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ABSTRACT
There exists a variety of traditional outlier models, which
measure the deviation of outliers with respect to the full at-
tribute space. However, these techniques fail to detect out-
liers that deviate only w.r.t. an attribute subset. To address
this problem, recent techniques focus on a selection of sub-
spaces that allow: (1) A clear distinction between clustered
objects and outliers; (2) a description of outlier reasons by
the selected subspaces. However, depending on the outlier
model used, different objects in different subspaces have the
highest deviation. It is an open research issue to make sub-
space selection adaptive to the outlier score of each object
and flexible w.r.t. the use of different outlier models.

In this work we propose such a flexible and adaptive sub-
space selection scheme. Our generic processing allows in-
stantiations with different outlier models. We utilize the
differences of outlier scores in random subspaces to perform
a combinatorial refinement of relevant subspaces. Our re-
finement allows an individual selection of subspaces for each
outlier, which is tailored to the underlying outlier model.
In the experiments we show the flexibility of our subspace
search w.r.t. various outlier models such as distance-based,
angle-based, and local-density-based outlier detection.

Categories and Subject Descriptors: H.2.8 Database
Management: Database Applications [Data mining]

Keywords: data mining; subspace search; high dimen-
sional data; outlier detection; outlier description

1. INTRODUCTION
Outlier analysis is a widely used data mining task. It aims

at the detection and the description of exceptional objects
in a database. For instance, applications such as sensor net-
works, gene expression analysis, or health surveillance sys-
tems use outlier analysis to identify irregular, suspicious, or
unexpected measurements.

However, in many of today’s applications objects are de-
scribed by a large number of attributes, and outliers are
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likely to deviate only w.r.t. a subset of attributes (a so-
called subspace). Traditional full-space outlier mining ap-
proaches [2] fail to detect these subspace outliers since the
detection process considers a large number of irrelevant at-
tributes. Recent outlier mining techniques tackle this prob-
lem by searching for relevant subspaces. The objective is
to find a subset of attributes with a significant deviation
between an outlier and regular objects. For example in Fig-
ure 1, o1 deviates only w.r.t. S1 = {Voltage Magnitude, Har-
monic Content}. Using a deviation measure in this subspace
allows to clearly detect the object as an outlier. In other
subspaces, for instance in S3 = {Harmonic Content, Tran-
sient Voltage}, o1 is regular. Examining the attributes of
S1 together with irrelevant ones such as Transient Voltage
tends to miss that anomaly. Hence, it is an important issue
to select relevant attributes in order to detect outliers. The
selection is also important for outlier description: Detect-
ing the relevant subspace, for instance S1 for o1, provides
a valuable explanation why this object is anomalous. The
subspace serves as a description of the anomalous properties
and assists manual outlier verification.

o1

o3

o2

Figure 1: Example of different outliers in subspaces

However, the characteristics of an anomalous object can
vary largely depending on the application domain. To tackle
this problem, many different outlier models have been pro-
posed. Each one considers different outlier properties. For
instance, some models are sensitive to distance deviations
[14]; others capture deviation in the local density [7]; yet
other models prefer angle-based [19] or statistical devia-
tion [24]. Examples of three different notions are given
in Figure 1 with o1 as a local density-based outlier, o2 as
distance-based outlier, and o3 detected either as outlier or
as part of a micro-cluster depending on parameter settings.
As each outlier model is meaningful for different application
domains, we do not want to discuss the pros/cons or even
parametrization of different models in this work. We focus
on the orthogonal problem of subspace search and provide a
general solution that can use any of these outlier models for
enhanced subspace search.



Due to the exponentially large number of subspaces, it is
an open challenge to select the relevant subspaces for each
outlier. Existing techniques from the field of subspace out-
lier mining perform such a combinatorial search [3, 18, 22,
17]. However, they all rely on a fixed outlier model, which
cannot be exchanged depending on the application domain.
On the other hand, subspace search techniques [8, 12, 13, 23]
are agnostic w.r.t. the outlier model, which only is applied
as a post-processing step. They ignore the underlying out-
lier definition and focus on global data characteristics such
as entropy, density, and comparison of distributions. De-
pending on the outlier model however, different objects in
different subspaces have the highest deviation. Hence, sub-
space search results should be tailored to the outlier char-
acteristics of individual outliers. To solve this problem, the
approach envisioned must be both flexible (the method al-
lows to exchange the outlier model at all) and adaptive (the
method performs the search tailored to the outlier model).
A subspace search scheme with these properties is applicable
to a broad range of application domains. Flexibility also en-
sures that the approach directly benefits from any research
progress on traditional outlier models. Adaptiveness allows
to search for relevant subspaces individually for each outlier
and, hence, enables to describe each outlier by its specific
outlier properties.

As the main contribution of this paper we propose Ref-
Out, a flexible and adaptive subspace search framework
for outlier mining. It finds relevant subspaces by a refine-
ment process that adapts to the given outlier model. The
key idea is based on the observation that traditional out-
lier detection methods (applied to subspaces) do capture at
least small deviations of an outlier even though some irrel-
evant attributes are included. In the distance-based out-
lier model for instance, o2 is a clear outlier in subspace
S2 = {Voltage Magnitude,Transient Voltage}. In a high di-
mensional database it is hard to detect this subspace di-
rectly. But when considering random subspaces T with
|T | ≥ |S2|, some of these random spaces will contain S2.
When applying the distance-based model to evaluate o2 in
such a space T ⊇ S2 the model will report a relatively high
outlier score. In contrast to this, we measure relatively low
outlier scores in all other spaces T 6⊇ S2 in which o2 shows
no irregular behavior w.r.t. the distance-based model. Our
main idea is to detect these score discrepancies of high out-
lier scores in T ⊇ S2 over low scores in T 6⊇ S2 for individual
objects. We extract information hidden in outlier scores to
make a conclusion which subspace induces a high outlier
score for the given outlier model. We use this information
to refine a pool of random subspaces according to the dis-
crepancies in the outlier scores. This means that if we for
instance perform RefOut with an angle-based outlier model
in our example, it would ignore o2 and S2 and instead focus
on angle-based outliers and their respective subspaces.
With RefOut, we make the following contributions:

• We formalize outlier characteristics in different sub-
spaces as profiles and use these in our adaptive search.

• We derive the score discrepancy problem, which pro-
vides a new theoretical perspective on subspace search.

• We propose the first subspace search approach based
on the score discrepancy problem providing outlier de-
scriptions for individual objects.

To the best of our knowledge RefOut is the first subspace
search technique that is both flexible and adaptive w.r.t. dif-
ferent outlier models. In our experiments we show that this
adaptivity leads to an enhanced quality for various outlier
models.

2. RELATED WORK
A number of different outlier paradigms have been pro-

posed in the literature. We review the main directions and
highlight the difference to our approach.
Traditional Outlier Mining: We use the term traditional
outlier mining to refer to any outlier scoring technique that
operates on a fixed attribute set. There are various full-
space outlier models ranging from deviation-based methods
[24], distance-based methods [14], local density-based meth-
ods [7] right up to angle-based methods [19] or hashing-based
scoring [25]. We abstract from these individual models and
propose to use an abstract outlier score in our framework.
Our research is orthogonal to the development of novel out-
lier scores, i.e., RefOut benefits from any future improve-
ments of traditional outlier mining w.r.t. quality, efficiency,
or novel outlier definitions.
Mining Descriptions (for given outliers): There are
several approaches that identify subspaces as so-called out-
lier descriptions [15, 5, 21]. These methods extract a sub-
space for a given outlier, assuming that outlier detection has
taken place in advance. Obviously this results in a chicken
and egg dilemma: (1 → 2) Traditional outlier detectors re-
quire a prior subspace selection to detect outliers hidden in
subspaces. (2→ 1) Outlier descriptions would provide such
a subspace selection, but they require the outliers to be de-
tected in advance. With the proposed RefOut approach,
we break this cyclic dependency by solving these two prob-
lems simultaneously. Our search process applies to both
outliers and the corresponding subspaces.
Subspace Outlier Mining: Subspace outlier mining was
first specified by [3], and recent approaches have extended
this idea to subspace outlierness scores [18, 9, 22, 17]. They
propose an interleaved detection of both outliers and sub-
spaces. This means that each of these techniques relies on
some specific outlier criterion that is tailored to its subspace
processing. They are restricted to this outlier criterion, and
thus, are not flexible w.r.t. instantiations with different out-
lier models. In contrast to these methods, RefOut not
only allows to exchange the outlier model, it also adapts its
subspace search to the actual outlier score detected by the
model.
Subspace Search: Approaches from the field of subspace
search [8, 12, 13, 23] in turn focus on the selection of sub-
spaces. They can be used as a pre-processing step to any
traditional outlier mining algorithm. Thus, subspace search
allows to exchange the outlier model. While flexibility is ful-
filled, adaptivity is not: The outlier model is ignored, and
the subspace search does not take the specific characteristics
of the given outlier model into account.

3. BASIC NOTIONS
Let DB be a database consisting of N objects, each de-

scribed by a D-dimensional real-valued data vector ~x =
(x1, . . . , xD). The set A = {1, . . . , D} denotes the full data
space of all given attributes. Any attribute subset S =
{s1, . . . , sd} ⊆ A will be called a d-dimensional subspace



projection. For calculations in specific subspaces we con-
strain the vectors to the respective attributes, i.e., ~xS =
(xs1 , . . . , xsd). This allows to deploy notions such as dis-
tance, density, and outlierness directly at the subspace level.

To define an adaptive outlier detection framework, we for-
malize the notion of an outlier model:

Definition 1. An outlier model is a function that maps
every object of the database to a real-valued outlier score
w.r.t. a given subspace S:

score(~xS) ∈ R ∀~x ∈ DB

3.1 Pre-processing Outlier Scores
Since our framework evaluates individual objects in dif-

ferent subspaces, the only necessary requirement is that the
outlier scores are comparable among different subspaces.
Most outlier models do not immanently provide this com-
parability among subspaces. However, comparability can
always be enforced by applying a normalization scheme. We
assume that the normalization ensures that the outlierness
distribution of the majority of regular objects has (1) a mean
of defaultout and (2) a variance of 1 independent of S. For
examples of such normalization schemes for arbitrary outlier
models we refer to unification techniques [16]. For the outlier
models used in this work we obtain the required properties
by applying the following transformation:

scoreS =
1

N

∑
~x∈DB

score(~xS) (1)

Var(scoreS) =
1

N − 1

∑
~x∈DB

(score(~xS)− scoreS)2 (2)

score′(~xS) = (score(~xS)− scoreS)/
√

V ar(scoreS) (3)

In the remainder of this work, we apply this transformation
to all outlier models utilized. For the sake of presentation,
we also assume an increasing sort order of score(~xS), i.e.,
higher values correspond to stronger outlier characteristics.
Finding alternative normalization schemes is orthogonal to
our work. We focus on the selection of subspaces only and
use this existing pre-processing scheme.

3.2 Formalization of Outlier in Subspaces
In the following we focus on one individual object ~x and

formalize the outlier score properties evaluated over different
subspaces by keeping one subspace S fixed for comparison.

Definition 2. The outlierness profile of an individ-
ual object ~x w.r.t. subspace S is a function over random
subspaces T with |T | = d′ defined as

profile~x,S(d′) =

 E [score(~xT )] with T ⊂ S , for d′ < |S|
score(~xS) , for d′ = |S|
E [score(~xT )] with T ⊃ S , for d′ > |S|

Based on this outlier profile, we are able to compare the
outlier score of ~x in subspace S with all of its super- and
sub-spaces T . Considering various spaces T with different
dimensionality d′ we derive the definition of a true subspace
outlier as follows:

Definition 3. An object ~x is a true subspace outlier
with respect to subspace S iff

profile~x,S(|S|) = max
d′∈1...D

profile~x,S(d′)� defaultout

We call this maximum value the peak of ~x in subspace S
and we further require:

profile~x,S(d′)� peak ∀d′ < |S|
profile~x,S(d′) > defaultout ∀d′ > |S|
profile~x,S(d′) < profile~x,S(d′ − 1) ∀d′ > |S|

We will also refer to true subspace outliers as d-dimen-
sional outlier with d = |S|, the dimensionality of the sub-
space.

d′

score

defaultout

|S|−2 |S|−1 |S| |S|+1 |S|+2 |S|+6

Figure 2: Ideal profile of a true subspace outlier

Figure 2 illustrates these definitions. The plot shows an
idealized outlierness profile of an individual object (blue
line) that fulfills the true subspace outlier conditions. The
red area shows the distribution of regular objects (unit vari-
ance as a result of normalization). At d′ = |S|, we can see
the clear outlier score peak, deviating by several standard
deviations.

When considering random superspaces of S (T ⊃ S), the
expectation value of the outlier score decreases monotoni-
cally. It is precisely this manifestation of the curse of dimen-
sionality [6] that is commonly observed in reality: Adding ir-
relevant attributes hampers the outlier detection. Thus, the
measured outlier score decreases with increasing dimension-
ality since all objects become more and more alike. Com-
paring the blue curve of an individual outlier with the red
distribution of regular objects shows that at some point the
deviation of our true subspace outlier is comparable with the
average deviation of regular objects. Thus, it is no longer
possible to detect the true subspace outlier.

For lower dimensional subspaces d′ < |S| the object is
projected in random subspaces of S. The defining property
profile~x,S(d′) � peak for these spaces means that the true
subspace outlier is projected into regions of regular densities
in these subspace projections. This effect is also very com-
mon in reality. Think of o1 from our example in Figure 1.
This object clearly has a peak ≡ profile~o1,S1(2). Project-
ing the two dimensional subspace S1 = {Voltage Magnitude,
Harmonic Content} to its one-dimensional subspaces will
project o1 into regions of high density. In none of these sub-
spaces the object shows an exceptional outlier score, thus,
profile~o1,S1(1) � peak. By assuming that no other at-
tribute contributes to the deviation of o1, all properties are
fulfilled and o1 is a true subspace outlier in S1.

Regarding higher dimensional true subspace outliers (i.e.
large |S|), the condition profile~x,S(d′) � peak ∀d′ > |S|
implies that the object is not exceptional in all lower di-
mensional projections. For instance, a true subspace outlier
in a 4-dimensional subspace S appears to be regular in all
3-, 2-, and 1-dimensional projections of S. Only the joint
consideration of all attributes makes the object exceptional,
and no single attribute of S is responsible for the anomalous-
ness alone. This property of true subspace outliers makes



their detection exceptionally hard. Note that, if an object
deviates in for instance two attributes s1 and s2, this ob-
ject is not a true subspace outlier in S = {s1, s2} since it
suffices to clearly detect the outlier by considering the at-
tributes separately. Thus, we would consider this object to
be a true (1-dimensional) subspace outlier in both S1 = {s1}
and S2 = {s2}.

Please note that our definition of true subspace outliers
is not a binary definition. For our detection framework we
output the size of the peak as final outlier score for each
object. Thus, we provide an outlier ranking with the most
prominent true subspaces outliers ranked first.
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Figure 3: Examples of outlierness profiles

To corroborate our model of outlierness profiles and of
true subspace outliers, Figure 3 shows examples of real out-
lierness profiles. For the sake of illustrating outlierness pro-
files we introduce profile instantiations: We draw a single
line corresponding to one specific sequence of random sub-
spaces T over the dimensionality range (each point corre-
sponds to the outlier score in a random subset/superset of S;
T = S at the peak). This allows to visualize outlier score dis-
tributions and expectation values by plotting a large number
of these instantiations. The first figure shows a real world
outlier from the Breast dataset, detected as 4-dimensional
true subspace outlier in our evaluation. The outlierness pro-
file was generated based on the local density outlier model.
As a reference we show profiles of regular objects in gray.
The second figure shows the outlierness profile of a differ-
ent object with a 3-dimensional peak, this time evaluated
with a distance-based model. Overall, the observed outlier-
ness profiles are in good agreement with our model. In fact,
such observations of true subspace outliers on real world
data were the primary motivation for the development of
RefOut. We also generate our synthetic data according to
these observations (cf. Sec. 5) and include hidden outliers of
different subspace dimensionalities. The third figure shows
examples from our synthetic data; this time evaluated with
an angle-based model. Note that the three examples are
generated based on outlier models with vast differences in

their raw outlier score distributions, but the general shape
of outlier profiles is preserved after normalization.

All these examples illustrate the need for subspace selec-
tion: Outliers can be clearly detected in the peaking sub-
space. In addition, this subspace is a valuable description of
the individual outlier characteristics.

4. REFOUT TECHNIQUE
Our RefOut approach consists of two building blocks.

The first one is the definition of a general framework for
an adaptive subspace analysis based on traditional outlier
scores. The underlying idea is based on the transformation
of the subspace search problem into a score discrepancy anal-
ysis problem (Sec. 4.1 and Sec. 4.2). The second building
block of RefOut deals with the question of how to solve
this novel score discrepancy problem. We will propose our
solution in Sec. 4.3.

4.1 The Score Discrepancy Problem
Identifying outlier in subspaces is computationally expen-

sive. In principle, an exhaustive search for true subspace
outliers requires scanning through all possible subspaces 2A

for each object in the database. Due to the exponential
number of subspaces, this would only be feasible for very low
dimensional databases. To achieve a scalable subspace out-
lier detection it is necessary to drastically reduce the search
space. To this end, we follow the idea of random subspace
sampling [20] as a basis for our adaptive subspace search.

In order to take a new perspective on the subspace search
problem, we look at the effects of applying a given outlier
model in subspaces selected randomly. In the following, we
focus on a single object ~x that is a true subspace outlier in
subspace S under the outlier model. To simplify the analy-
sis, we further assume that the object ~x is not a true sub-
space outlier in any other subspace. We denote the set of
irrelevant attributes as I = A \ S.

Let T be a random variable of subspaces, i.e., T is drawn
uniformly from 2A. We refer to the sample over these ran-
dom subspaces as subspace pool P = {T | T drawn iid
from 2A}. By applying the given outlier model to the ran-
dom subspaces T , we obtain a sample of outlier scores:

O = {score(~xT ) | T ∈ P}

The subspace S of ~x plays an important role in the random
sampling process: It partitions both the subspace pool P
and the outlier scores O depending on whether the random
subspace T is a superset of S or not. We denote the split of
the subspace pool P as

P+
S = {T | T ⊃ S ∧ T ∈ P} P−S = {T | T 6⊃ S ∧ T ∈ P}

and the partition of the outlier scores O as:

O+
S = {score(~xT ) | T ⊃ S ∧ T ∈ P}

O−S = {score(~xT ) | T 6⊃ S ∧ T ∈ P}

We now examine the two outlier score populations O+
S and

O−S by considering our observations w.r.t. the outlierness
profiles. We know that for the spaces in P+

S , the outlier score
is described by the outlierness profile (cf. Fig. 2), since they
are supersets of the true subspace S. This means that for
score o ∈ O+

S we have E [o] > defaultout, i.e., the expectation
value of the score is increased over defaultout. Note that
this observation only applies for the expectation value of



the score; in reality one can obtain an o < defaultout by
chance.

For the spaces T ∈ P−S the true subspace S is never com-
pletely covered. We have to consider two cases when ana-
lyzing the population O−S . The first case is that T partially
covers S, i.e., T includes some but not all attributes of S.
This means that we obtain a subspace which projects the
true subspace outlier into a region of regular density. Re-
garding the outlierness profile, this corresponds to the left
side of the peak. Thus, in this case we have E [o] ≈ defaultout
for o ∈ O−S . The second case is that the random subspace T
and true subspace S are completely disjunct. Thus T ⊆ I,
i.e., T exclusively consists of attributes that are irrelevant
for this true subspace outlier. In these attributes ~x is com-
pletely regular, thus, E [o] ≈ defaultout.

Combining these observations implies that we observe a
discrepancy between the expectation values of the outlier
score populations O+

S and O−S , namely:

E
[
O+

S

]
> E

[
O−S
]

(4)

The main idea behind our framework is to exploit this dis-
crepancy.
Effects of random sampling: Before we reformulate the
problem statement, we analyze how the random sampling of
T influences this discrepancy. The general goal is to keep
the total number of analyzed subspaces |P| low to ensure a
feasible processing, i.e., |P| � 2A. This means that in prac-
tice we have to deal with the limited size of the populations
O+

S and O−S . It is reflected in the statistical uncertainty
when comparing O+

S and O−S as in Eq. 4. This statistical
uncertainty is influenced by the dimensionality |T | of the
subspaces T ∈ P. We have to consider the effects of both
high and low dimensional T :

Low |T |: Considering the dimensionality dependence of the
outlierness profile (cf. Fig. 2), it is obvious that the observed
outlierness difference becomes statistically more significant
when the subspace T is more similar to S, i.e., when the
superset T contains only a small number of additional irrel-
evant attributes. In Fig. 2, this corresponds to subspaces
with a dimensionality close to the outlierness peak. This
means that we can maximize the discrepancy in Eq. 4 by
reducing the dimensionality of the subspaces in P to a di-
mensionality that is only slightly larger than |S|.
High |T |: On the other hand, we have to consider the under-
lying combinatorial problem: What is the probability that a
random subspace T is a superset of S? Since the subspaces
are drawn independently, we can use the hypergeometric dis-
tribution to quantify the probability that a space T ∈ P is
a superset of subspace S. For a database consisting of D
attributes, we obtain the coverage probability :

P (T ⊇ S) =

(
D−|S|
|T |−|S|

)(
D
|T |

)
Intuitively, the coverage probability increases if either |T | is
large (large covering subspace) or |S| is small (small sub-
space to cover). For instance, in a database with D =
100 attributes and |T | = 25 the coverage probability is
6.06% for a two-dimensional subspace and 0.07% for a five-
dimensional one. Increasing the size of the sampled sub-
spaces to |T | = 75 increases these probabilities to 56.1%
and 22.9% respectively. As we can see, if the subspaces
in P are low-dimensional, it becomes more and more likely

that P does not contain any superspaces of S. For a lim-
ited subspace pool sample P, the superset samples P+

S and
O+

S become very small or even empty. This means that the
comparison O+

S and O−S is affected by a high statistical un-
certainty. Thus, we require high dimensional subspaces T to
ensure that the superset populations P+

S and O+
S are large

enough to allow a statistical inference with a high signifi-
cance level.
Problem Statement: To finally transform the problem of
searching for relevant subspaces into a new formulation of
the problem statement, we reverse the interpretation of Eq.
4 in the following. So far, we have assumed a given true
subspace S and analyzed its influence on P and O. We now
turn to the question of searching for an S′ given a subspace
pool P and outlier scores O. We have found that for a true
subspace outlier the corresponding true subspace S causes a
partition of subspaces and outlier scores. For this partition
we observe the discrepancy of E

[
O+

S

]
and E

[
O−S
]
. The re-

versal yields our problem statement: Given a subspace pool
P and outlier scores O, which refinement S′ causes a par-
titioning that maximizes the discrepancy of the outlier score
populations O+

S′ and O−S′? For the given object, this S′ is
the best possible approximation of the underlying true sub-
space S given the limited sample size of P and O. For the
construction of our adaptive framework, we consider this to
be a stand-alone problem and only require a subspace re-
finement function of the form:

Refine
(
P, O, d′

)
→ S′

This function takes a subspace pool P and outlierness scores
O of the considered object as input. The third parameter d′

determines the dimensionality of the output candidate, i.e.,
|S′| = d′. The output S′ is the refined subspace candidate.
Formally, this refined candidate is the subspace maximizing
the discrepancy, i.e.:

arg max
S′

(
E
[
O+

S′
]
− E

[
O−S′

])
Intuitively, this S′ is the best possible d′-dimensional sub-
space that lets the given object appear anomalous. In other
words, we can use Refine to get the best lower dimensional
attribute explanation why the considered object is an outlier
for the given outlier model. The Refine function is the key
component of our adaptive framework and is used to refine
the subspaces adaptively to the outlier score of an individ-
ual object. We postpone the discussion of an instantiation
of the Refine function to Section 4.3 and continue with the
overview of our framework in the following.

4.2 Adaptive Subspace Search Framework
At a glance, the RefOut framework consists of three

steps: (1) perform outlier mining on the subspaces of an
initial subspace pool P1 consisting of random subspaces; (2)
refine P1 resulting in a refined subspace pool P2 that contains
subspaces tailored to the given outlier model; (3) perform
outlier mining on P2 to obtain the final output. The first
step of the framework can be considered a modified version
of the random feature bagging approach proposed in [20].
However, our approach goes beyond this random guessing
by performing an adaptive refinement in the second step.
Step 1: The objective of the first step is to collect as much
information about objects and subspaces as possible. We
randomly draw subspaces of dimensionality d1 without re-
placement and add them to P1 until |P1| reaches a threshold



psize. Note that this allows RefOut to perform an exhaus-
tive search on dimensionality level d1 for very low dimen-
sional databases or large psize, but in general

(
D
d1

)
� psize.

The dimensionality parameter d1 controls the trade-off be-
tween a good subspace coverage probability (large d1) or
a less severe curse of dimensionality (low d1). The frame-
work then applies the given traditional outlier model to all
subspaces T ∈ P1. To ensure the desired property of com-
parable outlier scores amongst different subspaces, we apply
the normalization (Eqs. 1-3) to the outlierness distribution
in every subspace. The framework stores these normalized
outlier scores for every object in every subspace.
Step 2: The goal of the second step is to exploit the infor-
mation collected in Step 1 by refining the subspaces adap-
tively to the outlier scores resulting in the refined subspace
pool P2. Note that the subspace refinement operates per ob-
ject, i.e., every object has an individually refined subspace.
In principle it would be possible to produce a refined sub-
space for every object in the database, resulting in |P2| = N .
However, if an object does not show anomalous behavior in
any of the subspace projections of P1, it is very likely that
this object simply is regular. Thus, to speed up the pro-
cessing, the framework excludes these inliers for subspace
refinement. Instead of processing all objects, the framework
ranks all objects according to their maximum outlier score
over all subspaces in P1. A parameter opct controls the
number of objects (expressed as ratio of the database size)
that are considered for subspace refinement, i.e., we con-
sider the top bopct · Nc objects from this ranking. Since
each subspace refinement adds one subspace to the refined
pool, this also determines the size |P2|. The target dimen-
sionality of the subspace refinement is given by parameter
d2, i.e., |T | = d2 ∀T ∈ P2.
Step 3: The third step applies the outlier model again – this
time to the refined pool P2. As in Step 1, we normalize the
outlier scores of each subspace to ensure comparability. The
final outlier score of an object is the maximal normalized
outlier score observed over all subspaces in |P2|. Algorithm 1
summarizes the steps of the RefOut framework.

Algorithm 1 Adaptive Subspace Search

Input: DB, outlier model score(.), d1, d2, psize, opct
Output: score and best subspace description for each object
P1 = random subspaces of dimensionality d1
Apply score(.) to all T ∈ P1 and normalize outlier scores
Rank objects according to maximal outlier score
for ~x ∈ bopct ·Nc top ranked objects do

Extract O for individual object ~x
S′ = Refine (P1, O, d2)
Insert S′ in P2

end for
Apply score(.) to all T ∈ P2 and normalize outlier scores
Output maximum score and subspace for each object

To analyze the complexity of this algorithm, we look at the
search space processed. A naive algorithm would check all
2A subspaces, which clearly does not scale. In contrast, we
only look at a limited set of subspaces. The search space is
limited by the parameters psize and opct. Furthermore, the
subspace candidate refinement requires only a small number
of subspaces considered in the pool. The total number of
subspaces processed is (psize + bopct ·Nc). Thus, the com-
plexity of the framework itself is O(N). In terms of the un-
derlying outlier model to check these subspaces, we depend

on the complexity of the detection algorithm, which range
from O(D · N) for efficient distance-based [11], O(D · N2)
for density-based methods [7], up to O(D ·N3) for the basic
version of angle-based methods [19].

4.3 Instantiation of the Refinement Function
The goal of the refinement function Refine is to obtain the

d′-dimensional subspace S′ that maximizes the discrepancy
of the populations O+

S′ and O−S′ . The input of Refine is the
set of subspaces P and the corresponding outlier scores O
of an individual object ~x. To simplify the notation we treat
both input sets P and O as sequences with an arbitrary
but fixed order. Since there is an outlierness value for every
subspace T ∈ P, we define the order P ≡ (T1, T2, . . . , TM )
and O ≡ (o1, o2, . . . , oM ) such that oi = score(~xTi). We will
use the notation (Ti, oi) to refer to a pair of subspace and
corresponding outlier score.

To illustrate the problem to solve, we introduce a running
example in Figure 4. The table shows the measured out-
lier scores of an outlier with true subspace S = {1, 2, 3, 4}
evaluated in random subspaces of dimensionality 9 within a
database of dimensionality 12. A green box indicates that
an attribute is included in the random subspace. To ease
presentation, we have ordered the (Ti, oi) tuples according
to the outlier score of the object in the respective subspaces.
If we partition the rows according to T ⊃ S vs T 6⊃ S, we
obtain the rows with the ranks 1, 2, 3, 4, and 7 as popula-
tion P+

S . Considering the corresponding outlier score popu-
lations O+

S and O−S clearly shows that O+
S is stochastically

greater than O−S . Ideally, for any d′ ≥ 4 the goal of the
Refine function is to detect this discrepancy and return a
refined subspace S′ ⊇ S.
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Figure 4: Score discrepancy for S = {1, 2, 3, 4}

In the following we point to the three major challenges of
the refinement problem and explain how we deal with them
in our proposed solution.

Uncertainty of populations: This challenge refers to
the general problem of comparing populations. For instance,
the example demonstrates that the two populations are not
strictly separable in general due to statistical fluctuations:
We observe that the subspace on rank 7, which is a superset
of the true subspace, is ranked below two irrelevant sub-
spaces that coincidentally show a high outlierness for the
object. Hence, any solution of the refinement problem must



handle uncertainty in outlier score distributions. Another
issue is that for a high dimensional S′, the partition may
yield a very small sample P+

S′ due to the low coverage prob-
ability of high dimensional subspaces. In this case the size of
the outlier score populations becomes unbalanced, i.e., O+

S′

is much smaller than O−S′ . For instance, if we consider an S′

that corresponds exactly to the top ranked subspace in the
example, the statistical significance of comparing O+

S′ and

O−S′ is low since |O+
S′ | = 1. Therefore, we propose to rely on

statistical tests that are designed for comparing populations
and properly handle uncertainty. To quantify the separa-
tion power for a given candidate C, our approach requires
an instantiation of the following function:

discrepancy
(
O+

C ,O
−
C

)
≡ p-value of a statistical test

that is sensitive to

E
[
O+

C

]
> E

[
O−C
]

By using the p-value we leave the question of the statis-
tical significance to the underlying test: In case of a very
small population O+

C , any reasonable test will report lower
p-values, since it is not possible to reject the null-hypothesis
of identical populations with a high certainty. There are
many possibilities to instantiate the statistical test. For
instance, we can use the one-sided versions of the Mann-
Whitney-Wilcoxon test or the Student’s t-test. We eval-
uated several instantiations in our experiments. Although
we observed only minor differences, we obtained the overall
best results with Welch’s t-test (a Student’s t-test without
assuming equal variances of the samples). The reason could
be that a t-test is more sensitive to outliers compared to
the Mann-Whitney-Wilcoxon test, which only considers the
ranks of the populations. While the t-test’s sensitivity to
outliers is an issue in other domains, it actually is useful
in our case: For a high dimensional true subspace S the
coverage probability is low. Thus, we might only have a
few matching subspaces in the subspace pool. Fortunately,
the t-test captures this discrepancy well compared to a rank
test. According to our experiments, this property seems to
outweigh the fact that the Gaussian assumption of a t-test
does not necessarily apply to the outlier score distributions.

Joint occurrence property: We know from the outlier-
ness profiles that only the joint occurrence of the attributes
S causes an increased outlier score of a true subspace outlier.
In projections of S, the object falls in regions of regular den-
sity. In the given example, we observe that the individual
occurrences of attributes {1, 2, 3, 4} below Rank 7 are com-
pletely random and independent from each other since the
complete set is never included in these subspaces. Detecting
joint occurrences highlights the set-like property of the prob-
lem and its exponential characteristic: An exhaustive search
to find the exact d′-dimensional subspace S′ that maximizes
the discrepancy of O+

S′ and O−S′ would require to evaluate

the discrepancy of all possible
(
D
d′

)
partitions. Thus, it is not

feasible to search for an exact solution. Instead we propose a
heuristic search for a subspace S′ that approximately maxi-
mizes the discrepancy. We define the quality of a candidate
subspace C according to the discrepancy of the correspond-
ing partition:

quality(C) = discrepancy
(
O+

C ,O
−
C

)
Based on this quality function we perform a beam search
of the candidates in a bottom-up processing. A parameter

beamSize determines the number of candidates that we keep
on each dimensionality level. We start with all possible one-
dimensional candidates. In each iteration we calculate the
quality quality(C) of all candidates C. We rank the candi-
dates depending on their quality and discard all candidates
that have low quality, i.e., we only keep the top-beamSize
ones. These top candidates are used to construct higher
dimensional candidates. This construction is similar to con-
structing higher dimensional candidates in frequent itemset
mining [4]: We form a (d+1)-dimensional candidate in case
our candidate set contains all its d-dimensional projections.
If it is not possible to construct a higher dimensional candi-
date, the processing stops.

To highlight the rationale of such a processing we discuss
the question whether there is some kind of monotonicity
in the candidate generation. In frequent itemset mining,
monotonicity refers to the fact that when the quality crite-
rion of a candidate C (in this case the itemset support) is
above a certain threshold, so it is for all subsets of S. In our
score discrepancy problem, we are faced with a quality cri-
terion which is more complex than a simple count of items,
and monotonicity does not hold. However, we observe that
our problem has a property which we would call per-level-
monotonicity. On a fixed dimensionality level d, we have

quality(Ctrue) > quality(Crand) (5)

where Ctrue are d-dimensional subsets of S and Crand are
random d-dimensional candidates which do not share at-
tributes with S. We can see this by noting that O+

Ctrue
⊇

O+
S . Thus, the population O+

Ctrue
contains all increased

scores of the true population O+
S plus a random sample of

O−S . When taking expectation values, we still have:

E
[
O+

Ctrue

]
> E

[
O−Ctrue

]
For random candidates Crand the expectation values of the
samples O+

Crand
and O−Crand

are the same, and thus, Eq. 5
holds. This per-level-monotonicity ensures that by keeping
the top candidates on each level in the beam search, we
maximize the likelihood of finding the correct S in each step.

To finally obtain the refined d′-dimensional output sub-
space, we proceed as follows: During the bottom-up beam
search we keep a record of all candidate qualities ever evalu-
ated. We rank all candidates according to their quality(C),
i.e., their p-values expressing how well they separate the
outlier score populations. To collect exactly d′ attributes
for the output candidate, we iterate over this list, starting
with the top ranked candidates. We add the attributes of
the candidates in the ranking to the output candidate S′

until |S′| = d′. In case of adding a candidate C completely
would yield |S′| > d′, we rank the attributes a ∈ C accord-
ing to their one-dimensional qualities quality({a}) and only
add the best attributes until |S′| = d′.

Limited size of subspace pool: Another challenge is in-
troduced by the limited size of the subspace pool. If this
number is low, combinatorial interferences are likely to oc-
cur. For instance, the last attribute in Figure 4 is not part
of the relevant subspace. But since it was never excluded
from the top ranked subspaces, there is no way to detect
that it is an irrelevant attribute for the given object. Due
to the limited number of combinations, the attribute must
be added to the set of relevant attributes as a false positive.
In order to completely avoid false positives, it would be nec-
essary to evaluate all

(
D
d

)
possible d-dimensional subspaces



on each level. Clearly this is not feasible. However, we can
reduce the issue of false positives by relaxing the general
goal of the subspace refinement. After all, any reduction
of irrelevant attributes already improves outlier detection.
Thus, detecting the true S precisely is unlikely unless we
construct a huge subspace pool. Instead, the framework in-
creases outlier detection quality by refining the subspace to
a dimensionality level d2. This allows the refinement step to
output an S′ ⊇ S which may include some false positive at-
tributes. From the framework’s point of view, the main goal
is achieved: It has been possible to remove (d1 − d2) irrele-
vant attributes, adaptively on the underlying outlier model,
allowing enhanced outlier detecting by scoring an object in
its individually best subspace S′.

We conclude this section with a brief summary of our solu-
tion: The proposed Refine function extracts a refined sub-
space individually for each object based on the outlier scores
according to the underlying outlier model. These proper-
ties, per-object processing and adaptiveness, distinguish our
approach from existing subspace search techniques [8, 12,
13, 23]. The refined subspace is obtained by maximizing
the discrepancy in outlier score distributions. Our algo-
rithm performs a beam search that exploits the per-level-
monotonicity. Exploiting this special property of our prob-
lem distinguishes our approach from approaches e.g. in sub-
group detection [26], where such a property does not hold.
Furthermore, we have proposed a construction of the out-
put subspace which allows S′ ⊇ S, and thus, is tailored to
the idea of refining subspaces within the enclosing RefOut
framework.

5. EXPERIMENTS
Our experiments focus on the interplay of traditional out-

lier models with subspace search approaches. From the field
of outlier models we chose three representative techniques:
(1) Local Outlier Factor (LOF) [7], (2) distance-based out-
lier detection (DB) [14], and (3) angle-based outlier mining
(ABOD) [19]. Our general evaluation scheme is to com-
bine these three models with the following subspace selec-
tion schemes: (1) random subspace selection (RS) and (2)
the full attribute space (FS) as two baselines; (3) HiCS [13]
as representative of subspace search techniques; (4) Ref-
Out. For HiCS and RS we always use the maximum outlier
score of all subspaces. To ensure repeatability, we provide
details on our experiments online.1

Our main focus is to analyze outlier detection quality on
real world data. We use the area under the ROC curve
(AUC) as quality criterion. To perform scalability experi-
ments and to evaluate all RefOut parameters, we utilize
synthetic data. Our synthetic data generator injects true
subspace outliers in a database as follows: We partition the
attributes of the database of dimensionality D in subspace
components of dimensionality d randomly between 2 and
8 with equal probability. To create a structure of regular
objects in each subspace component, we draw random val-
ues satisfying xs1 + . . .+xsd = 1. We inject a true subspace
outlier by deviating one object slightly from this hyperplane,
satisfying that all its lower dimensional projections are in a
region of regular density. This special type of true subspace
outlier can be detected clearly by all three outlier models in
the subspace components.

1http://www.ipd.kit.edu/~muellere/RefOut/

Dataset (size x dim) Ground Truth Peaks in Dim

1 2 3 4 5

Breast (198 x 31)
ABOD 0 139 40 16 3

DB 58 81 44 15 0
LOF 36 67 52 29 14

Breast Diagnostic (569 x 30)
ABOD 0 284 187 98 -

DB 101 268 155 45 -
LOF 94 177 177 121 -

Electricity Meter (1205 x 23)
ABOD 6 217 405 577 -

DB 99 537 393 176 -
LOF 197 374 413 221 -

Table 1: Datasets and dimensionality of peaks

5.1 Adaptiveness on Real World Data
As already illustrated in our toy example in the intro-

duction, it is clear that a LOF outlier is not necessarily an
ABOD outlier. Since the true subspace outliers are individ-
ual to each model, it would be desirable to have a ground
truth of true subspace outliers of each type. To this end, we
introduce a novel evaluation approach for detection qual-
ity of true subspace outliers in dependence on the outlier
model. We propose to perform an exhaustive search to ob-
tain a ground truth of true subspace outliers for each model.
That is, we scan all subspaces of a dataset exhaustively with
each model up to an upper dimensionality level. This is obvi-
ously a very time-consuming operation. Therefore, we have
to focus on datasets of moderate size and dimensionality to
reach a reasonable upper dimensionality level. We chose the
datasets Breast, Breast Diagnostic [10] and a larger Electric-
ity Meter dataset from a collaboration partner. Note that we
had to drop two discrete attributes from the Breast dataset
to ensure a well defined local outlier factor. We further nor-
malized all attributes to a unit interval. We scanned up to a
dimensionality of 4 for Breast Diagnostics (31,930 subspaces
for each model) and Electricity Meter (5,488 subspaces), and
up to level 5 for Breast (206,367 subspaces). The overall
scanning took several days, mainly spent on running ABOD
(using the FastABOD version [19]).

Since in Sec. 3 we defined the target function to quantify
true subspace outliers to be the height of the peak, we store
the maximal peak for each object and the corresponding
subspace during our exhaustive scan. A first insight is that
the three models show very different distributions regarding
the dimensionality in which each object showed its maximal
subspace outlierness. These results are given in Table 1.
For instance, we can see that for Breast and Breast Diag-
nostic LOF tends to see more high dimensional peaks, while
for Electricity Meter ABOD detects more high dimensional
peaks. Note that for ABOD the outlierness rarely peaks
in 1-dimensional subspaces, since the ABOD score degener-
ates to a (still meaningful) variance over reciprocal distance
products in one dimension.

For the following experiments we rank the peaks (for each
model and dataset) and extract three different true sub-
space outlier ground truths for each model corresponding
to the top 2%, 5%, and 10% of the peaks. This allows
us to investigate interesting cross evaluations and analyze
questions like how well does LOF detect ABOD outliers,
or which one of the true subspace models is the hardest to
detect in the full space? To this end, we evaluate all 12
combinations of {FS (full-space), RS (random-subspaces),
HiCS, RefOut} × {ABOD, DB, LOF} on all ground truths.
The average AUC values of these experiments are shown in
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Figure 5: True subspace outlier detection quality
(AUC) on real world data

Fig. 5. Each row corresponds to a certain ground truth
model ABOD/DB/LOF. We highlight the blocks where a
subspace approach uses the same outlier model as the ground
truth, and intuitively we expect the best results in this case.
We can see that this for instance is strongly pronounced for
Breast Diagnostic with the DB model. On the other hand,
we were surprised to find that the ABOD ground truth is
sometimes better detected using DB/LOF instead of ABOD
itself as detection model.

Regarding the adaptiveness of the subspace search mod-
els, we can see that the static selection scheme of HiCS does
not perform well in general, especially in combination with
ABOD. Using random subspaces shows better overall adap-
tation simply by making no assumption for the selection at
all. In most cases RS improves over a full-space detection,
but not when combined with ABOD. Regarding RefOut,
we can see that its adaptive design clearly improves the sub-
space selection for all models. We observe the most pro-
nounced improvement over the other subspace techniques in
combinations with ABOD. The systematic quality improve-
ment of RefOut comes along with a slightly increased run-
time: The average runtimes over all models and datasets
were: 41.6 sec for RS, 49.0 sec for HiCS, and 76.2 sec for
RefOut, which is still several orders of magnitudes below
the runtime for exhaustive searching and is worth to be in-
vested when looking at the improved detection and descrip-
tion of individual outliers.

5.2 Scalability with Dimensionality
To analyze the dependence of the detection quality with

the database dimensionality we performed experiments on
different dimensionality levels. We generated 5 random data-
sets on each dimensionality level 25, 50, 75, and 100 with
subspace outliers of a random dimensionality up to 8. For
this experiment we focus on a single outlier model to keep
the number of results manageable. We chose the LOF out-
lier model due to its high popularity. We kept the LOF
parameter MinPts = 10 constant for all approaches. For
the random subspace detection we chose the same dimen-
sionality level as the dimensionality of the initial pool of
RefOut (75% of D) to highlight the improvement due to
subspace refinement. We keep the total number of evaluated

subspaces equal for RS, HiCS, and RefOut. Fig. 6 shows
the results. Regarding quality, we can see that even the ran-
dom subspace approach consistently outperforms a fullspace
subspace detection. Regarding HiCS we can see that it can
improve over random subspaces on average. But we also see
the effect of its non-adaptiveness: Sometimes the subspaces
detected by HiCS match quite well (on the 50 dimensional
level); other times HiCS outputs subspaces that are of no
use to the outlier model (on D = 75). For RefOut we
observe a very good scalability with respect to the dimen-
sionality: The subspace selection consistently outperforms
the other subspace approaches. The price for the increased
quality is a slightly increased runtime. However, we can see
that the increase over the runtime baseline defined by RS
is rather low: This means that the majority of the runtime
is spent on applying the outlier model itself and not on the
subspace refinement framework. Overall RefOut shows a
linear scalability w.r.t. the number of dimensions, making
it capable of handling high dimensional databases.
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Figure 6: Scalability w.r.t. increasing dimensionality
on synthetic data (from left to right in each group:
FS, RS, HiCS, RefOut)

5.3 Parameter Evaluation
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Figure 7: Parameter evaluation

We performed a thorough analysis of all parameters in
RefOut, again based on the LOF model. We evaluated
each parameter configuration on the pool of 20 datasets for
Sec. 5.2. This means that the dataset pool contains both
difficult and more easier datasets. In our opinion this is im-
portant to ensure that we do not analyze the influence of a
parameter for a single database dimensionality. In order not
to use absolute values for d1 and d2, we set these parameters
as percentage of D. Our default parameters were psize=100,
opct=20%, d1=75%, d2=30%, and a beamSize=100. Start-
ing from this configuration we performed a sensitivity anal-
ysis by varying each parameter individually. The results are
shown in Fig. 7. We can see that in general the parameters



are robust and slight variations of a parameter do not harm
the results significantly. Note that the main fluctuations in
the results are caused by the broad spectrum in difficulty
of the datasets. As expected, increasing the pool size has
a positive influence on the results, although we did not ob-
serve further improvements above a pool size of 125. The
opct parameter that controls how many objects are consid-
ered for subspace refinement is also straightforward to set
up: Higher values produce better results since the detec-
tion quality of the high dimensional subspace scan is less
relevant. Our primary choice of 75% for d1 was motivated
by the idea that we wanted both good subspace coverage
while keeping the number of irrelevant attributes low. The
results show that this choice was still a bit too high: Check-
ing subspaces of a dimensionality of 60% gave slightly better
results. This indicates that RefOut works well with a low
subspace coverage; the influence of irrelevant attributes is
the bigger issue. We did not observe a significant influence
of the beamSize in our bottom-up subspace refinement on
the results, which shows that even low values in the beam
search can find reasonably good refinement candidates.

6. CONCLUSIONS AND FUTURE WORK
In this work, we present a flexible and adaptive subspace

search technique for outlier mining. It refines a pool of ran-
dom subspaces by exploiting the score discrepancy in differ-
ent subspaces. Based on the statistical comparison of outlier
scores, we achieve an adaptive search tailored to the under-
lying outlier model. This allows us to inherit the properties
(quality, performance, etc) of various well-established out-
lier definitions for the subspace search. This results in an
improved outlier detection but also in individual outlier de-
scriptions for each object.

Regarding future work, we aim at utilizing adaptive sub-
space search for outlier ensembles. So far we detect sub-
spaces for each outlier according to a single model. Com-
bining multiple outlier models is a promising extension of
RefOut in order to find outliers that deviate w.r.t. differ-
ent outlier models in different subspaces. This has not been
addressed so far, and hence, RefOut might impact future
development of outlier ensembles [1].
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