively as fol-
lows. Let V be a set of variables, disjoint from I , B and L.

1. A triple from (I∪V )×(I∪V )×(I∪L∪V ) is a graph pat-
tern (hereby called triple pattern).

2. If P1 and P2 are graph patterns, then (P1UNIONP2),
(P1ANDP2), (P1DIFFERENCEP2), and (P1OPTIONAL
P2) are also graph patterns.

3. If P is a graph pattern andR is a SPARQL built-in condition,
then (P FILTERR) is a graph pattern. We refer to [23] for
an overview of built-in conditions supported by SPARQL.

4. If P is a graph pattern and S⊆V , then SELECTS(P ) is a
graph pattern.

We next extend the semantics of SPARQL from RDF graphs to
K-annotated RDF graphs, hereby closely following the SPARQL
semantics given in [23, 3] Let var(t) denote the set of variables
from V that appear in a triple pattern t and denote I∪B∪L by T .
A mapping µ from V to T is a partial function µ :V →T . The
domain of µ, denoted by dom(µ), is the subset of V on which µ is
defined. We say that two mappings µ1 and µ2 are compatible when
for all v∈dom(µ1)∩dom(µ2), it is the case that µ1(v)=µ2(v).
We denote this by µ1∼µ2. It is readily verified that if µ1∼µ2 then
µ1∪µ2 is also a mapping from V →T . We denote byM the set of
all mappings from V to T .

DEFINITION 2. Let K be a set of annotations and let 0 de-
note a distinguished element from K. A K-annotated mapping
set on M is a total function k :M→K such that its support
{µ |µ∈M,k(µ) 6=0} is finite. 2

Intuitively, we interpret a mapping with its annotation set to 0 as
not being part of the mapping set. The finite support requirement
thus ensures that only a finite number of mappings are considered.

We already mentioned that the semantics of SPARQL graph
patterns on RDF graphs can be defined in terms of algebra
operations on mapping sets. We now generalize the semantics of
the algebra operators σ, π, ∪, 1, 1 and \ toK-annotated mapping
sets. As indicated at the end of the previous section, we assume
the presence of binary operations ⊕, ⊗ and 	, and distinguished
constant elements 0 and 1 in the setK of annotations. At this point
(K,⊕,⊗,	,0,1) is simply regarded as an algebra on its carrier
set K and we do not yet impose any conditions on its operations.
These will be specified in the next section. The definitions below
are inspired by the bag, trust (set) and fuzzy semantics of SPARQL
as illustrated in Section 2. The algebra operations on mapping
sets are defined as follows. Let k be a K-annotated mapping set
on M and let S⊆V . Then for all µ∈M and ν∈M such that
dom(ν)⊆S:

(σR(k))(µ) :=k(µ)⊗FR(µ)

(πS(k))(ν) :=
⊕

µ∈M,∃µ′∈M
µ=ν∪µ′&dom(µ′)∩S=∅

k(µ),

where for all µ∈M, FR(µ)=1 if µ satisfies the filter and
FR(µ)=0 otherwise. We refer to [23] for the definition of when
a mapping satisfies a filter. Let k1 and k2 be two K-annotated
mapping sets. Then, for all µ∈M:

(k1∪k2)(µ) :=k1(µ)⊕k2(µ)

(k11k2)(µ) :=
⊕

µ1,µ2∈M
µ=µ1∪µ2

k1(µ1)⊗k2(µ2)

(k1\k2)(µ) :=k1(µ)	
( ⊕
µ′∈M,µ∼µ′

k2(µ′)
)

(k1 1 k2)(µ) :=((k11k2)∪(k1\k2))(µ).

We refer to the above as the SPARQL K-annotated algebra. We
are now ready to define the semantics of SPARQL on annotated
RDF graphs. The semantics is defined inductively, following the
definition of graph patterns described above. That is, we first define
the evaluation of a triple pattern t on aK-annotated RDF graphGa
as the K-annotated mapping set

∀µ∈M : [[t]]Ga(µ) :=

{
k if µ(t) 7→k∈Ga
0 otherwise.

Note that this indeed a K-annotated mapping: (i) it defines a func-
tion because RDF triples inGa have a unique annotation; and (ii) it



has finite support since RDF graphs are finite objects. The seman-
tics of the remaining SPARQL graph patterns is defined as follows:

[[P1 FILTER R]]Ga :=σR
(
[[P1]]Ga

)
[[SELECTSP1]]Ga =πS

(
[[P1]]Ga

)
[[P1 UNION P2]]Ga := [[P1]]Ga∪ [[P2]]Ga

[[P1 AND P2]]Ga := [[P1]]Ga 1 [[P2]]Ga

[[P1 DIFFERENCE P2]]Ga := [[P1]]Ga \ [[P2]]Ga

[[P1 OPTIONAL P2]]Ga := [[P1]]Ga 1 [[P2]]Ga

So far, we have not imposed any conditions on the set K and its
operations. We need to impose conditions, however, to ensure that
the semantics is well-defined. For instance, suppose that ⊕ is cho-
sen such that 0⊕0=1. Then, the union of two empty RDF graphs
results in a total function on M whose support is infinite and
thus the above semantics is not well-defined. Indeed, recall that a
K-annotated mapping set has a finite support but the choice of ⊕
causes infinitely many result triples. We identify additional condi-
tions on the operations in the next section. It can already be veri-
fied, however, that the above semantics does make sense for the fol-
lowing choices ofK: For (N,+,×,−bag,0,1), ({true, false},∨,∧,
−trust, false, true) and ([0,1],max,min,−fuzzy,0,1), the above
semantics coincides with the bag, trust (set) and fuzzy semantics
of SPARQL, respectively (cf. Section 2).

4. SPARQL ANNOTATION STRUCTURE
We next identify a set of SPARQL equivalences that are

expected to hold in the general K-annotated setting and show that
these equivalences enforce a specific structure on the underlying
set K of annotations.

SPARQL equivalences and identities on (K,⊕,⊗,	,0,1).
Similar to the relational case, SPARQL optimization tech-
niques rely on SPARQL algebra equivalences. For the bag
semantics of SPARQL, an extensive list of such equiva-
lences is identified by Schmidt et al. [25]. For example, the
equivalence P1∪P2≡P2∪P1 holds for all SPARQL alge-
bra expressions P1 and P2. That is, for any RDF graph G,
[[P1]]G∪ [[P2]]G= [[P2]]G∪ [[P1]]G. On the other hand, iden-
tities are commonly used to express conditions on algebraic
structures such as (K,⊕,⊗,	,0,1). For example, the identity
k1⊕k2 =k2⊕k1 expresses that for all values k1, k2 in K, ⊕ is
commutative. In this case, K is said to satisfy the identity. Alge-
braic structures that satisfy a set of identities are commonly known
as equational varieties [7]. Equivalences and identities are always
assumed to be universally quantified; we omit this quantification.

We next establish a connection between SPARQL equivalences
on K-annotated RDF graphs and identities on the set K of annota-
tions. Denote by mi a variable that is interpreted as a K-annotated
mapping set and let Pi(m1, . . . ,mn), for i=1,2, be two SPARQL
algebra expressions over these variables. Then P1≡P2 indicates
that for all K-annotated mapping sets k1, . . . ,kn,

P1(k1, . . . ,kn)=P2(k1, . . . ,kn).

We turn such an equivalence into an identity on (K,⊕,⊗,	,0,1)
as follows. We make the following assumptions on expressions
P in an equivalence: If P contains a selection then it must be
of the form σ?x=?x, indicating that all triples are selected; P is
not allowed to contain projections, as these do not have a direct
counterpart in (K,⊕,⊗,	,0,1); and ∅ can be used in P , where ∅
denotes the empty mapping set. Although it is possible to consider
arbitrary expressions P , the restricted set of expressions defined
above suffices for our purposes. Given such an expression P ,
we define ann(P ) inductively as follows: (i) if P =mi, then

id1: k⊗1=k id2: k⊗0=0 id3: k⊕0=k
id4: k1⊕k2 =k2⊕k1 id5: k1⊗k2 =k2⊗k1
id6: k1⊕(k2⊕k3)=(k1⊕k2)⊕k3 id9: k	k=0
id7: k1⊗(k2⊗k3)=(k1⊗k2)⊗k3
id8: k1⊗(k2⊕k3)=(k1⊗k2)⊕(k1⊗k3)
id10: k1	(k2⊕k3)=(k1	k2)	k3
id11: k1⊗(k2	k3)=(k1⊗k2)	k3
id12: (k1	(k1	k2))⊕(k1	k2)=k1

Figure 2: Axiomatization A of spm-semirings.

ann(mi)=ki where ki is a variable to be interpreted as a value
in K; (ii) if P =Q∪R, then ann(P )=ann(Q)⊕ann(R); if
P =Q1R, then ann(P )=ann(Q)⊗ann(R); (iii) if P =Q\R,
then ann(P )=ann(Q)	ann(R); (iv) if P =Q 1R, then
ann(P )=(ann(Q)⊗ann(R))⊕(ann(Q)	ann(R)); (v) if
P =σ?x=?x(Q) then ann(P )=ann(Q)⊗1; and finally, (vi) if
P =∅, then ann(P )=0. Similarly, given an expression e using
variables k1, . . . ,kn, operations ⊕, ⊗, 	, and constants 0 and 1,
we can define a SPARQL expression exp(e) along the same lines.

The following lemma is readily verified.

LEMMA 1. If P1≡P2 is a SPARQL K-annotated algebra
equivalence, then ann(P1)=ann(P2) is an identity that holds on
(K,⊕,⊗,	,0,1). Conversely, if e1 =e2 is an identity that holds
on (K,⊕,⊗,	,0,1), then exp(e1)≡exp(e2) is a SPARQL K-
annotated algebra equivalence. 2

In other words, one can blur the distinction between SPARQL
equivalences on K-annotated RDF graphs and identities on the un-
derlying annotation structure (K,⊕,⊗,	,0,1). The lemma also
implies that the choice of annotation structure entirely depends on
the SPARQL equivalences that one would like to be satisfied when
evaluating SPARQL on K-annotated RDF graphs. We next pro-
pose a set of equivalences that are desired to hold when evaluating
SPARQL on K-annotated RDF graphs.

SPARQL equivalences for the positive fragment. Consider first
the positive fragment of the SPARQL algebra, i.e., the fragment
that does not include \ and 1. It has been noted [25] that the
following SPARQL algebra equivalences hold in the case of set
and bag semantics, and thus are natural to impose in the generalK-
annotated setting: For any expression P1, P2 and P3, we have that

E1 =


σ?x=?x(P1)≡P1 P11∅≡∅ P1∪∅ ≡P1

P1∪P2≡P2∪P1 P11P2≡P21P1

P1∪(P2∪P3)≡ (P1∪P2)∪P3

P11 (P21P3)≡ (P11P2)1P3

P11 (P2∪P3)≡ (P11P2)∪(P11P3)

 .
The following Proposition is a direct consequence of Lemma 1.

Indeed, the SPARQL equivalences in E1 precisely correspond to
the set of semiring identities, shown as id1–id8 in Fig. 2.

PROPOSITION 1. The positive fragment of the SPARQL K-
annotated algebra satisfies the equivalences in E1 if and only
if (K,⊕,⊗,0,1) is a semiring. Furthermore, for any positive
SPARQL algebra expression P and K-annotated RDF graph Ga,
[[P ]]Ga has a finite support.

PROOF. The correspondence between equivalences in E1
and the semiring identities id1–id8 given in Fig. 2 follows from
Lemma 1. One can show that these identities ensure finite support
of K-annotated mapping sets by induction on the structure of
SPARQL expressions. 2

SPARQL equivalences involving difference. We next turn
our attention to the difference operator. The examples given in



Section 2 suggest that the operation 	 should satisfy k1	k2 =k1
in case that k2 =0 and k1	k2 =0 otherwise.

We first observe that the non-monotone operation 	 cannot
be derived from the operations ⊕ and ⊗ in a semiring. Indeed,
this can be shown in a similar way as the proof that aggregate
functions (which are also non-monotone) cannot be captured using
the semiring operations only [2]. It is thus necessary to extend
semirings with an additional operator 	. However, the result
below tells us that there is no set of identities to define 	 so that
its semantics coincides as outlined above.

PROPOSITION 2. There exists no equational variety (K,⊕,⊗,
	,0,1) such that for any k1, k2∈K, k1	k2 =k1 in case that
k2 =0, and k1	k2 =0 otherwise.

PROOF. This is an immediate consequence of Birkhoff’s
Theorem which implies that any equational variety should be
closed under taking homomorphisms, subalgebras and products
(see e.g., [7]). Suppose, for the sake of contradiction, that
identities exist that define the desired 	 and denote by V the
corresponding variety. Let (K,⊕K ,⊗K ,	K ,0K ,1K) and
(L,⊕L,⊗L,	L,0L,1L) be two algebraic structures in V for
which, in addition, 0K 6=1K and 0L 6=1L hold. Consider the
canonical 	K,L on the product K×L defined as (k1, `1)	K,L
(k2, `2)=(k1	K k2, `1	L`2). The operations ⊕K,L, ⊗K,L and
constants 0K,L and 1K,L are similarly defined. Then, by assump-
tion, (K×L,⊕K,L,⊗K,L,	K,L,0K,L,1K,L) is a structure in
V and thus (1K ,1L)	K,L (0K ,1L) should be equal to 0K,L.
However, observe that (1K ,1L)	K,L (0K ,1L)=(1K ,0L) 6=
(0K ,0L)=0K,L, by the definition of 	K,L. This shows that V is
not closed under taking taking products, a contradiction. Hence,
no set of identities exists that defines the desired 	. 2

Not all is lost, however. Schmidt et al. [25] identified a number
of equivalences of SPARQL expressions that involve \ and that
hold under the set and bag semantics. More specifically, the
following equivalences were shown to hold for any SPARQL
expressions P1, P2 and P3:

E2 =

{
P1\P1≡∅ P1\(P2∪P3)≡ (P1\P2)\P3

P11 (P2\P3)≡ (P11P2)\P3

}
.

These equivalences are readily shown to hold in the trust and
fuzzy setting as well. We further identify the following equiva-
lence: for any SPARQL expressions P1 and P2, we have that

E3 =
{

(P1\(P1\P2))∪(P1\P2)≡P1

}
.

This equivalence also holds in all settings we have considered so
far. By imposing E1, E2 and E3 on the SPARQL K-annotated
algebra, we obtain a generalization of Proposition 1 that accommo-
dates for the difference (\) and optional operator ( 1). The proof
again relies on Lemma 1.

PROPOSITION 3. The SPARQL K-annotated algebra satisfies
the equivalences in E1, E2 and E3 if and only if (K,⊕,⊗,	,0,1) is
an algebraic structure satisfying the identities shown in Figure 2.
Furthermore, for any SPARQL expression P and K-annotated
RDF graph Ga, [[P ]]Ga has a finite support. 2

DEFINITION 3. An spm-semiring is an algebraic structure
(K,⊕,⊗,	,0,1) that satisfies the identities id1–id12 given in
Figure 2. Here, “spm” stands for “SPARQL minus”. 2

Proposition 3 thus implies that spm-semirings are a good candi-
date annotation structure when considering SPARQL on annotated
RDF. It can be readily verified that (N,+,×,−bag,0,1), ({true,

false},∨,∧,−trust, false, true) and ([0,1],max,min,−fuzzy,0,1) are
spm-semirings. We will see more examples of spm-semirings in
the next section.

Minimality. We next address the minimality of the set of identities
that define spm-semirings. Let I be a set of identities and K be an
algebraic structure. We say thatK satisfies I, denoted byK |=I, if
K satisfies all identities in I. Let e be an identity. Then e is implied
by I, denoted by I |=e, if for all structures K such that K |=I it
holds thatK |=e. A set I of identities is said to be minimal if for all
e∈I, (I\e) 6|=e. Let A be the set of identities shown in Figure 2.

PROPOSITION 4. The set of identities A\{id2, id3} is minimal.

PROOF. Let A′=A\{id2, id3}. It suffices to show the follow-
ing: (i) for any identity e∈A′, there exists a structure Ke such that
Ke |=(A′\e) but Ke 6|=e; and (ii) for any K such that K |=A′,
we have that K |= id2 and K |= id3. 2

5. CHARACTERIZATION OF SPM-SEMI-
RINGS

We next address the question of how to construct spm-semirings.
More specifically, we characterize the class of spm-semirings in
terms of a combination of semirings and boolean algebras, two
standard algebraic structures. Not only does this characterization
allow for showing that certain structures are spm-semirings, it also
opens the way for identifying a universal object in the class of
spm-semirings, as will be shown in the next section.

As observed in Section 2, SPARQL adheres to relational bag
semantics for most of its operations, except for difference, for
which a different semantics is used. More specifically, when
taking a difference P1\P2, the bag semantics is used for P1

whereas the multiplicities in P2 are ignored and only the existence
of compatible mappings in P2 matters. In the more general
K-annotated RDF setting, this can be captured through the use of
semirings for most operations, and a combination of semirings and
boolean algebras for difference. For this purpose we next define a
new algebraic structure, called seba, that consists of a semiring K
together with an embedded boolean algebra B.

DEFINITION 4. A seba-structure is of the form (K,B,d, ı)
where K is a commutative semiring (K,⊕,⊗,0,1), B a boolean
algebra (B,∨,∧, ,⊥,>), d :K→B and ı :B→K are mappings
such that

d(0)=⊥ and d(1)=> ı(⊥)=0 and ı(>)=1;

d(k1⊕k2)=d(k1)∨d(k2) ı(b1∨b2)= ı(b1)⊕
(
ı(b̄1)⊗ı(b2)

)
;

d(k⊗ı(b))=d(k)∧b ı(b1∧b2)= ı(b1)⊗ı(b2),

and finally, d◦ı= Id :B→B and k⊗ı(d(k))=0. 2

Intuitively, a seba-structure consists of a semiring K in which a
boolean algebra B is embedded (by means of the mapping ı), and
in addition, in which every element in K maps to an element in B
(by means of the mapping d). The mapping d :K→B is to reflect
that d(k)=⊥ in case that k=0 and d(k) 6=⊥ otherwise.

DEFINITION 5. We say that an algebraic structure (L,⊕,
⊗,	,0,1) is derived from a seba-structure (K,B,d, ı) if (L,
⊕,⊗,0,1) and (K,⊕,⊗,0,1) coincide and for any k,`∈L,
k	`=k⊗ı(d(`)). 2

The main result of this section is that spm-semirings and
seba-structures are closely related.



THEOREM 1. Every spm-semiring is derived from some
seba-structure, and vice versa, every structure derived from a
seba-structure is an spm-semiring.

PROOF. We first show that every spm-semiring (K,⊕,⊗,	,
0,1) is derived from some seba-structure. More specifically, such a
seba-structure can be constructed as follows. Define (i) the semir-
ing (K,⊕,⊗,0,1); (ii) the boolean algebra (B,∨,∧,⊥,>), where
B :={b∈K |∃`∈K,b=1	(1	`)} and b1∨b2 :=1	

(
1	(k1⊕

k2)
)
, b̄ :=1	k, and b1∧b2 := b̄1∨ b̄2. Here, k, k1 and k2 are such

that b=1	(1	k), b1 =1	(1	k1) and b2 =1	(1	k2); (iii) the
mapping d :K→B such that for any k∈K, d(k)=1	(1	k);
and (iv) the identity mapping ı :B→K. Leveraging the fact that
(K,⊕,⊗,	,0,1) is an spm-semiring and thus satisfies the iden-
tities given in Fig. 2, we can verify that the operations ∨, ∧ and
are well-defined and that together with B they constitute a boolean
algebra. Furthermore, the conditions on d and ı in the definition of
seba-structure are readily shown to hold. Finally, we show that for
any k,`∈K, k	`=k⊗ı(d(`)). Conversely, we show that derived
structures satisfy the identities of spm-semirings. 2

We next illustrate sebas and their derived spm-semirings in the
following examples. Table 1 summarizes these spm-semirings and
their application domains.

EXAMPLE 5 (TRUST, SET). Consider the relational trust
semiring T =({true, false},∨,∧, false, true) [16]. The semiring T
is readily extended to a boolean algebra Tb by incorporating com-
plementation . Consider Tb together with the mappings d :T→Tb
and ı :Tb→T , both of which are the identity mappings. It is read-
ily verified that (T,Tb,d, ı) is a seba-structure. The derived spm-
semiring consists of T together with the additional operator b1	
b2 :=b1∧b2. Note that 	 coincides with −trust (cf. Example 3). 2

EXAMPLE 6 (BOOLEAN ALGEBRAS). The previous example
generalizes to any semiring K that can be extended to a boolean
algebra Kb. As in the previous example, (K,Kb,d, ı) with d and
ı the identity mapping, forms a seba-structure. The derived spm-
semiring is then given by K extended with k1	k2 =k1∧k2. In
other words, 	 coincides with the standard notion of difference in
boolean algebras. For example, consider the relational probability
semiring [16] (P(E),∪,∩,∅,E) for a set E of events. Clearly,
this semiring can be equipped with complementation, and is thus
part of a boolean algebra. As a consequence, the minus in the
derived spm-semiring is given by E1∩Ec2 , where, Ec denotes the
complement of E. 2

The previous example shows that 	 in spm-semirings does
not always satisfy that k1	k2 =k1 in case that k2 =0 and
k1	k2 =0 otherwise. Indeed, consider the sets A={a,b} and
B={c,d}. Then A∩Bc=A despite the fact that B 6=∅. This is
not unexpected, however, in view of Proposition 2. We will see
below, however, that the probability semiring can be extended to
an spm-semiring in another way such that 	 is as intended.

EXAMPLE 7 (BAGS, FUZZY). Let B2 =({0,1},∨,∧, ,̄0,1)
be the two-element boolean algebra and let (N,+,×,0,1)
be the semiring of natural numbers. Define d :N→{0,1} as
d(x)=0 if x=0 and d(x)=1 if x 6=0. Let ı :{0,1}→N
be the identity mapping. Then clearly, d(0)=0, d(1)=1,
ı(0)=0 and ı(1)=1. Furthermore, it is readily verified that
for any x,y∈N and b,b1, b2∈{0,1}, d(x+y)=d(x)∨d(y),
d(x×ı(b))=d(x)∧b, ı(b1∨b2)= ı(b1)+ı(b1)×ı(b2)=b1+

Spm-semiring Application
({true, false},∨,∧,−trust, false, true) Trust/Set Semantics

(N∞,min,+,−rtrust,∞,0) Ranked Trust
(C,min,max,−acc,0,P ) Access control
(P(E),∪,∩,−prob,∅,E) Event Tables

(N,+,×,−bag,0,1) Bags
([0,1],max,min,−fuzzy,0,1) Fuzzy

Table 1: Spm-semirings and their applications.

(b1×b2), and ı(b1∧b2)= ı(b1)×ı(b2)=b1×b2. We also have
that x×ı(d(x))=0 and that d◦ı is the identity mapping. Hence,
(N,B2,d, ı) is a seba-structure. We can thus extend N with 	
derived from (N,B2,d, ı) by letting x	y=x×d(y), for any
x,y∈N. That is, x	y=0 if y 6=0 and x	y=x otherwise. Note
that	 coincides−bag when SPARQL is evaluated on RDF under—
the default—bag semantics (cf. Example 1). Along the same lines,
the fuzzy semiring F =([0,1],max,min,0,1) can be extended
with 	 derived from (F,B2,d, ı) with d and ı as above. Note that,
in this case, p	q=min{p,d(q)} is equal to 0 if q 6=0, and is p oth-
erwise, i.e., 	 coincides with −fuzzy, as desired (cf. Example 4). 2

EXAMPLE 8 (ZERO-SUM FREE SEMIRINGS). The previous
example can be generalized to arbitrary zero-sum free semirings.
Recall that a semiring K is zero-sum free if for any k,`∈K
we have that k⊕`=0 implies that both k and ` are 0. It is
readily verified that for such K, (K,B2,d, ı) is a seba-structure,
where d(k)=0 if k=0 and d(k)=1 if k 6=0, and ı(0)=0K and
ı(1)=1K . The minus in the derived structure is consequently
defined as k	`=k⊗ı(d(`)). 2

The restriction to zero-sum free semirings in the previous
example is necessary. Indeed, let (K,B,d, ı) be a seba-structure
and assume that k⊕`=0. Then also d(k⊕`)=⊥=d(k)∨d(`)
and hence thus both d(k)=⊥ and d(`)=⊥. We claim that
d(k)=⊥ iff k=0. Suppose, for the sake of contradiction, that
d(k)=⊥ for k 6=0. Then, from 0 6=k=k⊗ı(d(k))=0 we obtain
a contradiction. Similarly, for d(`)=⊥.

EXAMPLE 9 (PROBABILITY). Let us reconsider the prob-
ability semiring [16] (P(E),∪,∩,∅,E). Clearly this semiring
is zero-sum free and the previous example tells us that a seba-
structure can be obtained as follows: for any event Ei⊆E,
d(Ei)=1 if Ei 6=∅ and d(Ei)=0 otherwise, and ı(0)=∅ and
ı(E)=1. It is readily verified that the minus in the derived
spm-semiring satisfies Ei	Ej =Ei when Ej =∅ and Ei	Ej =∅
otherwise. We also denote 	 by −prob. 2

EXAMPLE 10 (RANKED TRUST, ACCESS POLICY).
Consider the tropical semiring (N∞,min,+,∞,0) [16], where
N∞ is short for N∪{∞}. This semiring has been used to model
ranked trust [20] for relational queries, and can be regarded as
a generalization of the boolean trust semiring. In the case of
RDF data, triples that are completely untrusted, and should be
disregarded, have ∞ as their rank, whereas completely trusted
triples have rank 0. Clearly, this is a zero-sum free semiring
and, similarly to the previous examples, one can extend it to
an spm-semiring such that m−rtrustn=∞ in case that n 6=∞
and m−rtrustn=m otherwise. Along the same lines, one can
extend the semiring (C,min,max,0,P ) [11], with C={P (ublic),
C(onfidential),S(ecret),T (op Secret),0}, used in the context
of confidentiality policies, to an spm-semiring. Here, the order
between the levels of access is specified as P <C<S<T <0 and
the operators min and max are defined relative to this order. It is



readily verified that in the resulting spm-semiring, v−accw=v if
w is 0 and can thus be ignored, and v−accw=0 otherwise. 2

6. UNIVERSAL SPM-SEMIRING
The importance of the universal “most general” object in a

class of algebraic structures has already been emphasized in the
relational context [16]. Indeed, in that setting, semirings are the
appropriate annotation structure and the semiring of polynomials
(N[X],+,×,0,1) is known to be universal. It has been shown
that the evaluation of positive relational algebra expressions on
semiring annotated relations factors through the evaluation on
relations that take their annotations from (N[X],+,×,0,1) [16].
This implies, among other things, that it suffices to extend rela-
tional algebra evaluation algorithms to relations that are annotated
with values in the universal object, from which the query results
on specific annotation structures can then be easily obtained. In
this section, we first identify a universal object in the class of
seba-structures for which we then show that the derived structure
is a universal spm-semiring.

Universal seba-structure. We first define the notion of universal
seba-structure. Let (K1,B1,d1, ı1) and (K2,B2,d2, ı2) be two
seba-structures. We say that a mapping (hs,hb) between the
two seba-structures is a seba-homomorphism if the following
conditions are satisfied:
• hs is a semiring homomorphism from K1 to K2;
• hb=d2◦hs◦ı1 is a boolean algebra morphism from B1 to B2;
• d2◦hs=hb◦d1 and hs◦ı1 = ı2◦hb.

A seba-structure (K,B,d, ı) is universal in the class of all seba-
structures, relative to a set of generators X={x1, . . . ,xn}, if for
any seba-structure (K′,L′,d′, ı′) and any valuation ν :X→K′,
we can uniquely extend ν to a seba-homomorphism (hs,hb) from
(K,B,d, ı) to (K′,B′,d′, ı′) such that hs coincides with ν on X .

In the following, we construct a universal seba-structure by
extending polynomials with boolean variables. More specifically,
we first define a semiring of extended polynomials in which two
polynomials are considered equivalent based on the semantics of
the boolean variables. Second, we show that this semiring has
a boolean algebra embedded in it. The elements of this algebra
are polynomials consisting of boolean variables only. Finally, we
define the mappings d and ı between the semiring and boolean
algebra and show that, all combined, these form a seba-structure.

À Semiring: Let X={x1, . . . ,xn} and B={b1, . . . , bn, b̄1, . . . ,
b̄n} be two disjoint sets of variables. Here, the elements inB are to
be interpreted as booleans such that bi is true (resp. b̄i is false) if xi
is different from zero and bi is false (resp. b̄i is true) if xi is zero.
An extended polynomial is an element of N[B,X] in which the
variables in B only appear with exponent 0 or 1. More formally,
let κ∈Nn be an integer-valued multi-index and β∈{0,1}2n be
a binary multi-index. For i∈ [1,n] and j∈ [1,2n], we denote by
κ(i) and β(j) the ith and jth entry in κ and β, respectively. Given
(β,κ) and a natural number a∈N, the corresponding extended
monomial is the expression

a·bβ(1)1 · · · bβ(n)n ·(b̄1)β(n+1) · · ·(b̄n)β(2n) ·xκ(1)1 · · ·xκ(n)n ,

which is succinctly denoted by a·bβ ·xκ. Consequently, an
extended polynomial with integer coefficients is an expression of
the form ∑

(β,κ)∈I

aβ,κ ·bβ ·xκ,

where aβ,κ∈N and I is an index set consisting of pairs of binary
and integer-valued multi-indices. The set of all extended polyno-
mials over X and B is denoted by Ne[B,X]. That is, Ne[B,X] is

the subset of N[B,X] in which the exponents of boolean variables
are restricted to 0 or 1.

EXAMPLE 11. Let X={x1,x2,x3}, B={b1, b2, b3, b̄1, b̄2,
b̄3}. Consider the indices (βi,κi), for i=1,2,3,4, with β1 =(1,
0,0,0,1,0), β2 =(0,0,0,0,1,0), β3 =(1,0,0,0,0,0), β4 =(1,
0,0,1,0,0), and κ1 =(3,0,0), κ2 =(1,2,0), κ3 =(0,0,4) and
κ4 =(3,0,0). Then given the coefficients aβ1,κ1 =1, aβ2,κ2 =2,
aβ3,κ3 =4 and aβ4,κ4 =6, the corresponding extended polynomial
is given by b1b̄2x31+2b̄2x1x

2
2+4b1x

4
3+6b1b̄1x

3
1. 2

To ensure that the variables in B in the extended polynomials
are treated as boolean, we define an equivalence relation on
Ne[B,X] that indicates when two polynomials are equivalent.
More specifically, let � be the smallest equivalence relation on
extended polynomials such that for any two polynomials p[B,X]
and q[B,X] in Ne[B,X] we impose the following conditions.
• To impose that bi and b̄i cannot be true at the same time:
p[B,X]�q[B,X] if p[B,X] can be obtained from q[B,X]
by removing a monomial in q[B,X] that contains both bi
and b̄i. In other words, bi · b̄i=0;
• To impose that the presence of b̄i implies that xi is zero:
p[B,X]�q[B,X] if p[B,X] can be obtained from q[B,X]
by removing a monomial in q[B,X] that contains both b̄i
and xni for n>0. In other words, b̄i ·xni =0 for n>0;
• To impose that the presence of xi implies that bi is true:
p[B,X]�q[B,X] if p[B,X] can be obtained from q[B,X]
by replacing a monomial m[B,X] in q[B,X] that contains
xni but does not contain bi, by the monomial bi ·m[B,X].
In other words, bi ·xni =xni ; and
• To impose that bi and b̄i are complements: p[B,X]�
q[B,X] if p[B,X] can be obtained from q[B,X] by replac-
ing a monomial m[B,X] in q[B,X] that does not contain
xmi for m>0 by bi ·m[B,X]+ b̄i ·m[B,X]. In other words,
bi+ b̄i=1.

Let BIM be the set of all binary multi-indices in {0,1}2n
such that for each i∈ [1,n] either β(i)=1 and β(n+i)=0, or
β(i)=0 and β(n+i)=1. In other words, for an index β∈BIM,
bβ contains either bi or b̄i, but not both. Proposition 5 below
implies that any extended polynomial is equivalent to an extended
polynomial in normal form. We first define this normal form:

DEFINITION 6. An extended polynomial is said to be in
normal form if it is of the form∑

β∈BIM

bβ ·pβ [X],

where pβ [X]∈N[X] such that if xmi occurs in pβ [X] then β(i)=1
(and thus β(n+i)=0), and if β(i)=0 then β(n+i)=1 and xmi
does not occur in pβ [X], for some m>0. The support of an
extended polynomial in normal form is the set of of indices in BIM
such that pβ [X] 6=0. 2

PROPOSITION 5. Let p[B,X] be a polynomial in Ne[B,X].
Then p[B,X] is equivalent to an extended polynomial in normal
form. Furthermore, if p[B,X]�q[B,X] then p[B,X] and
q[B,X] are equivalent to the same normal form. 2

EXAMPLE 12. Consider the extended polynomial b1b̄2x31+
2b̄2x1x

2
2+4b1x

4
3+6b1b̄1x

3
1 from Example 11. It is read-

ily verified that the equivalent normal form is given by
4b1b2b3x

4
3+0b1b2b̄3+b1b̄2b3(x31+4x43)+0b̄1b2b3+b1b̄2b̄3

x31+0b̄1b2b̄3+0b̄1b̄2b3+0b̄1b̄2b̄3. The support of this polynomial
is {(1,1,1,0,0,0),(1,0,1,0,1,0),(1,0,0,0,1,1)}. 2



Consider the quotient structure Ne[B,X]/� and denote by
p[B,X]/� the equivalence class in Ne[B,X]/� corresponding
to the extended polynomial p[B,X]. Define the following opera-
tions: (p[B,X]/�)+e (q[B,X]/�) :=(p[B,X]+q[B,X])/� and
(p[B,X]/�)×e (q[B,X]/�) :=(p[B,X]·q[B,X])/�, and define
the following constants: 0e=0/� and 1e=1/�.

LEMMA 2. The structure (Ne[B,X]/�,+e,×e,0e,1e) is a
semiring.

PROOF. It suffices to show that � is a congruence relation on
Ne[B,X]. Indeed, it is known that for any semiring K and any
congruence relation �, the quotient structure K/� is a semiring.
In K/�, the operations and constants are canonically defined
as above. The lemma then follows since (Ne[B,X],+, ·,0,1)
is a semiring. To show that � is a congruence relation, we use
Proposition 5. 2

Á Boolean algebra: We next identify a boolean algebra that
resides within Ne[B,X]/�. Let

B={fS =(
∑
β∈S

bβ)/�|S⊆BIM}

and define for fS and fT in B: disjunction fS∨bfT :=
(
∑
β∈S∪T bβ)/�, conjunction fS∧bfT :=(

∑
β∈S∩T bβ)/�, and

cb(fS) :=(
∑
β∈BIM\S b

β)/�, and define ⊥b and >b as f∅ and
fBIM, respectively.

LEMMA 3. The structure (B,∨b,∧b, cb,⊥b,>b) is a boolean
algebra.

PROOF. This follows from the fact that (2BIM,∪,∩,\,∅,BIM)
is a boolean algebra. 2

Â Mappings de and ıe: The mappings d :Ne[B,X]/�→B and ı :
B→Ne[B,X]/� are defined as follows. Let p[B,X]∈Ne[B,X]
and let its equivalent normal form be pnf [B,X]=

∑
β∈BIM bβ ·

pβ [X]. We define de(p[B,X]/�) :=fS , where S is the support
of pnf[B,X]. Proposition 5 implies that the mapping de is well-
defined. Furthermore, we define ıe :B→Ne[B,X]/� as the iden-
tity function that maps fS to fS , for some S⊆BIM. Observe that
given these definitions the variables inX andB are closely related:

de((xi)/�)=(
∑

β∈BIM|β(i)=1

bβ)/�=(bi)/� .

That is, (bi)/�= ıe(de((xi)/�)) for i∈ [1,n] and similarly,
(b̄i)/�= ıe(de(cb(xi/�))) for i∈ [1,n].

EXAMPLE 13. Consider the extended polynomial
p[B,X]=b1b̄2x

3
1+2b̄2x1x

2
2+4b1x

4
3+6b1b̄1x

3
1 from Exam-

ple 11. Then de(p[B,X]/�)=b1b2b3+b1b̄2b3+b1b̄2b̄3, given
the normal form of p[B,X] and its support from Example 12. 2

PROPOSITION 6. The structure consisting of the semiring
((Ne[B,X])/�,+e,×e,0e,1e), boolean algebra (B,∨b,∧b, cb,
⊥b,>b) and mappings d and ı, is a seba-structure.

PROOF. Lemmas 2 and 3 imply that Ne[B,X])/� is a semiring
and that B is a boolean algebra, respectively. We show the proposi-
tion by verifying that the mappings de and ıe satisfy the conditions
stated in the definition of a seba-structure (Definition 4). 2

THEOREM 2. The seba-structure (Ne[B,X]/�,B,de, ıe)
is universal in the class of all seba-structures, relative to the
generator set X .

PROOF. Let (K,B,d, ı) be a seba-structure consisting of a
semiring (K,⊕,⊗,0,1), boolean algebra (B,∨,∧,⊥,>) and
mappings d :K→B and ı :B→K. Let X={x1, . . . ,xn} be a set
of variables. Let X/�={x1/�, . . . ,xn/�} be the corresponding
elements in Ne[B,X]/�. Furthermore, let N/�={n/�|n∈N}
be the embedding of N in Ne[B,X]/�. Note that 0/�=0e
and 1/�=1e. Consider the standard embedding µ :N/�→K
defined by µ(0e)=0, µ(1e)=1 and µ(k/�)=k⊗µ(1e). Let
ν :X/�→K be a valuation. We need to show that there exists a
unique seba-morphism (hs,hb) from (Ne[B,X]/�,B,de, ıe) to
(K,B,d, ı). This is verified by showing that µ and ν completely
specify the value of this morphism on every other element in the
structure (Ne[B,X]/�,B,de, ıe). 2

Universal spm-semiring. Having a universal seba-structure
at our disposal, we next describe the corresponding universal
spm-semiring. The following lemma tells that we can indeed move
from seba-structures to spm-semirings with regards to universal
structures.

Let (K,⊕K ,⊗K ,	K ,0K ,1K) and (L,⊕L,⊗L,	L,0L,1L)
be two spm-semirings. A homomorphism between these structures
is a mapping h :K→L such that h(0K)=0L and h(1K)=1L,
h(x⊕K y)=h(x)⊕Lh(y), h(x⊗K y)=h(x)⊗Lh(y) and
h(x	K y)=h(x)	Lh(y).

LEMMA 4. A seba-homomorphism between two seba-
structures induces a homomorphism between their derived
spm-semirings, and vice versa. 2

We are now finally ready to define a universal spm-semiring.
An spm-semiring (K,⊕K ,⊗K ,	K ,0K ,1K) is universal in the
class of all spm-semirings, relative to a set of generators X={x1,
. . . ,xn}, if for any spm-semiring (L,⊕L,⊗L,	L,0L,1L) and
any valuation ν :X→L that assigns a value from L to variables in
X , we can uniquely extend ν to an spm-semiring homomorphism
h :K→L such that h coincides with ν on X .

DEFINITION 7. Consider the spm-semiring (Ne[B,X]/�
,+e,×e,−e,0e,1e) where

(p[B,X]/�)−e (q[B,X]/�) :=(p[B,X]/�×efS ,

where S is the complement of the support of the normal form of
q[B,X]. In other words, this is the spm-semiring derived from the
universal seba-structure (Ne[B,X]/�,B,de, ıe). 2

PROPOSITION 7. The spm-semiring (Ne[B,X]/�,+e,×e,
−e,0e,1e) is universal in the class of spm-semirings.

PROOF. This readily follows from Theorem 2 and Lemma 4
by leveraging the universe seba-structure from which the spm-
semiring is derived. 2

7. PROVENANCE
We next show how the universal spm-semiring (and seba-

structure) can be used in practice. More specifically, we first
show that—in analogy to the relational case— the evaluation of
SPARQL queries on annotated RDF factors through the universal
spm-semiring. We then show how to perform computations in the
universal spm-semiring and illustrate that the use of spm-semirings
as annotation structure indeed generalizes the different semantics
of SPARQL given in Section 2. We conclude by observing that
the universal spm-semiring can be used for recording the how-
provenance [16], among other things, of SPARQL query results.



Factorization of SPARQL query evaluation. Let K and L
be two spm-semirings. A homomorphism h :K→L is said to
commute with a SPARQL expression P if for any K-annotated
RDF graph Ga:

[[P ]]h(Ga) =h
(
[[P ]]Ga

)
,

where h(Ga) is the L-annotated RDF graph obtained from Ga by
replacing (s,p,o) 7→k by (s,p,o) 7→h(k), for each K-annotated
RDF triple (s,p,o) 7→k in Ga. The following can be readily
shown by induction on the structure of SPARQL expressions.

PROPOSITION 8. Let h be a mapping between two spm-
semirings (K,⊕K ,⊗K ,	K ,0K ,1K) and (L,⊕L,⊗L,	L,
0L,1L). The transformation given by h from K-annotated to
L-annotated RDF graphs commutes with all SPARQL expressions
if and only if h is a homomorphism between spm-semirings. 2

DEFINITION 8. Let Ga be a K-annotated RDF graph and let
X={x1, . . . ,xn} be a set of variables, one for each triple in Ga.
The abstractly tagged version of Ga, denoted by Ga/X , is the
X-annotated RDF graph in which each triple (s,p,o) inG is anno-
tated with its corresponding variable in X . Figure 3(b) shows the
abstractly tagged version of the RDF graph given in Figure 1(b). 2

Recall the universal spm-semiring (Ne[B,X]/�,+e,×e,−e,
0e,1e) from the previous section. We regard the abstractly tagged
version Ga/X of Ga as an RDF graph annotated by elements
in Ne[B,X]/� by interpreting xi as its equivalence class xi/�
in X/�. Let K be an spm-semiring and consider a valuation
ν :X/�→K. Denote by Evalν the unique homomorphism from
(Ne[B,X]/�,+e,×e,−e,0e,1e) to K that coincides with ν
on X/�. Proposition 8 implies that the evaluation of SPARQL
queries factors through the universal spm-semiring:

PROPOSITION 9. Let K be an spm-semiring and P be a
SPARQL expression. For any K-annotated RDF graph Ga we
have that

[[P ]]Ga =Evalν
(
[[P ]]Ga/X)

)
,

whereGa/X is the abstractly tagged version ofGa and ν :X/�→
K is the function that associates with each equivalence class xi/�
the unique annotation of the triple in Ga tagged with xi. 2

Computing with the universal spm-semiring. We next show
how to compute the annotations in Evalν

(
[[P ]]Ga/X)

)
. Although

the elements in Ne[B,X]/� are equivalence classes, we can
simply work with a single representative in each of these classes.
Let p[B,X] and q[B,X] be two polynomials in Ne[B,X].
Clearly, p[B,X] belongs to p[B,X]/� and q[B,X] belongs to
q[B,X]/�. Algorithm 1 shows how to find a representative in the
class corresponding to the addition, multiplication and difference
of p[B,X]/� and q[B,X]/�. In a nutshell, the algorithm first
computes the normal forms of p[B,X] and q[B,X] and applies the
definition +e, ×e and −e on these normal forms. A simplification
procedure SIMPLIFY is consecutively applied. This procedure
only extracts the terms in the support of the extended polynomial
and in addition eliminates “redundant” boolean variables. Here,
a boolean variable bi is redundant if the normal form contains
bβp[X]+bβ

′
p[X] for some polynomial p[X] in which xi does

not appear and such that β(j)=β′(n+j) for all j∈ [1,n], i 6=j,
and β(i)=0 and β′(n+i)=1.

EXAMPLE 14. Let p[B,X]=2x21+b1x2 and q[B,X]=
3b2x1+x32. Then pnf[B,X]=b1b2(2x21+x2)+b1b̄2(2x21) and
qnf[B,X]=b1b2(3x1+x32)+ b̄1b2(x32), where we only write the
terms in the supports of the normal forms. Then, a representative

Algorithm 1 Universal spm-semiring computations.

Input: Extended polynomials p[B,X] and q[B,X].
Output: Representative in (p[B,X]/�op(q[B,X]/�) for op∈
{+e,×e,−e}.

1: Compute pnf[B,X]=
∑
β∈BIM bβpβ [X] of p[B,X];

2: Compute qnf[B,X]=
∑
β∈BIM bβqβ [X] of q[B,X];

3: if op=+e then
4: return SIMPLIFY(

∑
β∈BIM bβ(pβ [X]+qβ [X]));

5: end if
6: if op=×e then
7: return SIMPLIFY(

∑
β∈BIM bβ(pβ [X]·qβ [X]));

8: end if
9: if op=−e then

10: return SIMPLIFY(
∑
β∈BIM\S bβpβ [X]), where S is the support

of qnf[B,X].
11: end if

in (p[B,X]/�)+e (q[B,X]/�) is given by the algorithm as
b1b2(x32+2x21+3x1+x2)+b1b̄2(2x21)+ b̄1b2(x32) which can be
simplified to 2x21+x32+b1b2(3x1+x2). Similarly, a representa-
tive in (p[B,X]/�)×e (q[B,X]/�) is given by b1b2((2x21+x2)·
(3x1+x32))+b1b̄2(2x21)+ b̄1b2(x32). Finally, a representative in
(p[B,X]/�)−e (q[B,X]/�) is given by b1b̄2(2x21). 2

By the semantics of SPARQL on spm-semiring annotated RDF
graphs, Algorithm 1 suffices to compute [[P ]]Ga/X for a SPARQL
expression P . Indeed, addition, multiplication and difference
suffice to compute the annotations of SPARQL query results (cf.
Section 3).

EXAMPLE 15. Consider the SPARQL expressions Ω1,. . . ,Ω4,
Ω41Ω1, Ω4\Ω1 and Ω4 1Ω1 described in Example 1 and shown
in Fig. 1. Fig. 3(c),(d),(e) and (f) show [[Ωi]]Ga/X , for i=1,2,3,4,
respectively. Furthermore, [[Ω41Ω1]]Ga/X , [[Ω4\Ω1]]Ga/X , and
[[Ω4 1Ω1]]Ga/X are shown in Fig. 3(g),(h) and (i), respectively.
Consider the mapping µ11 in Ω3. Its annotation is a representative
in (x4/�)+e (x5/�). It is readily verified that Algorithm 1 returns
x4+x5 Similarly, µ16 in Ω41Ω1 is annotated by the represen-
tative x1(x4+x5) in (x1/�)×e ((x4+x5)/�) as returned by
the algorithm. Consider next µ18 in Ω4\Ω1. This mapping is
annotated by a representative in ((x4+x5)/�)−e (x1//�). By
definition of −e this is equal to the normal form of (x4+x5)
multiplied (using ×e) with fS where S is the complement of
the support of the normal form of x1. It is readily verified that
S consists of all boolean indices β in BIM except those with
β(1)=1. Hence, the annotation of µ18 is b̄1(x4+x5). 2

Proposition 9 tells that one can deduce the right annotations
for any spm-semiring K and any SPARQL expression P , given
[[P ]]Ga/X and a valuation ν :X/�→K. We illustrate this for the
bag, trust (set) and fuzzy setting.

EXAMPLE 16. Consider the mapping µ18 in Figure 3(h). It has
b̄1(x4+x5) as annotation in the universal spm-semiring. In the bag
semantics in Example 1, we have that νb : (xi/�)→1 for all xi.
Since we know that Evalνb(b̄1(x4+x5))=hs(b̄1(x4+x5)) where
hs is the seba-homomorphism from the universal seba-structure
to the seba-structure corresponding to (N,+,×,−bag,0,1) given
in Example 7, we get that hs(b̄1(x4+x5))=0×(1+1)=0,
as desired. Similarly, for the trust semantics in Example 1,
νt : (xi/�)→τi for all xi. Taking the seba-structure corresponding
to ({true, false},∨,∧,−trust, true, false) given in Example 5, we
thus get that Evalνt(b̄1(x4+x5))= τ̄1∧(τ4∨τ5), as desired. The
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Figure 3: Example of RDF graph and evaluation of SPARQL
algebra operators with annotations in the universal spm-
semiring.

fuzzy semantics is verified similarly using the seba-structure corre-
sponding to ([0,1],min,max,−fuzzy,0,1) given in Example 7. 2

We may thus conclude that the expressions in (Ne[B,X]/�,
+e,×e,−e,0e,1e) generalize all spm-semiring computations,
and in addition, these expressions reveal to some extent how
mappings in the query result were created. For instance, Exam-
ple 15 shows that µ18 is annotated with b̄1(x4+x5) which is
equivalent (x4+x5)−eb1. In other words, µ18 is obtained by first
taking a union, followed by a difference. That is, the universal
spm-semiring records the how-provenance in the SPARQL setting.

8. RELATED WORK
This work is inspired by the algebraic approach to modeling data

provenance, initiated by Green et al. [16]. They consider various
forms of annotated relational data and their transformations by
means of positive relational queries. In that setting, they show that
standard positive relational algebra equivalences hold on annotated
relational data if and only if the annotations have the structure of a
(commutative) semiring [16]. Furthermore, they propose the semir-
ing of polynomials—the universal semiring—as a provenance
model that generalizes many forms of annotations and previously
proposed provenance models [16, 14]. Due to its universality,
all annotation computations were shown to factor through the
semiring of polynomials. This work has been extended to the
semi-structured setting in which transformations are expressed in a
subset of XQuery [11], for which the authors showed that semirings
are still an appropriate annotation structure. Similarly, semirings
are sufficient for positive SPARQL queries on annotated RDF data,
as described in Proposition 1 (Section 4) and also observed in [26].

The situation becomes more challenging when non-monotone
query operators are taken into account [12, 1, 2, 26, 13]. In the re-
lational setting, Geerts et al. [12] extended semirings with a monus
operation, that captures the semantics of relational difference, and
proposed a universal monus-semiring, or m-semiring for short, as
a provenance model. However, this universal m-semiring does not
allow for a simple representation of its elements. Indeed, it is built

up from formal terms that require the arbitrary nesting of expres-
sions of the form p[X]−mq[X], where p[X] and q[X] are terms
that are built up from variables in X , +, × and the monus −m. A
study of the properties of m-semirings can be found in [1]. More
specifically, a set of identities Em is identified that characterizes
m-semirings. Since the relational difference satisfies two sets of
incompatible equivalences, Es and Eb, in the set and bag semantics,
respectively, Em only considers the common identities in these sets.
As a consequence, certain intuitive equivalences of the relational al-
gebra, such asR1 (S\T )=(R1S)\(R1T ) (A13 in [1]) are not
necessarily satisfied on m-semiring annotated relational data [1].

The classes of m-semirings and spm-semirings are incom-
parable, however. Indeed, there are identities that hold for
m-semirings but not for spm-semirings, and vice versa. For exam-
ple, spm-semirings satisfy id11 :k1⊗(k2	k3)=(k1⊗k2)	k3,
a stronger identity than k1⊗(k2	k3)=(k1⊗k2)	(k1⊗k3)
(A13 in [1]) implied by the above equivalence. It is readily
shown that m-semirings do not satisfy this property. Conversely,
k1⊕(k2	k1)=k2⊕(k1	k2) (A11 in [1]) holds for m-semirings
but is not satisfied by spm-semirings. Furthermore, the identi-
ties of spm-semirings imply that the elements in the universal
spm-semiring have a normal form representation, in contrast to
elements in the universal m-semiring.

Amsterdamer et al. [2] obtained an altermative semantics for
relational difference based on their semantics for queries with
aggregation on annotated relations, through an encoding of
difference using aggregation. Interestingly, the semantics of the
difference defined in this manner seems similar to the semantics
of SPARQL difference. However, the resulting annotations reflect
the encoding of difference through aggregation and thus do not
provide a very intuitive description of the actual operations in
the original query. Moreover, they do not propose a universal
object that could be used as the provenance model for queries with
difference under these semantics. Similarly to SPARQL difference,
aggregation-based difference fails to satisfy A11 that holds for
m-semirings. However, it satisfies A13, which is not satisfied by
all spm-semirings. This implies that even if semirings equipped
with the aggregate-based difference would be spm-semirings,
which is not clear, it is necessarily a strict subset of spm-semirings.

The Perm system [13] employs a provenance model that
captures relational difference and outer join under set and bag
semantics. However, it cannot capture SPARQL DIFFERENCE
and OPTIONAL directly, since their semantics differs from that of
the corresponding relational operators, as explained in Section 2.
Moreover, the provenance model of Perm, which is akin to why-
provenance extended with ∧¬ for difference, is less informative
than spm-semirings and does not suffice for computing annotations
such as ranked trust or multiplicities for bag semantics.

In the Semantic Web community, Damasio et al. [9] employ
m-semirings to capture the semantics of SPARQL query answering
over annotated RDF. More precisely, they use (m,δ)-semirings
which are m-semirings extended with a duplicate elimination
operator δ, as introduced in [12]. Then, they encode SPARQL
difference through a complex relational expression involving joins,
relational set difference and duplicate elimination. In fact, their
encoding of the SPARQL difference resembles somewhat that
of Amsterdamer et al. [2]. However, (m,δ)-semirings have the
same deficiency as m-semirings: their universal structure does not
allow for a simple representation of its elements and is completely
symbolic and not amenable to algebraic manipulation. For this
reason, it is not as well-suited to be used as a provenance model
as the structure we propose in Section 6. Indeed, in order to
use the resulting expressions to compute, e.g., trust annotations,



the authors resort to a simpler model, by fixing the duplicate
elimination function δ, thereby disregarding all (m,δ)-semirings
with a more complex δ. Furthermore, similar to the approach
taken in [2], the resulting expressions do not reflect the structure of
operators in the original SPARQL query. Unfortunately, it is also
unclear what identities are satisfied by this encoding of SPARQL
difference, so a formal comparison between the resulting structure
and spm-semirings is difficult to obtain.

As already mentioned in the introduction, our work aims to
unify the semantics of SPARQL query answering on various
notions of annotated RDF. These various semantics include:
ownership [8], truth of imprecise (fuzzy) information [22], trust [4,
18]. Some of these works focus only on representation formats for
such annotations, while others also propose semantics for query
answering and inference. They do not attempt to generalize the
various SPARQL semantics nor do they use algebraic structures to
model the annotations.

There has also been work on using algebraic structures to
model and unify such annotations [27, 6, 28], but these focus on
transformations of annotated RDF through RDFS rules, used to
infer implicit information. However, inference rules do not involve
the use of the SPARQL OPTIONAL operator, which is the main
focus of our work, and thus, the algebraic structures employed in
these works do not capture its semantics. Moreover, [28] extends
SPARQL such that queries can explicitly manipulate both data
and annotations. In contrast, we consider implicit provenance [5]
in which annotations are simply carried along when the data is
queried using standard SPARQL queries. Implicit provenance for
SPARQL has also been studied by Dividino et al. [10], but they only
consider a limited fragment of SPARQL that does not include the
OPTIONAL (or DIFFERENCE) operators, in contrast to our work.

9. CONCLUSIONS AND FUTURE WORK
We have presented spm-semirings, an extension of semirings

to capture the semantics of SPARQL queries, involving the
non-monotone operator OPTIONAL, on annotated RDF data.
Moreover, we showed that spm-semirings have a universal struc-
ture that provides a concise representation of the provenance of
RDF data and SPARQL queries with the OPTIONAL operator. As
in the relational case with provenance polynomials [16], prove-
nance expressions from this universal structure can be recorded
during query answering and later be evaluated in appropriate
spm-semirings in order to compute different forms of annotations
for a variety of applications.

Some of these applications may not require the full expressive-
ness of this universal structure. As in the relational case, for such
applications it may be desirable to record provenance expressions
from a less informative model instead, e.g., if such expressions are
more efficient to store and evaluate than those of more informative
provenance models. For this reason, in future work we intend
to explore whether simpler provenance models for relational
queries, such as why-provenance, can be extended to capture
the semantics of SPARQL queries for certain kinds of annotated
RDF. More generally, we want to perform a formal comparison
of spm-semirings with various algebraic structures intended to
capture the semantics of SPARQL OPTIONAL [9, 2] and explore
whether those structures, as well as the simpler ones we expect
to obtain from extensions of relational provenance models, can be
expressed as spm-semirings and arranged in a hierarchy in the style
of relational annotation structures and provenance models [14].

Finally, SPARQL 1.1 [17] includes non-monotonic operators
NOT EXISTS and MINUS, that differ from the DIFFERENCE
operator considered in this paper. Indeed, MINUS considers a

stronger notion of compatibility of mappings by requiring the pres-
ence of common variables; NOT EXISTS asks for the absence of
certain patterns as part of a FILTER construct. Our DIFFERENCE
operator is closer to the operation Diff that is part of the algebra de-
fined in the SPARQL 1.1 specification [17]. The study of SPARQL
query equivalences involving NOT EXISTS and MINUS, as well
as the search for an appropriate algebraic annotation structure and
provenance model for SPARQL 1.1. is deferred to future work.
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