
Mining Cohesive Patterns in
Sequences and

Extreme Multi-label
Classification

Proefschrift

voorgelegd tot het behalen van de graad van
Doctor in de Wetenschappen: Informatica

aan de Universiteit Antwerpen
te verdedigen door

Len Feremans

Promotor: prof. dr. Bart Goethals Antwerpen, 2020

Mining Cohesive Patterns in Sequences and Extreme Multi-label Classification
Nederlandse titel: Cohesieve Patronen ontdekken in Sequentiële Data en Extreme Multi-label
Classificatie

Samenvatting

In de huidige maatschappij genereert ieder van ons een enorme hoeveelheid data. Dataweten-
schappers zijn actief met het ontwikkelen van algoritmen die data verwerken, patronen herken-
nen en leren uit deze gegevens. Deze algoritmen hebben een enorm effect op ons dagelijks
leven en de economie: mensen chatten, posten, liken, vinden, zoeken, winkelen en consumeren
informatie en diensten online, en de impact van kunstmatige intelligente op deze activiteiten is
enorm.

In hoofstuk 1 situeren we ons onderzoek in deze brede context. Een eerste toepassing van
ons onderzoek is om automatisch patronen te identificeren en te gebruiken om bijvoorbeeld het
onderhoud en de levensduur van windturbines op zee te optimaliseren. In het algemeen, is het
vinden van patronen in sequentiële of chronologische gegevens een belangrijk uitdaging binnen
data science. Dat wil zeggen, het is uiterst nuttig om een algoritme te hebben dat relevante
informatie of interessante patronen automatisch kan vinden. Er zijn echter verrassend veel
onopgeloste uitdagingen voor algoritmen om interessante patronen te vinden in een stroom
van gegevens. Allereerst verwerken weinig algoritmen rechtstreeks een enkele lange reeks, en
vereisen ze dat de reeks gesplitst wordt in kleinere sequenties, wat nadelen heeft. Ten tweede,
is het ook een voortdurende uitdaging om te definiëren wat “interessant” is voor een computer.
Vaak vinden algoritmen enkel frequente patronen, maar dit zorgt vooral voor veel patronen
die vaak minder interessant zijn. Tenslotte moeten we nadenken over de verschillende soorten
van patronen en de beperking dat een computer alle interessante patronen kan berekenen
binnen een redelijke tijd. Een tweede probleem dat we in dit proefschrift bestuderen, is hoe
we gegevens automatisch kunnen classificeren door de logica of patronen geassocieerd met
elk onderwerp te leren. Wikipedia heeft bijvoorbeeld miljoenen artikelen en aan elk artikel
zijn één of meer onderwerpen gekoppeld. Een classificatie algoritme leert de logica achter elk
onderwerp en voorspelt onderwerpen voor nieuwe documenten. Hierbij zijn we geïnteresseerd
in algoritmen die nieuwe voorspellingen maken in milliseconden voor datasets met miljoenen
labels.

In hoofdstuk 2 beschrijven we FCIseq. Dit algoritme vindt alle cohesieve itemsets in een
sequentie op een efficiënte manier. Hierbij, definiëren we cohesieve itemsets als een verza-
meling van symbolen, of items, die vaak samen voorkomen in een sequentie. Bestaande
algoritmen zoeken meestal frequente patronen, maar daar komen de symbolen in elk patroon
vaak samen voor door toeval. Omdat cohesie geen anti-monotone maat is, vertrouwen we op
een bovengrens om kandidaat patronen en verzamelingen waarvan het kandidaat patroon een
deelverzamelingen is, te snoeien. We bewijzen theoretisch dat deze bovengrens correct is. We
breiden dit algoritme uit en zoeken daarbij naar sequentiële patronen, waarbij de volgorde
van elk symbool belangrijk is. We zoeken ook naar een tussenvorm van cohesieve itemsets
en sequentiële patronen, namelijk dominante episodes. Voor episodes is de volgorde tussen
sommige symbolen belangrijk en tussen anderen niet. Op basis van de gevonden cohesieve
itemsets vinden we ook associatie regels. Deze regels kunnen gebruikt worden om symbolen
te voorspellen in een sequentie. Met behulp van teksten, zoals de tweets van Donald Trump

ii SAMENVATTING

en het boek over “de oorsprong der soorten” van Charles Darwin, tonen we aan dat patronen
met een hoge waarde van cohesie, kwalitatief interessant zijn. We voeren ook verschillende
vergelijkende proeven uit waarbij we kunstmatig ruis toevoegen, vergelijkbaar met mogelijke
scenario’s in de echte wereld. Onze resultaten suggereren dat cohesie robuuster is voor ruis
dan andere bestaande methoden en dat FCIseq superieur is in het ontdekken van patronen
verborgen in sequenties.

In hoofdstuk 3 definiëren we een maat van cohesie gebaseerd op kwantielen. Deze maat is
gemakkelijk te interpreteren en meldt zowel frequente als minder frequente, maar altijd sterk
samenhangende, sequentiële patronen, die andere methoden vaak niet vinden. Omdat op
kwantiel gebaseerde cohesie ook geen anti-monotone maat is, vertrouwen we ook hier op een
bovengrens om kandidaat sequentiële patronen en alle mogelijke supersequenties te snoeien.
We bewijzen theoretisch dat deze bovengrens correct is. Het voorgestelde algoritme, QCSP,
maakt verder ook gebruik van projecties op een databank. Hiervoor wordt telkens de prefix van
een sequentieel patroon gebruikt waardoor de geprojecteerde databank kleiner wordt en we
cohesie sneller kunnen berekenen voor langere patronen. We tonen empirisch aan dat QCSP

zeer efficiënt is, dat wil zeggen ongeveer een orde van grootte sneller dan FCIseq. Bovendien is
cohesie gebaseerd op kwantielen robuuster voor ruis, of willekeurig voorkomende uitschieters
in de data, dan cohesie. We vergelijken QCSP kwalitatief met twee recente algoritmen die
interessante sequentiële patronen vinden in meerdere sequenties. In vergelijking met de
eerste methode, SKOPUS, vinden we langere patronen en ook patronen die minder frequent
voorkomen maar wel samenhangend zijn. In vergelijking met GOKRIMP vinden we dezelfde
patronen, maar het omgekeerde is niet waar.

In hoofdstuk 4 beschrijven we INSTANCEKNNFAST, een algoritme dat, gegeven een nieuwe
vraag of query, heel snel zoekt naar de dichtstbijzijnde voorbeelden, of buren, in een grote
databank. We doen dit efficiënt met behulp van twee strategieën uit information retrieval:
term-at-a-time en document-at-a-time. Dankzij een strakke bovengrens op basis van een gepar-
titioneerde index, vergelijken we alleen met voorbeelden die mogelijk gelijkaardig zijn aan de
query. Onze resultaten suggereren dat dit algoritme tot 25% sneller is dan vergelijkbare algo-
rithmen, onder de assumptie dat de query bestaat uit een groot aantal termen (of attributen),
en dat de databank veel lege waarden bevat. Vervolgens beschrijven we LCIF, een extreem
multi-label classificatie algoritme. In deze methode beschouwen we elk voorbeeld als een rij
in een matrix en elk attribuut als een kolom. Door gebruik te maken van INSTANCEKNNFAST,
vinden we de dichtstbijzijnde rijen. Gebaseerd op een algoritme van slimme aanbevelingssyste-
men, berekenen we efficiënt de labels met de hoogste correlatie met elk attribuut. Tenslotte
maken we een voorspelling voor nieuwe labels door beide scores te combineren. Op tien
verschillende datasets uit verschillende domeinen, vergelijken we LCIF met soortgelijke algorit-
men op verschillende evaluatiecriteria. Onze resultaten suggereren dat LCIF beter presteert en
vooral veel sneller is, waarbij we voorspellingen maken in seconden of minuten waar andere
methoden uren of dagen nodig hebben. Bovendien geeft LCIF uitstekende resultaten op pre-
cision@k op extreem grote datasets. LCIF laat toe dat we nauwkeurige voorspellingen maken
voor labels, in minder dan 20 milliseconden per voorbeeld, op extreme grote datasets zoals
Wikipedia en dit op een gewone computer.

Tenslotte, vatten we in hoofdstuk 5 de belangrijkste bijdragen van dit proefschrift en het
potentieel voor toekomstig onderzoek samen.

iii

Acknowledgements

In the past years, I enjoyed my time at the University of Antwerp. In the role of assistant, I helped
bachelor students with their exercises and projects for programming, databases and artificial
intelligence. In the role of researcher, we developed novel algorithms and open-source software
for pattern mining and extreme multi-label classification. What is not included in this thesis, is
that we also developed algorithms for anomaly detection (Feremans et al. 2019a), proposed a
generic framework and tool for pattern mining and anomaly detection in heterogeneous time
series (Feremans et al. 2019b), and applied our research towards solving real-world problems
and applications, such as, conditional monitoring of fleets of offshore wind turbines (Feremans
et al. 2017a; Daems et al. 2019). I also worked on real-world projects for predicting anomalies
in the water consumption for Colruyt, combining different enterprise databases using entity
resolution for Cropland, and automated labelling of criminal records for the Federal police.
It has been a fascinating and enriching period, where I enjoyed working together with my
colleagues from Adrem Data Lab and researchers from other universities.

First, I am grateful towards all jury members, namely Kris Laukens, Floris Geerts, Celine
Vens, Wannes Meert, Albrecht Zimmermann, Bart Goethals and Boris Cule, for their effort in
thoroughly reviewing this thesis and their insightful feedback.

From the university of Antwerp, I wish to thank my promotor Bart Goethals for allowing me
this chance. Bart is an exceptional person and an authority in pattern mining, recommender
systems and data science in general. Your down-to-earth and enthusiastic manner of guidance
was refreshing, and I cannot thank you enough for your guidance (and patience) the past years.
Second, I want to thank Boris Cule, who was my main co-author and also a mentor for the past
6 years. Boris is always relaxed, humble, thorough, listens well and thinks hard before he says
something. This makes him completely opposite from me, which is probably why we worked
together so well.

From the DTAI Lab at the Katholieke Universiteit Leuven, I want to thank Vincent Ver-
cruyssen and Wannes Meert. Our collaboration resulted in a novel pattern-based anomaly
detection algorithm that will be part of Vincent’s thesis. Vincent is ambitious, smart and, not
unimportantly, very nice and fun to work together. From the mechanical engineering depart-
ment at the VUB, I want to thank prof. Jan Helsen. Jan spent many days next to me at the
university, resulting in two publications on pattern mining of offshore wind turbine fleets.
Thank you for your guidance. From ITEC, an imec research group at the Katholieke Univer-
siteit Leuven, I want to thank prof. Celine Vens for her valuable feedback on the multi-label
classification method presented in the fourth chapter.

My daily workday at the Middelheim campus, in particular the lunch discussions and team
building events were an absolute pleasure. I want to thank prof. Toon Calders and prof. Floris
Geerts for there valuable advice and guidance. Stephen, sorry I made fun of you for about a
million times. If teasing is indicative of affection, we should get married! Joeri, thank you for
the incomplete PhD template. Sandy and Koen, thanks for all your advice. Also many thanks
to my current and former fellow (post)doctoral researchers: Sam, Maarten, Joey, Olivier, Jan,

vi ACKNOWLEDGEMENTS

Mozghan, Lien, Koen, Elyne, Emin, Tayena, Cheng, Hassaan, Robin and others. Also special
thanks to Kris Laukens and the biomina group, in particular, Aida, Charlie, Bart, Danh, Nicolas,
Pieter Meysman, Pieter Moris, Sofie and Wout. You are all wonderful people and I hope we keep
in touch for decades to come.

I also want to thank my family, my mother Yolande, father Eric, sister Kim, plus brothers
Merijn and Lenz, plus mothers Linda and Claire, Ivo, Maaike, Sanne, godchild Manon, nieces
and nephews Margot, Jente, Iza, Lynke, Mathias and Mats, the bomma, Luc and Erna! Also,
special thanks to my closest friends Filip, Arianne, Seppe, Wouter, Leen, Susan, Maarten, Sven,
Brit, Niels, Isabelle, Joeri, Evelyn, Gert, Eva, Frederik, Eva Sels, Erwin and many others.

Finally, in the past years, there have been periods where I have felt anxious, insecure or
frustrated with my progress in restarting my career and pursuing science. However, when I
come home to Pascale and my two sons, Leon and Jules, there is such a tsunami of happiness,
love and support, that I feel I can handle everything. This thesis is by me, but it is also because
of you. You are the best! Leon en Jules, iedereen, jong en oud, vindt graag nieuwe dingen uit.
Het is belangrijk om veel te lezen en voor moeilijke onderwerpen, zoals wiskunde, altijd je
tijd te nemen en je best te doen. Je programmeert nu al lego robots, maar - voor je het weet -
gebruik je al je creativiteit en maak je zelf leuke computerspelletjes en computers. Jullie zijn
de beste en papa heeft dit boekje kunnen schrijven omdat jullie en mama elke dag weer zo’n
schatjes zijn.

You all supported me and enabled this work. Len Feremans
Thank you! Antwerpen, 2020

vii

Contents

Samenvatting i

Acknowledgements v

Contents vii

Publications xiii

1 Introduction 1
1.1 Mining Patterns in an Event Sequence . 1

1.1.1 Event Sequence . 2
1.1.2 Pattern Mining . 3
1.1.3 Itemsets and Episodes . 5
1.1.4 Association Rules . 5

1.2 Multi-label Classification . 6
1.2.1 Nearest Neighbours Classification . 6
1.2.2 Top k-queries . 7
1.2.3 Item-based Collaborative Filtering . 8

1.3 Overview . 8
1.4 Open-source Code . 9

2 Efficiently Mining Cohesive Patterns and Rules in Sequences 13
2.1 Introduction . 14
2.2 Problem Setting . 16

2.2.1 Frequent Cohesive Itemsets . 16
2.2.2 Representative Sequential Patterns . 18
2.2.3 Dominant Episodes . 19
2.2.4 Association Rules . 21

2.3 Mining Cohesive Itemsets . 22
2.3.1 Depth First Search . 22
2.3.2 Pruning . 24
2.3.3 Computing the Sum of Minimal Windows 28

2.4 Mining Representative Sequential Patterns . 30
2.4.1 Computing Minimal Windows for Sequential Patterns 30
2.4.2 Algorithm . 31

2.5 Mining Dominant Episodes . 33
2.6 Mining Association Rules . 34

2.6.1 Efficiently Computing Confidence . 34
2.6.2 Algorithm . 36

2.7 Setting Parameters and Top-k Mining . 36

x CONTENTS

2.8 Experiments . 38
2.8.1 Comparison on Synthetic Benchmark . 38
2.8.2 Quality Comparison on Text Datasets . 43
2.8.3 Association Rules . 48
2.8.4 Performance Analysis . 50

2.9 Related Work . 53
2.10 Conclusion . 56

3 Mining Quantile-based Cohesive Patterns in Sequences 59
3.1 Introduction . 60
3.2 Problem Setting . 62
3.3 Mining Quantile-based Cohesive Sequential Patterns 63

3.3.1 Prefix-projected Pattern Growth . 64
3.3.2 Incremental Computation of Prefix-projections 66
3.3.3 Pruning . 68

3.4 Experiments . 72
3.4.1 Datasets . 73
3.4.2 Performance Comparison . 73
3.4.3 Quality Comparison . 75

3.5 Related Work . 77
3.6 Conclusion . 78

4 Extreme Multi-label Classification using Instance and Feature Neighbours 81
4.1 Introduction . 82
4.2 Problem Setting . 83
4.3 Linear Combination of Instance- and Feature-based kNN 84

4.3.1 Instance-based kNN . 84
4.3.2 Feature-based kNN . 87
4.3.3 Linear Combination . 89
4.3.4 Thresholding . 89

4.4 Fast kNN Search . 90
4.4.1 Indexing . 90
4.4.2 TAAT and DAAT Traversal with Weak-And Pruning 92

4.5 Experiments . 94
4.5.1 Experimental Setup . 94
4.5.2 Classification Performance LCIF . 97
4.5.3 Runtime Performance INSTANCEKNNFAST 100
4.5.4 Runtime Performance LCIF . 102

4.6 Related Work . 103
4.7 Conclusion . 106

5 Conclusion and Outlook 111
5.1 Main Contributions . 111
5.2 Outlook . 112

5.2.1 Future of Pattern Mining In Sequences . 113
5.2.2 Improving Extreme Multi-label Classification 116

A Additional Material for FCIseq 119
A.1 Computing Minimal Windows for Sequential Patterns 119

CONTENTS xi

A.2 Compute Support of an Episode . 120
A.3 Top 25 Patterns Discovered by FCIseq on Species 121
A.4 Top 25 Patterns Discovered by FCIseq on Trump . 125

B Additional Material for QCSP 129
B.1 Weighted Quantile-based Cohesion . 129
B.2 Top 20 Sequential Patterns Discovered by QCSP . 130

C Additional Material for LCIF 133
C.1 Second Order Instance-based kNN . 133

List of Figures 135

List of Tables 138

List of Algorithms 140

List of Definitions, Problems and Theorems 142

Bibliography 147

Publications

• Boris Cule, Len Feremans and Bart Goethals. Efficient Discovery of Sets of Co-occurring
Items in Event Sequences. In Proceeding of the Joint European Conference on Machine
Learning and Knowledge Discovery in Databases (ECML PKDD 2016), pages 361-377, 2016.

• Len Feremans, Boris Cule, Christof Devriendt, Bart Goethals and Jan Helsen. Pattern
Mining for Learning Typical Turbine Response during Dynamic Wind Turbine Events.
In Proceeding of the ASME International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference (IDETC-CIE 2017), American
Society of Mechanical Engineers, 2017.

• Len Feremans, Boris Cule, Celine Vens, and Bart Goethals. Combining Instance and
Feature neighbors for Efficient Multi-label Classification. In Proceedings of the IEEE
International Conference on Data Science and Advanced Analytics (DSAA 2017), pages
109-118, IEEE, 2017.

• Len Feremans, Boris Cule and Bart Goethals. Mining Top-k Quantile-based Cohesive
Sequential Patterns. In Proceedings of the SIAM International Conference on Data Mining
(SDM 2018), pages 90-98, 2018.

• Boris Cule, Len Feremans and Bart Goethals. Efficiently Mining Cohesion-based Patterns
and Rules in Event Sequences. In Data Mining and Knowledge Discovery (DAMI 2019),
33(4), pages 1125-1182, 2019.

• Len Feremans, Vincent Vercruyssen, Wannes Meert, Boris Cule, and Bart Goethals. A
Framework for Pattern Mining and Anomaly Detection in Multi-dimensional Time Series
and Event Logs. In Post-Proceedings of the International Workshop on New Frontiers in
Mining Complex Patterns (NFMCP 2019), 2019.

• Len Feremans, Vincent Vercruyssen, Boris Cule, Wannes Meert and Bart Goethals.
Pattern-based Anomaly Detection in Mixed-type Time Series. In Proceeding of the Joint
European Conference on Machine Learning and Knowledge Discovery in Databases (ECML
PKDD 2019), 2019.

• Pieter-Jan Daems, Len Feremans, Timothy Verstraeten, Boris Cule, Bart Goethals and Jan
Helsen. Fleet-oriented Pattern Mining Combined with Time Series Signature Extraction
for Understanding of Wind Farm Response to Storm Conditions. In the Second World
Congress on Condition Monitoring (WCCM 2019), 2019.

• Len Feremans, Boris Cule, Celine Vens, and Bart Goethals. Combining Instance and
Feature Neighbours for Extreme Multi-label Classification. International Journal of Data
Science and Analytics (JDSA 2020), 2020.

“The real purpose of the scientific method is to make sure nature hasn’t misled you into thinking
you know something you actually don’t know.”

- Robert M. Pirsig,
Zen and the Art of Motorcycle Maintenance: An Inquiry Into Values

CHAPTER 1
Introduction

In the current world, each of us is generating an enormous amount of data. Households and
companies hold various devices that continuously log all kinds of data in a streaming way.
We, data scientists, are active with developing algorithms, that is, step-by-step instructions,
that lead to an automatic way of processing and learning from data. These algorithms have
an enormous effect on everyday life and the economy: People chat, post, like, search, shop
and consume information online, and the impact of artificial intelligence on these activities is
considerable. The largest companies in the world are technology-driven and compete in invent-
ing algorithms that retrieve the most relevant information and suggestions, thereby creating
increasingly smarter services and products for end-users. While commercial applications moti-
vate much progress in data science, there are many applications where algorithms also help
with challenges in society. In life sciences, energy and public services, advancement in data
science can mean improvements in the medical or pharmaceutical domain or carbon-neutral
electricity production using wind turbines. For example, recent improvements in deep-learning
improve the diagnosis of patients by using software that analyses medical images and can high-
light patterns that might elude human experts. Also, by applying algorithms to the analysis of
offshore fleets of wind turbines, we can identify patterns. We can then use these patterns to
optimise maintenance and lifetime for wind turbines.

1.1 Mining Patterns in an Event Sequence

An important data mining task is to find interesting patterns in sequential, or chronological,
data. That is, having an algorithm that mimics a human to filter relevant information or patterns
is extremely useful. However, for finding interesting patterns in a single event sequence there are,
surprisingly, many unresolved challenges in algorithm design. First of all, few algorithms work
on a single long sequence and require that we split the single sequence in many short sequences,
which has disadvantages. Second, few algorithms work on event sequences consisting of discrete
or mixed-type data. Third, it is hard to define what is “interesting” for a computer. A decade ago,
most researchers used frequency to define what was interesting, but this leads to unsatisfactory
patterns. Fourth, we can use machine learning to learn what is interesting and what is not.
However, this requires labelled data, and if this is not available, or we do not know what is
interesting, this is a problem. Fifth, there are many different types of patterns, and each type of
pattern has its advantages and disadvantages. Finally, we have to design algorithms that are
efficient to handle big datasets in a reasonable time.

2 CHAPTER 1. INTRODUCTION

1.1.1 Event Sequence

We are interested in analysing sequences of events. Figure 1.1 shows a fragment of the novel
Moby Dick written by Herman Melville from Chapter 3. We create a single sequence of this
fragment by removing all punctuation, transforming words to lower case and splitting words
on spaces resulting in (all, this,while, tashtego, . . . ,him). Logs produced by computers, smart
devices and machines are also sequences. Also, in industry there are numerous devices and
machines that log data at each time point. For instance, wind turbines typically log sensor
values, i.e., wind speed, actions of operators, and possibly warning or failure codes at each time
point. Figure 1.2 shows an example of such a heterogeneous sequence (Feremans et al. 2019b).
Here we show continuous variables, i.e., wind speed and power output, and discrete events
logged by the embedded computer. Remark that from a data science perspective, algorithms
make abstraction of the specific semantics underlying each kind of sequence and require a
single sequence of 〈timestamp,value〉 pairs.

Receiving the top-maul from Starbuck, he advanced towards the main-mast with the hammer uplifted in
one hand, exhibiting the gold with the other, and with a high raised voice exclaiming: Whosoever of ye
raises me a white-headed whale with a wrinkled brow and a crooked jaw; whosoever of ye raises me that
white-headed whale, with three holes punctured in his starboard fluke - look ye, whosoever of ye raises
me that same white whale, he shall have this gold ounce, my boys!

"Huzza! huzza!" cried the seamen, as with swinging tarpaulins they hailed the act of nailing the gold to
the mast.

It's a white whale," I say, resumed Ahab, as he threw down the top-maul; a white whale. "Skin your eyes
for him, men; look sharp for white water; if ye see but a bubble, sing out."

All this while Tashtego, Daggoo, and Queequeg had looked on with even more intense interest and
surprise than the rest, and at the mention of the wrinkled brow and crooked jaw they had started as if
each was separately touched by some specific recollection.

"Captain Ahab," said Tashtego, "that white whale must be the same that some call Moby Dick."

"Moby Dick?" shouted Ahab. "Do ye know the white whale then, Tash?"

"Does he fan-tail a little curious, sir, before he goes down?" said the Gay-Header deliberately.

"And has he a curious spout, too," said Daggoo, "very bushy, even for a parmacetty, and mighty quick,
Captain Ahab?"

"And he have one, two, tree - oh! good many iron in him hide, too, Captain," cried Queequeg
disjointedly, "all twiske-tee betwisk, like him - him - "

Figure 1.1: Fragment of the novel Moby Dick written by Herman Melville. We highlight 4
sequential patterns

TiPM
Time series Pattern mining &
Anomaly detection

WindmillWindmill // BBA01_copy-028BBA01_copy-028

X column

Y columns Y range -2-8

Y events

Show Windows Labelled anomalies Anomaly score

Patterns Select allSelect all

X range 0-1020 ShowShow < Prev< Prev > Next> Next

Dataset Table View Transform Data Mining Plot

datetime

wind_speed pitch_power

event

6: 203 221 224 225 309 310 122: 221 224 225 230 310 2: 221 224 225 230 356 928 3: 221 224 225 230 908 7: 70 213

Figure 1.2: Data for 15 days of activity of a wind turbine. On the first day (W5) pattern 6 occurs,
meaning that events 203,221,224,225,309 and 310 co-occur and the wind turbine has stopped.
On the second and fifth day (W6 and W9) pattern 122 occurs, meaning events 221,224,225,230
and 310 co-occur and the turbine is remotely paused and re-started

1.1. MINING PATTERNS IN AN EVENT SEQUENCE 3

1.1.2 Pattern Mining

The simplest type of pattern is a single event. Some events might occur more frequently,
while some are rare. However, things get more interesting if we consider relations between
pairs, triples or higher-order patterns of events. We illustrate this in Figure 1.1, where we
highlight 4 sequential patterns. A sequential pattern is a sequence of events in a particular order.
Recognising (Moby,Dick) automatically in this small fragment might seem silly. However, we
must realise that for textual datasets and vision the human brain, with its 1010 neurons, is a
sophisticated pattern mining machine that had a lifetime of continuous training. Moreover, for
other datasets for which the human brain is not trained, such as in Figure 1.2, detecting patterns
is hard. For example, pattern 122, consists of the co-occurring events 221=error, 224=pause,
225=run, 230 =auto-restart and 310=remote run, meaning a routine maintenance activity where
the wind turbine is remotely paused and re-started.

To further illustrate the complexity of finding, or mining, patterns see Figure 1.3. Here
we show a small fragment of the possible frequent sequential patterns found in Figure 1.1.

ro
ot

th
e

th
e

th
e

a an
d

w
ith

<b
r>

w
ith

of in go
ld

w
rin

kl
ed

an
d

br
ow

br
ow

an
d

a
w

ha
le

w
hi

te
w

ha
le

an
d

th
e

of
a he w

ith
a

of cr
oo

ke
d

ja
w

th
ey

ja
w

th
ey

th
ey

<b
r>

a
w

ha
le

w
hi

te
an

d
he

he w
ha

le
w

hi
te

w
ha

le

he wi
th

th
e

an
d

w
ith

in
a an

d
wi

th

wi
th

in th
ey

wh
al

e

<b
r>

wh
ite

<b
r>

wh
al

e

<b
r>

of

th
e

an
d

go
ld

wr
in

kle
d

br
ow

an
d

go
ld

wr
in

kle
d

an
d

br
ow

br
ow

an
d

th
at

so
m

e

m
ob

y
di

ck

m
ob

y

di
ck

di
ck

in

on
e

go
ld

th
e

a an
d

<b
r>

wi
th

a an
d

wi
th

<b
r>

wi
th

th
e

an
d

wi
th

as

wi
th

th
ey

th
ey

to
p

m
au

l

a

wh
al

e
wh

ite

hewh
al

e
wh

ite

wh
al

e

on
e

wr
in

kle
d

an
d

cr
oo

ke
d

ja
w

th
ey

br
ow

an
d

cr
oo

ke
d

ja
w

th
ey

cr
oo

ke
d

ja
w

th
ey

ja
w

th
ey

th
ey

br
ow

an
d

cr
oo

ke
d

ja
w

th
ey

cr
oo

ke
d

ja
w

th
ey

ja
w

th
ey

th
ey

cr
oo

ke
d

ja
w

th
ey

th
ey

ja
w

th
ey

sa
m

e

th
at

so
m

e
m

ob
y

di
ck

so
m

e

m
ob

y
di

ck

m
ob

y

di
ck

di
ck

th
ey

so
m

e

m
ob

y

di
ck

di
ck

m
ob

y

di
ck

di
ck

a

a

wr
in

kle
d

br
ow

br
ow

cr
oo

ke
d

ja
w

ja
w

an
d

a

cr
oo

ke
d

ja
w

ah
ab

ca
pt

ain

ah
ab

cr
oo

ke
d

jaw

jaw

<b
r>

th
is

all

th
is

hewi
th

a

wr
ink

led
br

ow

wr
ink

led

br
ow

br
ow

wh
ale

a

wr
ink

led
br

ow

wi
th

awr
ink

led
br

ow

ah
ab

fo
r

wr
ink

led

br
ow

br
ow

ye

ra
ise

s

wh
ite

wh
ale

ah
ab

fo
r

ah
ab

fo
r

of

ye

ra
ise

s

ra
ise

s

ah
ab

wh
os

oe
ve

r

ye

ra
ise

s

of

yera
ise

s

ra
ise

s

ra
ise

s
fo

r
ca

pt
ain

ah
ab

sa
id

da
gg

oo

wh
ite

 he
ad

ed

a

wr
ink

led
br

ow

wi
th

awr
ink

led
br

ow

wh
ale

awi
th

wr
ink

led
br

ow

wr
ink

led

br
ow

br
ow

wr
ink

led

a

cro
ok

ed
jaw

an
d

acro
ok

ed
jaw

br
ow

aan
d

cro
ok

ed
jaw

cro
ok

ed

jaw

jaw

br
ow

a

cro
ok

ed
jaw

an
d

acro
ok

ed
jaw

cro
ok

ed

jaw

jaw

cro
ok

ed

ye

rai
se

s

of

yerai
se

s

who
so

ev
er

yeofrai
se

s

rai
se

s
jaw

yeofwho
so

ev
er

rai
se

s

jaw

ye

rai
se

s

of

yerai
se

s

who
so

ev
er

yeofrai
se

s

rai
se

s

thi
s

all

thi
s

da
gg

oo
cu

rio
us

hesa
id

da
gg

oo

da
gg

oo
too

sa
id

da
gg

oo

too

sa
id

da
gg

oo

da
gg

oo

and

the

the

wrin
kle

d

an
d

of

thewrin
kle

d

wrin
kle

d

a

yeof

ye

who
so

ev
er

yeof

cro
ok

ed

yeofwho
so

ev
er

jaw

jaw

yeofwho
so

ev
er

cu
rio

us

too

too

an
d

an
d

he

a

cu
rio

us

too

on
e

ha
ve

on
e

cu
rio

us

too

too

with

aeve
n

yeof

the

wrin
kle

d

yewrin
kle

d

ahab

and

and

whosoever

yeof

ye

ascaptain

and

and

ahab

and

one
wrinkle

d

cro
oked

yeof

ye

whosoever

yeof

asjaw

yeofwhosoever

asthey
had

they

ashad

had

as

jaw

yeof

ye

whosoever

yeof

asthey

ashad

had

as

have

one

they

ashad

as

queequeg

with

even

had

witheven

even

had

with

even

aseven

even
curious

too

too

the

as

a

whale
white

whale

curious

and

a

curious

he

aonehave
curious

onehave

one

curious

he

a

curious

onehave

one

curious

whale
yewhite

whale

that

white

ahab

yewhitethat

white

said

whitethat
tashtego

tashtego

whitethat

as
captain

whitethat

white

ahab

whitethatsaidtashtego

said

whitethattashtego

tashtego

whitethat

said

whitethat

white

tashtego

whitethat

onehave

one

this

andtashtego

anddaggoo

daggoo

and

huzza

the

as

ashuzza

theascried

cried

theas

cried

the

as

as

all

andthis

andtashtego
daggoo

tashtego

anddaggoo

daggoo

and

tashtego

andwhitethat

white

daggoo

and

daggoo

and

moby

yeahab

ye

dick

yeahab

dick

yeahab

ye

curious

he

the

thea

white

with

the

whitetop maul

awhite

a

whitesaid

daggoo

daggoo
curious

saiddaggootoo

too

saiddaggoo

with

the

whitegoldsaid

thedaggoo

top maul

a

white

white

onehave

goldonethis

gold

this
gold

down

the

awhitetop maul

a
white

whitesaid
the

top maul
awhite

daggoocurious
said

daggoo
daggootoo

saiddaggoo

too
said

daggoo
daggoo

with

the
aand

awith
with

a
in

one
one

a
a crooked
and acrookedwhosoeverwrinkled aandbrowcrookedbrow aandcrookedcrookedand a crookedwith acrookedwith aofin onewhosoeveronewrinkled a crookedand acrookedbrow aandcrooked
crookedbrow a

crooked
and

acrooked
crooked

crookedthey
the

even
and

whale the
that

some
same

thatsome
some

a
aand

a
wrinkled

aandbrow
brow

aand

and

a

he

he

goldhave

goldthis

this

gold

with

a

aandwrinkledbrow

and

a

inwrinkled

aandbrow

brow

aand

that

some

ahab

heas

he

himingoldas

he

for

him

wrinkled

aand

a

brow

aand

brow

aand

a

same

that

some

some

have

goldthis

gold

this

gold

some

ye

the

whalewhite

whale

a

withwhale

with

white headed

withwhale

withwhale

with

ye

thatraises

thatme

me

that

white

whale

of

ye

thatraisesme

thatraises

thatme

me

that

that

withwhale

with

white

whale

white headed

withwhale

same

whalewhite

whosoever

ye

thatraisesme

of

yethatraises
me

thatraises

thatme

me

that

raises

a

withwhale
white headed

withwhale

with

white

whale

that

withwhale
whitewhite headed

same

me

awithwhale
whitethatwhite headed

same

white headed

withwhale

same

whale
white

me

a

withwhale
white headed

withwhale

with

white

whale

that

withwhale
white
white headed

same

white headed

withwhale

same

whale
white

white headed

withwhale

with

same

whale
white

whale

white

the

thatsame

that

a

he

he

goldhave

goldthis

this

gold

whale

the

thatsame

he

he

goldhave
this

thatahab

as

himgoldasfor

him

same

that

have

goldthis

this

gold

ye

a

that
ahab

as

himgold
asfor

him

same

that

have

gold
this

gold

this

gold

if

aye

a

of

the

theand

crooked

jaw

gold

the

wrinkled

andbrow
crooked

jaw

brow

andcrooked

jaw

crooked

jaw

jaw

a

whale
white headed

whale

and

crooked

jaw

jaw

with
whale

with

ye

a

whale
white headed

with
whale

with

white
that

whale
white
white headed

same

raises

awith
whale
white
that
mewhite headed

same

me

awith
whale
white
that
white headed

same

white headed

with
whale

same

white

white
that

whale
white
white headed

whale

same

white

gold

the

raises

a

whale
white headed

with
whale

with

white
that

whale
white
white headed

same

me

awith
whale
white
that
white headed

same

white headed

with
whale

same

white

me

a

whale
white headed

with
whale

with

white
that

whale
white
white headed

same

white headed

with
whale

same

white

white headed

with
whale

with

wrinkled

and

crooked
jaw

brow

and
crooked
jaw

crooked

jaw

jaw

brow

and

crooked
jaw

crooked

jaw

jaw

crooked

jaw

jawsam
e

white

ye

ye

raises

of

yeraises

whosoever

yeofraises

raises

of

ye

raises

raises

him

in

him

whosoever

ye

raises

of

yeraises

raises

raises
look

ye

yeofwhosoeve
raises

of

yeraises

whosoever

yeofraises

raises

that

the

sam
e

m
oby

he

have

with
whale

the

sam
e

he

have

with
sam

e
have

white

the

sam
e

he

have

whale

the
hesam

e
have

sam
e

have

white headed

with
whale

with

sam
e

he

have

whale

hehave

white

hewha
have

have

have
som

e

m
ob

m
oby

<br
m

o
dick

dick

<br
m

o

m
oby

m
o

m
oby

dick

<bmo

dick

m
o

m
oby

ahab

the

whale
white

w

top m
aul

and

he

oh

one
have

o

and

hoh

he

oh

one
have

o

he

the

t

top m
aul

one
have
down

whale
ye

the
whale
white

white

whale

that

whale
white

as

the
hetop m

aul
dow

n

said
w

hale
w

hite
that
tashtego

top m
aul

one
have

one
dow

n
the
top m

aul
tashtego

w
hale

w
hite

that

hi
m

w

hite

him

him

for
w

hite
ca

pt
ai

n
cr

ie
d

qu
ee

qu
eg

lo
ok

w
hi

tefo
r

cr
ie

d
qu

ee
qu

eg
qu

ee
qu

egto
o

ca
pt

ai
n

cr
ie

d
qu

ee
qu

eg
in

th
e

w
ith

go
ld

w
ithye

ye
lo

ok
hi

m
ca

pt
ai

n
cr

ie
d

qu
ee

qu
egto

o
go

ld
w

ith
ca

pt
ai

n
cr

ie
d

qu
ee

qu
eg

on
e

th
e

w
ith

go
ld

lo
ok

ye
cr

ie
d

qu
ee

qu
eg

qu
ee

qu
egto

o

ca
pt

ai
n

cr
ie

d
qu

ee
qu

eg

go
ld

th
e

a
an

d

h

<b
r>

a

wi
th

a

a
an

d

a
wi

th

a

<b
r>

a
hu

zz
a

a

wi
th

th
e

adh

a
an

d

ath

wi
th

a

hu
zz

a

hu
zz

a

wh
os

oe
ve

r

a

wh
ite

 h
ea

de
d

wh
al

eye

a

ed

wh
al

e
th

at

edm
e

ra
ise

s

aal
e

ha
t

m
e

de
d

am
e

m
e

a
ha

le
th

at
de

d
am

e

wh
ite

 h
ea

de
d

ha
le

sa
m

e

of

a

ad
ed

wh
al

eye

a
wh

al
e

th
at

ai
se

s
m

e
ea

de
d

sa
m

e

th
at

ea
de

d
sa

m
e

ra
ise

s

a
wh

al
e

th
atm
e

he
ad

ed
sa

m
e

m
e

a
wh

al
e

th
at

he
ad

ed
sa

m
e

wh
ite

 h
ea

de
d

wh
al

e

sa
m

e

th
at

wh
ite

 h
ea

de
d

sa
m

e

ra
ise

s

a

e
he

ad
ed

wh
al

e
th

at

te
 h

ea
de

d
sa

m
e

m
e

a
wh

al
e

th
at

ite
 h

ea
de

d
sa

m
e

wh
ite

 h
ea

de
d

wh
ale

sa
m

e

m
e

a

hit
e

he
ad

ed

wh
aleth
at

wh
ite

 h
ea

de
d

sa
m

e

wh
ite

 h
ea

de
d

wh
ale

sa
m

e

wh
ite

 h
ea

de
d

wh
ale

sa
m

e

ra
ise

s

a

a
wi

th

a

wh
ale

a
wi

th

wh
ite

 h
ea

de
d

a
wi

th
wh

ale

hewi
th

a

wh
ale

ahewi
th

a

wh
ite

he
wh

ale

he

th
at

hewi
th

wh
ale

hewi
th

wh
ite

he
wh

ale

wh
ite

 h
ea

de
d

wi
th

wh
ale

sa
m

e

he
wh

ale
wh

ite

me

a

a
wi

th
wh

ale

wh
ite

 he
ad

ed

hewi
th

a

wh
ale

ahewi
th

wh
ite

he
wh

ale

tha
t

hewi
th

wh
ale

wh
ite

wh
ite

 he
ad

ed
sa

me

wh
ite

 he
ad

ed

a
wi

th
wh

ale

sa
me

he
wh

ale
wh

ite

wh
ite

 he
ad

ed

a
wi

th

a

wha
le

a
with

sa
me

he
wha

le

he

whit
e

he
wha

le

me

a

a

wrin
kle

d

with

a

wrin
kle

d

wha
le

a
with

wrin
kle

d

whit
e h

ea
de

d

a
with

wha
le

wrin
kle

d

wrin
kle

d

hewith

a

wrin
kle

d

wrin
kle

d

wha
le

a

wrin
kle

d

hewith

a

wrin
kle

d

wrin
kle

d

whit
e

he
wha

le

he

tha
t

hewith
wha

le

hewith

whit
e

he
wha

le

whit
e h

ea
de

d

with
wha

le

sa
me

he
wha

le
whit

e

whit
e h

ea
de

d

a

wrin
kle

d

with

a

wrin
kle

d

wha
le

a
with

wrin
kle

d

wrin
kle

d

wrin
kle

d
sa

me

he
wha

le

he

whit
e

he
wha

le

as

the

a

top
 m

au
l

a

ahe

the

a

top
 m

au
l

a

top
 m

au
l

a

do
wn

thea

top
 m

au
l

with

thethe
y

the

top
 m

au
l

a

the
y

the

down

the

a

top m
aul

a

top m
aul

a

if

for

a

and

captain

captain

and

captain

yewhite

yeif

ye

him

whitefor

white

look

whitefor

for

white

captainlook

whitefor

white

if

ye

captain

and

he

one
have

one
have

one

and

heone
have

he

one
have

one
have

one

he

one
have

one

whale
white

whale

that

whalewhite

whale

ahab

and

heone
have

andheonehave

he

onehave

whalewhite

whale

that

whalewhite

said

whalewhitethat
tashtego

onehave

one

tashtego

whalewhitethat

said

whalewhite

whale

that

whalewhite

tashtego

whalewhitethat

onehave

one

cried

all
queequeg

all

all
tashtego

whalewhite

whale

that

whalewhite

queequeg

all

said

the

and

and

aand

and

whalewhite

whale

that

whalewhite

whale

for

a

tashtego

whalewhite

whale

that

whalewhite

daggoo

afor

a

even

afor

even

afor

a

top maul

thea

whalewhite

whale

he

the

whalewhite

whale

one

the

thewith

the

gold

thewith

with

the

gold

thewith

the

white headed

a

andwrinkled

andbrow

brow

and

andwith

a

andwrinkledbrow

andinwrinkled

andbrow

brow

and

whale

a

andwrinkledbrow

andwith

aandinwrinkledbrow

inwrinkled

andbrow

brow

and

inwrinkled

andbrow

and

brow

and

wrinkled

a

whosoevercrooked

whosoeverjaw

jaw

whosoever

and

a

whosoevercrookedjaw

whosoevercrooked

whosoeverjawtheyhad

jaw

whosoevertheyhad

they

had

had
whosoeverbrow

a

whosoevercrookedjaw

and

awhosoevercrookedjawtheyhad
whosoevercrooked

whosoeverjawtheyhad
jaw

whosoevertheyhad
they

had
had

crooked
whosoeverjaw

whosoevertheyhad
they

had
had

jaw
whosoevertheyhad

had
theyhad had

brow
a

ofwhosoeverof crookedofwhosoeverjaw jawofwhosoever
andaofwhosoevercrookedjaw ofwhosoeverof crookedofwhosoeverjawtheyhad jawofwhosoevertheyhad they

had had
of

whosoever
of crookedofwhosoever

of jaw
ofwhosoevertheyhad

they
had

had
jaw

ofwhosoever
of

they
had

had
they

had
had crooked

ye

raises

me
me

of

ye

raisesme
raises

me

me
whosoever

ye

raisesme

of

yeraisesme

raises

me

me

raises

me

meas

if
jaw

ye

raisesme

of

yeraisesme

whosoever

yeofraisesme

raises

me

meas

if

they

asifhad

ifhad

asif

they

as

if

ifhad

asif

ifhad

as

if

if

jaw

ye

that
raises

thatme

me

that

of

ye

that
raisesme

that
raises

thatme

me

that

that

whosoever

ye

that
raisesme

of

yethat
raisesme

that
raises

thatme

me

that

raises

thatme

that

me

that

as

if

they

as

if

ifhad

asif

ifhad

as

if

if

look

ye

ye

raisesme

of

ye
raisesme

whosoever

yeof
raisesme

raises

me

me

white

yeif

ye

of

ye

raisesme

raises

me

me

whosoever

ye

raisesme

of

ye
raisesme

raises

me

me

raises

me

mefor

ye
white

yeif

if

ye

if

ye

same

he

have

this

this

whale

he

havethis

have

this

this

white

he

havethis

whale

he
havethis

have

this

this

that

some

moby

dick

moby

dick

dick

have

this

this
some

moby

dick

dick

moby

dick

dick

have

gold

one
this

gold

this

and

queequeg

had

had

huzza

gold

huzza

huzza

huzza

tashtego

and

queequeg
had

daggoo

and

queequeg
had

queequeg

had

had

daggoo

and

queequeg
had

queequeg

had

had

queequeg

had

had

huzza

the

withas

with

withas

with

huzza

the

withas

withas

with

cried

the
withas

cried

the

withas

withas

with

cried

the

withas

with

withas

with

all

queequeg

all

they

the

theof

the

of

the

as

if

if
had

as

if

if

down

the

a

whale
white

and

and

whale
white

whale

top maul

a
whale
white

a

whale
white

whale

and

and

whale
white

whale

said

the

and

and

and

top maul

a

whale
white

whale
white

whale

if

aye

a

some

all

and

queequeg
him

him

him

him

this

and

queequeg

tashtego

and
daggoo

queequeg

daggoo

and

queequeg

queequeg

tashtego

and

queequeg

daggoo

and

queequeg

queequeg

daggoo

and

queequeg

queequeg

queequeg

tashtego

the
and

queequeg

had

had

whale

the

white

the
whale

the

that

the
whale

the

white

the
whale

daggoo

and

queequeg
had

queequeg

had

had

queequeg

had

had

daggoo

a
and

with
queequeg

with
had

had

with

withfor

a

queequeg

with
had

with

had

with

even

afor

a

queequeg

with

even

himall

him

had

with

even

even

even

had

with

even

as

if

if
even

even

a

and

andfor

a

and

and

som
e

ahab

said

captain

ahab
said

said
m

oby

dick

dick

ahab

said

captain

ahab

said

said

said
m

oby

m
oby
dick

m
oby

dick

dick

m

oby
dick

dick

m
oby
dick

m
oby

dick

dick

m
oby

ahab
m

oby

ahab
dick

dick

ahab

ye
ahab

ye

m
oby

ahab
dick

ahab

dick

ahab
m

oby
dick

ye
ahab

ye

m
oby

ahab
dick

dick

ahab

dick

the

ahab
m

oby

ahab
dick

dick

ahab

ye

the

ahab

the ye

the

m
oby

ahab
dick

ahab

dick

ahab

curious

he
said

dow
n

said

said
daggoo

dow
n

said
daggoo

too
said

daggoo
daggoo

too
for

captain
cried

all
queequeg

all
queequeg

all

said
for

daggoo
for

even
even

for
cried

all
queequeg

all
all

daggoo
for

even
for

queequeg
all

even
for

Figure 1.3: Frequent sequential patterns mined in the fragment of Moby Dick

4 CHAPTER 1. INTRODUCTION

That is, all sequences of at most 4 words that co-occur at least twice and where there are most
4 unrelated words, or gaps, between the first and the last word of the pattern. If we report
the most frequent patterns, we find that (white,whale), but also (the,and) and (the, the) are
top-ranked patterns.

In Chapters 2 and 3 we will focus on mining cohesive patterns. The algorithm that finds
cohesive patterns and ranks (Moby,Dick) and (wrinkled,brow,crooked, jaw) on top, reports
only a fraction of patterns, shown in Figure 1.4. We remark that (wrinkled,brow,crooked, jaw)
is not frequent since it only occurs two times in the complete fragment. However, it is highly
cohesive, meaning that if any of these 4 words occur, they occur together. In contrast, the
pattern (Captain,Ahab) has a relatively low value for cohesion since Captain and Ahab also
occur individually. However, we will see that we can still find patterns where words are often
very near each other, using quantile-based cohesion. We find that by only evaluating different
types of cohesive patterns and pruning the number of patterns using cohesion, we ignore many
unsatisfactory patterns.

root

ah
ab

ca
pt
ai
n

sa
id

sa
id

di
ck

m
ob

y
ca

pt
ai
n

m
ob

y
ha

m
m
er

wi
th
ou

t

ay
e

sp
ou

t
br
ow

cr
oo

ke
d

ja
w

wr
in
kle

d

wr
in
kle

d

wr
in
kle

d
jaw

wr
ink

led

he
ad
ed

wr
ink

led

ca
pta

in

sa
id

sta
rb
uc
k

tas
hte

go

cri
ed

qu
ee
qu
eg

qu
ee
qu
eg

sta
rbu

ck
tas
hte

go

crie
d

qu
ee
qu
eg

ay
e

huz
za

oun
ce

aye

cro
oke

d

jaw

wrin
kled

wrin
kled

curi
ous

spo
ut

d

piece

daggoo

spoutevenaye
spout

curious
even

spout

spout

dick
moby

captain
starbucksaid

said starbuck

captain said starbuck

gold
ouncepiecehandmastcried

huzza
ounce

huzza
ounce

one

hand

hammer

see

ounce

d

hammer

without

hand

roundtop

maul

headed

three

humming

seemed

huzza

ounce

like

fanone

spout

daggoo

spout

cried

queequeg

aye

tashtego

aye

fan

fan

look

d

m
ast

ham
m
er

m
en

d

piece

piece
look

m
oby

captain
said

starbuck

on
e

ham
m
er

th
re
e

ha
nd

ha
m
m
er

m
as

t
ha

m
m
er

da
gg

oo
ay

e
sp

ou
t

qu
ee

qu
eg

ay
e

da
gg

oo
ra
ise

s

cr
oo

ke
d

ja
w

sa
id

cu
rio

us

sp
ou

t
ev
en

sp
ou

t

sp
ou

t

da
gg
oo

cu
rio

us

ev
en

sp
ou

t
ev
en

sp
ou
t

sp
ou
t

sta
rb
uc
k

tas
hte

go

see

d

pie
ce

ou
nc
e

d

me
n

d

pie
ce

pie
ceha

nd

d

sta
rbu

ck

d

pie
ce

han
d

dtop

ma
ul

me
n

dhan
dpie

ce

look

doun
ce

d

starb
uck

maultop

maul

hand

maultop

maul

men

d

piece

hand

d

tashtego

fanaye
fan

daggooqueequegdaggoo

topmaul

whaleheadedthree
wrinkled

brow
crooked

wrinkled headed

wrinkled wrinkled raises

headed

three

see

look

d

white

whale

raises

headed
headed

headed
look
raises

headed

brow

headed

wrinkled

whosoever

raises

headed

whosoever

raises

crooked

jaw

jaw
look

crooked

jaw

wrinkled

jaw
look

brow

crooked

jaw
wrinkled

jaw

wrinkled

ye

see

d
look

d
ounce

ounce

d

whosoever

raises

headed
look

raises

headed

d
look

d
ounce

d

white

raises

headed

headed
whale

headed
raises

see
look

whosoever

headed
raises

dick
m
oby

w
hale

raises
headed

Figure 1.4: Cohesive sequential patterns mined in the fragment of Moby Dick

1.1. MINING PATTERNS IN AN EVENT SEQUENCE 5

1.1.3 Itemsets and Episodes

Besides sequential patterns, researchers working on sequential data typically consider two other
types of patterns: itemsets and general episodes. These three types of patterns differ in how strict
we are about the order between pattern events. For an itemset, the order between pattern events,
or items, is ignored. That is, if we match the itemset {Moby,Dick} to the input sequence, we
ignore whether Moby or Dick comes first. A partially ordered episode is something between an
itemset and a sequential pattern, where the order between events is only partially constrained.
For example, suppose we have the pattern events natural, selection and species. These three
terms often co-occur; however, if they occur, natural is always before selection, while species is
sometimes before and sometimes after (natural,selection). In this scenario, we can define an
episode with events {natural, selection, species} and a partial order natural → selection, instead
of an itemset. An example of all three types of patterns is shown in Figure 1.5. We consider
these patterns in more detail in Chapter 2.

a b c … a c x b … a x c b

a b c … a c x b … a x c b
3 4 4

a b c … a c x b … a x c b

a b c … a c x b … a x c b

! =

= {%, ', (}

* # = 9 . 3
3 . 3 + 3 . 4 + 3 . 4 =

9
11

12(#) =

56 = (%, (, ')

7((89 56 =

7((:; < =
7((_>%?@7:; < = A

A = 1

G = %, ', (, % → ', % → (= %
'
(

→→

Cohesive Itemset:
Sequential Pattern:
Episode: 7((_>%?@789 56 = 6

9 =
2
3

✓ ✓

✓ ✓ ✓

✗

Figure 1.5: Example of a cohesive itemset, a sequential pattern and an episode

1.1.4 Association Rules

An important application of pattern mining is learning association rules. For example, based on
the itemset {Moby,Dick} we can derive a rule Moby ⇒ Dick, meaning that if Moby occurs, Dick
will occur with high confidence. For many applications, learning rules like this is of high impor-
tance. For instance, in the management of a wind turbine fleet, predicting the next value in a
sequence using rules is of importance, for example, high_windspeed,error_917 ⇒ stop_turbine.
Likewise, we can also learn association rules and apply them for anomaly detection1, i.e., if
high_windspeed,code_917 ⇒ code_955 holds with high confidence, but if then code_955 does
not follow the occurrence of high_windspeed and code_917 we report an anomaly. We consider
association rules in more detail in Chapter 2.

1A chapter on our research on pattern-based anomaly detection is part of the PhD thesis of Vincent Vercruyssen
(Feremans et al. 2019a).

6 CHAPTER 1. INTRODUCTION

1.2 Multi-label Classification

A second problem we study is how to automatically label or classify data by learning the logic
or patterns associated with each label. For example, Wikipedia has millions of articles, and
each article has one or more topics associated with it. A classification algorithm learns the logic
behind each topic, or label, and automatically predicts topics for new documents. Likewise,
commercial companies want to predict which set of advertisements is the most relevant for
each user. Here each ad is a label, and each user has many features such as demographic
attributes, sites visited etc. Many algorithms have been developed in the past decades to solve
the task of classification. However, these algorithms require to learn a model for each label.
The time needed to learn a model for each label can prevent many applications where we have
extremely large data streams with millions of labels. Additionally, for online applications, new
predictions are required within milliseconds. Only recently, researchers have begun developing
algorithms tackling these stringent requirements.

1.2.1 Nearest Neighbours Classification

The k-nearest neighbour algorithm is a straightforward classification algorithm. In this type
of instance-based learning or lazy learning, we assign a label to a new instance, based on the
labels of the instances that are the most similar. We show an illustrative example in Figure
1.6. For example, using k = 2, it would make sense to predict that the label for the star-shaped
example is the triangle. Using k = 8, we could predict two likely labels, the triangle since 5

8 of
neighbours have this label, and the circle since 3

8 of neighbours have this label.
In Chapter 4 we study recent algorithms from information retrieval and recommender

systems and developed a new algorithm for multi-label classification for datasets with an
extremely large number of labels. We also use the labels of the nearest neighbours to make
predictions. However, different from the illustrative example, each instance might have millions
of labels and millions of features or dimensions. Like in Figure 1.6 we search the most similar
documents (or users) in the labelled database and use their labels to make predictions. For
instance, we can compare a new document to all other documents in the database and use the

?

k=2

k=8

Figure 1.6: Illustrative example of k-nearest neighbours classification

1.2. MULTI-LABEL CLASSIFICATION 7

known labels of the top-100 most similar documents. We measure the similarity using cosine
similarity. In a large dataset, there are millions of attributes and labels possible. However, each
individual instance typically has only a few hundred of nonzero features or labels. Therefore,
measuring the cosine similarity is better suited than euclidean distance.

1.2.2 Top k-queries

A problem with the nearest neighbour algorithm is that we have to compare each new instance
against possibly millions of instances in the labelled database. Therefore, until a decade
ago, most researchers only focused on approximate algorithms on sparse datasets. However,
recently, scientists have created algorithms that return the exact set of k-nearest neighbours
and are as fast as high-quality approximate algorithms, by pruning or discarding instances
that are known to be far from similar (Bayardo et al. 2007; Fontoura et al. 2011). We illustrate
two common strategies for top-k query algorithms in Figure 1.7. Using term-at-a-time, we
loop over each query term at a time. First, we retrieve all documents from an inverted index,
and update the partial similarities between documents matching each term and the query.
For example, if we search for Soccer,Goal,Red we first find documents 1 and 3 sharing Soccer
and update the similarity between the query and these documents. Next, we do the same for
documents matching Goal, and finally for documents matching Red. The main advantage of
this strategy is that non-zero terms are not computed. Given that extreme datasets sometimes
have only 0.0001% of non-zero values, this is efficient. In document-at-a-time, we consider
each document sharing at least one term, and process them one by one. In our example, we first
find document 1, and compute a similarity of 1.0. Next, we visit document 2, however, since
its value for Red is 0.5, we can ignore other columns and prune this document from further
comparison, as we can infer that document 1 is more similar. We have developed an algorithm

Doc ID Soccer Goal Car Road … Red Football Racing
1 1.0 1.0 1.0 ✓
2 1.0 1.0 0.5 ✓
3 1.0 1.0 ✓
4 1.0 1.0 ✓

Term-at-a-time traversal
Doc ID Soccer Goal Car Road … Red Football Racing

1 1.0 1.0 1.0 ✓
2 1.0 1.0 0.5 ✓
3 1.0 1.0 ✓
4 1.0 1.0 ✓

Training database. Query is: Soccer, Goal, Red

Soccer Goal Red
<Doc 1, 1.0> <Doc 1, 1.0> <Doc 1, 1.0>

<Doc 3, 1.0> <Doc 3, 1.0> <Doc 2, 0.5>

Compute 1.0 similarity with Doc 1

Prune Doc 2. Similarity is at most 0.5

Document-at-a-time traversal for query with pruning

1 2 3

1

23

Figure 1.7: Illustrative example of finding the nearest neighbours using term-at-a-time and
document-at-a-time with pruning

8 CHAPTER 1. INTRODUCTION

for computing the top-k nearest neighbours that fuses both approaches, which we present in
more detail in Chapter 4.

1.2.3 Item-based Collaborative Filtering

Collaborative filtering algorithms are used by popular information services to make sugges-
tions for movies, music or products based on the history of liked (or clicked) items of each user.
One of the most popular techniques is item-based collaborative filtering. The technique works
by computing the similarities, column-wise, between all item pairs. If a user then prefers an
item, for example, movie X , the recommendation system suggests similar items and produces
well-known “because you like X we recommend Y ” types of explanations. In multi-label classifi-
cation, a similar approach does not exist. However, intuitively adopting this idea makes sense.
For example, the overall correlation column-wise between Car and Racing, shown in Figure 1.7,
can be used for recommending this label, i.e., “because you have Car we recommend Racing”.
We have adapted item-based collaborative filtering and combined it with the k-nearest neigh-
bour algorithm for multi-label classification of datasets with an extreme number of labels in
Chapter 4.

1.3 Overview

This thesis contains the following chapters.

• In Chapter 2, we present FCIseq. This algorithm finds all cohesive itemsets in a single
event sequence efficiently. We extend this algorithm and find representative sequen-
tial patterns, dominant episodes and association rules for each cohesive itemset. We
experimentally validate that, on an external synthetic benchmark, FCIseq is superior to
state-of-the-art methods in discovering patterns hidden in a single data sequence. We
also provide human-readable, qualitative examples of patterns using textual data sources,
such as the tweets from Donald Trump.

• In Chapter 3, we define quantile-based cohesion. This measure is more robust to noise
and suitable for ranking sequential patterns, with possible repeating items. We revisit
the algorithm from Chapter 2, and propose the QCSP algorithm. QCSP is even faster
than FCIseq, and mines all quantile-base cohesive sequential patterns in both single, and
multiple, event sequences.

• In Chapter 4, we propose INSTANCEKNNFAST, an algorithm for fast k-nearest neighbour
search. Given a test instance, we search for the nearest neighbours using term-at-a-time
and document-at-a-time with a tight upper bound for pruning based on a partitioned
index. Next, we compute all similarities between each feature and label column-wise
and find the nearest labels for each feature, similar to item-based collaborative filter-
ing. Finally, we introduce LCIF an extreme multi-label classification algorithm that
combines label predictions based on the instance- and feature-based neighbours. We ex-
perimentally validate the accuracy and efficiency compared to state-of-the-art methods
on real-world datasets with millions of examples, features and labels.

• In Chapter 5 we summarise the main contributions of this thesis and the potential for
future research.

1.4. OPEN-SOURCE CODE 9

1.4 Open-source Code

We have provided public open-source repositories for each algorithm. This facilitates future
researchers in comparing with our methods and enables applications.

• The source code in Java for FCIseq, including experimental scripts, datasets and an online
demo, is available at https://bitbucket.org/len_feremans/fci_public. FCIseq is also part of
the SPMF library available at https://www.philippe-fournier-viger.com/spmf.

• The source code in Java for QCSP, including experimental scripts and datasets, is available
at https://bitbucket.org/len_feremans/qcsp_public. QCSP is also part of the SPMF library.

• The source code in C++ for LCIF, including large datasets and experimental scripts, is
available at https://bitbucket.org/len_feremans/lcif. Extreme datasets and benchmark
results for state-of-the-art methods are made publicly available by Bhatia et al. (2016).

• A chapter on PBAD, an algorithm for pattern-based anomaly detection, will be available
in the doctoral thesis of Vincent Vercruyssen (Feremans et al. 2019a). The source code in
Python is available at https://bitbucket.org/len_feremans/pbad.

• We have not included a chapter on the framework for pattern mining and anomaly
detection in multi-dimensional time series and event logs (Feremans et al. 2019b). How-
ever, the source code in Java for the corresponding tool, TIPM, is available at https:
//bitbucket.org/len_feremans/tipm_pub.

https://bitbucket.org/len_feremans/fci_public
https://www.philippe-fournier-viger.com/spmf
https://bitbucket.org/len_feremans/qcsp_public
https://bitbucket.org/len_feremans/lcif
https://bitbucket.org/len_feremans/pbad
https://bitbucket.org/len_feremans/tipm_pub
https://bitbucket.org/len_feremans/tipm_pub

“Maybe that’s why young people make success. They don’t know enough. Because when you
know enough it’s obvious that every idea that you have is no good.”

- James Gleick,
Genius: The Life and Science of Richard Feynman

CHAPTER 2
Efficiently Mining Cohesive Patterns and

Rules in Sequences

Discovering patterns in long event sequences is an important data mining task. Tradi-
tionally, research focused on frequency-based quality measures that allow algorithms
to use the anti-monotonicity property to prune the search space and efficiently discover
the most frequent patterns.

In this Chapter1, we step away from such measures and evaluate patterns using cohe-
sion — a measure of how close to each other the items making up the pattern appear
in the sequence on average. We tackle the fact that cohesion is not an anti-monotonic
measure by developing an upper bound on cohesion in order to prune the search space.
By doing so, we are able to efficiently unearth rare, but strongly cohesive, patterns that
existing methods often fail to discover. Furthermore, having found the occurrences
of cohesive itemsets in the input sequence, we use them to discover the most domi-
nant sequential patterns and partially ordered episodes, without going through the
computationally expensive candidate generation procedures typically associated with
sequence and episode mining.

Experiments show that our method efficiently discovers important patterns that existing
state-of-the-art methods fail to discover.

1This chapter is based on work published in the Data Mining and Knowledge Discovery journal as “Efficiently
mining cohesion-based patterns and rules in event sequences” by Boris Cule, Len Feremans and Bart Goethals
(Cule et al. 2019).

14 CHAPTER 2. MINING PATTERNS AND RULES USING COHESION

2.1 Introduction

Pattern discovery in sequential data is a well-established field in data mining. The earliest
attempts focused on the setting where data consisted of many (typically short) sequences,
where a pattern was defined as a (sub)sequence that re-occurred in a high enough number of
such input sequences (Srikant and Agrawal 1996). The first attempt to identify patterns in a
single long sequence of data was proposed by Mannila et al. (1997). The presented WINEPI

method uses a sliding window of a fixed length to traverse the sequence, and a pattern is then
considered frequent if it occurs in a high enough number of these sliding windows. Mannila
et al. (1997) describes algorithms for mining various pattern types — parallel episodes, which
are essentially itemsets (with the possibility of some items re-occurring), serial episodes, which
are equivalent to sequential patterns, and general episodes, which are partially ordered patterns.
Here, we use the term pattern when we talk of any pattern type and use more specific terms
when appropriate.

An often-encountered critique of this method is that the obtained frequency is not an
intuitive measure since it does not correspond to the actual number of occurrences of the
pattern in the sequence. For example, given sequence axbcdby a, and a sliding window length
of 3, the frequency of itemset {a,b} will be equal to 2, as will the frequency of itemset {c,d}.
However, itemset {a,b} occurs twice in the sequence, and itemset {c ,d} just once, and while the
method is motivated by the need to reward c and d for occurring right next to each other, the
reported frequency values remain difficult to interpret.

Laxman et al. (2007) attempted to tackle this issue by defining the frequency as the maximal
number of non-overlapping minimal windows of the pattern in the sequence. In this context,
a minimal window of the pattern in the sequence is defined as a contiguous subsequence
of the input sequence that contains the pattern, such that none of its smaller contiguous
subsequences also contains the pattern. However, while the method uses a relevance window
of a fixed length, and disregards all minimal windows that are longer than the relevance window,
the length of the minimal windows that do fit into the relevance window is not taken into
account at all. For example, given sequence ax y zbcd , with a relevance window larger than 4,
the frequency of both itemset {a,b} and itemset {c,d} would be equal to 1, which would not
reflect that the items making up the second pattern occur much closer to each other than those
making up the first pattern.

Cule et al. (2014) proposed an amalgam of the two approaches (MARBLESW), defining the
frequency of a pattern as the maximal sum of weights of a set of non-overlapping minimal
windows of the pattern, where the weight of a window is defined as the inverse of its length.
However, this method, too, struggles with the interpretability of the proposed measure. For
example, given sequence axbcdby a and a relevance window larger than 3, the frequency
of {a,b} would be 2/3, while the frequency of {c,d} would be 1/2. Additionally, as the input
sequence grows longer, the sum of these weights will grow, and the defined frequency can take
any real positive value, giving the user no idea how to set a sensible frequency threshold.

All the techniques mentioned above use frequency measures that satisfy the so-called
APRIORI property (Agrawal and Srikant 1994). This property implies that the frequency of a
pattern is never smaller than the frequency of any of its superpatterns (in other words, frequency
is an anti-monotonic measure). While this property is computationally very desirable, since
large candidate patterns can be generated from smaller frequent patterns, the undesirable side
effect is that larger patterns, which are often more useful to the end-users, will never be ranked
higher than any of their subpatterns. On top of this, all these methods focus solely on how
often certain items occur near each other and do not take occurrences of these items far away

2.1. INTRODUCTION 15

from each other into account. Consequently, if two items occur frequently, and through pure
randomness often occur near each other, they will form a frequent itemset, even though they
are, in fact, in no way correlated.

In another work, Cule et al. (2009) proposed a method that steps away from anti-monotonic
quality measures, and introduce a new interestingness measure that combines the coverage
of an itemset with its cohesion. Cohesion is defined as a measure of how near each other the
items making up an interesting itemset occur on average. However, the authors defined the
coverage of an itemset as the sum of frequencies of all items making up the itemset, which
results in a massive bias towards larger patterns instead. Furthermore, this allows for a very
infrequent item making its way into an interesting itemset, as long as all other items in the
itemset are very frequent and often occur near the infrequent item. As a result, the method is
not scalable for any sequence with a large alphabet of items, which makes it unusable in most
realistic data sets.

In this work, we use the cohesion introduced by Cule et al. (2009) as a single measure to
evaluate cohesive itemsets. We consider itemsets as potential candidates only if each individual
item contained in the itemset is frequent in the dataset. This allows us to filter out the infrequent
items at the very start of our algorithm, without missing out on any cohesive itemsets. However,
using cohesion as a single measure brings its own computational problems. First of all, cohesion
is not an anti-monotonic measure, which means that a superset of a non-cohesive itemset
could still prove to be cohesive. However, since the search space is exponential in the number
of frequent items, it is impossible to evaluate all possible itemsets. We solve this by developing
an upper bound on the maximal possible cohesion of all itemsets that can still be generated in
a particular branch of the depth-first-search tree. This bound allows us to prune large numbers
of potential candidate itemsets, without having to evaluate them. Furthermore, we present an
efficient method to identify the minimal windows that contain a particular itemset, which is
necessary to evaluate its cohesion.

Having discovered the cohesive itemsets, we move on to the problem of finding cohesive
sequential patterns and partially ordered episodes. Due to the combinatorial explosion, the
number of possible candidate patterns that potentially must be generated and evaluated quickly
becomes prohibitive for typical sequential pattern or episode mining algorithms. We avoid this
problem by taking the already discovered cohesive itemsets as a starting point, and then only
evaluating those total and partial orders that actually occur in the data. More concretely, each
discovered minimal window of an itemset represents one or more possible sequential patterns,
so all we need to do is go through the list of such windows and update the frequency of each
encountered sequential pattern. Once that is done, we report the representative sequential
patterns and the dominant episodes (which we obtain simply by intersecting the discovered
sequential patterns).

Finally, we show that cohesive itemsets can also form a basis for mining association rules
between items. A cohesive itemset tells us that the items forming the itemset occur close to
each other on average, but in some cases, it may happen that an occurrence of a particular item
implies, with a high probability, that some other items will occur nearby, but the implication
may not hold in the other direction. For example, it is possible that item a always occurs near
item b, but not vice versa (i.e., there may be many occurrences of item b far from any occurrence
of item a). In this case, itemset {a,b} would not be very cohesive, but an association rule
{a} ⇒ {b} would still be informative. We present an efficient algorithm that generates such rules
starting from the discovered cohesive itemsets, using a cohesion-based confidence measure.
Unlike the traditional frequency-based approaches, which need all the frequent itemsets to be
generated before the generation of association rules can begin, we are able to generate rules
in parallel with the interesting itemsets. Furthermore, we present an important mathematical

16 CHAPTER 2. MINING PATTERNS AND RULES USING COHESION

property that allows us to very quickly compute the confidence of most association rules,
without having to revisit the data at all.

Our experiments show that our method discovers important patterns that existing methods
struggle to rank highly while dismissing obvious patterns consisting of items that co-occur
frequently but are not at all correlated. We further show that we achieve these results quickly,
thus demonstrating the efficiency of our algorithm.

The remainder of this chapter is organised as follows. In Section 2.2 we formally describe
the problem setting and define the patterns we aim to discover. In Section 2.3 we present how
to mine cohesive itemsets efficiently. In Section 2.4 we present how we mine representative
sequential patterns based on cohesive itemsets, in Section 2.5 how to mine dominant episodes
and in Section 2.6 how to mine association rules. We discuss how to set parameters for our
method in Section 2.7. In Section 2.8 we present a thorough experimental evaluation of our
method, in comparison with a number of existing state-of-the-art methods. Finally, we present
an overview of the most relevant related work in Section 2.9, before summarising our main
conclusions in Section 2.10.

2.2 Problem Setting

Definition 2.1 (Event sequence). The dataset consists of a single event sequence S = (e1, . . . ,en).
Each event ek is represented by a pair (ik , tk), with ik an event type (coming from the domain of
all possible event types) and tk a (integer) timestamp. For any 1 < k ≤ n, it holds that tk > tk−1.

We use S[j ,l], with j < l , to denote subsequence (e j ,e j+1, . . . ,el−1,el). The length (or dura-
tion) of sequence S , denoted |S|, is equal to tn − t1 +1, and the length of a subsequence S[j ,l],
denoted |S[j ,l]|, is equal to tl − t j +1. For simplicity, we omit the timestamps from our examples,
and write sequence (e1, . . . ,en) as i1 . . . in , implicitly assuming that the timestamps are consecu-
tive integers starting with 1. In what follows, we refer to event types as items, and sets of event
types as itemsets.

2.2.1 Frequent Cohesive Itemsets

Definition 2.2 (Itemset support). For an itemset X = {i1, . . . , im}, we denote the set of occurrences
of items making up X in a sequence S by

N (X) = {t | (i , t) ∈S , i ∈ X }.

We define the support of X in an input sequence S as the number of occurrences of i ∈ X in S ,

support(X) = |N (X)|

.

Given a user-defined support threshold θ, we say that an itemset X is frequent in a sequence
S if for each i ∈ X it holds that support(i) ≥ θ. We remark that this definition of support is
quite different from the traditional definition using sliding windows, that is, the support will
monotonically increase for longer patterns.

To evaluate the cohesiveness of an itemset X in a sequence S , we must first identify minimal
occurrences of the itemset in the sequence. More specifically, for each occurrence of an item in
X , we will look for the minimal window within S that contains that occurrence and the entire
itemset X .

2.2. PROBLEM SETTING 17

Definition 2.3 (Minimal window). Given a timestamp t, such that (i , t) ∈S and i ∈ X , we define
the size of a minimal occurrence of X around t as

Wt (X) = min{|S[s,e]| | ts ≤ t ≤ te ∧ ∀i ∈ X ∃(i , t ′) ∈S : ts ≤ t ′ ≤ te }.

We define the size of the average minimal occurrence of X in S as

W (X) =
∑

t∈N (X) Wt (X)

|N (X)| .

If |N (X)| = 0, we define W (X) = 0.

Remark that we compute the average for all minimal windows, unlike frequency-based
methods that define a maximal window size (or relevance window). For example, consider
itemset {a,b,c} and sequence S = abc . . . abc . . . abc . . . a . . .b . . .c. If we have a limit on the
window size, we would only consider nearby occurrences. However, for the last 3 items, the
minimal window is large and we want to reflect this is in our ranking of patterns. That is, we
want to distinguish between pattern occurrences that are always nearby, pattern occurrences
that are often nearby and pattern occurrences that are sometimes nearby but, more often than
not, far away.

Definition 2.4 (Cohesion). We define the cohesion of itemset X in a
sequence S as

C (X) = |X |
W (X)

.

If |X | = 0, we define C (X) = 1.

Given a user-defined cohesion threshold min_coh, we say that an itemset X is cohesive in
a sequence S if it holds that C (X) ≥ min_coh. Note that the cohesion is higher if the minimal
occurrences are smaller. Furthermore, a minimal occurrence of itemset X can never be smaller
than the size of X , so it holds that C (X) ≤ 1. If C (X) = 1, then every single minimal occurrence
of X in S is of length |X |. The cohesion of a single item is always equal to 1. For singletons,
therefore, our approach is equivalent to discovering frequent items. Since we are interested in
mining frequent cohesive itemsets, we will from now on consider only itemsets consisting of 2
or more items.

A limitation of the current definition of an event sequence S is that we do not allow multiple
items at the same timestamp. If we allowed multiple items, the minimal window could be
smaller than the size of the pattern, i.e., if all items of X occur at the same timestamp and as
a consequence the cohesion would not be within [0,1]. We could bypass this limitation by
adjusting the definition of a minimal window and add the constraint that all items should occur
at different timestamps. However, for simplicity, we will assume that items are not overlapping
in the remainder of this chapter.

Problem 2.1 (Frequent cohesive itemset). Given a frequency threshold θ, a threshold min_coh
and an optional parameter max_size, find all frequent cohesive itemsets X in a sequence S ,
where

1. 1 < |X | < max_size,

2. ∀i ∈ X : support(i) ≥ θ,

3. C (X) ≥ min_coh.

18 CHAPTER 2. MINING PATTERNS AND RULES USING COHESION

Cohesion is not an anti-monotonic measure. In other words, a superset of a non-cohesive
itemset could turn out to be cohesive. While this allows us to eliminate bias towards smaller
patterns, it also brings additional computational challenges which will be addressed in Sec-
tion 2.3.

Example 2.1. For example, given sequence S = abc . . . acb . . .bac the minimal window size
for itemsets {a,b} are 2,2,3,3,2,2 and C (a,b) = 12/14 = 6/7. Likewise, for other itemsets of size
2, C ({a,c}) =C ({b,c}) = 6/7. However, for itemset {a,b,c} the cohesion is 1, since all minimal
window sizes are 3, that is C ({a,b,c}) = 9 ·3/9 ·3.

Finally, note that the definition of cohesion makes it potentially sensitive to outliers. For
example, if two items a and b are strongly correlated, just one random occurrence of an a far
from any b could very negatively affect the cohesion of itemset {a,b} since we take the average
of all minimal window sizes, which is not robust to outliers. In data known to contain outliers,
a user could avoid this risk by dividing the input sequence into segments (overlapping or not),
and then mining cohesive itemsets in each segment. A single outlier would then affect the value
of a pattern in one segment, but the pattern would still be ranked highly in all other segments
where it is present. We remark that an interestingness measure robust to outliers is introduced
in Chapter 3.

2.2.2 Representative Sequential Patterns

In this section, we show how frequent cohesive itemsets can be used as a basis for discovering
representative sequential patterns in the data while avoiding computationally expensive candi-
date generation steps typical for sequential pattern mining. Since we use cohesive itemsets as
a starting point, we are only able to find sequential patterns in which no event can re-occur.
This is an inherent cost when choosing for itemset mining instead of tackling the additional
complexity of mining sequential pattern directly. Naturally, this does mean our method is not
suitable for data where important patterns often contain multiple instances of the same item
(such as, for example, DNA sequences, where the number of distinct items is limited). We
define the necessary concepts below and present our mining algorithm in Section 2.4.

Definition 2.5 (Sequential pattern). Given a frequent cohesive itemset X = {i1, . . . , im}, we can
generate a sequential pattern sp = s1s2 . . . sm from X if sk ∈ X , for k ∈ {1, . . . ,m} and ∀i , j ∈
{1, . . . ,m} : i 6= j ⇒ si 6= s j . In this case, we call X the underlying itemset of sp, denoted Xsp.

Having found the minimal occurrences of a frequent cohesive itemset, our goal here is to
find in which order the items most often occur in those minimal occurrences. Any such fre-
quently occurring order uniquely defines a sequential pattern. Given a sequence S = (e1, . . . ,en),
we say sequential pattern sp = s1s2 . . . sm occurs in S , denoted sp ⊆ S , if there exist integers
1 ≤ k1 < . . . < km ≤ n, such that s j = ek j for j ∈ {1, . . . ,m}.

Definition 2.6 (Sequential pattern occurrence ratio). We define the set of occurrences of a
Sequential Pattern sp in an input sequence S as

occse (sp) = {t ∈ N (Xsp) | ∃ j ,k : j ≤ t ≤ k,sp ⊆S[j ,k], |S[j ,k]| =Wt (Xsp)}.

We define the occurrence ratio of sp within the occurrences of Xsp as

occ_ratiose (sp) = |occse (sp)|
|N (Xsp)| .

2.2. PROBLEM SETTING 19

Note that this formal definition corresponds to the above intuition, and says that a sequen-
tial pattern sp is considered to occur at timestamp t if its occurrence around timestamp t is as
long as the minimal occurrence of its underlying itemset Xsp around timestamp t . Intuitively,
the occurrence ratio of a sequential pattern sp measures the likelihood that the items making
up its underlying itemset Xsp appear in a minimal occurrence of Xsp in the order defined by sp.

Definition 2.7 (Representative sequential pattern). Given a user-defined minimal occurrence
ratio threshold min_or, we say a sequential pattern sp is representative for Xsp in sequence S if
occ_ratiose (sp) ≥ min_or.

It is interesting to note that multiple sequential patterns can be contained within the same
minimal occurrence of their underlying itemset Xsp .

Example 2.2. For example, given itemset X = {a,b,c,d} and input sequence S = abcbd , we
can see that the entire sequence is a minimal occurrence of X , and it contains occurrences
of sequential patterns abcd and acbd . In this case, both abcd and acbd would have an
occurrence ratio of 1. Moreover, a minimal occurrence of an itemset at a given timestamp is not
necessarily unique. For example, in an input sequence abcd a, at timestamp 2, the minimal
occurrence of itemset {a,b,c,d} could be both S[1,4] and S[2,5]. In this case, sequential patterns
abcd and bcd a both occur at timestamp 2, and at timestamps 3 and 4, but only one of them
occurs at timestamps 1 and 5. As a result, in this example, both abcd and bcd a would have an
occurrence ratio of 4/5, or 0.8.

2.2.3 Dominant Episodes

The approach described above can also be extended to finding dominant partial orders, or
episodes, within the occurrences of frequent cohesive itemsets. In episode mining literature,
an episode is typically represented by a directed acyclic graph G = (V (G),E(G)). Here V (G) =
(v1, . . . , vm) is the set of nodes, where each node vi corresponds to an item, and E(G) is the set
of directed edges between items, where an edge (vi , v j) means that item vi occurs before item
v j in any occurrence of G . We say an episode G is transitive closed if for any vi , v j , vk ∈V (G)
it holds that if (vi , v j) ∈ E(G) and (v j , vk) ∈ E(G) then (vi , vk) ∈ E(G). To avoid redundancy, we
consider episodes and their transitive closure as equivalent. In our examples and illustrations
we omit the edges whose presence is implied by other edges.

Formally, given a sequence S = (e1, . . . ,en) and an episode G we say that G occurs in S ,
denoted G ¹S , if there exists an injective function f mapping each node vi ∈V (G) to an index
in {1, . . .n}, such that vi = e f (vi) for i = {1, . . . ,m}, and that if there is an edge (vi , v j) in E (G), then
we must have t f (vi) < t f (v j). As with sequential patterns, we use frequent cohesive itemsets as a
starting point (as a result, no item can re-occur in any episode we discover).

Definition 2.8 (Episode). Given an itemset X , we can generate episode G from X if V (G) = X .
Again, in such a case, we call X the underlying itemset of G, denoted XG . For two episodes, G1

and G2, with XG1 = XG2 , we say G1 is a subepisode of G2, denoted G1 ⊆ G2, if E(G1) ⊆ E(G2).
Given a sequential pattern sp, we denote its equivalent episode Gsp , whereby V (Gsp) = Xsp , and
E(Gsp) imposes a total order on the items as defined by sp.

Definition 2.9 (Episode occurrence ratio). We define the set of occurrences of G in an input
sequence S as

occpo(G) = {t ∈ N (X) | ∃ j ,k : j ≤ t ≤ k,G ¹S[j ,k], |S[j ,k]| =Wt (XG)}.

20 CHAPTER 2. MINING PATTERNS AND RULES USING COHESION

We define the occurrence ratio of G within the occurrences of XG as

occ_ratiopo(G) = |occpo(G)|
|N (XG)| .

Intuitively, occ_ratiopo(G) measures the likelihood that the items making up the underlying
itemset XG will appear in a minimal occurrence of XG in the order defined by G . Naturally,
given an itemset X , the episode with the highest occurrence ratio will always be the itemset
itself (i.e., the episode with V (G) = X and E(G) =;), since it will, per definition, occur in every
minimal occurrence of X . In fact, the occurrence ratio is an anti-monotonic measure, in the
sense that if G1 ⊆G2 then occ_ratiopo(G1) ≥ occ_ratiopo(G2). As a result, the episodes with the
highest occurrence ratio will arguably be the least interesting ones (those with no edges will
score the highest, followed by those with a single edge, etc.). Therefore, we choose to search
for interesting episodes differently from our approach outlined for sequential patterns before.
We propose to discover exactly one episode for each frequent cohesive itemset, namely, the
most specific episode (i.e., as many edges as possible) that describes a sufficient number of
occurrences of the itemset itself. We conclude this section by formalising the above concepts.

Definition 2.10 (Intersecting episode). Given a user-defined minimal occurrence ratio thresh-
old min_por and a set of episodes {G1, . . . ,Gn}, with V (Gi) = X for i ∈ {1, . . . ,n}, we define the
intersecting episode of {G1, . . . ,Gn} as the episode with nodes V (

⋂
i∈{1,...,n} Gi) = X and edges

E(
⋂

i∈{1,...,n} Gi) =⋂
i∈{1,...,n} Ei .

We can generate an intersection episode of an itemset X by taking the intersection of the
top-ranked sequential patterns (with respect to the occurrence ratio) generated from X . For
example, assuming sp1 = abc and sp2 = acb have the highest occurrence ratio, we compute the
intersecting episode of Gsp1

and Gsp2
as G({a,b,c}, {a → b, a → c}).

Definition 2.11 (Dominant episode). Given a frequent cohesive itemset X , and a set of sequential
patterns {sp1, . . . ,spn} where Xspk = X , we define the intersecting episode, w.r.t. a threshold t as

dpoX ,t =
⋂

Xsp=X
occ_ratiose (sp)≥t

Gsp =G(X , {
⋂

i∈{1,...,k}
E(Gspk

) | occ_ratiose(spk) ≥ t })

where t is a threshold on the the occurrence ratio of the sequential patterns. The dominant
episode w.r.t. min_por is created by taking the highest value of this threshold, denoted tmax, such
that occ_ratio(dpoX ,tmax) ≥ min_por while minimising the number of sequential patterns k.

tmax = max
t∈[0,1]

{occ_ratiopo(dpoX ,t) ≥ min_por}.

In other words, we compute the dominant episode of an itemset X by taking the intersec-
tion of the minimal necessary number (as guaranteed by the value tmax above) of the sequential
patterns generated from X . In practice, as will be discussed in detail in Section 2.5, we keep on
adding the top sequential patterns until the occurrence ratio of the resulting intersection be-
comes high enough to satisfy the min_por threshold. Here, too, our main goal is to provide a
straightforward, quick, method, based on cohesive itemsets and avoiding the high computa-
tional cost of generating exponentially many partial orders and then comparing them all to
each other using some interestingness measure, that can still produce very satisfactory results.
However, due to the simplicity of the approach, there is an inherent risk that some interesting
partial orders may be missed.

2.2. PROBLEM SETTING 21

a b c … a c x b … a x c b

a b c … a c x b … a x c b
3 4 4

a b c … a c x b … a x c b

a b c … a c x b … a x c b

! =

= {%, ', (}

* # = 9 . 3
3 . 3 + 3 . 4 + 3 . 4 =

9
11

12(#) =

56 = (%, (, ')

7((89 56 =

7((:; < =
7((_>%?@7:; < = A

A = 1

G = %, ', (, % → ', % → (= %
'
(

→→

Cohesive Itemset:
Sequential Pattern:
Episode: 7((_>%?@789 56 = 6

9 =
2
3

✓ ✓

✓ ✓ ✓

✗

Figure 2.1: Example of a cohesive itemset, a representative sequential pattern and a dominant
episode

Example 2.3. We illustrate the above concepts with a simple example, shown in Figure 2.1.
Consider input sequence S = abc . . . acxb . . . axcb. In this case, X = {a,b,c} is a cohesive
itemset with cohesion C (X) = 3 ·9/33 = 9/11. Sequential pattern sp = acb has an occurrence
ratio occ_ratiose(acb) = 6

9 = 2
3 . For generation of the dominant episode G we would start with

sequential patterns sp1 = acb, with occ_ratiose(sp1) = 2
3 , and sp2 = abc, with occ_ratiose (sp2) =

1
3 . Then we convert both sequential patterns to their equivalent episodes E (Gsp1

) = {a → c,c →
b, a → b} and E(Gsp2

) = {a → b,b → c, a → c} where we added one edge to both episodes by
computing the transitive closure. With a value of tmax ≥ 1/3, we generate the intersecting
episode E(Gsp1

)∩E(Gsp2
) = {a → b, a → c}, which has an occurrence ratio of 1. If the min_por

threshold was set higher than 2/3, G would be the dominant episode of itemset X , otherwise
Gsp1

would be the dominant episode with tmax = 2/3. Remark that the notation shown in Figure
2.1 indicates that event a occurs first, followed by events b and c in unspecified order.

2.2.4 Association Rules

Finally, we are also able to use the frequent cohesive itemsets as a basis for discovering associa-
tion rules in this setting. The aim is to generate rules of the form if X occurs, Y occurs nearby,
where X ∩Y =; and X ∪Y is a frequent cohesive itemset. We denote such a rule by X ⇒ Y ,
and we call X the antecedent of the rule and Y the consequent of the rule. Intuitively, the closer
Y occurs to X on average, the higher the value of the rule.

Definition 2.12 (Extended average window size). To compute the confidence of the rule X ⇒ Y ,
we must use the average length of minimal windows containing X ∪Y , but only from the point
of view of items making up itemset X . We therefore define this new average as

W (X ,Y) =
∑

t∈N (X) W (X ∪Y , t)

|N (X)| .

22 CHAPTER 2. MINING PATTERNS AND RULES USING COHESION

Definition 2.13 (Rule confidence). We define the confidence of the association rule as

c(X ⇒ Y) = |X ∪Y |
W (X ,Y)

.

A rule X ⇒ Y is considered confident if its confidence exceeds a given threshold, min_conf ,
i.e., if c(X ⇒ Y) ≥ min_conf . Note that if Y always occurs right next to a fully cohesive itemset
X , the average minimal window will be exactly equal to the size of itemset X ∪Y , and the
confidence of the rule X ⇒ Y will be equal to 1. Intuitively, the inverse of the confidence tells us
how large the average minimal window containing X ∪Y for each occurrence of X is, compared
to the minimal possible window (the size of X ∪Y), as illustrated in the example below.

Like the cohesion of an itemset, the confidence of an association rule can also be sensitive
to outliers in the data. Again, if two items a and b are strongly correlated, just one random
occurrence of an a far from any b could negatively affect the confidence of rule {a} ⇒ {b}.
However, in this case, the confidence of rule {b} ⇒ {a} would not be affected. Once again, to
reduce the effect of outliers, data could be divided into segments and rules discovered to hold
in many segments could be considered to be the most reliable. An interestingness measure
robust to outliers is introduced in Chapter 3.

Example 2.4. Consider, for example, input sequence S = abcabdbx y zb. We can see that
every a has a b right next to it, but not the other way around. As a result, itemset X = {a,b}
has a cohesion of C (X) = 2/3, which is high, but far from perfect. However, if we look at
the two possible association rules between the two items, we can gain more insight into the
data. For the two occurrences of item a, the minimal occurrence of itemset X nearby is
always of size 2. Therefore, c({a} ⇒ {b}) = 1. However, for the four occurrences of item b, the
minimal occurrences of X are of size 2, 2, 4 and 8, respectively, with an average of 4. Therefore,
c({b} ⇒ {a}) = 0.5. From this information, we can conclude that if we encounter item a, we can
be quite certain that item b will occur nearby, while the inverse implication is less likely.

2.3 Mining Cohesive Itemsets

In this section, we present a detailed description of our algorithms. We first show how we
generate candidates in a depth-first manner, before explaining how we can prune large numbers
of potential candidates by computing an upper bound of the cohesion of all itemsets that can be
generated within a branch of the search tree. Next, we provide an efficient method to compute
the sum of minimal windows of a particular itemset in the input sequence. Finally, we discuss
algorithms for finding representative sequential patterns and dominant episodes, as well as
confident association rules based on cohesive itemsets.

2.3.1 Depth First Search

The main routine of our FCIseq algorithm is given in Algorithm 2.1. We begin by scanning the
input sequence, identifying the frequent items, and storing their occurrence lists in an inverted
index for later use. We then sort the set of frequent items on support in ascending order (line 2).
The main reason for sorting items is that we need an absolute ordering to efficiently compute
the upper bound. We sort on ascending support because patterns composed of less frequent
items are faster to compute. Next, we initialise the set of frequent cohesive itemsets FC as an
empty set (line 3), and start the depth-first-search process (line 4). Once the search is finished,
we output the set of frequent cohesive itemsets FC, representative sequential patterns FCseq,

2.3. MINING COHESIVE ITEMSETS 23

Algorithm 2.1: FCIseq(S , θ, max_size, min_coh, min_or, min_por, min_conf) Mine
cohesive itemsets, representative sequential patterns, dominant episodes and associa-
tion rules in a single sequence

Input : An event sequence S , θ, max_size and min_coh thresholds for cohesive itemset
mining and optional min_or, min_por, min_conf thresholds for sequential
patterns, dominant episodes and association rules mining

Result: Sets of frequent cohesive itemsets FC, (optional) set of representative sequential
patterns FCseq and dominant episodes FCepi, (optional) set of confident
association rules FCrules

1 FI = all items i where N ({i }) ≥ θ;
2 sort FI on support in ascending order;
3 FC = FCseq = FCepi = FCrules =;;
4 DFS(S ,;,FI ,max_size,min_coh,min_or,min_por,min_conf);
5 return 〈FC,FCseq,FCepi,FCrules〉

dominant episodes FCepi and association rules FCrules (line 5), that are computed depending
on the status of the parameters min_or, min_por and min_conf .

The recursive DFS procedure is shown in Algorithm 2.2. In each call, X contains the can-
didate itemset, while Y contains items that are yet to be enumerated. In line 1, we evaluate

Algorithm 2.2: DFS(S , X , Y , max_size, min_coh, min_or, min_por, min_conf) Pruned
depth-first search to find cohesive itemsets and post-processing for other types of
patterns and rules

Input : An event sequence S , candidate itemset X , set of items Y , other parameter as in
Algorithm 2.1

Result: Update patterns in FC, FCseq, FCepi and rules in FCrules

1 if Cmax(X ,Y) < min_coh then
2 return;
3 else if Y 6= ; then
4 a = FIRST(Y);
5 if |X ∪ {a}| ≤ max_size then
6 DFS(S , X ∪ {a},Y \ {a},max_size,min_coh,min_or,min_por,

min_conf);
7 DFS(S , X ,Y \ {a},max_size,min_coh,min_or,min_por,min_conf);
8 else
9 if |X | > 1 then

10 FC = FC ∪ {X };
11 if min_or 6= 0 or min_por 6= 0 then
12 sps ← FIND_SEQUENTIAL_PATTERNS(S , X);
13 if min_or 6= 0 then

FCseq ← FCseq ∪ {sp | sp ∈ sps∧occ_ratiose (sp) ≥ min_or} ;
14 if min_por 6= 0 then

G ← FIND_DOMINANT_EPISODE(S , X ,sps,min_por);
15 FCepi ← FCepi ∪G ;
16 if min_conf 6= 0 then

FCrules ← FCrules ∪FIND_RULES(S , X ,min_conf) ;

24 CHAPTER 2. MINING PATTERNS AND RULES USING COHESION

the pruning function Cmax(X ,Y) to decide whether to search deeper in the tree or not. This
function will be described in detail in Section 2.3.2. If the branch is not pruned, there are two
possibilities. If we have reached a non-leaf node (line 3) and there are more items to be enu-
merated, we pick the first such item a (line 4) and make two recursive calls to the DFS function
— the first with a added to X (this is only executed if X ∪ {a} satisfies the max_size constraint),
and the second with a discarded. Alternatively, if a leaf node is encountered (line 8), we add
the discovered cohesive itemset to the output (provided its size is greater than 1). We then call
FIND_SEQUENTIAL_PATTERNS (discussed in Section 2.4) to find sequential patterns based on X ,
if either min_or or min_por is not 0. We report the representative sequential patterns if min_or
is not 0 and call FIND_DOMINANT_EPISODE (discussed in Section 2.5) to find the dominant
episode based on X if min_por is not 0. Finally, we also find and report association rules based
on X by calling FIND_RULES (discussed in Section 2.6) if min_conf is not 0.

2.3.2 Pruning

At any node in the search tree, X denotes all items currently making up the candidate itemset,
while Y denotes all items that are yet to be enumerated. Starting from such a node, we can
still generate any itemset Z , such that X ⊆ Z ⊆ X ∪Y and |Z | ≤ max_size. In order to be able
to prune the entire branch of the search tree, we must therefore be certain that for every such
Z , the cohesion of Z cannot satisfy the minimum cohesion threshold. In this section, we first
define an upper bound for the cohesion of all itemsets that can be generated in a particular
branch of the search tree, before providing a detailed proof of its soundness.

Definition 2.14 (Upper bound cohesion). Given itemsets X and Y , with |X | > 0 and X ∩Y =;,

Cmax(X ,Y) = |X ∪Ymax||N (X ∪Ymax)|∑
t∈N (X) Wt (X)+|X ∪Ymax||N (Ymax)| ,

where
Ymax = {Yi | max

Yi⊆Y ,
|Yi |≤ max_size−|X |

|N (Yi)|}. (2.1)

For |X | = 0, we define Cmax(X ,Y) = 1.

Note that if Y =;, Cmax(X ,Y) =C (X), which is why we do not need to evaluate C (X) before
outputting X in line 4 of Algorithm 2.2. Before proving that the above upper bound holds, we
will first explain the intuition behind it. When we find ourselves at node 〈X ,Y 〉 of the search
tree, we will first evaluate the cohesion of itemset X . If X is cohesive, we need to search deeper
in the tree, as supersets of X could also be cohesive. However, if X is not cohesive, we need to
evaluate how much the cohesion can still grow if we go deeper into this branch of the search
tree. Logically, starting from C (X) = |X |

W (X)
= |X ||N (X)|∑

t∈N (X) Wt (X) , the value of this fraction will grow

maximally if the numerator is maximised, and the denominator minimised. Clearly, as we add
items to X , the numerator will grow, and it will grow maximally if we add as many items to X
as possible. However, as we add items to X , the denominator must grow, too, so the question
is how it can grow minimally. In the worst case, each new window added to the sum in the
denominator will be minimal (i.e., its length will be equal to the size of the new itemset), and the
more such windows we add to the sum, the higher the overall cohesion will grow. Note that the
worst case from the point of view of our pruning capability actually refers to the highest-scoring
candidate that could yet be produced, and therefore corresponds to the best case in terms of
pattern discovery.

2.3. MINING COHESIVE ITEMSETS 25

Example 2.5. For example, given sequence S = acb and a cohesion threshold of 0.8, assume
we find ourselves in node 〈{a,b}, {c}〉 of the search tree. We will then first find the smallest
windows containing {a,b} for each occurrence of a and b, i.e., W1({a,b}) =W3({a,b}) = 3. Note
that we do this by going through the lists of timestamps of a and b, and not by revisiting the
entire input sequence. In other words, to compute the upper bound of the cohesion of all
itemsets that can still be generated from this node, we can only use the information about
the occurrences of a and b. It turns out that C ({a,b}) = 2×2

3+3 = 2
3 , which is not cohesive enough.

However, if we add c to itemset {a,b}, we know that the size of the new itemset will be 3, we
know the number of occurrences of items from the new itemset will be 3, and the numerator
will therefore be equal to 9. For the denominator, we have no such certainties, but we know that,
in the worst case, the windows for the occurrences of a and b will not grow (i.e., each smallest
window of {a,b} will already contain an occurrence of c), and the windows for all occurrences
of c will be minimal (i.e., of size 3). Indeed, when we evaluate the above upper bound, we
obtain Cmax({a,b}, {c}) = 3×(2+1)

6+3×1 = 9
9 = 1. We see that even though the cohesion of {a,b} is 2

3 , the
cohesion of {a,b,c} could, in the worst case, be as high as 1. And in our sequence acb, that is
indeed the case.

The above example also demonstrates the tightness of our upper bound, as the computed
value can, in fact, turn out to be equal to the actual cohesion of a superset yet to be generated.
We now present a formal proof of the soundness of the proposed upper bound. In order to do
this, we will need the following lemma.

Lemma 2.1 (A ratio inequality). For any six positive numbers a,b,c,d ,e, f , with a ≤ b, c ≤ d
and e ≤ f , it holds that

1. if a+c+e
b+e < 1 then a+c+e

b+e ≤ a+d+ f
b+ f ,

2. if a+c+e
b+e ≥ 1 then a+d+ f

b+ f ≥ 1.

Proof. We begin by proving the first claim. To start with, note that if a+c+e
b+e < 1, then a

b < 1.

It follows that a+e
b+e < 1, and for any positive number f , with e ≤ f , it holds that a+e

b+e ≤ a+ f
b+ f .

Subsequently, it holds that a+c+e
b+e ≤ a+c+ f

b+ f . Finally, for any positive number d , with c ≤ d , it

holds that a+c+ f
b+ f ≤ a+d+ f

b+ f , and therefore a+c+e
b+e ≤ a+d+ f

b+ f . For the second claim, it directly follows

that if a+c+e
b+e ≥ 1, then a+c

b ≥ 1, a+d
b ≥ 1, and a+d+ f

b+ f ≥ 1.

Theorem 2.2 (Upper bound on cohesion). Given itemsets X and Y , with X ∩Y = ;, for any
itemset Z , with X ⊆ Z ⊆ X ∪Y and |Z | ≤ max_size, it holds that C (Z) ≤Cmax(X ,Y).

Proof. We know that C (Z) ≤ 1, so the theorem holds if |X | = 0. Assume now that |X | > 0. First,
recall that C (Z) = |Z |

W (Z)
= |Z ||N (Z)|∑

t∈N (Z) Wt (Z) . We can rewrite this expression as

C (Z) = (|X |+ |Z \ X |)(|N (X)|+ |N (Z \ X)|)∑
t∈N (X) Wt (Z)+∑

t∈N (Z \X) Wt (Z)
.

Further note that for a given timestamp in N (X), the minimal window containing Z must be at
least as large as the minimal window containing only X , and for a given timestamp in N (Z \ X),
the minimal window containing Z must be at least as large as the size of Z . It follows that∑

t∈N (X)
Wt (Z) ≥ ∑

t∈N (X)
Wt (X),∑

t∈N (Z \X)
Wt (Z) ≥ |Z ||N (Z \ X)|,

26 CHAPTER 2. MINING PATTERNS AND RULES USING COHESION

and, as a result,

C (Z) ≤ |X ||N (X)|+ |Z \ X ||N (X)|+ |Z ||N (Z \ X)|∑
t∈N (X) Wt (X)+|Z ||N (Z \ X)| .

Finally, we note that, per definition,

|Z \ X | ≤ min(max_size, |X ∪Y |)−|X |,

and since Z is generated by adding items from Y to X , until either the size of Z reaches max_size
or there are no more items left in Y ,

|N (Z \ X)| ≤ |N (Ymax)|.

At this point, we will use Lemma 2.1 to take the proof further. Note that, per definition, C (X) =
|X ||N (X)|∑

t∈N (X) Wt (X) ≤ 1. We now denote

a =|X ||N (X)|,
b = ∑

t∈N (X)
Wt (X),

c =|Z \ X ||N (X)|,
d =(min(max_size, |X ∪Y |)−|X |)|N (X)| = |Ymax ||N (X)|,
e =|Z ||N (Z \ X)|,
f =|X ∪Ymax ||N (Ymax)|.

Since a, b, c, d , e and f satisfy the conditions of Lemma 2.1, we know that it holds that

if
|X ||N (X)|+ |Z \ X ||N (X)|+ |Z ||N (Z \ X)|∑

t∈N (X) Wt (X)+|Z ||N (Z \ X)| < 1, then

|X ||N (X)|+ |Z \ X ||N (X)|+ |Z ||N (Z \ X)|∑
t∈N (X) Wt (X)+|Z ||N (Z \ X)| ≤

|X ||N (X)|+ |Ymax ||N (X)|+ |X ∪Ymax ||N (Ymax)|∑
t∈N (X) Wt (X)+|X ∪Ymax ||N (Ymax)| (1)

and

if
|X ||N (X)|+ |Z \ X ||N (X)|+ |Z ||N (Z \ X)|∑

t∈N (X) Wt (X)+|Z ||N (Z \ X)| ≥ 1, then

|X ||N (X)|+ |Ymax ||N (X)|+ |X ∪Ymax ||N (Ymax)|∑
t∈N (X) Wt (X)+|X ∪Ymax ||N (Ymax)| ≥ 1. (2)

Finally, note that

|X ||N (X)|+ |Ymax ||N (X)|+ |X ∪Ymax ||N (Ymax)|∑
t∈N (X) Wt (X)+|X ∪Ymax ||N (Ymax)| =

|X ∪Ymax |(|N (X)|+ |N (Ymax)|)∑
t∈N (X) Wt (X)+|X ∪Ymax ||N (Ymax)| =Cmax(X ,Y). (3)

From Equations 1 and 3 it follows that

if
|X ||N (X)|+ |Z \ X ||N (X)|+ |Z ||N (Z \ X)|∑

t∈N (X) Wt (X)+|Z ||N (Z \ X)| < 1, then C (Z) ≤Cmax(X ,Y).

2.3. MINING COHESIVE ITEMSETS 27

From Equations 2 and 3 it follows that

if
|X ||N (X)|+ |Z \ X ||N (X)|+ |Z ||N (Z \ X)|∑

t∈N (X) Wt (X)+|Z ||N (Z \ X)| ≥ 1, then Cmax(X ,Y) ≥ 1,

and since, per definition, C (Z) ≤ 1, it follows that C (Z) ≤Cmax(X ,Y).
This completes the proof.

Since an important feature of computing an upper bound for the cohesion of all itemsets in
a given branch of the search tree is to establish how much cohesion could grow in the worst
case, we need to figure out which items from Y should be added to X to reach this worst
case. As has been discussed above, the worst case is actually materialised by adding as many as
possible items from Y , and by first adding those that have the most occurrences. However, if the
max_size parameter is used, it is not always possible to add all items in Y to X . In this case, we
can only add max_size −|X | items to X , which is why we defined Ymax as we did in Equation 2.1.
Clearly, if |X ∪Y | ≤ max_size, then Ymax = Y . If not, at first glance it may seem computationally
very expensive to determine |N (Yi)| for every possible Yi . However, we solve this problem by
sorting the items in Y on support in ascending order. In other words, if Y = {y1, . . . , yn}, with
support(yi) ≤ support(yi+1) for i ∈ {1, . . . ,n −1}, then we can compute |N (Ymax)| as

|N (Ymax)| = ∑
i∈{n,n−1,...,n−(max_size−|X |)}

|N ({yi })|.

As a result, the only major step in computing Cmax(X ,Y) is that of computing
∑

t∈N (X) Wt (X),
as the rest can be computed in constant time. The procedure for computing

∑
t∈N (X) Wt (X) is

explained in detail in Section 2.3.3.

Example 2.6. We now give an example illustrating our pruning technique. Given an input
sequence S = acdebb f g ha and thresholds min_coh = 0.8 and max_size = 3, assume we are
visiting the 〈X ,Y 〉 node of the search tree, with X = {a,b} and Y = {c,d ,e, f , g ,h}. At this point,
we will compute the sizes of the minimal occurrences of itemset {a,b} for timestamps 1, 5, 6
and 10, and find that they all equal 5. As a result, the cohesion of {a,b} will be equal to 0.4.
However, we cannot be certain that we can prune this branch of the tree unless we know that
none of the itemsets that can be generated within it cannot be cohesive. Therefore, we need to
evaluate our upper bound for the cohesion of all such itemsets, Cmax(X ,Y). We first compute

Ymax = {Yi | max
Yi⊆Y ,

|Yi |≤max_size−|X |
|N (Yi)|} = {c}.

As discussed above, by sorting the items in Y on frequency, we know that Ymax can be obtained
by picking items in order from Y until we have either reached the max_size constraint (as in
this case) or run out of items. We then compute

Cmax(X ,Y) = |X ∪Ymax||N (X ∪Ymax)|∑
t∈N (X) Wt (X)+|X ∪Ymax||N (Ymax)|

= |{a,b,c}||N ({a,b,c})|∑
t∈N (X) Wt (X)+|{a,b,c}||N ({c})| =

3×5

20+3×1
= 15

23
≈ 0.65.

In other words, no itemset that can be generated within this branch of the search tree can have
a cohesion higher than 0.65, and since the cohesion threshold is set to 0.8, we can safely prune
the entire branch.

28 CHAPTER 2. MINING PATTERNS AND RULES USING COHESION

2.3.3 Computing the Sum of Minimal Windows

For computing the upper bound Cmax(X ,Y) we have to compute the sum of minimal windows,
i.e.

∑
t∈N (X) Wt (X). We need to compute the minimal window for each occurrence. However,

the goal of this algorithm is to determine whether we can prune a branch of the search tree or
not. We know that a branch can be pruned if the computed sum of windows is large enough.
Therefore, we optimise the algorithm to stop computing minimal windows once the running
sum is already large enough since in that case we can prune without computing the exact sum.

Theorem 2.3 (Upper bound sum of minimal windows). If the sum of minimal windows is larger
than

Wmax(X ,Y) = |X ∪Ymax||N (X)|+ |N (Ymax)|(1−min_coh)

min_coh
.

we abandon computing of the sum of minimal windows since Cmax(X ,Y) < min_coh.

Proof. This follows directly from the Definition 2.14 of Cmax(X ,Y). We substitute Cmax(X ,Y)
with min_coh and substitute

∑
t∈N (X) Wt (X) with Wmax(X ,Y) and solve to Wmax(X ,Y).

The algorithm for computing the sum of minimal windows is shown in Algorithm 2.3. We
use an inverted index to store the positions for each item. This makes traversal much faster
since we only consider occurrences of items in the candidate pattern, that is, |N (X)| ¿ |S|.
Remark that we do not consider streaming applications where the sequence is too large to fit in
memory. For a given itemset X , the algorithm retrieves a list of all timestamps at which items
of X occur from the inverted index in the pos variable (line 2). The nextpos variable keeps a
list of next timestamps for each item, while lastpos keeps a list of the last seen occurrences for
each item. We loop over each occurrence and compute the running sum of minimal windows.
We abandon this routine if the current sum is larger than the upper bound (line 8). The first
time we visit each item occurrence, we are not sure that we will encounter a smaller window in
the continuation of the loop. Therefore, we define active and final windows. A final window
is guaranteed to have a minimal size, while an active window could be replaced by a smaller
window size. When a new item comes in, we update the working variables and compute
the first and last position of the current window (line 17). If the smallest timestamp of the
current window has changed, we go through the list of active windows and check whether a
new shortest length has been found. If so, we update it (line 21). We then remove all windows
for which we are certain that they cannot be improved from the list of active windows, and
update the overall sum (line 23-24). Finally, we add the new window for the current timestamp
to the list of active windows (line 25). Note that the sum of minimal windows is independent of
Y , the items yet to be enumerated. Therefore, if the branch is not pruned, the recursive DFS

procedure shown in Algorithm 2.2 will be called twice, but X will remain unchanged in the
second of these calls, so we will not need to recompute the sum of windows, allowing us to
immediately evaluate the upper bound in the new node of the search tree.

Example 2.7. We illustrate how the algorithm works on the following example. Assume we
are given the input sequence S = aabccccacb, and we are evaluating itemset {a,b,c}. Table 2.1
shows the values of the main variables as the algorithm progresses. As each item comes in,
we update the values of nextpos and lastpos. In each iteration, we compute the current best
minimal window for the given timestamp as max(lastpos)−min(lastpos)+1. We also update the
values of any previous windows that might have changed for the better (this can only happen if
min(lastpos) has changed), using either the current window above if it contains the timestamp
of the window’s event, or the window stretching from the relevant timestamp to max(lastpos).

2.3. MINING COHESIVE ITEMSETS 29

Algorithm 2.3: SUM_MIN_WINS(S , X ,Y) Compute sum of minimal windows of each
occurrence of X in S

Input : An event sequence S , candidate itemset X , set of items Y
Result: Sum of minimal windows or ∞ if sum is higher than Wmax(X ,Y)
/* Maintain position for each item */

1 smw ← 0; index ← 0;
2 pos ← positions for every item in X ;
3 nextpos ← {pos[i1][0],pos[i2][0],pos[i3][0], ...};
4 lastpos ← {−∞,−∞,−∞, ...};
5 prev_min ←−∞;
6 active_windows ←;;
7 for index in N (X) do

/* Abandon if running sum too high to be cohesive */
8 if smw+ (|N (X)|+ |active_windows|− index)×|X | >Wmax(X ,Y) then
9 return ∞

10 current_pos ←∞; current_item ←;;
11 for i in X do // Update last and next position of new item
12 if current_pos > nextpos[i] then
13 current_pos ← nextpos[i]; current_item ← i
14 lastpos[current_item] ← current_pos; // Compute current window
15 nextpos[current_item] ← NEXT(pos[current_item],current_pos);
16 minpos ← min(lastpos);
17 maxpos ← max(lastpos);

/* If new minimum in current window */
18 if minpos 6= −∞ and minpos > prev_min then

/* For each non-final window */
19 for window in active_windows do
20 newwidth ← maxpos−min(minpos, window.pos)+1;
21 window.width ← min(window.width, newwidth);

/* Check if minimal window is final */
22 if window.pos < minpos or window.width = |X |

or window.width < (maxpos−window.pos+1) then
23 active_windows ← active_windows \ {window};
24 smw ← smw+window.width;
25 active_windows ← active_windows ∪

{WINDOW(current_pos, maxpos−minpos+1)} ;
26 prev_min ← minpos;
27 smw ← smw+∑

window ∈ active_windows window.width;
28 return smw

Finally, before proceeding with the next iteration, we remove all windows for which we are
certain that they cannot get any smaller from the list of active windows.

In the table, windows that are not active are marked with ‘-’, while definitively determined
windows are shown in bold. We can see that, for example, at timestamp 4, we have determined
the value of the first four windows. Window w1 cannot be improved on, since timestamp 1 has
already dropped out of lastpos, while the other three windows cannot be improved since 3 is
the absolute minimum for a window containing three items. At timestamp 8, we know that

30 CHAPTER 2. MINING PATTERNS AND RULES USING COHESION

Table 2.1: Example of computing minimal windows of itemset {a,b,c} in sequence aabccccacb

t i nextpos lastpos w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

0 - (1, 3, 4) (∞, ∞, ∞) - - - - - - - - - -

1 a (2, 3, 4) (1, ∞, ∞) ∞ - - - - - - - - -

2 a (8, 3, 4) (2, ∞, ∞) ∞ ∞ - - - - - - - -

3 b (8, 10, 4) (2, 3, ∞) ∞ ∞ ∞ - - - - - - -

4 c (8, 10, 5) (2, 3, 4) 4 3 3 3 - - - - - -

5 c (8, 10, 6) (2, 3, 5) - - - - 4 - - - - -

6 c (8, 10, 7) (2, 3, 6) - - - - 4 5 - - - -

7 c (8, 10, 9) (2, 3, 7) - - - - 4 5 6 - - -

8 a (∞, 10, 9) (8, 3, 7) - - - - 4 5 6 6 - -

9 c (∞, 10, ∞) (8, 3, 9) - - - - - 5 6 6 7 -

10 b (∞, ∞, ∞) (8, 10, 9) - - - - - 5 4 3 3 3

the length of w5 must be equal to 4, since any new window to come must stretch at least from
timestamp 5 to a timestamp in the future, i.e., at least 9. Finally, once we have reached the end
of the sequence, we mark all current values of still active windows as determined.

2.4 Mining Representative Sequential Patterns

In this section, we describe our algorithm for discovering representative sequential patterns
based on frequent cohesive itemsets. For example, when mining patterns consisting of words
used in the On the Origin of Species by Means of Natural Selection by Charles Darwin (see
Section 2.8 for more details about the dataset) we discover that itemset {tierra, del, fuego} has a
cohesion of 1. However, we also find that sequential pattern tierra del fuego has an occurrence
ratio of 1 within the occurrences of its underlying itemset {tierra, del, fuego}. In other words,
in every minimal occurrence of itemset {tierra, del, fuego}, the word tierra occurs before the
word del, followed by fuego. In this section we describe how, starting from a frequent cohesive
itemset and its minimal occurrences, we discover representative sequential patterns.

2.4.1 Computing Minimal Windows for Sequential Patterns

Computing the number of occurrences of sequential patterns, as defined in Section 2.2.2,
brings with it additional complexity. So far, we were only interested in the size of the minimal
window at each occurrence. However, at first glance, given a cohesive itemset X = {i1, . . . , in},
we must now count each occurrence of up to n! sequential permutations in the worst case.
To compute the number of occurrences correctly, we must also deal with the fact that more
than one sequential pattern can occur within one minimal occurrence of the itemset. For
example, given sequence a1 b2 a3 we need to take into account that both sequential patterns
(a1,b2) and (b2, a3) occur at timestamp 2 since the occurrences of both are equally long as the
minimal occurrence of itemset {a,b}. For brevity of this chapter, Algorithm SUM_MIN_WINSseq

for computing the minimal windows for sequential patterns is included in Appendix A.1.

2.4. MINING REPRESENTATIVE SEQUENTIAL PATTERNS 31

2.4.2 Algorithm

We now describe the algorithm FIND_SEQUENTIAL_PATTERNS, shown in Algorithm 2.4, which
returns the set of all sequential patterns that occur within the minimal windows of underlying
itemset X . In the main algorithm (see Algorithm 2.2) we only report sequential patterns that
occur often enough, that is, we remove sequential patterns where the occurrence ratio is lower
than min_or. Remark that we have to deal with multiple permutations within the same window
caused by duplicate items. For example, given itemset {a,b,c ,d} and a minimal window abcbd ,
both sequential patterns abcd and acbd occur within the same minimal window since b
occurs more than once. In general, our algorithm should discover any permutation of |X |
elements. A naïve approach would enumerate all |X |! candidate sequential patterns and check
for each minimal window of X if the candidate occurs. Our algorithm, however, only generates
candidate sequential patterns that occur in at least one window, making the method feasible
even if |X | is large.

FIND_SEQUENTIAL_PATTERNS first calls SUM_WIN_WINSseq. Remark that here we do not
require the total sum of minimal windows, however, this is needed when evaluating Cmax(X ,Y)

Algorithm 2.4: FIND_SEQUENTIAL_PATTERNS(S , X) Generate sequential patterns
based on cohesive itemset X

Input : An event sequence S , frequent cohesive itemset X
Result: Multiset of sequential patterns sps based on minimal windows of X . The count

of each sequential pattern corresponds to occse(sp)
1 〈smw,min_windowsseq〉← SUM_MIN_WINSseq(S , X ,;);
2 sps ← MULTISET();
/* Main loop over each occurrence. */

3 for win in min_windowsseq do
4 win_occurrences ←;;

/* Inner loop over each minimal window instance */
5 for win_ins in win do
6 pos ← {〈i , t〉| i ∈ X ∧win_ins.min ≤ t ≤ win_ins.max};

/* Remove positions not relevant for enumerating sequential
patterns */

7 for n = 1;n < |pos|;n = n +1 do
8 〈in , tn〉← pos[n];
9 〈in+1, tn+1〉← pos[n +1];

10 if in = in+1 or in = i0 or in = i|pos| then
11 pos ← pos \ pos[n];

/* Enumerate sequential patterns using the cartesian product of
positions */

12 for i in X do
13 posi ← {〈i , t〉 | 〈i , t〉 ∈ pos};
14 cart_prod ← pos1 ×pos2 × . . .×pos|X |;

/* Update occurrences in window */
15 for Xpos in cart_prod do
16 win_occurrences ← win_occurrences ∪ TO_SEQUENCE(Xpos);

/* Update total occurrences in sequence. */
17 sps ← sps]win_occurrences;
18 return sps;

32 CHAPTER 2. MINING PATTERNS AND RULES USING COHESION

during depth-first search. Next, we define an empty multiset (line 2) which is returned (line 18)
and updated with the discovered sequential patterns in each window (line 17). The idea here is
that we count each permutation that occurs at each occurrence, and return this multiset, for
example returning {abcd : 5, acbd : 4}. The outer loop (lines 3 to 17) loops over all occurrences
of the itemset. We create an empty set (line 4) to count any distinct sequential pattern found
within the current occurrence. Note that adding each sequential pattern directly to the multiset
would result in potentially doubly counting a sequential pattern occurrence. Next, in the
inner loop (lines 5 to 16) we loop over possibly multiple minimal window instances at each
occurrence. In the inner loop we generate sequential patterns occurring within each minimal
window instance. We first fetch the positions for each item of X within the window (line 6) from
the input sequence and retrieve a list of 〈i , t〉 positions. Next, we filter out positions that are not
relevant for generating candidate sequential patterns: For the boundary items at the minimal
and maximal positions, we know (by definition of a minimal window) that no other position of
those items will result in a smaller window. Thus, each sequential pattern must start with the
item found at the left boundary and end with the item on the right boundary. Therefore, we can
safely ignore any other positions of the boundary items within the minimal window (line 11).
We also remove any position where two or more occurrences of the same item directly follow
each other (line 11). Next, we enumerate all possible permutations using a cartesian product
(line 14) of the filtered position lists of each item. In the simplest case, all elements will occur
just once, and the cartesian product will result in exactly one sequential pattern. If we do have
multiple positions for some items, the cartesian product will combine them with positions of
other items and generate multiple sequential patterns. We then add these sequential patterns
to the current set of already discovered sequential patterns within the window.

Example 2.8. In order to illustrate FIND_SEQUENTIAL_PATTERNS we provide an example.
Assume an itemset X = {a,b,c,d} and input sequence

a z b c b z b c d .

1 2 3 4 5 6 7 8 9

Note that, in this case, the entire input sequence is also a minimal window of X . The position
list is then {〈a,1〉〈b,3〉〈c,4〉〈b,5〉,〈b,7〉,〈c,8〉〈d ,9〉}. We filter out the second occurrence of b
since it it is directly followed by the another occurrence of b. We then take the cartesian product
of the position lists of each item, thereby generating all candidate sequential patterns within
this window:

a × b × c × d

1 3 4 9

7 8 =

a ×b × c ×d

1 3 4 9

1 7 4 9

1 3 8 9

1 7 8 9

=

to_sequence

a b c d

a c b d

a b c d

a b c d

We then convert the result of the cartesian product trivially into distinct sequential patterns,
that is abcd and acbd , and increment the support for both sequential patterns.

Example 2.9. For a second example, assume X = {b,c} and the input sequence is the same
as above. SUM_MIN_WINSseq would then generate a minimal window at t ∈ {3,4,5,7,8} of
length 2 and two minimal window instances at t = 4 (bc and cb). We find two sequential
patterns, sp1 = bc occurring at t ∈ {3,4,7,8} and sp2 = cb occurring at t = {4,5}. Given a minimal
occurrence ratio threshold min_or = 0.8, we conclude that sp1 is representative, and sp2 is
not.

2.5. MINING DOMINANT EPISODES 33

2.5 Mining Dominant Episodes

In this section, we describe our algorithm for finding dominant episodes within the minimal
occurrences of cohesive itemsets. In the previous section, given an itemset X , we enumerated
all representative sequential patterns. Here we find the single most dominant episode (or
partial order) of X . We take a more direct approach, and compute the intersection of the top k
sequential patterns (or total orders) of X ranked on occurrence ratio. Likewise, we determine
the highest possible threshold, tmax, on sequential pattern occurrence ratio. The value of k
is specific to a particular itemset X , and is determined by iteratively using more sequential
patterns until the resulting episode satisfies the minimal occurrence ratio threshold min_por.

FIND_DOMINANT_EPISODE, our algorithm for finding the dominant episode of a frequent
cohesive itemset, is shown in Algorithm 2.5. Three parameters must be provided: a cohesive
itemset X , a set of sequential patterns sps that is computed using FIND_SEQUENTIAL_PATTERNS,
and the minimal occurrence ratio threshold min_por. We start by computing the absolute
minimal support required (line 1). Then we sort the sequential patterns on descending support.
Next, we initialise the candidate episode with all nodes of itemset X , and no edges. We then
start our main loop (lines 5 to 18) by generating candidate episodes based on the intersection
of the top k total orders (or sequential patterns). For each sequential pattern, we compute

Algorithm 2.5: FIND_DOMINANT_EPISODE(S , X ,sps,min_por) Generate a dominant
episode based on cohesive itemset X

Input : An event sequence S , frequent cohesive itemset X , multiset of sequential
patterns sps (computed by Algorithm 2.4), threshold on occurrence ratio
min_por

Result: Dominant episode G and |occpo(G)|. Possibly E(G) =;.
1 min_sup_G ←d|N (X)|×min_pore;
2 sort sps descending on occurrence ratio;
3 G ←G(X ,;);
4 support_G ← 0;
/* Generate candidate episodes incrementally by taking the

intersection of the first k total orders */
5 for k = 1;k ≤ |sps|;k = k +1 do
6 sp ← sps[k];
7 Gsp ←G(X ,;);

/* Compute transitive closure current total order */
8 for i ← 1 to |sp|−1 do
9 for j ← i +1 to |sp| do

10 E(Gsp) ← E(Gsp)∪〈sp[i],sp[j]〉;
11 if E(G) =; then
12 E(G) ← E(Gsp);
13 else
14 E(G) ← E(G)∩E(Gsp);
15 if E(G) =; then
16 break;
17 support_G ← COMPUTE_SUPPORT_EPISODE(S ,G);
18 if support_G ≥ min_sup_G then break ;
19 return 〈G ,support_G〉;

34 CHAPTER 2. MINING PATTERNS AND RULES USING COHESION

the transitive closure of the total order. For the first sequential pattern, we then initialise the
candidate episode with this set of edges (line 12). For the remaining sequential patterns, we
iteratively take the intersection (line 14) with the previous partial order, thereby keeping only
the edges between items that hold for top-2, top-3 and finally top-k sequential patterns. As we
remove edges, based on the intersection, the occurrence ratio of the resulting episode grows
(or remains unchanged). We return the candidate episode if its occurrence ratio has reached
the required minimal occurrence ratio (line 18). Note that if the set of edges becomes empty,
we break the main loop (line 15) and return the itemset itself (an episode that imposes no order
at all on its events). To compute the support of an episode based on minimal windows of an
itemset X , we use the COMPUTE_SUPPORT_EPISODE procedure included in Appendix A.2.

Example 2.10. In order to illustrate FIND_DOMINANT_EPISODE we provide the fol-
lowing example. Suppose we have a cohesive itemset X = {a,b,c} and input sequence
S = abc . . . abc . . . acb. FIND_SEQUENTIAL_ PATTERNS(X) finds two sequential pat-
terns: sp1 = abc occurs 6 times and sp2 = acb occurs 3 times. Next, we execute
FIND_DOMINANT_EPISODE(X ,sps = {abc : 6,acb : 3},min_por = 0.8). We first compute
the transitive closure Gsp1

= G(X , {a → b,b → c, a → c}) which is our first candidate G1.
The support of G1 is 6, which is strictly less than the required absolute minimal sup-
port of dN (X) × min_pore = d9 × 0.8e = 8 (line 1 in Algorithm 2.5). Next, we compute
Gsp2

= G(X , {a → c,c → b, a → b} and compute the intersection to get our second candidate
G2 = G(X , {a → b,b → c, a → c}∩ {a → c,c → b, a → b}) = G(X , {a → b, a → c}). We find that
support(G2) = 9, and we have thus found our dominant episode w.r.t. min_por, in which a oc-
curs before b and c, but no order is imposed between b and c. Here, occ_ratiopo(G2) = 1 and
tmax = occ_ratiose(sp2) = 3/9.

2.6 Mining Association Rules

We conclude this section with an algorithm for efficiently discovering confident association
rules based on cohesive itemsets. Before presenting the algorithm, we introduce a theorem
that we use to compute the confidence of rules Y ⇒ X \ Y , with Y ⊂ X and |Y | ≥ 2, without
additional dataset scans.

2.6.1 Efficiently Computing Confidence

When discovering a cohesive itemset X , we need to compute the exact minimal window Wt (X)
containing X for each timestamp t at which an item x ∈ X occurs. In fact, we compute the sum
of all such windows for each x ∈ X in SUM_MIN_WINS, before adding them up into the overall
sum needed to compute C (X). With these sums still in memory, we can easily compute the
confidence of all association rules of the form x ⇒ X \ {x}, with x ∈ X , that can be generated
from itemset X . Formally, the confidence of such a rule is equal to

c(x ⇒ X \ {x}) = |X |
W ({x}, X \ {x})

,

where W ({x}, X \ {x}) =
∑

t∈N ({x}) Wt (X)

|N ({x})| ,

and these are precisely the sums of windows we have already computed when discovering
itemset X itself. We now show that, in practice, it is sufficient to limit our computations to
rules of precisely this form (i.e., rules where the antecedent consists of a single item), as the

2.6. MINING ASSOCIATION RULES 35

confidence of all rules Y ⇒ Z , with |Y | ≥ 2, can be derived from the confidence values of rules
of this form.

Theorem 2.4 (Computing rule confidence based on single antecedents). Given a frequent
cohesive itemset X and its two disjunct subsets Y and Z (i.e., X = Y ∪ Z and Y ∩ Z =;), such
that |Y | ≥ 2 and |Z | ≥ 1, it holds that

c(Y ⇒ Z) = |N (Y)|∑
y∈Y

|N ({y})|
c({y}⇒Z∪Y \{y})

.

Proof. We begin the proof by noting that∑
t∈N (Y)

Wt (Y ∪Z) = ∑
y∈Y

∑
t∈N ({y})

Wt (Y ∪Z).

A trivial mathematical property tells us that the sum of some numbers is equal to their average
multiplied by their quantity, and therefore∑

t∈N ({y})
Wt (Y ∪Z) =W ({y}, Z ∪Y \ {y}) · |N ({y})|.

As a result, we can conclude that

W (Y , Z) =
∑

t∈N (Y) Wt (Y ∪Z)

|N (Y)| =
∑

y∈Y W ({y}, Z ∪Y \ {y}) · |N ({y})|
|N (Y)| ,

which in turn implies that

c(Y ⇒ Z) = |Y ∪Z |
W (Y , Z)

= |Y ∪Z | · |N (Y)|∑
y∈Y W ({y}, Z ∪Y \ {y}) · |N ({y})|

.

Meanwhile, from the definition of confidence, we can derive that

c({y} ⇒ Z ∪Y \ {y}) = |Y ∪Z |
W ({y}, Z ∪Y \ {y})

,

and therefore it holds that

W ({y}, Z ∪Y \ {y}) = |Y ∪Z |
c({y} ⇒ Z ∪Y \ {y})

,

from which it directly follows that

c(Y ⇒ Z) = |N (Y)|∑
y∈Y

|N ({y})|
c({y}⇒Z∪Y \{y})

.

As a result, once we have evaluated all the rules of the form x ⇒ X \ {x}, with x ∈ X , we can
then evaluate all other rules Y ⇒ X \ Y , with Y ⊂ X and |Y | ≥ 2, without further dataset scans.

36 CHAPTER 2. MINING PATTERNS AND RULES USING COHESION

2.6.2 Algorithm

The algorithm for discovering association rules is shown in Algorithm 2.6. First, we compute the
confidence of all rules where the left-hand-side consists of a single item, and cache this result in
memory (lines 1 to 8). Then we generate the powerset of X (line 9) and for each proper subset
Y of X we compute the confidence based on Theorem 2 (lines 10 to 15). We return all rules
that exceed the min_conf threshold (line 16). Note that, unlike traditional approaches, which
first find all frequent itemsets and only then start generating association rules, we generate
rules in parallel with the cohesive itemsets as shown in Algorithm 2.2. Finally, remark that the
pseudocode of Algorithms 2.4, 2.6 and A.2 begins by computing the minimal windows of itemset
X . While this is included for the sake of formal completeness, this line is not actually executed
at this point. These minimal windows are computed already when evaluating Cmax(X ,Y) in
line 1 of Algorithm 2.2, and are then stored and reused later in Algorithms 2.4, 2.6 and A.2.

Algorithm 2.6: FIND_RULES(S , X ,min_conf) Generate confident association rules
from cohesive itemset X

Input : An event sequence S , frequent cohesive itemset X , threshold on confidence
min_conf

Result: Set of confident association rules
1 〈smw,min_windows〉← SUM_MIN_WINS(S , X ,;);
/* Compute confidence of rules i ⇒ X \ {i } */

2 conf _items ←;;
3 for i in X do
4 posi ← {t | 〈i , t〉 ∈ S};
5 smwi ← 0;
6 for win in min_windows do
7 if win.pos ∈ posi then smwi ← smwi +win.width ;

8 conf _items[i] ← |X |
smwi/|N ({i })| ;

/* Generates candidate rules of form Y ⇒ X \ Y */
9 rules ←;; pset ← POWERSET(X);

10 for Y in pset do
11 if |Y | > 0 and |Y | < |X | then

/* Compute confidence Y ⇒ X \ Y based on conf _items */
12 smwY ← 0;
13 for i in Y do
14 smwY ← smwY +|N ({i })|/conf _items[i];
15 conf Y ←|N (Y)|/smwY ;
16 if conf Y ≥ min_conf then

rules ← rules∪ {Y → X \ Y } ;
17 return rules;

2.7 Setting Parameters and Top-k Mining

Given the exponential nature of the itemset candidate space, FCIseq can take a very long time to
complete, depending on the parameters. It is therefore crucial to set the parameters sensibly.
This is especially the case for the cohesion threshold (min_coh), which determines whether

2.7. SETTING PARAMETERS AND TOP-K MINING 37

parts of the search space can be pruned or not. Here we provide some insight into how a user
could come up with a good parameter setting.

Setting Parameters

First, we remark that setting θ might be done by a domain expert, for example by looking at the
possible long tail of infrequent items, and deciding if itemsets consisting of these infrequent
items are worth exploring. The max_size parameter is optional since normally no dataset will
contain any cohesive patterns longer than a certain size due to data characteristics (we show
this experimentally in Section 2.8.4), but if a user is only interested in shorter patterns, this
parameter can be set according to personal choice (it can also be used to reduce runtimes, if
necessary).

However, if no domain expert is available, we propose the following procedure for setting
each parameter. The idea of the procedure is to start with parameter values that only require
a short time, typically minutes, to mine patterns. New parameter settings can be explored in
small steps, thereby lengthening the runtime gradually to re-run FCIseq to find more patterns.
We start with a relatively high value of θ (depending on the size of the dataset), a small value
for max_size, e.g., 4, and a high value of min_coh, e.g., 0.9. or 1. This first run should execute
very fast, with high potential for pruning, and a limited candidate space. After this initial
run, the user can incrementally decrease min_coh, in steps of 0.1, until a sufficient number
of patterns is found. After this step, θ can be decreased to smaller values to see if any new
patterns involving less frequent items appear high in the ranking. We remark that, unlike
frequent pattern mining, low values for θ do not seem to significantly increase runtime in
our experiments (see Section 2.8.4). This is because patterns consisting of low-frequent items
are often easily pruned, as the mean minimal window size of supersets consisting of other
low-frequent and high-frequent items are often large, allowing us to effectively prune most
candidates. Similarly, max_size can be increased to see if any new large patterns appear high
in the ranking. The user can stop decreasing θ and increasing max_size if no new interesting
patterns are found or if the runtimes become prohibitive. We remark that it would interesting
to further study incremental or streaming algorithms as discussed in Chapter 5.

The two occurrence ratio thresholds, used for mining sequential patterns and episodes,
should be set high since the idea is to discover representative total and partial orders that
capture most of the itemset’s occurrences. If the occurrence ratio is low, the order of items
(total or partial) can hardly be considered representative. Similarly, the confidence threshold
should be set high in order to produce reliable association rules.

Top-k Mining

Finally, we remark that our algorithm can quite easily be adapted to allow the mining of top-k
most cohesive patterns without the need to set min_coh in advance. To do this, we could
maintain a heap of patterns during depth-first search. We would only add patterns to the
heap if fewer than k patterns are in the heap, or if the cohesion of the current candidate
pattern is higher than the minimal cohesion of a pattern currently in the heap (in which case
the pattern with minimal cohesion would be removed from the heap). After k candidates
are added, we can use the minimal value of cohesion in the heap of current candidates as a
dynamic value for min_coh and use it for pruning using Cmax(X ,Y) as before. As more patterns
are discovered, the lowest value for cohesion in the heap increases, thereby pruning more
candidates. Moreover, using this dynamic value as an increasing threshold for the upper bound
would satisfy the invariant that at each step all pruned candidates are safely pruned using

38 CHAPTER 2. MINING PATTERNS AND RULES USING COHESION

Cmax(X ,Y) < min_heap, and thus have a lower cohesion than the pattern with the minimal
cohesion in the final top-k set of patterns.

2.8 Experiments

In this section, we compare our method with related state-of-the-art mining algorithms that
take a single event sequence as input — WINEPI, LAXMAN2, MARBLESW and Compact Minimal
Windows (CMW) (Tatti 2014a). As discussed in Section 2.1, these algorithms use a variety of
frequency-based quality measures to evaluate the patterns, or, in the case of CMW, re-rank the
output according to the difference, or leverage, between actual and expected minimal window
lengths.

Since the available implementations3 were made with the goal of discovering partially
ordered episodes, we had to post-process the output in order to filter out only itemsets (Tatti
2014b). Additionally, in some cases, we had to slightly amend the implementations to generate
not only closed but all frequent patterns. Therefore, making any kind of runtime comparisons
would be unfair on these methods, since general episode mining requires the generation of
many more candidate patterns than itemset mining.

In Section 2.8.1 we use a Hidden Markov Model-based generator to create several synthetic
data sets. We use this generator to reproduce the benchmark study of Zimmermann (2014a,b)
thereby creating synthetic sequences and embedded patterns under different assumptions. We
then compare the performance of the state-of-the-art methods with FCIseq, by reporting the
rank of the discovered embedded patterns. In Section 2.8.2 we use different real-world text
datasets and compare the top-k episodes of different state-of-the-art methods from a quality
perspective. In Section 2.8.3 we compare the mining of association rules on text datasets. In
Section 2.8.4 we end the experimental section with a performance analysis of FCIseq. We remark
that our implementation, datasets and experimental scripts are all publicly available4.

2.8.1 Comparison on Synthetic Benchmark

Varying Noise Probability

For the first experiment, we investigate the effect noise probability has on discovering a single
embedded pattern in a synthetic sequence. The synthetic sequence consists of a total of 5000
events and 20 distinct event types. The maximum delay between two events is between 0 and
20. We embed a single serial episode with 4 elements. We then generate 10 variations, while
varying the chance of a random event between each pattern embedding, that is p, between
0.05 and 0.95 in steps of 0.1. More details can be found in the original work of Zimmermann
(2014a).

For FCIseq we set max_size to 5 and min_coh to a value lower than the cohesion of the
embedded pattern. For WINEPI, LAXMAN, MARBLESW and CMW we set the window to be large
enough for any pattern embedding, that is 50. For WINEPI, LAXMAN, MARBLESW and CMW we
set the threshold small enough that at least thousands of patterns are reported in a reasonable
time, that is t = 80 for WINEPI, t = 5 for LAXMAN and CMW (which uses LAXMAN for episode
generation), and t = 1 for MARBLESW. In addition, we set alpha, that controls the scaling of the
ranking based on compactness of window sizes, to 0.5 for CMW, and split the sequence into

2The algorithm was given no name by its authors.
3The implementation of CMW was provided by the author, but is not publicly available.
4https://bitbucket.org/len_feremans/fci_public

https://bitbucket.org/len_feremans/fci_public

2.8. EXPERIMENTS 39

two equal parts: one for training and candidate generation, and one for testing if patterns are
significant as done in the original paper (Tatti 2014a).

We run two variations: in the first, we assume that noise events and delays between both
pattern and noise events are sampled using a uniform distribution, and for the second variation
we generate noise events based on the Poisson distribution. The average rank of the discovered
pattern within a synthetic sequence with varying noise probability is shown in Figure 2.2. Note
that if an embedded pattern is not ranked within the top 1000 or is not found at all, we cap
the rank to 1000, which is why we do not show these scores on the plots, as they would be
misleading). Due to the inherent randomness of the Zimmermann generator, we run each
experiment 5 times, and report the rank of the discovered episode(s) averaged over these 5 runs.
We see that FCIseq consistently outperforms the other methods and always ranks the embedded
patterns very highly, while other methods underperform in the presence of noise.

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

Noise probability

0

200

400

600

800

A
ve

ra
ge

ra
nk

ep
is

od
e

Winepi

Laxman

Marbles

CMW

FCI

(a) Uniformly distributed noise

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

Noise probability

0

200

400

600

800
A

ve
ra

ge
ra

nk
ep

is
od

e

Winepi

Laxman

Marbles

CMW

FCI

(b) Poisson-distributed noise

Figure 2.2: Effect of varying noise on the discovery of a single episode by state-of-the-art
methods and FCIseq

Varying the Size of the Alphabet

In the second experiment, we investigate the effect of an increasing number of event types,
denoted by M . We vary M between 4 and 40 in steps of 4. The synthetic sequences have a
length of 5000 events, and the maximum delay between two events is uniformly between 0 and
20. We also embed a single serial episode with 4 elements. The uniform noise probability is
fixed to 0.5. For mining the patterns we use the same parameters as in our previous experiment.

The average rank of the embedded pattern for varying alphabet size is shown in Figure
2.3. For the second variation of this experiment, we generate noise that is distributed using
the Poisson distribution. The reported average rank varies less between methods than in the
previous experiment. We see that LAXMAN, with its non-overlapping occurrence semantics,
performs better then WINEPI. WINEPI and MARBLES also seem to perform better for an alphabet
size of 40 than 20. Here, we conjecture that with an alphabet size of 40 the chance that random
events co-occur more frequently than the embedded pattern is lower than if we have only
20 events. Once again, we see that FCIseq outperforms the other methods on every single
experiment. When ranking on frequency subpatterns will be ranked first, which explains why
FCIseq is the only method to rank the embedded pattern first.

40 CHAPTER 2. MINING PATTERNS AND RULES USING COHESION

4 8 12 16 20 24 28 32 36 40

Alphabet size

0

25

50

75

100

125

150

A
ve

ra
ge

ra
nk

ep
is

od
e

Winepi

Laxman

Marbles

CMW

FCI

(a) Uniformly distributed noise

4 8 12 16 20 24 28 32 36 40

Alphabet size

0

25

50

75

100

125

A
ve

ra
ge

ra
nk

ep
is

od
e

Winepi

Laxman

Marbles

CMW

FCI

(b) Poisson-distributed noise

Figure 2.3: Effect of varying the alphabet size on the discovery of a single episode by state-of-
the-art methods and FCIseq

Varying Probability of Omissions

In the third experiment, we vary the probability that a source event of the embedded pattern is
not included, in order to mimic this type of failure that occurs in real-world datasets. We vary
the failure probability o between 0 and 0.9 in steps of 0.1. As before, the synthetic sequences
have a length of 5000 events consisting of 20 different events, the maximum delay between
two events is distributed uniformly between 0 and 20, we embed a single serial episode with
4 elements, and the uniform noise probability is 0.5. For mining patterns, we use the same
parameters as in our previous experiments.

The average rank of the pattern embedding for varying the probability of omissions is shown
in Figure 2.4. Here, too, we perform a second variation of the experiment where the noise is
distributed using the Poisson distribution. We see that our algorithm is not affected much by
the omission probability, while all other methods begin to struggle as the omission probability
rises.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Omission probability

0

200

400

600

800

A
ve

ra
ge

ra
nk

ep
is

od
e

Winepi

Laxman

Marbles

CMW

FCI

(a) Uniformly distributed noise

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Omission probability

0

200

400

600

800

A
ve

ra
ge

ra
nk

ep
is

od
e

Winepi

Laxman

Marbles

CMW

FCI

(b) Poisson-distributed noise

Figure 2.4: Effect of varying the probability of omitting events of source episodes on the discovery
of a single episode by state-of-the-art methods and FCIseq

2.8. EXPERIMENTS 41

Varying Maximum Time Delay

In the fourth experiment, we study the effect of a larger time delay between consecutive events,
and we vary the maximal delay g between 20 and 100 in steps of 10. We vary this delay both
for regular sequence events and for the events belonging to pattern embeddings. For other
generator parameters we use the same settings as before, that is a sequence length of 5000,
alphabet size of 20, noise probability of 0.5, omission probability of 0 and a single serial episode
with 4 elements. We also use the same parameters for mining as above, except for the window
which we increase to 100.

The average rank of the pattern embedding for varying the maximal time delay is shown
in Figure 2.5. For the second variation we generate noise that is distributed using the Poisson
distribution. As discussed in Zimmermann (2014a), we also consider a third variant where the
maximum delay between two consecutive events of an embedded pattern is not constrained by
g . As in the previous experiments, FCIseq consistently discovers the embedded pattern in the
top 10. Unlike previous experiments, the performance of CMW is also comparable.

20 30 40 50 60 70 80 90 100

Maximum time delay

0

200

400

600

800

A
ve

ra
ge

ra
nk

ep
is

od
e

Winepi

Laxman

Marbles

CMW

FCI

(a) Uniformly distributed noise

20 30 40 50 60 70 80 90 100

Maximum time delay

0

200

400

600

800

A
ve

ra
ge

ra
nk

ep
is

od
e

Winepi

Laxman

Marbles

CMW

FCI

(b) Poisson-distributed noise

20 30 40 50 60 70 80 90 100

Maximum time delay

0

25

50

75

100

125

A
ve

ra
ge

ra
nk

ep
is

od
e

Winepi

Laxman

Marbles

CMW

FCI

(c) Uniformly distributed noise, with no maxi-
mum delay between pattern events

Figure 2.5: Effect of varying maximum time delay on the discovery of a single episode by
state-of-the-art methods and FCIseq

Varying the Number of Patterns

In our fifth and final variation, we study the effect of increasing the number of patterns. There-
fore, we vary the number of patterns n between 1 and 5. All other parameters (both for sequence
generation and pattern mining) were set as in the previous experiments. The average rank for

42 CHAPTER 2. MINING PATTERNS AND RULES USING COHESION

the discovered patterns is shown in Figure 2.6. In addition to experimenting with both uni-
formly and Poisson-distributed noise, we also consider two other variations where embedded
episodes are interleaved (occurrences of two episodes may overlap) and events are shared (two
embedded patterns may contain the same event) (Zimmermann 2014a). We see that the num-
ber of different embedded patterns affects the performance of our algorithm more adversely
than the parameters discussed previously, but FCIseq still outperforms all other methods by
quite a margin.

1 2 3 4 5

Number of episodes

0

200

400

600

800

A
ve

ra
ge

ra
nk

ep
is

od
e

Winepi

Laxman

Marbles

CMW

FCI

(a) Uniformly distributed noise

1 2 3 4 5

Number of episodes

0

200

400

600

800

A
ve

ra
ge

ra
nk

ep
is

od
e

Winepi

Laxman

Marbles

CMW

FCI

(b) Poisson-distributed noise

1 2 3 4 5

Number of episodes

0

200

400

600

800

A
ve

ra
ge

ra
nk

ep
is

od
e

Winepi

Laxman

Marbles

CMW

FCI

(c) Interleaved embedded episodes

1 2 3 4 5

Number of episodes

0

200

400

600

800

A
ve

ra
ge

ra
nk

ep
is

od
e

Winepi

Laxman

Marbles

CMW

FCI

(d) Embedded episodes with shared events

Figure 2.6: Effect of varying the number of episodes and the discovery of them by state-of-the-art
methods and FCIseq

Conclusion

When looking at the results of the above experiments, we conclude that, on the Zimmermann
benchmark, FCIseq clearly outperforms the state-of-the-art methods. Cohesion seems to be a
more robust measure to a variety of artificially induced types of noise that occur in real-world
settings. Compared to the frequency-based methods, this is not surprising, since frequency is a
poor proxy for interestingness. While CMW seems to perform generally better than frequency-
based methods, it also seems far less robust to the different types of variation than FCIseq.

While it would be tempting to conclude FCIseq is superior on any dataset, we also ac-
knowledge that our method has drawbacks. More specifically, when we consider the different
parameters of the Zimmermann generator, we see two parameters, for which FCIseq would have
trouble with respect to recovering patterns. The first parameter r controls if event types are
repeated in an embedded pattern. Since FCIseq first mines itemsets, we do not generate any

2.8. EXPERIMENTS 43

patterns containing repeating items. A consequent issue is that we are unable to differentiate
different, more complex, patterns, if the alphabet size is very small, e.g., given a DNA sequence
with only 4 distinct items. A second parameter s controls if events are shared between multiple
source episodes. Since we always consider the minimal window length at each item occurrence,
having two (or more) embedded patterns share the same item will result in some occurrences
of the shared item being far from the occurrences of other items in both patterns, and therefore
in smaller values for cohesion for both patterns. As a consequence, the subset of the embedded
patterns without the shared item would have a larger value for cohesion, and it is possible that
the full pattern would not be recovered. The last issue that remains is that, since we consider
all occurrences, our measure is not robust to outliers in minimal window length. These issues
are, however, addressed by the method presented in Chapter 3.

2.8.2 Quality Comparison on Text Datasets

Datasets

We selected two text datasets in which the discovered patterns can be easily discussed and
explained. Species contains the complete text of On the Origin of Species by Means of Natural
Selection by Charles Darwin (Darwin 1859). Trump contains all tweets of President Donald
Trump between January 1, 2017 and March 1, 2018 (Trump 2017). We preprocessed both
sequences using the Porter Stemmer, removed stop words, transformed words to lower case,
and removed any special characters. Since the Trump dataset consists of many short sequences,
we appended all tweets to create a single long sequence. In addition, we also removed HTML
content, such as URLs and entities. After preprocessing, the Species dataset has a sequence
length of |S| = 85447 and contains 5547 distinct items. For Trump, the single sequence length
is |S| = 27837 and contains 4061 distinct items.

Cohesive Itemsets

For each of the existing methods, we set the frequency threshold low enough in order to generate
thousands of patterns. For FCIseq, we did the same with the cohesion threshold. We then sorted
the output on the respective quality measures — the sliding window frequency for WINEPI,
the non-overlapping minimal window frequency for LAXMAN, the weighted window frequency
for MARBLESW, the leverage-based score for CMW, and cohesion for FCIseq. For FCIseq, we
used the sum of support of individual items making up an itemset as the second criterion for
ranking. For other methods pattern size is used as a second criterion for ranking. Finally, we
use alphabetical order of patterns to break ties in all four methods. The frequency threshold
was set to 30 for WINEPI, 5 for LAXMAN, and 1 for MARBLESW in both datasets, with the sliding
window size set to 15. For CMW we set alpha to 0.5 and split the sequence in two: the first
half is used for discovering patterns while the second half is used for testing whether patterns
are significant (Tatti 2014a). CMW uses the frequent episodes produced by LAXMAN as input.
We run FCIseq with the cohesion threshold set to 0.015 for Species and 0.02 for Trump, and we
set the support threshold to 5 for both datasets. Since none of the state-of-the-art methods
produced any itemsets consisting of more than 6 items, we set the max_size parameter to 6 to
reduce runtimes.

The top 5 patterns discovered by the different methods are shown in Table 2.2. We can see
that there are clear differences between the patterns discovered by FCIseq and CMW, and those
discovered by the frequency-based methods, which produce very similar results. First of all,
the patterns ranked first and second in our output for the Species dataset are of size 3, which

44 CHAPTER 2. MINING PATTERNS AND RULES USING COHESION

Table 2.2: Top 5 itemsets discovered by FCIseq and the state-of-the-art methods on Species and
Trump

FCIseq WINEPI LAXMAN MARBLESW CMW

del, fuego,
tierra

natur, select natur, select natur, select absenc, island, mam-
mal, ocean, terrestri

facit, natura,
saltum

speci, varieti form, speci speci, varieti altern, glacial, north,
period, south

Sp
ecies

del, fuego form, speci speci, varieti distinct, speci bat, island, mammal,
ocean, speci, terrestri

del, tierra natur, speci natur, speci form, speci bat, island, mammal,
ocean, terrestri

facit, saltum distinct, speci distinct, speci condit, life cross, fertil, hybrid,
mongrel, offspr, varieti

puerto, rico fake, new fake, new fake, new ab, japan, minist,
prime

hunt, witch cut, tax cut, tax cut, tax high, hit, market,
stock, time

Tru
m

p

harbor, pearl america, great america, great america, great abc, cnn, fake, nbc,
new

lago, mar great, make great, peopl america, make alabama, big, luther,
strang, vote

arabia, saudi america, make great, make great, make lowest, market, stock,
unemploy, year

would be theoretically impossible for WINEPI and MARBLESW, and highly unlikely for LAXMAN,
since all three use anti-monotonic quality measures. Second, we observe that the patterns we
discover are in fact quite rare in the dataset, but they are very strong since all occurrences of
these patterns are highly cohesive. Concretely, the phrase tierra del fuego occurs seven times in
the book, and none of these words occurs anywhere else in the book. The value of this pattern
is therefore quite clear — if we encounter any one of these three words, we can be certain that
the other two can be found nearby. A similar argument holds for the expression “Natura non
facit saltus”, Latin for “nature does not make jumps”, of which “non” is considered a stopword,
and removed during preprocessing. CMW also discovers interesting, albeit different itemsets.
CMW ranks tierra del fuego 32nd and natura facit saltus 27th. The top pattern of CMW relates
to chapter XIII in the book, with a subsection titled “absence of bathracians and terrestrial
mammals on oceanic islands”. FCIseq is unable to find this pattern, as the cohesion is very low
overall since absence, terrestri, mammal, ocean, island infrequently co-occur together in the
book. If we would, however, segment this very long book, and run FCIseq on each individual
chapter, the cohesion, local to chapter XIII, would also be high for this itemset.

In the Trump dataset, the top 5 patterns produced by FCIseq all have a cohesion of 1, which
indicates that they always occur next to each other in tweets, in this case in 27, 23, 8, 7 and
7 tweets, respectively. Like tierra del fuego, these are examples of itemsets that are highly
correlated but occur too infrequently to rank highly in existing state-of-the-art methods. For
example, pearl harbor, saudi arabia and mar (a) lago do not occur in the top 300 of the existing
state-of-the-art methods.

We conclude that in order to find less frequent, but strongly correlated patterns such as
tierra del fuego or mar (a) lago with existing state-of-the-art methods, the user would need to
wait a long time before a huge output was generated, and would then need to trawl through

2.8. EXPERIMENTS 45

thousands of itemsets in the hope of finding them. FCIseq, on the other hand, ranks them at the
very top. From the perspective of the frequency-based methods, top patterns typically consist
of words that occur very frequently in the dataset, regardless of whether the occurrences of the
words making up the itemset are correlated or not. The top patterns reported by CMW also
seem very interesting, but quite different from those produced by FCIseq. A disadvantage of
CMW is that only half of the sequence is available for training, causing the method to miss
out on any patterns that only occur in the test part. A second disadvantage are the so-called
free-rider episodes where an item added independently to an existing high-leverage episode
also has a high score. For a complete picture, we provide the top 25 itemsets discovered by all
five methods in both datasets in Appendix A. While the top patterns are different, there is still
some overlap between the output generated by the various methods. For example, the pattern
natur(al) select(ion), ranked first in the Species dataset by the frequency-based methods, was
ranked 16th by FCIseq, which shows that our method is also capable of discovering very frequent
patterns, as long as they are also cohesive. Table 2.3 shows the size of the overlap between the
itemsets discovered by FCIseq and those discovered by the other methods. We compute the size
of the overlap within the top k itemsets for each method, for varying values of k.

Table 2.3: Overlap in the top k itemsets discovered by FCIseq and the state-of-the-art methods
on Species and Trump

overlap@k WINEPI LAXMAN MARBLESW CMW

Sp
ecies

100 12 13 11 2

500 28 35 25 2

1000 45 53 38 4

Tru
m

p
100 15 14 16 0

500 37 47 34 18

1000 54 67 50 30

Representative Sequential Patterns

For evaluating representative sequential patterns we show the top 5 sequential patterns dis-
covered by FCIseq and set the occurrence ratio threshold for sequential patterns, min_or, to
0.7, and thus only report sequential patterns for itemsets where the sequential pattern occurs
in at least 70% of itemset occurrences. We set min_coh to 0.015 (0.02 for Trump), θ = 5 and
max_size = 6, and compare the discovered representative sequential patterns with total orders

Table 2.4: Top 5 sequential patterns discovered by FCIseq on Species

sp C (X) support(X) occ_ratiose (sp)

tierra, del, fuego 1.0 21 1.0

natura, facit, saltum 1.0 18 1.0

del, fuego 1.0 14 1.0

tierra, del 1.0 14 1.0

facit, saltum 1.0 12 1.0

46 CHAPTER 2. MINING PATTERNS AND RULES USING COHESION

reported by state-of-the-art methods. The results for FCIseq for Species are shown in Table 2.4.
The patterns are first sorted on cohesion, then on occurrence ratio, then on support, and fi-
nally alphabetically, if all other measures are equal. These results show that the items making
up the most cohesive itemsets always occur in a specific order. Therefore, when this is the
case, the representative sequential patterns form a more informative way to represent the most
interesting patterns.

For FCIseq, WINEPI, LAXMAN, MARBLESW and CMW the top 5 sequential patterns are shown
in Table 2.5 for both datasets. Due to the min_or threshold of 0.7, we only report a representative
sequential pattern for those itemsets that actually have one. In fact, out of the 1130 discovered
cohesive itemsets in Species, only 21 have a representative sequential pattern, for all others
there is no single specific order that would be representative for the occurrences of the itemset.
In Trump, only 22 out of 16372 itemsets had a representative sequential pattern. For both
Species and Trump, the top 5 sequential patterns had an occ_ratiose of 1, indicating that all
occurrences of the underlying itemset came in the order defined by the sequential pattern,
clearly demonstrating the usefulness of outputting these patterns. Conversely, for itemsets
where the order is not important, our method outputs no sequential pattern at all. Unlike
FCIseq, the frequency-based methods again rank many spurious patterns highly. Note, for
example, that all three methods output both variety speci(es) and speci(es) variety in the top
10. This clearly demonstrates that, while the two words often co-occur due to them both being
very frequent, there is no sequential relationship between them. Furthermore, similarly to
itemsets, we remark that the top 1000 of all frequency-based methods contained very few (< 5%)
sequential patterns consisting of more than two items, and none of them ranked sequential
patterns tierra del fuego and natura (non) facit saltum in the top 1000. On the other hand, the
most interesting sequential patterns found by the frequency-based methods are ranked highly

Table 2.5: Top 5 sequential patterns discovered by FCIseq and the state-of-the-art methods on
Species and Trump

FCIseq WINEPI LAXMAN MARBLESW CMW

tierra, del,
fuego

natur, select natur, select natur, select struggl, exist, geometr,
ratio, increas

natura, facit,
saltum

varieti, speci varieti, speci distinct, speci variat, superven, earli,
ag, inherit

Sp
ecies

del, fuego speci, varieti speci, form varieti, speci form, life, chang,
simultan, world

tierra, del distinct, speci speci, varieti condit, life variat, superven, earli,
inherit, ag

facit, saltum speci, form form, speci speci, varieti steril, speci, cross,
hybrid, offspr

puerto, rico fake, new fake, new fake, new stock, market, hit,
time, high

witch, hunt tax, cut tax, cut tax, cut job, stock, market,
time, high

Tru
m

p

pearl, harbor america, great america, great america, great greatest, witch, hunt,
histori

mar, lago make, america make, great make, america stock, market, hit,
high

saudi, arabia make, great make, america unit, state presid, moon, south,
korea

2.8. EXPERIMENTS 47

by FCIseq, too. For example, natur(al) select(ion), fake new(s) and tax cut(s) can all be found in
our top 20 sequential patterns for the respective dataset.

For sequential patterns, we see that the re-ranking of CMW for sequential patterns candi-
dates generated by LAXMAN, produces a more interesting set of patterns. The top sequential
pattern struggl(e) (for) exist(ence) geometr(ic) ratio (of) increas(e) appears in chapter III. FCIFCI

does not rank this pattern highly, since struggle also often co-occurs with life, or on its own as
verb, causing large minimal windows for these occurrences. Likewise, the word increase (or
variants like increasing with the same stem) are very common, and frequently occur in chap-
ter III, without any instance of the other words nearby. Accordingly, the interestingness of this
pattern is very low concerning our proposed cohesion measure. In Species, CMW also reports
both tierra del fuego and natura (non) facit saltum in the top 25. For Trump, the situation is
different, in that some top patterns found by FCIseq are ranked rather low by CMW, e.g. pearl
harbor is ranked 9921st .

Dominant Episodes

To discover dominant episodes we run FCIseq and set the minimum occurrence ratio for
episodes, min_por, to 0.7, min_coh = 0.015 (0.02 for Trump), θ = 5 and max_size = 5. We
thus report episodes G = (V (G),E(G)) for itemsets X , where V (G) = X and the partial order de-
fined by E(G) occurs in at least 70% of itemset occurrences. In Species, the dominant episode
for 658 out of 1130 cohesive itemsets was either a sequential pattern (a total order) or the item-
set itself (no order). For the remaining 472 itemsets, the dominant episode was a partial order.
Note that for itemsets of size 2, the only possible episodes represent either an itemset or a se-
quential pattern. As a result, all the partial orders of interest consisted of three or more items.
Therefore, we exclude itemsets and sequential patterns from the episode output.

The results of FCIseq for Species are shown in Table 2.6. Note that the episodes are ranked on
the cohesion of the underlying itemset, after filtering. The episodes containing hexagon(al),
prism, pyramid, rhomb, sphere are due to a section in the book discussing the making of the
honeycomb structure of bees, while the episode containing leptali(s), ithomia, mimick is due to
a section where the similarities of these two butterfly species are discussed. While the specific
semantics are less of interest in text datasets, what is interesting is that these are partial orders
that hold for more than 70% of occurrences.

Table 2.6: Top 5 dominant episodes discovered by FCIseq on Species

G C (X) support(X) occ_ratiopo(G)

0.096 20 0.75

0.022 38 0.92

0.021 44 0.86

0.020 46 0.76

0.020 29 0.86

48 CHAPTER 2. MINING PATTERNS AND RULES USING COHESION

Table 2.7: Top 5 episodes discovered by the state-of-art methods on Species

WINEPI LAXMAN MARBLESW CMW

Episodes reported by state-of-the-art methods on Species are shown in Table 2.7. Here, too,
we omit episodes defining either a total order or no order at all. While the episode output of
FCIseq and CMW provides additional information about partial orders present in the occur-
rences of itemsets that have no representative sequential pattern, the three frequency-based
methods produce various combinations of very frequent items, which is not very informative.
Finally, note that by using the min_por threshold, we ensure that we produce a single domi-
nant episode per underlying itemset, which is representative of the occurrences of that itemset.
Other methods produce many partial orders for the same itemset which can result not only in
spurious patterns being discovered, but also in an undesirably large output size, i.e., for CMW
the top 100 episodes consist of variations with different edges of the itemsets of episodes shown
in Table 2.7.

2.8.3 Association Rules

Text Datasets

Using FCIseq we generate association rules for both datasets with the confidence threshold
min_conf set to 0.7, and parameters min_coh, max_size and θ as defined in the previous
section. We again compare rules with WINEPI, MARBLESW, and with MARBLESM, which uses
a confidence measure based on non-overlapping minimal windows (as defined by LAXMAN).
CMW is only used for re-ranking episodes, not mining association rules. We set min_conf = 0.7
for the state-of-art methods, and the frequency threshold to 40 for WINEPI, 10 for MARBLESM,
and 1 for MARBLESW in both datasets, with the sliding window size set to 15.

We slightly adjusted the underlying implementation of the state-of-art methods, namely
CLOSEPI, and made the modified code publicly available in our repository. Since CLOSEPI mines
general episodes, instead of only parallel episodes, or itemsets, and then generates rules with
potentially both general episodes on the left- and right-hand side, this causes an order-of-
magnitude more rules, and requires additional computing resources. Therefore, we made sure

2.8. EXPERIMENTS 49

that parallel episodes, closed by a partial episode, are not removed, and instead removed all
non-parallel episodes before mining association rules.

The top 5 rules, ranked on confidence, for Species and Trump for all methods are shown
in Table 2.8. Rules were ranked first on the confidence measure related to each method, and
then on the support of the antecedent to break ties. For Species and Trump the top 5 rules
for FCIseq have a confidence of 1.0. Most of these top rules consist of itemsets that are fully
cohesive, meaning that if one of the items occurs, the others always occur next to them. Only
migrat(ation) ⇒ chain is different since the underlying itemset is not fully cohesive, but the
association rule with migrat(ation) as antecedent is fully confident. Interestingly, MARBLESW

and MARBLESM also report rules of fully cohesive itemsets ranked in the top 5, such as tierra del
fuego and natura facit saltum. Unlike itemsets ranked on frequency, the ranking on confidence
produces quite different results between all methods, especially between the three different
frequency-based approaches. While all methods find very interesting rules, a disadvantage
of the three state-of-the-art methods is that they often rank rules with frequent items such
as speci(es), natur(al) or select(ion) as the consequent very highly, when this is, in most cases,
due to these items accidentally occurring in the vicinity of the antecedent, and not due to an
actual association. On the other hand our method fails to discover rules such as divis(ion),
kingdom ⇒ anim(al). The phrase “division of the animal kingdom” occurs about 10 times in
Species. FCIseq does not report the itemset or any subset or resulting rules, because when we
consider all occurrences of items in the antecedent — both kingdom and divis(ion) — and then
compute the average minimal window lengths, in this instance, cohesion is very low (< 0.001),
or, in other words, the majority of the occurrences of the three items do not co-occur anywhere.
Once again, we provide the top 25 rules of both datasets in the Appendix.

Table 2.8: Top 5 rules discovered by FCIseq and the state-of-the-art methods on Species and
Trump

FCIseq WINEPI MARBLESM MARBLESW

fuego, tierra ⇒ del divis, kingdom ⇒
anim

hive ⇒ bee divis, kingdom ⇒
anim

del, fuego ⇒ tierra averag, genera ⇒
speci

mivart ⇒ mr fuego, tierra ⇒ del

Sp
ecies

del, tierra ⇒ fuego cuckoo, lai, nest ⇒ egg case, select, structur
⇒ natur

independ, ordinari ⇒
view

facit, natura ⇒ saltum varieti, zone ⇒ inter-
medi

candol ⇒ de natura, saltum ⇒ facit

natura, saltum ⇒ facit genera, present, vari-
eti ⇒ speci

case, organ, select ⇒
natur

inherit, superven ⇒
earli

puerto⇒ rico hit, stock⇒ market cut, reform⇒ tax honor, minist⇒ prime

rico⇒ puerto high, hit, stock⇒
market

puerto⇒ rico confer, joint⇒ press

Tru
m

p

hunt⇒ witch bill, reform, tax⇒ cut rico⇒ puerto immigr, merit⇒ base

witch⇒ hunt biggest, cut, histori⇒
tax

witch⇒ hunt greatest, hunt⇒ witch

migrat⇒ chain ab, prime⇒ minist hunt⇒ witch donald, proclaim⇒
trump

50 CHAPTER 2. MINING PATTERNS AND RULES USING COHESION

Character Sequence Datasets

As a second experiment, we run association rule mining on text split on each character. We are
interested in finding association rules between letters that are specific within each language
— in this case, English, French and Dutch. We use the complete text of David Copperfield by
Charles Dickens in English and translations in French and Dutch (Dickens 1850). We removed
special characters, transformed words to lower case, tokenised the text on individual characters
and added the ‘_’ symbol to denote spaces between words. We limited the three sequences to
the first |S| = 500000 characters. The dictionary consists of 26 letters and ‘_’ .

We run FCIseq with min_coh = 0, max_size = 4, minsup = 50 and min_conf = 0.3. In Ta-
ble 2.9 we show the top 5 rules, ranked on confidence, discovered for each language, split into
three categories. We first show rules consisting of two letters, then rules consisting of three let-
ters, and, finally, rules containing the space between words, or ‘_’. We see that some reported
patterns are common in all three languages, and some patterns are discriminative for a spe-
cific language. For example q ⇒ u is a typical combination found in all three languages, as q is
almost always followed by a u. A typical Dutch rule is j ⇒ i , where ij is a very common combi-
nation of letters, while rule j ⇒ e is very specific for French. Rule y ⇒ _ is typical for English
and Dutch, where y often occurs either at the start or at the end of a word, and rarely in the
middle. The same holds for j ⇒ _ in French, where j is mostly found at the start of the word.
This experiment confirms that our method finds valuable association rules, and tends not to
rank spurious rules highly.

Table 2.9: Top 5 rules discovered by FCIseq on sequences of characters in different languages

Category ENGLISH FRENCH DUTCH

c(q ⇒ u) = 0.984 c(q ⇒ u) = 0.980 c(q ⇒ u) = 0.661

c(v ⇒ e) = 0.686 c(j ⇒ e) = 0.609 c(j ⇒ i) = 0.625

Two letters
c(x ⇒ e) = 0.616 c(g ⇒ e) = 0.589 c(b ⇒ e) = 0.605

c(r ⇒ e) = 0.432 c(d ⇒ e) = 0.542 c(n ⇒ e) = 0.603

c(z ⇒ e) = 0.416 c(r ⇒ e) = 0.540 c(g ⇒ e) = 0.594

c(q ⇒ i ,u) = 0.524 c(q ⇒ u,e) = 0.678 c(q ⇒ i ,u) = 0.667

c(q ⇒ u,e) = 0.520 c(b ⇒ a,e) = 0.357 c(q ⇒ i ,n) = 0.626

Three letters
c(q ⇒ t ,u) = 0.399 c(q ⇒ u, i) = 0.348 c(q ⇒ u,n) = 0.576

c(v ⇒ a,e) = 0.362 c(l ⇒ a,e) = 0.346 c(q ⇒ u,e) = 0.485

c(q ⇒ i ,e) = 0.357 c(v ⇒ a,e) = 0.346 c(q ⇒ r ,e) = 0.483

c(y ⇒ _) = 0.918 c(j ⇒ _) = 0.924 c(y ⇒ _) = 0.979

Letters near c(w ⇒ _) = 0.863 c(q ⇒ u,_) = 0.906 c(q ⇒ _) = 0.894

word c(d ⇒ _) = 0.835 c(q ⇒ _) = 0.824 c(x ⇒ _) = 0.846

boundary c(q ⇒ _,u) = 0.794 c(d ⇒ _) = 0.790 c(z ⇒ _) = 0.800

c(b ⇒ _) = 0.790 c(q ⇒ u,e,_) = 0.785 c(m ⇒ _) = 0.781

2.8.4 Performance Analysis

Effect of Hyperparameters on Runtime

We tested the behaviour of our itemset mining algorithm when varying the cohesion, support
and size thresholds on the two text datasets. We set default values for max_size and θ to 4 or
5 and set min_coh to 0.02. We then investigate the effect on the number of patterns and the

2.8. EXPERIMENTS 51

0.10 0.05 0.02 0.01

min_coh (log scale)

101

102

103

104

105

#
p
a
tt
e
rn
s
(l
o
g
 s
ca

le
)

101

102

103

104

ru
n
ti
m
e
 (
lo
g
 s
ca

le
)

#patterns

runtime (s)

(a) Varying min_coh on Species

0.10 0.05 0.02 0.01

min_coh (log scale)

100

101

102

103

104

105

106

107

#
p
a
tt
e
rn
s
(l
o
g
 s
ca

le
)

101

102

103

104

ru
n
ti
m
e
 (
lo
g
 s
ca

le
)

#patterns

runtime (s)

(b) Varying min_coh on Trump

512 128 32 8 2
min_sup (log scale)

100

101

102

103

104

105

#p
at
te
rn
s (

lo
g
sc
al
e)

100

101

102

103

ru
nt
im

e
(lo

g
sc
al
e)

#patterns
runtime (s)

(c) Varying θ on Species

512 128 32 8 2
min_sup (log scale)

100

101

102

103

104

105

#p
at
te
rn
s (

lo
g
sc
al
e)

100

101

102

103

ru
nt
im

e
(lo

g
sc
al
e)

#patterns
runtime (s)

(d) Varying θ on Trump

2 4 8 16 32 ∞
max_size (log scale)

100

101

102

#
p
a
tt
e
rn
s
(l
o
g
 s
ca

le
)

100

101

102

103

104

ru
n
ti
m
e
 (
lo
g
 s
ca

le
)

#patterns

runtime (s)

(e) Varying max_size on Species

2 4 8 16 32 ∞
max_size (log scale)

101

102

103

104

105

106

#
p
a
tt
e
rn
s
(l
o
g
 s
ca

le
)

100

101

102

ru
n
ti
m
e
 (
lo
g
 s
ca

le
)

#patterns

runtime (s)

(f) Varying max_size on Trump

Figure 2.7: Effect of min_coh, θ and max_size thresholds on the number of patterns and runtime

runtime, in log scale, of varying each threshold while selecting the default value for the others.
For the experiment with varying max_size, we set θ to 350 for Species and to 150 for Trump. The
results are shown in Figure 2.7.

As expected, we see that the number of patterns increases as the cohesion and support
thresholds are lowered. In particular, when the cohesion threshold is set too low, the size of the
output explodes, as even random combinations of frequent items become cohesive enough.
However, as the support threshold decreases, the number of patterns stabilises since rarer items
typically only make up cohesive itemsets with each other, so only a few new patterns are added
to the output (when we lower the support threshold to 2, we see another explosion as nearly
the entire alphabet is considered frequent).

52 CHAPTER 2. MINING PATTERNS AND RULES USING COHESION

In all settings, it took no more than a few minutes to find tens of thousands of patterns.
Note that with reasonable support and cohesion thresholds, we could even set the max_size
parameter to ∞ without encountering prohibitive runtimes, allowing us to discover patterns of
arbitrary size (in practice, the size of the largest pattern is limited due to the characteristics of
the data, so output size stops growing at a certain point). The state-of-the-art methods use a
relevance window that defines how far apart two items may be in order to be still considered
part of a pattern. As a consequence they can never find patterns of arbitrary size. For example,
using a window of size 15 implies that no pattern consisting of more than 15 items can ever be
discovered.

Effect of Pruning

In a second performance experiment we vary the maximum size of patterns, and report the
number of candidates visited by the main DFS routine (Algorithm 2.2) with pruning versus
the number of candidates that is theoretically possible without pruning. Given an alphabet of
|Ω| items, the number of itemsets of length 2 up to max_size that is theoretically possible is
given by

∑max_size
k=2

(|Ω|
k

)
. We run FCIseq on Species and set θ to 5, resulting in |Ω| = 5547 different

words, and set min_coh to 0.5. In Table 2.10, we report the number of candidates visited
versus the number of possible candidates for varying max_size. Remark that running up to
max_size = 48 took only 41 minutes on a laptop. We conclude that pruning on cohesion is
effective in narrowing the search in an otherwise intractable search space.

Table 2.10: Effect of varying max_size on the number of candidates enumerated by FCIseq on
Species

max_size Candidates vis-
ited by FCIseq

Theoretically possible
number of candidates

8 4.8 × 106 1.3 × 1022

16 5.0 × 106 1.3 × 1040

24 5.4 × 106 2.4 × 1056

32 8.0 × 106 2.8 × 1071

40 2.3 × 107 4.4 × 1085

48 1.3 × 108 1.3 × 1099

Runtime for Other Patterns and Association Rules

In a final performance experiment, we study the extra time required for mining representative
sequential patterns, dominant episodes and association rules, in addition to cohesive itemsets.
We set the threshold values to 0.015 or 0.02 for min_coh and 4 or 5 for θ and max_size. For
mining sequential patterns and episodes we set min_or and min_por to 0.5 and for rule mining
we set min_conf to 0.7. The runtime of additionally mining representative sequential patterns,
dominant episodes and association rules on Species and Trump is shown in Figure 2.8.

Since sequential pattern, episode and association rule mining is triggered for each cohesive
itemset, additional runtime costs for mining other types of patterns is relative to the number
of reported cohesive itemsets. If the number of cohesive itemsets is small, such as for Species
with 1339 itemsets, the additional time required for finding sequential patterns or episodes
is small, compared to the time for only mining cohesive itemsets. For Trump the number of

2.9. RELATED WORK 53

Species Trump
Dataset

0

100

200

300

400

500

600

Ru
nt

im
e

(s
)

itemsets
+ sequential patterns
+ episodes
+ rules

Figure 2.8: Effect of mining representative sequential patterns, dominant episodes and associa-
tion rules on runtime on Species and Trump

itemsets is larger, that is 16393, and the additional time needed for finding sequential patterns
is naturally higher, and even higher for dominant episodes (note, however, that episode mining
requires the execution of the sequential pattern mining phase, even if sequential patterns are
not required for output). For mining rules, the additional runtime cost for mining confident
rules based on cohesive itemsets is relatively small for both datasets. This is mainly due to
the efficient computation of confidence, as described in Section 2.6. We conclude that our
algorithms perform efficiently in a variety of settings.

2.9 Related Work

We have examined the most important related work in Section 2.1, and experimentally com-
pared our work with the existing state-of-the-art methods in Section 2.8. Here, we place our
work into the wider context of sequential pattern mining.

Frequent Pattern Mining

At the heart of most pattern mining algorithms is the need to reduce the exponential search
space into a manageable subspace. When working with an anti-monotonic quality measure,
such as frequency, the Apriori property can be deployed to generate candidate patterns only if
some or all of their subpatterns have already proved frequent. This approach is used in both
breadth-first-search (BFS) and depth-first-search (DFS) approaches, such as APRIORI (Agrawal
and Srikant 1994), ECLAT (Zaki 2000) and FP-GROWTH (Han et al. 2004) for itemset mining
in transaction databases, GSP (Srikant and Agrawal 1996), SPADE (Zaki 2001), BIDE (Wang
and Han 2004) and PREFIXSPAN (Pei et al. 2004) for sequential pattern mining in sequence
databases, or WINEPI (Mannila et al. 1997) and MARBLES (Cule et al. 2014) for episode mining
in event sequences.

Constraint Frequent Pattern Mining

In other related work, Méger and Rigotti (2004) and Pei et al. (2007) incorporated temporal
constraints in pattern mining. Two types of constraints are either a maximal window constraint,
i.e., the maximum elapsed time between the first and last event of an occurrence of the pattern,
and a maximal gap constraint, i.e., the maximum elapsed time between any two consecutive

54 CHAPTER 2. MINING PATTERNS AND RULES USING COHESION

events in each occurrence. The main difference between our work and these approaches is
that we always consider all event occurrences, instead of counting only pattern occurrences
satisfying the temporal constraints. Furthermore, we do not only count occurrences, but use
the window length of each occurrence as a weight used in ranking the top patterns. Finally,
we remark that Zimmermann (2014a) recently proposed a benchmark study that compared
different episode miners. We have adopted his framework (in Section 2.8.1) and found that the
reported experimental results of the gap constraint techniques are considerably worse than the
results of FCIseq with respect to recovering patterns embedded in the data.

Mining Interesting Patterns

For computational reasons, non-anti-monotonic quality measures are rarely used or are used
to re-rank the discovered patterns in a post-processing step. Tatti (2014a) proposed a way to
measure the significance of an episode by comparing the lengths of its occurrences to expected
values of these lengths if the occurrences of the patterns’ constituent items were scattered
randomly. In a later work, Tatti (2015) introduced the EPIRANK algorithm to re-rank episodes
in a dataset consisting of multiple sequences based on leverage (Webb 2010). Both methods,
however, use the output of an existing frequency-based episode miner (Tatti and Cule 2012),
and then compute the new measures for the discovered patterns. In this way, the rare patterns,
such as those discussed in Section 2.8, will once again not be found. Our FCIseq algorithm falls
into the DFS category, and the proposed quality measure is not anti-monotonic, but rather than
evaluating it in a post-processing step, we rely on an alternative pruning technique to reduce
the size of the search space. We believe the additional computational effort to be justified,
as we manage to produce intuitive results, with the most interesting patterns, which existing
state-of-the-art methods sometimes fail to discover at all, ranked at the very top.

Petitjean et al. (2016) proposed an alternative measure of interestingness for ranking
sequential patterns, which does not satisfy the anti-monotonicity property either, and an
algorithm (SKOPUS) to directly enumerate candidate sequential patterns satisfying the interest-
ingness measure. This measure, like EPIRANK, is based on leverage and compares the support
against the expected support assuming independence. Unlike our approach, SKOPUS takes as
input a database of many, typically short, sequences, rather than a single sequence.

Multiple authors have also stepped away from mining all frequent patterns and rather
tried to reduce the number of patterns often based on information theoretic approaches
such as the Minimal Description Length (Grünwald 2007), thereby producing a smaller set of
patterns that covers the sequence, or, in most cases, a database of many sequences. Methods
such as SQS (Tatti and Vreeken 2012), GOKRIMP (Hoang et al. 2014), and ISM (Fowkes and
Sutton 2016) follow this approach. These methods take a database of typically short sequences
as input, which is different from our approach. Another key difference is that rather than
enumerating as few candidates as possible and then selecting the best candidates according
to an interestingness measure, they employ heuristic search to incrementally build a set of
non-redundant patterns, instead of trying to enumerate an exact set of patterns, based on a
definition of interestingness.

Natural Language Processing

Finding interesting pairs (or n-grams) of co-occurring words in natural language has also been
extensively studied by the Natural Language Processing community (Manning and Schütze
1999). Here the goal is to find collocations, that is co-occurring words that are typical in a
corpus, such as strong tea or the rich and the famous. Specific to the Natural Language domain,

2.9. RELATED WORK 55

collocations are also characterised by the semantic concept of limited compositionality, that is
the meaning of the collocation of words is only weakly related to the meaning of the individual
words, e.g., strong has a different meaning in the phrase strong tea than in strong man. In the
context of mining collocations, different methods start with counting all frequent bi-grams or
n-grams within a fixed window, after filtering words based on part of speech tags (Justeson
and Katz 1995). Church and Mercer (1993) and Manning and Schütze (1999) have proposed
ranking collocations based on various statistics, such as mean and variance of word distances,
and based on various hypothesis tests, such as the t test, χ2 test, and likelihood ratios, or using
pointwise mutual information. In essence, the different methods are frequency-based methods
using fixed windows with re-ranking based on different statistics. Beside the domain-specific
analysis of this problem, there are major technical differences with our approach. We are also
interested in mining co-occurrences of potentially larger sets of items efficiently, while the focus
by the Natural Language Processing community is more on defining interestingness measures
on bi-grams (or smaller sets of items). We remark that, for mining smaller sets of items within
a small fixed window, it is relatively straightforward to design an algorithm that generates all
possible n-grams in a reasonable time. However, for larger itemsets and window sizes, any
algorithm would need to at least prune the search space of possible candidates in some way, to
overcome the combinatorial explosion induced by larger itemsets and window sizes.

Process Mining Applications

Another possible application of discovering episodes with a high cohesion is in business process
mining. Traditionally process mining focuses on the discovery of an end-to-end process
modelled for instance using a petri net (Van Der Aalst et al. 2007). Here, the input process
log consists of several traces, or multiple sequences, each consisting of a tuple that includes
a timestamp, an activity (or event) code and possibly other attributes, such as the person
executing the activity. However, recently different authors have suggested adapting pattern
mining for discovering local interesting patterns in process logs. For instance, Leemans and
van der Aalst (2014) proposes to find frequent episodes in a business process using WINEPI

(Mannila et al. 1997). Here, episodes are of interest since they can model both consecutive
and concurrent activities (or events). Related, Tax et al. (2016) proposes to extend frequent
pattern mining, but with richer type of patterns, namely process trees that offer additional
flexibility, such as choice, between activities in the pattern. Both approaches rank patterns
using frequency. An uncovered episode with high cohesion is indicative of a set of activities
that mostly co-occur near each other in the process log. For instance, it could be that after
a certain activity a occurs, it should always be verified using either activity b or c within a
certain time frame for legal or financial reasons. Therefore, we can expect these activities
to co-occur in the business process log and discover a highly cohesive dominant episode
G({a,b,c}, {a → b, a → c}). Additionally, if a is not followed by b this can be used to flag a
sequence of activities not conforming with this pattern. If we only mine frequent patterns, less
frequent but highly cohesive dominant episodes would be missed. Therefore, we argue that
discovering cohesive dominant episodes could be of interest in process mining especially to
support tasks such as conformance checking.

Quantile-based Cohesion

In the next Chapter, we will propose an alternative interestingness measure for evaluating
sequential patterns in a single long sequence (Feremans et al. 2018). We will evaluate what
percentage of the pattern’s minimal occurrences are small enough, where small enough is

56 CHAPTER 2. MINING PATTERNS AND RULES USING COHESION

defined by multiplying a user-defined parameter with the size of a pattern. For example, if
this parameter is set to 2, a window of size 6 will be small enough for a pattern of size 3. This
method does not take the size of the minimal windows of a pattern into account, as long as
they are small enough. For example, if any window of size 10 or smaller is considered small
enough, then a window of size 2 will score just as much as a window of size 9. This method is,
however, robust to outliers and optimised for sequential patterns.

2.10 Conclusion

In this Chapter, we present a novel method for finding valuable patterns in event sequences.
First of all, we evaluate the quality of the discovered itemsets using cohesion, a measure
of how far apart the items making up the itemset are on average. In this way, we reward
strong patterns that are not necessarily very frequent in the data, which allows us to discover
patterns that existing frequency-based algorithms fail to find. Since cohesion is not an anti-
monotonic measure, we rely on an alternative pruning technique, based on an upper bound of
the cohesion of candidate patterns that have not been generated yet. We show both theoretically
and empirically that the method is sound, the upper bound tight, and the algorithm efficient,
allowing us to discover large numbers of patterns reasonably quickly.

Based on the discovered cohesive itemsets, we then search for representative sequential
patterns and dominant episodes, which offer additional information about the order in which
the items making up the itemsets occur. If no order is representative of the occurrences of an
itemset, we report no sequential pattern or partial order. Furthermore, we mine association
rules, with a confidence measure based on the cohesion of the antecedent and consequent,
rather than the frequency-based definition common in literature. We integrate the mining
process of all four pattern types into a single efficient algorithm.

Experimental results demonstrate that our approach produces a more intuitive ranking of
patterns than existing frequency-based state-of-the-art methods. For all pattern types, we rank
interesting patterns highly, while avoiding spurious patterns that consist of unrelated items
that often co-occur purely because they all occur very frequently. For sequential patterns and,
particularly, episodes, we limit the number of patterns that can be generated from a single
itemset, thus avoiding a pattern explosion common for existing algorithms. Our experiments
confirm both the high quality of our output and the efficiency of our algorithm.

“To raise new questions, new possibilities,
to regard old problems from a new angle,

requires creative imagination
and marks real advance in science.”

- Albert Einstein

CHAPTER 3
Mining Quantile-based Cohesive Patterns

in Sequences

Finding patterns in long event sequences is an important data mining task. Two decades
ago, research focused on finding all frequent patterns, where the anti-monotonic prop-
erty of frequency was used to design efficient algorithms. Recent research focuses on
producing a smaller output containing only the most interesting patterns.

In this Chapter1, we introduce a new interestingness measure by computing the propor-
tion of the occurrences of a pattern that are cohesive. This measure is robust to outliers
and is applicable to sequential patterns. We implement an efficient algorithm based on
constrained prefix-projected pattern growth and pruning based on an upper bound to
uncover the set of top-k quantile-based cohesive sequential patterns.

We perform experiments and compare our method with existing state-of-the-art meth-
ods for mining interesting sequential patterns. We show that our algorithm is efficient
and produces qualitatively interesting patterns on large event sequences that other
methods fail to find.

1This chapter is based on work published in the SIAM International Conference on Data Mining as “Mining
Top-k Quantile-based Cohesive Sequential Patterns” by Len Feremans, Boris Cule and Bart Goethals (Feremans
et al. 2018).

60 CHAPTER 3. MINING QUANTILE-BASED COHESIVE PATTERNS

3.1 Introduction

Pattern discovery in sequential data is an established field in data mining. The earliest research
focused on the setting where data consisted of many sequences, where a pattern was defined
as a sequence that re-occurred in a high enough number of such input sequences. Among
the algorithms that produce a ranking of the most frequent sequential patterns, given a large
database of typically short sequences, are GSP (Srikant and Agrawal 1996) and PREFIXSPAN (Pei
et al. 2004). For mining patterns in a single long sequence, the first method was proposed
by Mannila et al. (1997). Their WINEPI method uses a sliding window of a fixed length to traverse
the sequence, and a pattern is then considered frequent if it occurs in a high enough number of
these sliding windows. Laxman et al. (2007) reformulate frequency as the maximal number of
non-intersecting minimal windows of the pattern in the sequence. In this context, a minimal
window of the pattern in the sequence is defined as a subsequence of the input sequence that
contains the pattern, such that no smaller subsequence also contains the pattern. All of the
above algorithms are able to generate all frequent patterns by leveraging the so-called APRIORI

property (Agrawal and Srikant 1994). This property implies that the frequency of a pattern is
never smaller than the frequency of any of its superpatterns. In other words, frequency is an
anti-monotonic quality measure. While this property is computationally very practical since
large candidate patterns can be generated from smaller patterns, the undesirable side-effect
is that single items and small patterns, in general, will always be ranked higher than their
superpatterns. Another argument against classical frequency-based techniques is that they
report sets or sequences of items where items occur frequently together in a window, but do
not account for all individual occurrences of these items. If two items occur frequently, and
through pure randomness often occur near each other, they will together form a top-ranked
pattern, even though they are not correlated.

Recent research, however, stepped away from mining all frequent patterns. Some authors
reduce the number of patterns, for example, using information theoretic approaches such
as Minimal Description Length (Grünwald 2007), thereby producing a smaller set of patterns
that covers the sequence best (Hoang et al. 2014; Tatti and Vreeken 2012; Fowkes and Sutton
2016). Other authors propose different measures of interestingness, that do not benefit from an
anti-monotonic quality measure to prune the search space of candidate patterns but produce a
more interesting ranking of patterns (Cule et al. 2016; Petitjean et al. 2016; Tatti 2015).

As presented in the previous chapter, Cule et al. (2009) introduced a new interestingness
measure called cohesion, defined as a measure of how near each other the items making up an
interesting itemset occur on average. However, just like frequency-based methods, cohesion
has its drawbacks. For example, suppose items a and b occur very frequently next to each other
in the input sequence. Now suppose that one occurrence of b is very far from the nearest a.
Since cohesion is inversely proportional to the mean of all minimal windows, itemset {a,b}
would score low on cohesion. Furthermore, cohesion is only defined for itemsets and is not a
suitable measure for sequential patterns.

In this work, we tackle this problem by measuring the proportion of a pattern’s occurrences
that are cohesive, where we consider an occurrence to be cohesive if the minimal window length
is small relative to the size of the pattern. We call this measure the quantile-based cohesion of
the pattern. This is a more robust measure that is not susceptible to random outliers. While we
concentrate on sequential patterns, the work presented here can directly be applied to other
pattern types, such as itemsets, too. In the example above, itemset {a,b} would, evaluated by
our new measure, score very highly.

We illustrate the various interestingness measures in Figure 3.1. Here, we show a frag-

3.1. INTRODUCTION 61

Receiving the top-maul from Starbuck, he advanced towards the main-mast with the hammer uplifted in
one hand, exhibiting the gold with the other, and with a high raised voice exclaiming: Whosoever of ye
raises me a white-headed whale with a wrinkled brow and a crooked jaw; whosoever of ye raises me that
white-headed whale, with three holes punctured in his starboard fluke - look ye, whosoever of ye raises
me that same white whale, he shall have this gold ounce, my boys!

"Huzza! huzza!" cried the seamen, as with swinging tarpaulins they hailed the act of nailing the gold to
the mast.

It's a white whale," I say, resumed Ahab, as he threw down the top-maul; a white whale. "Skin your eyes
for him, men; look sharp for white water; if ye see but a bubble, sing out."

All this while Tashtego, Daggoo, and Queequeg had looked on with even more intense interest and
surprise than the rest, and at the mention of the wrinkled brow and crooked jaw they had started as if
each was separately touched by some specific recollection.

"Captain Ahab," said Tashtego, "that white whale must be the same that some call Moby Dick."

"Moby Dick?" shouted Ahab. "Do ye know the white whale then, Tash?"

"Does he fan-tail a little curious, sir, before he goes down?" said the Gay-Header deliberately.

"And has he a curious spout, too," said Daggoo, "very bushy, even for a parmacetty, and mighty quick,
Captain Ahab?"

"And he have one, two, tree - oh! good many iron in him hide, too, Captain," cried Queequeg
disjointedly, "all twiske-tee betwisk, like him - him - "

Figure 3.1: Fragment of the novel Moby Dick written by Herman Melville. We highlight 4
sequential patterns having a high value of quantile-based cohesion

ment of the novel Moby Dick written by Herman Melville with four sequential patterns high-
lighted. These four patterns are all ranked in the top-10 using quantile-based cohesion. Fre-
quency defined as the number of minimal non-overlapping windows, as proposed by Laxman
et. al, would report (white,whale),

(
captain,ahab

)
and

(
moby,dick

)
in the top-10, but not(

wrinkled,brow,crooked, jaw
)

because this pattern does not occur frequently enough. We also
remark that other patterns, such as (ahab,dick), are ranked highly using frequency alone, de-
spite not being correlated. The cohesion-based FCIseq algorithm from Chapter 2, does not rank(
captain,ahab

)
high, due to fact that the two items, though correlated, also occasionally appear

far from each other, resulting in a relatively large mean of minimal window lengths.

Since quantile-based cohesion is not anti-monotonic, designing an efficient algorithm to
exactly find all sequential patterns with high quantile-based cohesion is not trivial. To facilitate
our search, we define an upper bound that computes the maximal quantile-based cohesion
for any superpattern of the current candidate sequential pattern that could still be generated
to prune candidate patterns. Our algorithm uses constrained prefix-projected pattern growth
to generate all candidates and uses this upper bound for additional pruning. Computation of
all minimal windows and generation of candidates becomes more efficient as the projected
input sequence becomes smaller, ensuring that our algorithm is also efficient on larger event
sequences with many items. We perform several experiments to validate that that our algorithm
perform well on artificial and text datasets from a qualitative and performance perspective
compared to state-of-the-art methods.

The remainder of this Chapter is organised as follows. In Section 3.2 we formally describe
the problem setting and define the patterns we aim to discover. Section 3.3 provides a detailed

62 CHAPTER 3. MINING QUANTILE-BASED COHESIVE PATTERNS

description of our algorithm and upper bound. In Section 3.4 we present an experimental
evaluation of our method and compare with several related state-of-the-art methods. We
present an overview of the most relevant related work in Section 3.5 and conclude our work in
Section 3.6.

3.2 Problem Setting

Definition 3.1 (Event sequence). The input dataset consists of a single sequence of items (or
events), that is S = (〈i1, t1〉, . . . ,〈in , tn〉), where ik ∈Ω is an item coming from a finite domainΩ
of all possible items, and tk is a timestamp. The sequence is ordered chronologically so for any
1 < k ≤ n, it holds that tk−1 ≤ tk .

We recall that this definition is similar to Definition 2.1, however, in this Chapter we have a
different intake, such as allowing multiple items at a single timestamp and mining sequential
patterns with possibly repeating items.

A window S[ta , tb] is a subsequence of S between timestamps ta and tb , that is, S[ta , tb]
contains all 〈ik , tk〉 ∈S for which ta ≤ tk ≤ tb . We define the window length as |S[ta , tb]| = tb−ta .
For simplicity we omit the timestamps from our examples and write a sequence as (i1, . . . , in)
thereby assuming the timestamps are consecutive integers.

Definition 3.2 (Sequential pattern). A sequential pattern is denoted as Xs = (s1, . . . , sm), rep-
resenting a pattern that consists of items s1 until sm in that order, where sk ∈Ω. A sequential
pattern Xs occurs in a window S[ta , tb], denoted by Xs ≺S[ta , tb], if all items in Xs occur in the
specified order in the window, that is,

Xs = (s1, . . . , sm) ≺S[ta , tb] ⇔
∃t1, . . . , tm ∈ [ta , tb] : t1 < t2 < . . . < tm : ∀ j ∈ {1, . . . ,m} : 〈i j , t j 〉 ∈S∧ s j = i j .

We do not require each item sk to be unique, that is, sequential patterns can contain repeating
items.

We remark that, unlike windows, a sequential pattern occurrence allows gaps between
items. To evaluate a pattern, we make use of minimal windows.

Definition 3.3 (Minimal window). For every distinct item i ∈ Xs and every timestamp t where
〈i , t〉 ∈S , we define the minimal window at timestamp t as the shortest window around t that
contains an occurrence of Xs , that is,

Wt (Xs ,S) =

∞ if ØS[ta , tb] : ta ≤ t ≤ tb ∧Xs ≺S[ta , tb]

min
S[ta ,tb]

{|S[ta , tb]| | ta ≤ t ≤ tb ∧Xs ≺S[ta , tb]} otherwise.

Note that a sequential pattern is sometimes not covered by any window at timestamp t . For
example, given the sequential pattern Xs = (a,b) and the sequence S = (. . . ,b, a), for the last a
there is no window that would cover Xs . In this case, we say the minimal window has a length
of ∞. Since we measure the proportion of occurrences that are cohesive, this is not a problem,
as large minimal windows are discarded anyway.

Definition 3.4 (Support sequential pattern). We denote the set of occurrences of the pattern
as cover(Xs ,S) = {t | 〈i , t〉 ∈S∧ i ∈ Xs}, and define its support as support(Xs ,S) = |cover(Xs ,S)|
where we omit the S argument if it is clear from the context.

3.3. MINING QUANTILE-BASED COHESIVE SEQUENTIAL PATTERNS 63

We are now ready to define quantile-based cohesion. This measure tackles the problems of
both frequency-based and cohesion-based methods, as illustrated in Section 3.1.

Definition 3.5 (Quantile-based cohesion). Given a cohesion threshold α, that determines, rela-
tive to the pattern size, if a pattern occurrence is cohesive enough, we compute the proportion of
the occurrences that are cohesive. We define the quantile-based cohesion w.r.t α for a sequential
pattern Xs in sequence S as

Cquan(Xs) = |{t | t ∈ cover(Xs)∧Wt (Xs) <α · |Xs |}|
support(Xs)

,

where we omitted the S argument if it is clear from the context.

The parameter α can be any real number higher than 1.0. If α is set to 1.01 we only count
occurrences of the sequential pattern where there are no gaps between items. If α is 2.01 we
count occurrences where there are at most |Xs | gaps between items. In our experiments, we set
α to 2, 3, 4 or 5. Remark that for timestamped sequences the length (or duration) of a minimal
window is represented by a unit of time, e.g., only occurrences within α× |Xs | minutes are
considered nearby.

Given a frequency threshold θ we ignore all infrequent items, that is, if support(i) < θ, we
do not use item i ∈Ω in the generation of candidate patterns. Unlike frequency-based methods
this does not limit longer patterns, in fact, our definition of support increases (monotonically)
for longer patterns. The rationale behind this threshold is to filter items occurring only a couple
of times in the sequence. For example, if we create a sequence of words in a novel we are less
interested in patterns that only occur once or twice. Finally, our goal is to solve the following
problem:

Problem 3.1 (Top-k quantile-based cohesive sequential patterns). Given a single sequence of
items S , a cohesion threshold α, a frequency threshold θ, a size limit max_size, and the number
of desired patterns k, find each sequential pattern Xs where

1. |Xs | ≤ max_size,

2. for each i ∈ Xs ,support(i) ≥ θ,

3. Xs is ranked in the top-k set of patterns according to Cquan(Xs) w.r.t α.

We remark that while quantile-based cohesion is more robust to outliers than cohesion, it
does not take the size of the minimal windows into account. In response to this observation,
we propose a variant, namely weighted quantile-based cohesion, discussed in Appendix B.

3.3 Mining Quantile-based Cohesive Sequential Patterns

In this section, we present a detailed description of our algorithm for mining the top-k quantile-
based cohesive sequential patterns. We first show how we generate candidates using prefix-
projected pattern growth. We then discuss how we can prune large numbers of potential
candidates by computing an upper bound on quantile-based cohesion. Parameters for control-
ling our algorithm include k, α and max_size.

64 CHAPTER 3. MINING QUANTILE-BASED COHESIVE PATTERNS

3.3.1 Prefix-projected Pattern Growth

Our algorithm combines ideas from two different methods. At its core, our algorithm is similar
to the depth-first search from Chapter 2 for mining cohesive itemsets. We first generate candi-
dates in a depth-first way. For each candidate, we compute the set of minimal windows and
prune a candidate and associated superpatterns based on an upper bound of quantile-based
cohesion. There are two bottlenecks in this baseline algorithm. First, we would have to compute
the set of minimal windows for each candidate, which requires visiting all occurrences of items
in the current candidate Xs . Second a naive approach would generate new candidate patterns
by combining the current candidate with all items inΩ. In order to address both bottlenecks,
we integrate this approach with the strategy of recursively projecting the input sequence, sim-
ilar to prefix-projected pattern growth first used in PREFIXSPAN (Pei et al. 2004). During the
depth-first search we generate candidate supersequences.

Definition 3.6 (Supersequence). A candidate supersequence Zs is generated by adding items
from a set Y at the end of the current candidate sequential pattern Xs , that is, given Xs =
(s1, . . . , sn) and Y = {y1, . . . , yl }. We define the set of all possible supersequences Z(Xs ,Y) as

Z(Xs ,Y) = {Zs | Zs = (s1, . . . , sn , zn+1, . . . , zm)

∧ |Zs | ≤ max_size ∧ ∀i ∈ [n +1,m] : zi ∈ Y }.

Definition 3.7 (Projection). The set of candidate items Y that can be used to generate super
sequences can be computed based on the projection of S on Xs = (s1, . . . , sn). We define this
projection, denoted by PXs (S), as:

PXs (S) = {S[ta , tb] | 〈s1, ta〉 ∈S∧Xs ≺S[ta , tb]},

with tb = ta +α ·max_size. If Xs =; we initialise Y toΩ.

Note that we restrict the length of the projected windows to α ·max_size. We define the
suffix of a window given a sequential pattern Xs as the subsequence after the first occurrence
of Xs ,

suffix(S[ta , tb], Xs) =S[t +ε, tb] | ta ≤ t ≤ tb ∧Xs ≺S[ta , t]∧Øt ′ : t ′ < t ∧Xs ≺S[ta , t ′],

where we use ε to enforce that S[ta , t] is non-overlapping with S[t +ε, tb]. Here, ε= min {tk+1 −
tk | 〈ik , tk〉,〈ik+1, tk+1〉 ∈ S ∧ tk 6= tk+1}, i.e., the smallest possible time period between two
non-simultaneous events.

Definition 3.8 (Candidate items). Given the projection on Xs of S we can define the multiset of
all possible candidate items Y + as

Y + = ⋃
S[ta ,tb]∈PXs

(⊎
sk∈suffix(S[ta ,tb],Xs)

{sk }

)
,

where we use a multiset-union
⊎

, which allows us to bound the number of possible repetitions
allowed for each item zi in candidate supersequences Zs . A similar definition based on the
set-union is used to compute Y .

We now discuss the intuition behind these definitions. We first observe that we are only
interested in computing the number of minimal windows that are smaller than α · |Xs |. There-
fore, it is not necessary to compute all minimal windows. A second observation is that given

3.3. MINING QUANTILE-BASED COHESIVE SEQUENTIAL PATTERNS 65

pattern Xs = (s1) we can guarantee that for any supersequence, each interesting minimal win-
dow will start with an occurrence of s1 and must be smaller than α ·max_si ze. Therefore,
we can compute the set of minimal windows based on the projection of (s1) induced on S
for every supersequence that starts with (s1). On the first level, the set of projected windows
might not be much smaller than |S|, but as the pattern becomes longer, the projection will
become much smaller. For instance, given Zs = (s1, s2) each window S[ta , tb] ∈ P(s1) can be
removed from P(s1,s2) if (s1, s2) 6≺ S[ta , tb]. Furthermore, each individual window in the pro-
jection will shrink based on suffix(S[ta , tb], Xs). Thus by computing the projected windows,
two bottlenecks of the depth-first search are resolved. First, minimal windows for a candidate
Zs = (s1, . . . , sk+1) can be computed incrementally on the monotonically decreasing projection
induced by Xs = (s1, . . . , sk). Second, candidate items sk+1 for generating candidates at each
next level, are not selected from the full setΩ but must occur in Y +. Finally, an additional ben-
efit of applying prefix-projected pattern growth is that our upper bound becomes tighter, as
discussed in Section 3.3.3.

Algorithm 3.1: QCSP(S ,k,α,max_size) Mine top-k quantile-based cohesive sequential
patterns in a single sequence

Input : An event sequence S , number of patterns k, cohesion threshold α, pattern size
limit max_size

Result: (At most) k sequential patterns ranked according to Cquan w.r.t. α
1 stack ← [〈;,S ,Ω〉];
2 heap ← MAKE_HEAP(k);
3 min_coh ← 0.0;
4 while stack 6= ; do
5 〈Xs ,PXs ,Y 〉← stack.POP();
6 if Y =; then
7 if |Xs | > 1∧Cquan(Xs) > min_coh then
8 heap.PUSH(〈Xs ,Cquan(Xs)〉);
9 if heap.SIZE() > k then

10 heap.POP();
11 min_coh ← heap.MIN()
12 else
13 if Xs ∩Y =;∧mingap(Xs)+|Zmax| >α · (|Xs |+ |Zmax|) then continue ;
14 if Cmaxquan(Xs ,Y) ≤ min_coh then

continue ;
15 sk+1 ← FIRST(Y);
16 stack.PUSH(〈Xs ,PXs ,Y \ {sk+1}〉);
17 if |Xs | = max_size then

continue ;
18 Zs ← (Xs , sk+1);
19 PZs ← PROJECT(S , Zs ,PXs ,α,max_size);
20 YZs ← PROJ_CANDIDATES(S , Zs ,PZs);
21 stack.PUSH(〈Zs ,PZs ,YZs 〉);
22 return heap;

66 CHAPTER 3. MINING QUANTILE-BASED COHESIVE PATTERNS

Algorithm

The main algorithm for mining quantile-based cohesive sequential patterns (QCSP) is shown in
Algorithm 3.1. We maintain a stack for performing the recursive prefix-projected search. We
maintain three variables during recursion: the current candidate sequential pattern Xs , the
projection on Xs of the sequence and a set of candidate items for generating supersequences
Zs where Xs is a prefix of Zs . We initialise this stack by setting Xs to the empty sequence, the
projection is S itself, and the initial set of candidate itemsΩ (line 1). The initial set of candidate
itemsΩ is constructed by filtering frequent items w.r.t. θ. Moreover, we sort frequent items on
support in ascending order as patterns consisting of less frequent items are faster to evaluate.
Next, we initialise an empty heap that contains at most k patterns sorted on quantile-based
cohesion (line 2). This top-k of most quantile-based cohesive patterns is also returned after
the main prefix-projected search loop has finished (lines 4-21). In the main loop, we first pop
the current node from the stack (line 5). We investigate if this is a leaf, that is, an unpruned
sequential pattern, with no more supersequences to enumerate. We add the candidate to
the heap of top-k most cohesive patterns if its quantile-based cohesion is higher than the
current worst candidate pattern in the heap (line 8). Note that the first k candidates are added
without any condition, but the minimal quantile-based cohesion will increase as more and
more candidates are discovered, which in turn affects the pruning. If the candidate is not a
leaf, we evaluate the mingap and upper bound function Cmaxquan(Xs ,Y), which are explained
in the next subsection (line 13-14). If the current candidate and all its supersequences cannot
be pruned, we generate a supersequence Zs = (Xs , sk+1) using the first item in Y (line 18), the
set of possible items to generate candidates of length |Xs |+1. We compute the projection of Zs

induced on S by calling the function PROJECT (line 19). After the projection is computed we
can traverse it to enumerate all possible items to form supersequences, which is the main goal
of the function PROJ_CANDIDATES (line 20).

3.3.2 Incremental Computation of Prefix-projections

PROJECT computes the projection PZs (S) incrementally based on the projection of PXs (S). The
pseudocode for computing the projection of Zs = (s1, . . . , sk , sk+1) incrementally is shown in
Algorithm 3.3. If k = 0, i.e., if Xs =;, we create a window of size α·max_size at every occurrence
of 〈sk+1, t〉 ∈S . If k > 0, we check for each window in the previous projection if Zs occurs, and,
if it occurs, we take the suffix. We also maintain the original timestamp t at which each window
starts. Note that the suffix starts with the first event after timestamp t , whereby we use ε to
denote the smallest possible time period between two non-simultaneous events.

Algorithm 3.2: PROJ_CANDIDATES(S , Xs ,PXs) Compute candidate itemset Y based on
projection

Input : An event sequence S , Xs = (s1, . . . , sk), projection PXs

Result: Set of possible items sk+1 ∈ Y to generate super sequences Zs = (s1, . . . , sk , sk+1)
1 Y ←;;
2 for 〈t ,S[ta , tb]〉 in PXs do
3 Y ← Y ∪S[ta , tb];
4 sort Y on descending support in PXs ;
5 return Y ;

3.3. MINING QUANTILE-BASED COHESIVE SEQUENTIAL PATTERNS 67

Algorithm 3.3: PROJECT(S , Zs ,PXs ,α,max_size) Computes pseudo-projection incre-
mentally

Input : An event sequence S , super sequence Zs = (s1, . . . , sk , sk+1), projection PXs where
Xs = (s1, . . . , sk), cohesion threshold α, pattern size limit max_size

Result: Projection PZS

/* Level 1 (|Xs | = 0): projection of maxwin size */
1 P ′ ←;;
2 if |Xs | = 0 then
3 maxwin ←bα ·max_sizec;
4 for t ← 1 to |S| do
5 if S[t] = sk+1 then
6 ta ← t +ε;
7 tb ← t +maxwin;
8 P ′ ←P ′∪〈t ,S[ta , tb]〉;
/* Level >1: take suffix or remove projection window */

9 else
10 for 〈t ,S[ta , tb]〉 in PXs do
11 if sk+1 ∈S[ta , tb] then
12 ta

′ ← first occurrence of sk+1 in S[ta , tb];
13 P ′ ←P ′∪〈t ,S[ta

′+ε, tb]〉;
14 return P ′;

Compute Candidate Items based on Projection

PROJ_CANDIDATES computes the set of possible candidate items Y . The algorithm is shown
in Algorithm 3.2. We compute candidate items for forming a supersequence of length k +1
based on the projection of its prefix Xs . The procedure consists of taking the union of all items
found in the suffix of each projected subsequence. To compute Y + for Cmaxquan a variant of
this procedure is needed. This is omitted from the pseudocode but is trivial to compute.

Example 3.1. We use an example, shown in Figure 3.2, to illustrate the runtime behavior of our
algorithm. We show the trace on the example sequence (a,b,c,_,_,_,_,b, a,c) with parameters
α = 2, max_size = 3 and k = 2. In theory, there are |Ω|2 + |Ω|3 candidates possible. The first
candidate generated is Xs = (a). The projected window size is at most α ·max_size = 6, and
there are two windows in P(a). After the projection, we find that only b and c are left in Y , the set
of remaining items to form candidates that start with a. As c occurs twice and b only once, c is
visited first, and our next candidate is Xs = (a,c). Since the suffix of P(a,c) does not contain any
more items, it becomes a leaf, and we add sequential pattern (a,c) to the heap with a quantile-
based cohesion of 1. Next we project on Xs = (a,b) and remove one window in the projection.
The only possible suffix left is c. We then generate Xs = (a,b,c). This candidate pattern is a
leaf node, and is added to the heap with a quantile-based cohesion of 0.5. Next, Xs = (a,b) is
visited again as a leaf, but not added to the heap, because its quantile-based cohesion of 0.5 is
not strictly higher than the minimal score of Cquan((a,b,c)) = 0.5 of the top 2 patterns currently
in the heap. Next, Xs = (b) is generated, and then Xs = (b,c). The quantile-based cohesion
of Xs = (b,c) is 1 and it is added to the heap, replacing the previously lowest-scoring element
(a,b,c). Then, Xs = (b, a) is generated. The maximal cohesion of (b, a), with Y = {c} given by
Cmaxquan((b, a), {c}) = 4

6 is less than the the current minimal score of 1, so we can prune this
branch. Finally, candidates Xs = (c) and Xs = (c,b) are generated. Xs = (c,b) is pruned since

68 CHAPTER 3. MINING QUANTILE-BASED COHESIVE PATTERNS

() {a,b,c} a b c _ _ _ _ b a c

(a) {c,b} a b c _ _ _ _ b a c

k = 2 α = 2 max_size=3
(a,c) {} a b c _ _ _ _ b a cHeap: (a,c): 1.0 /

(a,b) {c} a b c _ _ _ _ b a c

(a,b,c) {} a b c _ _ _ _ b a cHeap: (a,c): 1.0 (a,b,c): 0.5

(b) {c,a} a b c _ _ _ _ b a c

(b,c) {} a b c _ _ _ _ b a cHeap: (a,c): 1.0 (b,c): 1.0

(b,a) {c} a b c _ _ _ _ b a c

a b c _ _ _ _ b a c

Cmaxquan((b,a)) = 0.66 < heap.min()
(c) {b}

(c,b) {} a b c _ _ _ _ b a c

Cquan((a,b)) = 0.5 ≤ heap.min()

mingap((c,b)) = 6 ≥ 4 ⇒ Cquan((c,b)) = 0.0

$% & '()

Figure 3.2: Illustrative example of QCSP, a prefix-projected pattern growth algorithm that
employs pruning using mingap and an upper bound on quantile-based cohesion

the minimal gap is 6, which is higher than α×2, hence Cquan((c,b)) = 0. The final top-k heap
contains (b,c) and (a,c) both with a cohesion of 1.

3.3.3 Pruning

At any node in the search tree, let Xs denote the current candidate sequential pattern, while Y
denotes all items that can still be added to Xs to form supersequences. If we compute an upper
bound on the quantile-based cohesion for all candidates Zs ∈Z(Xs ,Y), and this maximal score
is lower than min_coh we can prune the branch. Here, min_coh corresponds to the current
minimum quantile-based cohesion of any pattern in the heap (or 0 if the heap is not full). In
this Section, we derive this upper bound.

Limit Quantile-based Cohesion using Mingap

Our first upper bound comes from the observation that in some cases not a single occurrence
of two items is cohesive. Intuitively, if the minimal gap, that is the minimal window length
of any occurrence of (a,b) is already too high, the likelihood that (a,b) or any superpattern is
cohesive is small.

Definition 3.9 (Minimal gap). We define the minimal gap as

mingap(Xs) = min
t ∈ cover(Xs)

Wt (Xs).

3.3. MINING QUANTILE-BASED COHESIVE SEQUENTIAL PATTERNS 69

Theorem 3.1 (Limit quantile-based cohesion using mingap). Let Xs be a candidate pattern
and Y the set of items that can still be added to Xs . Then, for each Zs ∈Z(Xs ,Y) generated as
candidate by Algorithm 3.1,

Cquan(Zs) =Cquan(Xs) = 0

if mingap(Xs)+|Zmax| >α · (|Xs |+ |Zmax|) and Xs ∩Y =;,

where |Zmax| = max
S[ta ,tb]∈PXs

|suffix(S[ta , tb], Xs)|.

Proof. We know that for any window of any supersequence Zs ∈Z(Xs ,Y), where Xs ∩Y =; it
holds that

∀ t ∈ cover(Zs) : Wt (Zs)+ (|Zs |− |Xs |) ≥Wt (Xs).

Furthermore, we know by definition, that

∀ t ∈ cover(Xs) : Wt (Xs) ≥ mingap(Xs).

Formally we want to prove that, ∀Zs ∈Z(Xs ,Y),

Cquan(Zs) = 0

⇐⇒ |{t | t ∈ cover(Zs)∧Wt (Zs) <α · |Zs |}|
support(Zs)

= 0

⇐⇒ Øt ∈ cover(Zs) : Wt (Zs) <α · |Zs |.
From the previous equations, it follows that the smallest minimal window of Zs is bounded by

min
t∈cover(Zs)

Wt (Zs) ≥ mingap(Xs)+ (|Zs |− |Xs |),

and we can deduce that
Cquan(Zs) = 0

⇐⇒ mingap(Xs)+ (|Zs |− |Xs |) ≥α · |Zs |.
What remains to be proven is that no pattern Zs ∈ Z(Xs ,Y) generated as candidate by

Algorithm 3.1 can be longer than |Xs | + |Zmax|. In each recursive call, the algorithm adds
precisely one item to the candidate sequence and removes at least one item from each window
in the projection. Therefore, Xs can at most grow by the number of items in the largest suffix,
and it directly follows that, for each generated candidate Zs ,

|Zs | ≤ |Xs |+ |Zmax|.

Finally, we can derive that we can prune a candidate pattern Xs and any supersequence Zs

if
mingap(Xs)+|Zmax| ≥α · (|Xs |+ |Zmax|).

This concludes the proof.

Note that the restriction Xs ∩Y = ; remains necessary because otherwise, the previous
inequality between minimal window length Wt (Xs) and its extension Wt (Zs) does not hold.
This mingap bound is thus only applicable to prune candidates when no repeating elements
are in any suffix of the current projection, that is Xs ∩Y =;.

70 CHAPTER 3. MINING QUANTILE-BASED COHESIVE PATTERNS

Example 3.2. We illustrate this upper bound with an example. Assume Xs = (a,b) and we
have the following set of projected windows:

P(a,b) = {(a,b,d ,d ,c), (a,_,b,d ,c,c), (a,_,_,b,c,e)}.

The union of the remaining items in the suffixes is Y = {c,d}∪ {c,d}∪ {c,e} = {c,d ,e}. However,
we want to count all occurrences of the repeating cs and ds, because Z(Xs ,Y) can contain
patterns such as (a,b,c,c) or (a,b,d ,d). We therefore take the multiset-union and compute
Y + = {c ,c ,d ,d ,e}. Using this definition the longest possible pattern would be bound by |Y +| = 5.
However, we can further lower this upper bound, by considering each window separately. Since
the longest suffix in our example has size 3, we will never be able to add more than 3 items to
Xs , which is why we define |Zmax| as

|Zmax| = max
S[ta ,tb]∈PXs

|suffix(S[ta , tb], Xs)|.

Example 3.3. As a second example, assume Xs = (a,b) and we have the following set of
projected windows:

P(a,b) = {(a,_,_,_,b,d , f ,_), (a,_,_,_,b,c,d ,_), (a,_,_,_,b,_,c,e)}.

The set of remaining items is Y = {c,d ,e, f }. Note that Xs ∩ Y = ;. Z(Xs ,Y) can contain
superpatterns such as (a,b, f), (a,b,d , f) or (a,b,c,c). Here, mingap(Xs) is 5 and |Zmax| is 2
(ignoring gaps). The longest possible pattern has length |Xs |+|Zmax| = 2+2. If we assume α= 1
than we can prune since 5+2 > 1 · (2+2).

Upper Bound on Quantile-based Cohesion

We now present a bound on the number of remaining cohesive minimal windows of any
candidate supersequence Zs ∈Z(Xs ,Y), even if repeating items are possible (that is Xs ∩Y 6= ;).
We can prune Xs , and all supersequences, if the maximal value for quantile-based cohesion is
lower than the current value of min_coh.

Theorem 3.2 (Upper bound on quantile-based cohesion). Let Xs be a candidate pattern and Y
the set of items that can still be added to Xs . Then for each Zs ∈Z(Xs ,Y) generated as candidate
by Algorithm 3.1,

Cquan(Zs) ≤Cmaxquan(Xs ,Y),

where

Cmaxquan(Xs ,Y) = 1.0− |{t | t ∈β∧Wt (Xs) ≥α · |Z ′
max|}|

support(Z ′
max)

,

|Z ′
max| = min(max_size, |Xs |+ |Y +|),

support(Z ′
max) = ∑

i ∈ Xs∪Y
support(i),

β= {t | 〈i , t〉 ∈S∧ i ∈ Xs ∧Ø〈 j , t〉 ∈S : j ∈ Y }.

Proof. For any pattern Zs we defined support using

support(Zs ,S) = |{t | 〈i , t〉 ∈S∧ i ∈ Zs}|.

3.3. MINING QUANTILE-BASED COHESIVE SEQUENTIAL PATTERNS 71

We can partition all items in Zs in two disjoint sets. Let Zs = (Xs ,Ys), then the items in Zs are
either in Xs \ Ys , or in Ys = (Ys \ Xs)∪ (Xs ∩Ys). We can rewrite the previous equation as:

support(Zs ,S) = |{t | 〈i , t〉 ∈S∧ i ∈ Xs \ Ys}∪ {t | 〈i , t〉 ∈S∧ i ∈ Ys}|.

This is important: as we allow for repetitions, the set Xs ∩Ys might not be empty. For example,
given Xs = (a,b) and Zs = (a,b, a) an occurrence of item 〈a, t〉 might have a minimal window as
the first item in Zs or as the third item in Zs . This complicates matters since we cannot state
that the minimal window at t of Xs is smaller or equal than that of Zs . Another issue is caused
since we allow multiple items to occur at the same timestamp t . We want to exclude timestamps
of items in Xs \ Ys also in Ys and we refine the previous equation to define the following disjoint
partition of timepoints:

support(Zs ,S) =|{t | t ∈β}∪ {t | t ∈ γ}|
=|{t | t ∈β}|+ |{t | t ∈ γ}|, where

βZs = {t | 〈i , t〉 ∈S∧ i ∈ Xs ∧Ø〈 j , t〉 ∈S : j ∈ Ys},

γZs = {t | 〈i , t〉 ∈S∧ i ∈ Ys}.

We now use this partition to bound the maximal number of minimal windows for any
supersequence. For any Zs ∈Z(Xs ,Y) it holds that

∀ t ∈βZs : Wt (Zs) ≥Wt (Xs). (1)

In other words, the minimal window length of any superpattern Zs is at least as high as the
minimal window length of Xs at a timestamp t where an item i ∈ Xs occurs, but no items from
Ys occur.

Given the current value of min_coh (the quantile-based cohesion of the kth pattern in
the current top-k, or 0 if we have found fewer than k patterns), we only want to enumerate
candidates Zs where Cquan(Zs) could turn out to be higher than or equal to min_coh. We now
derive:

Cquan(Zs) = |{t |t ∈ cover(Zs)∧Wt (Zs) <α · |Zs |}|
support(Zs)

= support(Zs)−1 · (|{t | t ∈βZs ∧Wt (Zs) <α · |Zs |}| +
|{t | t ∈ γZs ∧Wt (Zs) <α · |Zs |}|)

= 1.0− support(Zs)−1 · (|{t | t ∈βZs ∧Wt (Zs) ≥α · |Zs |}| +
|{t | t ∈ γZs ∧Wt (Zs) ≥α · |Zs |}|)

≤ 1.0− support(Zs)−1 · (|{t | t ∈βZs ∧Wt (Zs) ≥α · |Zs |}|). (2)

We finalise the proof by producing bounds for the main three elements of the above equation.
For every candidate Zs generated by Algorithm 3.1, we can bound the size of Zs , the size of
βZs , and the support of Zs . First of all, given that Algorithm 3.1 produces candidates by adding
items in Y + to Xs , until there are either no more items left to add or we have reached the size
threshold max_size, it directly follows that, for every candidate Zs generated by Algorithm 3.1,

|Zs | ≤ min(max_size, |Xs |+ |Y +|) = |Z ′
max|. (3)

Second, note that β⊆βZs , and, therefore

|{t | t ∈βZs ∧Wt (Zs) ≥α · |Zs |}| ≥ |{t | t ∈β∧Wt (Zs) ≥α · |Zs |}|. (4)

72 CHAPTER 3. MINING QUANTILE-BASED COHESIVE PATTERNS

Since β⊆βZs , from Equation 1 it follows that

∀ t ∈β : Wt (Zs) ≥Wt (Xs),

and, therefore,

|{t | t ∈β∧Wt (Zs) ≥α · |Zs |}| ≥ |{t | t ∈β∧Wt (Xs) ≥α · |Zs |}|. (5)

From Equation 3, it follows that

|{t | t ∈β∧Wt (Xs) ≥α · |Zs |}| ≥ |{t | t ∈β∧Wt (Xs) ≥α · |Z ′
max |}|, (6)

and, by combining Equations 4, 5 and 6, we obtain

|{t | t ∈βZs ∧Wt (Zs) ≥α · |Zs |}| ≥ |{t | t ∈β∧Wt (Xs) ≥α · |Z ′
max|}|. (7)

Finally, since any candidate pattern Zs can only contain items from Xs and Y , it follows that

support(Zs) ≤ ∑
i∈Xs∪Y

support(i) = support(Z ′
max). (8)

From Equations 2, 7 and 8, it now directly follows that

Cquan(Zs)

≤ 1.0− support(Zs)−1 · (|{t | t ∈β∧Wt (Xs) ≥α · |Z ′
max|}|)

≤ 1.0− support(Z ′
max)−1 · (|{t | t ∈β∧Wt (Xs) ≥α · |Z ′

max|}|)
=Cmaxquan(Xs ,Y).

This concludes the proof.

Example 3.4. We illustrate this bound using an example. Suppose Xs = (a,b) occurs 10 times
and Y = (c) occurs 2 times. The minimal window lengths of Xs are 2,2,2,30,30,30,30,30,∞
and ∞. Let us further assume that min_coh = 0.5 and α = 2. The maximal window length
possible is α ·3 = 6, and there are seven windows of Xs larger than 6. There is only one (non-
repeating) item {c} left in Y + and only Zs = Z ′

max(X) = (a,b,c) is possible. support((a,b,c)) = 12,
thus Cmaxquan(Xs ,Y) = 1− 7

12 = 5
12 which is lower than min_coh so we can prune (a,b,c) (and

any supersequences). We remark that, unlike pruning based on mingap, when Xs and Y are
not disjoint, we can still count windows for non-overlapping items in Xs , for example given
Xs = (a,b,c) and Y = {c,d}, we can compute all windows of (a,b,c) for all occurrences of items
in Xs \ Y = {a,b}.

3.4 Experiments

In our experiments, we use one synthetic dataset and three text datasets for easy interpretation
of patterns. We compare QCSP with three state-of-the-art methods in terms of performance
and the quality of output. FCIseq from Chapter 2 finds all cohesive itemsets, SKOPUS (Petitjean
et al. 2016) finds the top-k sequential patterns with the highest leverage, and GOKRIMP (Hoang
et al. 2014) finds a set of patterns that best compresses the input. For all three methods, we
use publicly available implementations developed in Java (Feremans 2019; Fournier-Viger et al.
2016). The implementation of QCSP in Java and used datasets are publicly available2. Since
we compare our method with state-of-the-art algorithms for both the single sequence and the
multiple sequences setting, we use two versions of each dataset, one for each setting.

2https://bitbucket.org/len_feremans/qcsp_public

https://bitbucket.org/len_feremans/qcsp_public

3.4. EXPERIMENTS 73

3.4.1 Datasets

The Synthetic dataset is created by generating a single sequence of 2000 items randomly selected
between 6 and 50. Next, we insert the sequential pattern (1,2,3,4,5) with at most 5 gaps at 40
random non-overlapping locations. We transform this sequence S into a set of sequences S ′

by using a sliding window of size 20. The Moby dataset consists of all words in the novel Moby
Dick written by Herman Melville (Melville 1851). We preprocessed the text using the Porter
Stemmer, and removed the stopwords. We transformed the single sequence S into a set of
sequences S ′ by creating a separate sequence for each sentence. JMLR consists of abstracts of
papers from the Journal of Machine Learning Research, where each abstract is preprocessed
as in Moby. Each abstract is considered a separate sequence. Since our method requires a
single sequence, we transform this dataset by concatenating the abstracts, adding α ·max_size
timestamps between any two abstracts, thus avoiding generating patterns that span over two
different abstracts. Finally, Trump consists of tweets of president Trump from 1 January 2016
until 2 October 2017 (Trump 2017). We removed all re-tweets and preprocessed the tweet
texts as in Moby, and converted into a single sequence as in JMLR. Table 3.1 shows the basic
characteristics of each dataset, where |Ω| denotes the number of distinct items in the dataset
and µ(S ′) the average length of a sequence in the multiple sequences setting.

Table 3.1: Characteristics of datasets for comparing the performance of QCSP versus state-of-
the-art methods

Dataset |S| |Ω| |S ′| µ(S ′)

Synthetic 2000 50 2000 20.0

Moby 113264 2059 10066 11.2

JMLR 75515 3846 787 96.0

Trump 57518 1069 5670 17.9

3.4.2 Performance Comparison

Runtime for QCSP and state-of-the-art methods

It is troublesome to compare the runtime of all algorithms directly for several reasons. First of
all, the runtime depends on the chosen parameters and input representation (single sequence
or many sequences), which are different for each method. Second, FCIseq solves a different
problem since it mines itemsets. And while QCSP allows sequential patterns to contain repeat-
ing items, this is not the case for SKOPUS or GOKRIMP. However, despite these restrictions,
we include this experiment to get an idea of the overall runtime required for each method. For
QCSP and SKOPUS, we set max_size = 5 and k = 50. For FCIseq, we set max_size = 5, and for
QCSP, we set α to 2. For all experiments, we use θ = 10, and remove infrequent items during
preprocessing. Since we cannot directly control the number of patterns in FCIseq, we report
the runtime for the run with the highest cohesion threshold that leads to discovering at least k
patterns. Finally, GOKRIMP has no parameters to tune.

Table 3.2 shows the runtimes on all datasets. We note that FCIseq is notably slower than
other methods, while GOKRIMP is notably faster. However, GOKRIMP is different in nature,
since it does not attempt to generate all candidates and performs greedy search using heuristics.
Furthermore, GOKRIMP always produced fewer than 50 patterns. Overall, we can conclude that
the runtime of QCSP is both acceptable and competitive.

74 CHAPTER 3. MINING QUANTILE-BASED COHESIVE PATTERNS

Table 3.2: Runtimes for QCSP and state-of-the-art methods on all datasets

Dataset FCIseq SKOPUS GOKRIMP QCSP

Synthetic 44.2s 19.8s 1.0s 1.7s

Moby 126.0s 47.8s 2.0s 18.4s

JMLR 255.4s 40.6s 2.0s 25.9s

Trump 196.9s 2.5s 5.0s 8.1s

Effect of Pruning

We now analyse the impact on performance of pruning based on mingap and based on an upper
bound on quantile-based cohesion. To evaluate the performance of our pruning technique, we
run our algorithm on the Synthetic and Moby datasets, while varying max_size, and mine the
top-k sequential patterns using prefix-projected pattern growth, with and without pruning. In
this experiment, α is set to 2.0 and k is set to 20.

In Figure 3.3 we show the number of candidates (in log scale) on the Synthetic and Moby
datasets, with and without pruning. We vary max_size between 2 and 11. From these results,
we conclude that pruning has a significant impact on the number of candidates, which are
reduced by an order of magnitude for patterns of larger sizes, thereby also reducing memory
consumption. Concerning performance, the number of candidates (and runtime) grows almost
exponentially with the maximal pattern length, which follows from the fact that the number of
possible candidate patterns also increases exponentially with O(Ωmax_size). We do not include
runtime plots, but for the Synthetic dataset, the increase in runtime is marginal, taking 2026
seconds without pruning and 1880 seconds with pruning for max_size = 11. For the Moby
dataset, the increase in runtime is high when max_size is high, taking 196 minutes without
pruning and 113 minutes with pruning for max_size = 11. The moderate increase in runtime on
the Synthetic dataset, and lower values of max_size on the Moby dataset, is due to the fact that
during each iteration we must compute the pruning functions, thereby computing the number
of minimal windows of Xs based on PXs , which generates overhead. Overall, we conclude that
pruning on a larger search space seems to have a large effect on runtime, while for smaller
search space, the effect is marginal. We remark that in future work it would be interesting to
investigate approximations based on the current bounds, that potentially prune slightly fewer

1 2 3 4 5 6 7 8 9 10 11
max_size

104

106

108

1010

No
. o

f c
an

di
da

te
s

Pruning disabled
Pruning enabled

(a) On Synthetic dataset

1 2 3 4 5 6 7 8 9 10 11
max_size

104

106

108

1010

No
. o

f c
an

di
da

te
s

Pruning disabled
Pruning enabled

(b) On Moby dataset

Figure 3.3: Number of candidates (log scale) visited by QCSP with and without pruning

3.4. EXPERIMENTS 75

candidates, but are faster to compute in any setting. We also ran QCSP for varying the value of k
between 10 and 10000 on Moby using a fixed max_size of 5. The effect of a higher k on runtime
behaviour is not very large, resulting in a runtime of 5 seconds for k = 10 and slightly increased
to 25 seconds for k = 10000.

We conclude that, on the selected datasets, pruning reduces the number of candidates
by an order of magnitude and improves runtime performance for higher values of max_size.
We also conclude that the effect of a higher k on runtime behaviour is not very large. The
effect of varying max_size is clear — if max_size increases, the total runtime grows rapidly since
the number of possible candidate patterns increases exponentially. Even so, on Moby, our
largest dataset, with a length of over 100000 items, finding the top 20 quantile-based cohesive
sequential patterns up to a maximal size of 10 took only 39 minutes.

3.4.3 Quality Comparison

In our final set of experiments, we compare the quality of the patterns found by the different
methods. We use the same parameters as in the previous Section and increase k to 250.

Synthetic Datasets

Table 3.3 shows the top 5 sequential patterns discovered by the various methods on the Synthetic
dataset, where we embedded the sequential pattern (1,2,3,4,5). We see that both GOKRIMP

and QCSP rank the desired pattern first. FCIseq ranks the pattern in the 9th position because,
due to the randomness of gaps in our generator, for some subsequences (but not all) the ratio
between pattern length and average minimal window length is larger. Surprisingly, SKOPUS
does not report the sequence in the top 500. It seems that the definition of expected support
appears to be biased towards shorter sequential patterns.

Table 3.3: Top 5 sequential patterns for QCSP and state-of-the-art methods on Synthetic

FCIseq SKOPUS GOKRIMP QCSP

{1,2} 3,4,5 1,2,3,4,5 1,2,3,4,5

{3,4} 2,3,4 3,4,5 2,3,4,5

{4,5} 1,2,3 1,2,3 3,4,5

{3,4,5} 2,3,5 4,5 4,5

{1,2,3} 2,4,5 1,2 3,4

Real-world Datasets

Table 3.4 shows the top 5 sequential patterns discovered by the various methods on the text
datasets, with patterns found only by a single method shown in bold (we provide the top 20 for
all methods in Appendix B). FCIseq reports representative sequential patterns as post-processing,
meaning that some occurrences of the sequential pattern might be missed (e.g., if a minimal
window of {b, a} is smaller than the minimal window of sequential pattern (a,b)). Additionally,
QCSP is robust to outliers and reports sequential patterns with repeating items. Therefore,
we have omitted the results for FCIseq as the output of QCSP will subsume the representative
sequential patterns reported by FCIseq.

76 CHAPTER 3. MINING QUANTILE-BASED COHESIVE PATTERNS

Table 3.4: Top 5 sequential patterns for QCSP and the state-of-the-art methods on Moby, JMLR
and Trump

SKOPUS GOKRIMP QCSP

sperm, whale sperm, whale moby, dick

white, whale moby, dick mrs, husseyM
oby

though, yet white, whale ii, octavo
old, man mast, head crow, nest
moby, dick old, man iii, duodecimo

paper, show support, vector, machin mont, carlo
paper, result real, world nearest, neighborJM

LR

paper, experi machin, learn support, vector

paper, algorithm state, art http, www
support, vector reproduc, hilbert, space cross, valid

make, america make, america, great, again puerto, rico

make, great U,S witch, huntTru
m

p

crooked, hillary crooked, hillary elizabeth, warren

hillary, clinton fake, news las, vega
america, great ted, cruz goofy, elizabeth

SKOPUS, GOKRIMP and QCSP all seem to report interesting patterns. The main difference
between the patterns produced by QCSP and GOKRIMP is that the former ranks on Cquan and
only considers the proportion of cohesive occurrences. As such, a sequential pattern that
occurs cohesively in 2 out of a total of 2 occurrences, ranks as highly as a sequence that occurs
cohesively in 100 out of a total of 100 instances. By sorting the top 250 quantile-based cohesive
patterns on support rather than Cquan, we get a ranking very close to GOKRIMP. In other words,
most of the patterns found by GOKRIMP are ranked relatively highly by QCSP, but, crucially, not
vice versa — many interesting patterns discovered by QCSP are not found at all by GOKRIMP.
SKOPUS mostly reports short patterns, and its top 250 for Trump consists only of patterns of
length 2. There is little overlap between the output of SKOPUS and QCSP. For instance, in
JMLR, 59 patterns found in the top 250 by SKOPUS start with paper, and 44 end with result,
while the top 250 produced by QCSP contains no patterns starting with paper, and only one
pattern ends with result, namely (experi,result). Unlike other methods, QCSP ranks many
long patterns in the top 250. Patterns such as (crooked, hillary, clinton) and (repeal, replace,
obamacare) in the Trump dataset, or (reproduce, kernel, hilbert, space) and (markov, chain,
monte, carlo) in the JMLR dataset are not found in the top 250 of the other methods at all.
Less frequent patterns with high quantile-based cohesion, such as (las,vegas), (mrs,hussey),
(nearest,neighbor), (cross,validation) or (bayesian, network) are not reported at all in the top
250 of SKOPUS or the limited pattern set of GOKRIMP, despite the fact that, for example, 46
out of 47 occurrences of (puerto,rico) are cohesive in Trump tweets, which clearly makes it an
important pattern. We conclude that QCSP is capable of finding interesting patterns that other
methods fail to discover, while not missing out on interesting patterns that other methods do
find.

3.5. RELATED WORK 77

3.5 Related Work

Frequent Pattern Mining

In a single long input sequence, WINEPI (Mannila et al. 1997), LAXMAN (Laxman et al. 2007)
and MARBLES (Cule et al. 2014) mine all frequent episodes, where frequency is defined using
sliding windows, minimal windows and weighted minimal windows, respectively. It has been
experimentally validated in recent research that the top-k most frequent patterns are often not
very interesting (Cule et al. 2016; Petitjean et al. 2016; Fowkes and Sutton 2016).

Mining Interesting Patterns

SKOPUS by Petitjean et al. (2016) and EPIRANK by Tatti (2015) are two approaches that rank
sequential patterns and general episodes, respectively, based on an elaborate definition of
leverage. We have compared our method with SKOPUS and found that we typically rank longer
patterns higher. EPIRANK ranks episodes based on the output of an existing frequent sequential
pattern miner (Tatti and Cule 2012). As such, it is unlikely that less frequent or longer, but
strongly quantile-based cohesive, sequential patterns reported by QCSP would be discovered
by this method. Theoretically, we could mine a huge set of candidate sequential patterns by
setting the support threshold very low, but this would result in pattern explosion, especially for
enumerating longer patterns.

Related to EPIRANK, Tatti (2014a) also proposed a way to measure the mean and variance of
minimal windows of episode occurrences, and rank episodes by comparing these values with
the expected length according to the independence model. Like EPIRANK, this method also
requires as input the output of an existing frequency based episode miner, making it, too, either
unlikely or inefficient to produce less frequent or longer cohesive candidates than our direct
approach.

Pattern reduction based on Minimal Description Length (MDL) produces a smaller set of
patterns that covers the sequence best. We have compared with GOKRIMP (Hoang et al. 2014),
which is related to other MDL-based algorithms such as SQS (Tatti and Vreeken 2012) and
ISM (Fowkes and Sutton 2016). All these methods take multiple sequences as input, which
is different from our approach. Another difference is that rather than enumerating as few
candidates as possible and then selecting the best candidates according to an interestingness
measure, they employ heuristic search to build a set of non-redundant patterns incrementally.
Applying heuristic search to finding top quantile-based cohesive patterns is also feasible.
However, we would lose the guarantee that our output contains the exact set of top-k most
quantile-based cohesive patterns.

Constrained Frequent Pattern Mining

QCSP is also related to research in constraint pattern mining. Pei et al. (2007) defines a generic
sequential pattern algorithm, PG, based on pattern-growth, that can handle a variety of con-
straints. Like Pei et al. we use a length constraint induced by max_size and a gap constraint
induced by α ·max_size. However, unlike PG, our algorithm is optimised by pruning using an
upper bound on quantile-based cohesion and discovers patterns ranked according to this ro-
bust interestingness measure directly. Additionally, we take a single sequence as input and use
minimal windows.

78 CHAPTER 3. MINING QUANTILE-BASED COHESIVE PATTERNS

Cohesion-based Pattern Mining

As mentioned in Section 3.1, our definition of quantile-based cohesion for sequential patterns
is an extension of the definition of cohesion for itemsets discussed in the previous chapter
(Cule et al. 2019, 2016). For future work, it would be interesting to study if the robust definition
of quantile-based cohesion and the QCSP algorithm could be applied for discovering quantile-
based cohesive itemsets, episodes and association rules.

3.6 Conclusion

In this Chapter, we presented a novel method for finding interesting sequential patterns in event
sequences. Compared to other interestingness measures, our quantile-based cohesion is not
biased towards shorter patterns or patterns consisting of very frequent items. Furthermore, our
measure is robust to the presence of outliers, and flexible, since we do not use a sliding window
of fixed length, as is common in existing methods. We define quantile-based cohesion as the
proportion of occurrences of the pattern that are cohesive, i.e., where the minimal window
is small. This measure is easy to interpret and reports both frequent and less frequent, but
always strongly correlated, sequential patterns, that other methods often fail to find. Since
quantile-based cohesion is not an anti-monotonic measure, we rely on an upper bound to
prune candidate patterns and their supersequences. We include this pruning function in a
variant of constraint-based sequential pattern mining based on pattern growth and show both
theoretically and empirically that our algorithm works efficiently.

In future work, we intend to investigate adapting our algorithm for the anytime setting, by
prioritising more likely candidates in order to find the most interesting patterns quickly, rather
than waiting for the entire output. Additionally, we are interested in applications where pattern
mining is not the end goal in itself. For example, quantile-based cohesive sequential patterns
could be used in tasks such as prediction, classification or anomaly detection within temporal
data.

“Artificial intelligence would be the ultimate version of Google.
The ultimate search engine that would understand everything on the web.

It would understand exactly what you wanted,
and it would give you the right thing.
We’re nowhere near doing that now.

However, we can get incrementally closer to that,
and that is basically what we work on.”

- Larry Page

CHAPTER 4
Extreme Multi-label Classification using

Instance and Feature Neighbours

Extreme multi-label classification problems occur in different applications such as
prediction of tags or advertisements. In this Chapter1, we propose a new algorithm
that predicts labels using a linear ensemble of labels from instance- and feature-based
nearest neighbours. In the feature-based nearest neighbours method, we precompute a
matrix containing the similarities between each feature and label. For the instance-
based nearest neighbourhood, we create an algorithm that uses an inverted index to
compute cosine similarity on sparse datasets efficiently. We extend this baseline with a
new top-k query algorithm that combines term-at-a-time and document-at-a-time
traversal with pruning based on a partition of the dataset.

On ten real-world datasets, we find that our method outperforms state-of-the-art
methods such as multi-label k-nearest neighbours, instance-based logistic regression,
binary relevance with support vector machines and FASTXML on different evaluation
metrics. We also find that our algorithm is orders of magnitude faster than these
baseline algorithms on sparse datasets, and requires less than 20 ms per instance to
predict labels for extreme datasets without the need for expensive hardware.

1This chapter is based on work published in the International Journal of Data Science and Analytics as
“Combining instance and feature neighbours for extreme multi-label classification” by Len Feremans, Boris Cule,
Celine Vens and Bart Goethals (Feremans et al. 2020).

82 CHAPTER 4. EXTREME MLC USING INSTANCE AND FEATURE KNN

4.1 Introduction

Multi-label classification problems occur in a large variety of domains, such as text categoriza-
tion, where a document has multiple categories, scene classification, where various regions
of an image have a label, and bioinformatics, where we are interested in predicting numerous
functions for a gene. In this work, we consider sparse datasets that occur naturally in these do-
mains, i.e., where features correspond to patterns, such as term frequency-inverse document
scores for word occurrences in texts or clusters in images.

Two main strategies exist for solving the multi-label task. The first strategy is to reduce the
multi-label problem into a combination of single-label problems. The binary relevance method
ignores label dependencies and trains a separate model to predict each label independently
of other labels using one-versus-all sampling (Tsoumakas and Katakis 2006). Classifier chains
approximate label dependencies, but also require to train a separate model for each label (Read
et al. 2011). If the set of labels L is large, training |L| different models using binary relevance or
classifier chains is not scalable. A second strategy is to adapt existing single-label classifiers to
output multiple labels. Well-known adaptations of single-label classification techniques have
been made to adaBoost (Schapire and Singer 1999), decision trees (Vens et al. 2008), support
vector machines (Elisseeff et al. 2001), k-nearest neighbour (Zhang and Zhou 2007) and others.

Trending challenges in multi-label classification research include methods that account
for possible dependencies between labels, deal with label skew (where most labels are only cov-
ered by a few instances), and consider the computational cost of building a model (Gibaja and
Ventura 2014). Extreme multi-label classification is an active research topic that considers the
computational cost of generating a model when the number of labels is very high. Recently sev-
eral methods have been proposed that try to address these challenges. These methods reduce
the dimensionality of the label space (Tagami 2017; Bhatia et al. 2015) or build a hierarchical
ensemble of tree-based models, such as FASTXML, where the number of models to train is loga-
rithmic in the number of labels (Prabhu and Varma 2014). While these approaches are accurate
and fast at testing time, they require significant resources at training time. Moreover, each of
these methods needs to tune many hyperparameters for optimal performance.

Related to multi-label classification is the field of recommender systems. Here, the task is to
rank items a user might click, often based on past preferences. Two well-known recommender
systems are user-based (Resnick et al. 1994; Breese et al. 2013) and item-based collaborative
filtering (Sarwar et al. 2001). An advantage of both approaches is that the results can be
explained, i.e., using “people who liked this item also liked" type of explanations. Applying
these techniques for multi-label classification is a major goal of this work.

User-based collaborative filtering is a memory-based learning algorithm where we need to
compute the nearest neighbours. The problem of finding the exact set of k-nearest neighbours
is studied under different names: all pairs similarity search (Bayardo et al. 2007; Awekar and
Samatova 2009), top-k set similarity joins (Xiao et al. 2009), k-nearest neighbour graph con-
struction (Anastasiu and Karypis 2016) and top-k queries (Fagin et al. 2003; Ding and Suel 2011;
Fontoura et al. 2011). We propose a new algorithm to compute the exact k-nearest neighbours
using pruning. Similar to search problems in information retrieval, we want to find a set of in-
stances in our training dataset that is the most similar to a test instance for which we wish to
predict labels. A key difference with information retrieval is that our test instances, or queries,
typically have many more nonzero feature values than is usual in search, which has a severe
impact on performance. Therefore, we adapt research from information retrieval and create a
new top-k query algorithm. Technically, we combine term-at-a-time and document-at-a-time
traversal using Weak-AND pruning (Broder et al. 2003). Different from the previous work in

4.2. PROBLEM SETTING 83

information retrieval by Fontoura et al. (2011), our primary reason for first traversing the in-
stances using term-at-a-time, is based on finding proper constraints such that more candidate
instances get pruned using a tighter upper-bound.

In this work, we make the following contributions. First, we implement instance-based
k-nearest neighbours, an adaptation of user-based collaborative filtering, for multi-label classi-
fication. Next, we implement the feature-based k-nearest neighbours method, an adaptation
of item-based collaborative filtering, that computes the nearest labels for each feature in a
column-wise manner. Finally, we combine both instance- and feature-based neighbourhood
predictions using a linear ensemble. Second, we make the k-nearest neighbours search scal-
able for sparse datasets with an extremely high number of labels, features and instances. The
baseline method uses an inverted index and organises computation so that we only perform
nonzero similarity term computations, which we improve with a top-k query algorithm.

We validate the accuracy of our method on 10 real-world datasets and compare with multi-
label classification methods such as multi-label k-nearest neighbours (Zhang and Zhou 2007),
instance-based logistic regression (Cheng and Hüllermeier 2009), binary relevance with sup-
port vector machines as a base learner and FASTXML (Prabhu and Varma 2014) on different
evaluation metrics. We also compare the pruning ability and runtime performance of our
k-nearest neighbours algorithm with state-of-the-art top-k query retrieval methods, such as
term-at-a-time traversal, in-memory document-at-a-time traversal with Weak-AND pruning
(Broder et al. 2003; Fontoura et al. 2011) and Fagin et al. (2003) threshold algorithm. Compared
to the original version of this paper (Feremans et al. 2017b), we improve our algorithms for
making predictions in different ways and propose a new algorithm to compute the nearest
neighbours more efficiently based on top-k queries.

The remainder of this Chapter is organised as follows. In Section 4.2 we define the problem
setting. In Section 4.3 we describe our algorithm for multi-label classification. In Section 4.4 we
describe our method for finding the k-nearest neighbours more efficiently. We experimentally
validate our method and compare it with existing state-of-the-art methods in Section 4.5 and
discuss related and future work in Section 4.6. Finally, we conclude in Section 4.7.

4.2 Problem Setting

Definition 4.1 (Multi-label dataset). Let X ∈RN×M denote the set of training points and let Y ∈
{0,1}N×L denote the set of labels. The training dataset D consists of N instances D = {(x1,y1), . . . ,
(xN ,yN)} where each M-dimensional feature vector xi ∈RM is associated with an L-dimensional
label vector yi ∈ {0,1}L .

We use xi , j to denote the value of feature j for instance i and yi , j to denote the (binary)
value for label j of instance i . In the multi-label datasets we encountered, feature values are
real numbers higher than or equal to zero. We have not experimented with negative values but,
theoretically, this should be possible. Alternatively, we can transform feature values to positive
numbers, i.e., using minmax normalisation. For datasets consisting of categorical attributes we
use one-hot encoding.

Definition 4.2 (Cardinality). We define feature cardinality as the average number of nonzero
features for each instance. Analogously, we define label cardinality as the average number of
labels for each instance, that is:

fcard(D) = 1

N

N∑
i=1

M∑
j=1

δ(xi , j)

84 CHAPTER 4. EXTREME MLC USING INSTANCE AND FEATURE KNN

lcard(D) = 1

N

N∑
i=1

L∑
j=1

yi , j ,

where δ(xi , j) is 1 if xi , j > 0 and 0 otherwise.

Definition 4.3 (Column). We use f j = {x1, j , . . . , xN , j } ∈ RN to denote the column of values for
feature j . Likewise we use l j = {y1, j , . . . , yN , j } ∈ {0,1}N to denote the column of values for label j .

Definition 4.4 (Density). We define feature and label density as

fdens(f j) = |{xi , j | xi , j ∈ f j ∧xi , j 6= 0}|
N

ldens(l j) = |{yi , j | yi , j ∈ l j ∧ yi , j 6= 0}|
N

.

For sparse datasets, we observe that feature and label cardinality are small compared to M
and L, and that there is a skewed distribution where only a few features (or labels) have a high
density, and most features (or labels) have a density close to 0.

Problem 4.1 (Multi-label classification). The task for multi-label classification is to predict a
subset of labels for each test instance xq ∈ Xtest for which the set of labels yq is unknown. Formally
we have to learn a function h : X → {0,1}L that optimises a selected evaluation metric.

The function h can be implemented as h(x) = t(f (x)) where f produces a confidence (or
probability) score for each label and t is a threshold function. For instance, we can employ
the binary relevance method and learn a binary classifier hλ : X → {¬λ,λ} for each label λ ∈ L
(Spyromitros et al. 2008). We can split this classifier into fλ : X → [0,1] to compute a confidence
score for each label and tλ : [0,1] → {¬λ,λ} to compute the final decision. In essence, the
proposed method is a binary relevance method were we first compute scores for each label and
then apply a single threshold, e.g. only if fλ(xq) Ê 0.5 we predict label λ.

4.3 Linear Combination of Instance- and Feature-based kNN

Our classification method consists of instance-based k-nearest neighbours (kNN), feature-
based kNN and the linear combination of both predictions.

4.3.1 Instance-based kNN

The algorithm begins by searching for the k-nearest neighbours xi in the training data for each
test (or query) instance xq using cosine similarity.

Definition 4.5 (Instance-based cosine similarity). The cosine similarity between two feature
vectors xq and xi is defined as

simINS(xq , xi) = xq · xi

‖xq‖2 · ‖xi‖2
= xq · xi =

M∑
j=1

xi , j xq , j ,

where we ensure that all feature vectors are normalised to unit length during preprocessing.

4.3. LINEAR COMBINATION OF INSTANCE- AND FEATURE-BASED KNN 85

In most multi-label datasets feature values are real numbers higher than or equal to zero
and the cosine similarity is between 0 and 1. For dealing with negative features values we can
compute the cosine similarity between -1 and 1, where a negative similarity is indicative that
vectors are opposite. Normalisation has the advantage that we correct against the length of each
instance, e.g., a long and short document are given equal weight. By normalising all feature
vectors during preprocessing we ensure that the norm is computed once for each training
instance, instead of computing the norm each time we compare a pair of instances during
k-nearest neighbours search.

Definition 4.6 (Instance-based confidence score). To compute the confidence score for instance
xq for (a single) label y j we define the following function:

ŷ INS
q , j =

∑
xi∈KNN(xq)

yi , j · simINS(xq , xi)α∑
xi∈KNN(xq)

simINS(xq , xi)α
.

where
KNN(xq) = {xi | xi ∈D∧Øx1, . . . , xk ∈D : ∀ j ∈ {1, . . . ,k} :

simINS(x j , xq) < simINS(xi , xq)}

This function is an adaption of user-based collaborative filtering (Wang et al. 2006), where
the similarity in feature values replaces the similarity between user preferences, and we do not
recommend an item but a label. Also, we apply a power transformation to the similarities. For
example, if we apply the power α= 2, we give similarities closer to 1 more weight compared to
similarities closer to 0.01. Vice versa, α= 0.5 has the reverse effect.

Algorithm

We retrieve the k-nearest neighbours by using an inverted index (IID) and compute only
nonzero terms for similarity. CREATEINDEX is shown in Algorithm 4.1. We associate each
feature with a set of (training) instances and their nonzero feature value.

In INSTANCEKNNSEARCH, shown in Algorithm 4.2, we compute the cosine similarity between
xq and all instances incrementally thereby only computing nonzero terms of each dot product.
We first loop over each nonzero feature xq , j , then fetch all candidates xi that have a (nonzero)
xi , j value from the IID and then increment the partial dot product xq , j · xi , j . Finally, we use
partial sort, i.e., using heap sort, to maintain the top k instances with the highest cosine
similarity.

Algorithm 4.1: CREATEINDEX(D) Creates an inverted index for instance-based kNN
baseline

Input : A dataset D
Result: An inverted index (IID) of the dataset

1 IID ← EMPTY_HASH_MAP();
2 for xi in X do // For each instance
3 for xi , j 6= 0 in xi do // For each nonzero feature value
4 IID[j] ← IID[j]∪〈xi , xi , j 〉; // Add to inverted index
5 return IID;

86 CHAPTER 4. EXTREME MLC USING INSTANCE AND FEATURE KNN

Algorithm 4.2: INSTANCEKNNSEARCH(xq ,k, IID) Finds the k-nearest neighbours for
xq in D

Input : A query instance xq , number of neighbours k, IID
Result: k-nearest neighbours and their similarities

1 S ← EMPTY_HASH_MAP();
2 for xq , j 6= 0 in xq do // For each nonzero feature value in xq

3 for 〈xi , xi , j 〉 in IID[j] do // Get instances from IID
4 Sq ,i ← Sq ,i +xq , j · xi , j ; // Compute similarity term
5 KNN ← HEAP_SORT_TOP_K(S,k);
6 return KNN;

We compute the prediction scores for each label using INSTANCEKNNPREDICT, shown in
Algorithm 4.3. We only compute predictions for labels that are present in any of the k-nearest
neighbours. As in INSTANCEKNNSEARCH, we organise the computation so that we only compute
nonzero increments to each label score. Remark that in our implementation, we compute
similarities and predictions in parallel. We initialise shared hash tables statically, so subsequent
updates to partial scores (or similarities) from different threads can occur in a lock-free manner
(Liu 2015). This results in performance gains almost linear with the number of processors.

Algorithm 4.3: INSTANCEKNNPREDICT(xq , KNN, α) Computes instance-based confi-
dence scores for labels

Input : A query instance xq , KNN contains the k-nearest neighbours (and their
similarities), α for the power transform

Result: Prediction scores for labels

1 ŷ ← EMPTY_HASH_MAP();
2 for xi in KNN do // For each instance in kNN
3 for yi , j 6= 0 ∈ yi do // For each nonzero label
4 ŷ j ← ŷ j +Sαq ,i ; // Compute confidence score term
5 normalise ŷ with

∑
xi∈KNN Sαq ,i ;

6 return ŷ;

Complexity

For instance-based kNN search the complexity is O(N ×M), but in practice, we observe that
the average runtime is closer to O(ñ × m̃) for sparse datasets. Here ñ is proportional to the
average number of candidate instances, i.e., instances fetched from the inverted index, and
m̃ is proportional to the feature cardinality. We will analyse the runtime of this algorithm in
Section 4.5. We remark that the expensive neighbourhood search is performed once and is
independent of the number of labels L (Spyromitros et al. 2008).

Hyperparameter Optimalisation

An essential advantage of our method is that for optimising k using grid search we need to
compute the nearest neighbours only once. First, we search for the nearest neighbours with
a maximal value of kmax. For smaller values of k, we just take the first k values of the cached

4.3. LINEAR COMBINATION OF INSTANCE- AND FEATURE-BASED KNN 87

kmax-nearest neighbours. We argue that this makes k a virtual hyperparameter, meaning that
we optimise it efficiently on a validation set. This is important as we compute a weighted
confidence score and often the optimal value of k is quite large, e.g., 100 or 200. We remark
that for other kNN based methods the optimal value of k is quite small, e.g., 5 or 10 and this
optimisation is less important.

Second-order Instance Variation

A possible disadvantage of the instance-based kNN method is that we ignore inter-label de-
pendencies: the prediction for a given label is obtained independently of the values of other
labels. We propose an extension that uses the second-order neighbourhood to handle this situ-
ation. Details on this variation of instance-based kNN and experimental results are discussed
in Appendix C.

4.3.2 Feature-based kNN

Feature-based kNN is an adaptation of item-based collaborative filtering for multi-label classi-
fication (Sarwar et al. 2001).

Definition 4.7 (Feature-based cosine similarity). For feature-based predictions, we compute the
cosine similarity between each feature column fi and each label column l j using,

simFL(fi , l j) = fi · l j

‖ fi‖2 · ‖l j‖2
= fi · l j =

N∑
k=1

xk,i yk, j ,

where we make sure that all feature and label vectors are normalised to unit length during
preprocessing.

Definition 4.8 (Feature-based confidence score). We compute the confidence score for a test
instance xq and a label y j using:

ŷ FL
q , j =

∑M
i=1 xq ,i · simFL(fi , l j)β∑M

i=1 xq ,i
,

where we apply the power β to the similarities.

We compute the full similarity matrix between all pairs of feature and label columns at
training time. When L is extremely large, we consider a variation to feature-based kNN, that
only computes a (nonzero) prediction for labels that occur at least once in the neighbourhood,
i.e.,

y j ∈
⋃

xq ,i∈xq∧xq ,i 6=0
KNN(fi),

which is more scalable given an extreme number of labels.

Algorithm

For feature-based kNN we first compute a matrix containing the similarities between all features
and labels in D. We use sparse data structures as we assume most values for label column
y j and feature column fk will be 0. We use a technique similar to INSTANCEKNNSEARCH and
compute the feature-based cosine similarity incrementally. CREATESIMILMATRIX is shown in
Algorithm 4.4. First, we create an index that associates each of the L labels with a set of positive

88 CHAPTER 4. EXTREME MLC USING INSTANCE AND FEATURE KNN

Algorithm 4.4: CREATESIMILMATRIX(D) Computes similarities between all features
and labels for feature-based kNN

Input : A dataset D
Result: Similarity matrix S

/* Create inverted index for labels */
1 IID ← EMPTY_HASH_MAP();
2 for 〈xi , yi 〉 in D do // For each instance
3 for yi , j 6= 0 in yi do // For each nonzero label value
4 IID[j] ← IID[j]∪ {xi };
/* Compute similarities */

5 S ← 0.0M×L ;
6 for y j 6= 0 in IID do // For each label
7 for xi in IID[j] do // Get instances from IID
8 for xi ,k 6= 0 in xi do // For each nonzero feature k
9 S j ,k ← S j ,k +xi ,k · yi , j ; // Compute similarity term

10 return S;

instances. After indexing, we fetch positive instances xi for each label. For each instance xi ,
we traverse over each nonzero feature xi ,k and compute a nonzero term of the dot product
between label y j and feature fk .

FEATUREKNNPREDICT is shown in Algorithm 4.5. We follow a similar approach as INSTANCE-
KNNPREDICT to only compute nonzero terms of each confidence score. We remark that we also
experimented with an alternative confidence score that considers the k nearest features for
each label, but in preliminary experiments, this did not increase average results while requiring
an extra hyperparameter.

Algorithm 4.5: FEATUREKNNPREDICT(xq ,S,β) Computes feature-based confidence
scores for labels

Input : A query instance xq , a similarity matrix S, β for the power transform
Result: Prediction scores for labels

1 ŷ ← EMPTY_HASH_MAP();
2 for xq ,i 6= 0 in xq do // For each nonzero feature

// For each label with nonzero similarity with feature
3 for S j ,i 6= 0 ∈ S∗,i do

4 ŷ j ← ŷ j +xq ,i ·Sβj ,i ; // Compute confidence score term
5 normalise ŷ with

∑
xq ,i ;

6 return ŷ;

Complexity

Computing the similarity matrix has a complexity of O(1
2 M ×L × N). However, in practice

runtime is closer to O(1
2 M × l̃ × ñ) for sparse datasets. Here l̃ is proportional to the average

number of candidate labels, that is the number of labels sharing at least one instance with
each feature and ñ is proportional to the average number of nonzero feature values (or labels)
column-wise. We observe that the similarity matrix can be computed once at training time

4.3. LINEAR COMBINATION OF INSTANCE- AND FEATURE-BASED KNN 89

for all test instances, while at test time only prediction scores have to be computed. This
makes feature-based kNN very efficient and is arguably one of the reasons why item-based
collaborative filtering is so popular in real-world web applications.

4.3.3 Linear Combination

We introduce a straightforward ensemble method based on the Linear Combination of the
confidence scores of the Instance- and Feature-based k-nearest neighbours (LCIF). Combi-
nations of the two techniques have been studied in collaborative filtering research, but not in
multi-label classification (Wang et al. 2006; Verstrepen and Goethals 2014).

Definition 4.9 (LCIF confidence score). We compute the confidence score for test instance xq for
label yi using

ŷq ,i =λ ŷ INS
q ,i + (1−λ) ŷ FL

q ,i ,

where λ ∈ [0,1] is a hyperparameter that is optimised on a validation sample for each evaluation
metric.

For datasets with many labels we compute this score only for candidate labels, that is,
labels i that have a nonzero score for either ŷ INS

q ,i or ŷ FL
q ,i . The main LCIF algorithm is shown in

Algorithm 4.6.

4.3.4 Thresholding

To obtain a set of predicted labels, we apply a single threshold (Read et al. 2011; Triguero and
Vens 2016).

Definition 4.10 (Single threshold). Given confidence scores ŷq , j for instance xq and each label
y j , we predict a set of labels using a single threshold t :

h(xq) = {y j | ŷq , j >= t }, ∀y j ∈ L.

We determine t automatically by selecting the value of t that minimises the difference in
label cardinality between the actual and predicted label set. That is,

argmin
t

∣∣∣∣∣ 1

N

N∑
i=1

L∑
j=1

δ(ŷi , j > t)− lcard(D)

∣∣∣∣∣ ,

where δ(ŷi , j > t) returns 1 if the confidence score is higher than t and 0 otherwise. Alternatively,
we make use of a label-specific threshold (Yang 2001; Draszawka and Szymański 2013). This
allows us to lower the threshold for minority labels in imbalanced datasets.

Definition 4.11 (Label-specific threshold). We predict a set of labels using a separate threshold
ty j for each label y j :

h(xq) = {y j | ŷq , j >= ty j }, ∀y j ∈ L

We remark that for many multi-label datasets, there is at least one label for every instance.
Therefore, if the highest-scoring label is below the threshold, we ignore the threshold value (Spy-
romitros et al. 2008).

90 CHAPTER 4. EXTREME MLC USING INSTANCE AND FEATURE KNN

Algorithm 4.6: LCIF(D, Xtest ,k,α,β,λ, t) Predicts labels based on a linear combination
of instance- and feature-based weighted similarities

Input : A training dataset D, one or more test instances in Xtest , number of neighbours
k, parameters α and β for the power transform, λ for the linear combination and
t the single threshold

Result: Predicted labels for each instance in Xtest

/* Train: create index and feature-based similarity matrix */
1 IID ← CREATEINDEX(D);
2 S ← CREATESIMILMATRIX(D);
/* Predict: compute kNN and predictions for each test instance */

3 Ŷ ←;;
4 for xq in X test do
5 KNNq ← INSTANCEKNNSEARCH(xq ,k, IID);
6 ŷINS

j ← INSTANCEKNNPREDICT(xq , KNNq ,α);

7 ŷFL
q ← FEATUREKNNPREDICT(xq ,S,β);

8 ŷLCIF
q ←λ ŷINS

q + (1−λ) ŷFL
q ;

9 ŷq ← {ŷq , j | ŷq , j ∈ ŷLCIF
q : ŷq , j ≥ t };

10 Ŷ ← Ŷ ∪ ŷq ;
11 return Ŷ ;

4.4 Fast kNN Search

A problem with the instance-based kNN search is that because of its inherent O(N) complexity
to search for the k-nearest neighbours, it does not scale to extreme datasets. In the previous
section, we created a baseline algorithm optimised for sparse datasets. In this section, we
improve on this baseline. This is important in interactive applications since we must perform
the search at test time and every millisecond is important.

4.4.1 Indexing

The problem of instance-based kNN is similar to top-k queries algorithms in information
retrieval. A key difference, however, is that search queries are typically much shorter, having
less than 10 terms. Real-world search engines often limit search queries to 50 terms. In our case,
each query is a test instance, that consists of many more nonzero dimensions on average. We
will show that existing state-of-the-art top-k query algorithms are less efficient in this setting.
Therefore, we propose a new top-k query algorithm for computing the exact set of k-nearest
neighbours ranked on cosine similarity.

Top-k Query Algorithm

Our method is an extension of the work of Fontoura et al. (2011) that combines two ways to
traverse the most relevant instances (or documents) given a certain test instance (or query):
Document-at-a-time (DAAT) and Term-at-a-time (TAAT). Using this framework, Algorithm 4.2
computes cosine similarity following a TAAT strategy, that is, for every nonzero feature, or term,
of a test instance we fetch all instances, or documents, from the inverted index and increment
the partial similarity of each document with the nonzero weight in that dimension. In DAAT

traversal we keep all documents in the inverted index sorted on document order and traverse

4.4. FAST KNN SEARCH 91

through all posting lists (the inverted index for each term) simultaneously similar to a merge
join. Using this document-per-document manner, we can compute the complete similarity
score for each document in turn. We propose to first traverse using TAAT and next using DAAT.
We focus on memory-resident indexes, thereby assuming that memory in present-day is often
large enough to maintain the complete index (Fontoura et al. 2011).

Partitioning

We observe that in real-world datasets feature values in most dimensions have a high standard
deviation. For example, we can encode text documents using a bag-of-words encoding with
term frequency-inverse document frequency and get a significant difference in values between
terms that frequently occur in one document but seldom occur in others, and words that are
infrequent in one document and frequent overall. This variation is a useful property that we
exploit.

Definition 4.12 (Partition). First, we partition all instances into two disjoint sets:

Itaat = {xi | xi ∈D∧∃ xi , j ∈ xi : rank(xi , j , f j) ≤ m},

Idaat =D \ Itaat ,

where we use rank(xi , j , f j) ≤ m to denote that feature value xi , j is ranked before place m in the
(descending) ordered posting list of feature j .

The partition strategy has three useful consequences. Firstly, by using the partitioned and
sorted inverted index, we encounter high feature values first during TAAT traversal and are more
likely to find instances with a high cosine similarity early on. This is important since we prune
instances during DAAT if the similarity cannot be higher than the k th candidate after TAAT

traversal. Secondly, we use Weak-AND (WAND) for pruning during DAAT traversal proposed by
Broder et al. (2003). The WAND upper bound depends on the maximum feature value in each
dimension. Because of the partitioning, we guarantee that this maximum is smaller than the
first m values. Thirdly, by having two disjoint partitions, the additional overhead for pruning
and index creation is minimal.

Algorithm

The algorithm CREATEINDEXPARTITION for both TAAT and DAAT index creation is shown in
Algorithm 4.7 and consists of two phases. In the first phase, we create an inverted index for all
documents and compute the partition of all instances. For each feature or term, we find the
instances with the m highest feature values and add these instances to It aat . We can compute
this efficiently using heap sort on the posting list for each term. In the second phase, we make
a complete TAAT index by adding all feature values for all instances in It aat . Remark that this
index also includes feature values that are not in the top-m. The rationale for making the index
complete is that we can compute the full similarity for each instance in It aat without resorting
to less efficient random access operations. Finally, we add all remaining documents to the DAAT

index sorted on document ID. We also maintain the maximal feature value in each posting list.
In our implementation, we keep the feature values local to the index as we want to avoid cache
misses. We remark that in practice we set the parameter m to a small value, e.g., between 1 and
25 for large datasets and closer to 100 for extreme datasets. Alternatively, m could be defined
relatively as the percentage of all documents in It aat .

92 CHAPTER 4. EXTREME MLC USING INSTANCE AND FEATURE KNN

Algorithm 4.7: CREATEINDEXPARTITION(D,m) Partitions data and builds indexes for
both TAAT and DAAT traversal

Input : A dataset D, a parameter m that controls the partition
Result: Index structures for TAAT en DAAT traversal

1 IID ← CREATEINDEX(D);
/* Compute partition */

2 Itaat ←;;
3 for f j in D do
4 {〈x ′

1, x ′
1, j 〉, . . . ,〈x ′

m , x ′
m, j 〉} ← HEAP_SORT_TOP_K(IID[f j],m);

5 Itaat ← Itaat ∪ {x ′
1, . . . , x ′

m};
6 Idaat ←D \ Itaat ;
/* Create indexes */

7 IIDtaat ← CREATEINDEX(Itaat);
8 IIDdaat ← CREATEINDEX(Idaat);
9 SORT IIDtaat DESCENDING on feature value;

10 SORT IIDdaat ASCENDING on document id;
11 MAXdaat ← MAX feature value for each f j in Idaat ;
12 Φ← {Itaat , Idaat , IIDtaat , IIDdaat , MAXdaat};
13 returnΦ;

4.4.2 TAAT and DAAT Traversal with Weak-And Pruning

In essence, DAAT is a merge join over the different posting lists sorted on document ID. We can,
however, skip instances based on an upper bound using the Weak-And iterator first proposed
by Broder et al. (2003).

Definition 4.13 (Upper bound cosine similarity). Given a query xq we compute an upper bound
on each cosine similarity term:

UBq , j = max({xi , j | xi ∈ Idaat}) · xq , j ,

where for any xi ∈ Idaat it holds that

simINS(xq , xi) ≤ ∑
xq , j∈xq

UBq , j .

Therefore, we prune instances without computing the full similarity if∑
xq , j∈xq∧xi , j 6=0

UBq , j ≤
∑

xq , j∈xq

UBq . j ≤ θ,

where θ is the k th largest similarity of instances already visited during TAAT and the ongoing
DAAT traversal. Remark that for most instances xi only a small subset of the features of xq will
also be nonzero in xi .

Algorithm

The main algorithm for finding the exact k-nearest neighbours is shown in Algorithm 4.8.
INSTANCEKNNFAST consists of two phases. We start by computing the k nearest neighbours of
all instances in Itaat using TAAT by calling INSTANCEKNNSEARCH. We then add these instances

4.4. FAST KNN SEARCH 93

to a heap. A heap is more efficient for managing the current instances as we want to access
the current k th maximal similarity efficiently. In the second phase, we traverse candidate
instances using DAAT (line 3-20) and our extension to WAND pruning. We start by initialising
the upper bound for xq by computing the dot product between every nonzero feature value
xq , j and the precomputed value MAXdaat[j]. Next, we iterate over instances in Idaat that have
at least one feature shared with xq (as determined by IIDdaat). We start our while loop with
the first document (offsets j = 0) in each posting list and order these instances on ascending ID
(line 8-11). If xk1 is the document with the smallest ID for any posting list then for any other
document xk2 , with k2 > k1, we know that xk1 has a zero value in that posting list. Therefore,
we prune xk1 if UBq ,k1 is smaller than θ. Likewise, we prune xk2 if UBq ,k1 +UBq ,k2 is smaller
than θ, etc. We increment the upper bound UBcur in a feature-by-feature manner and prune
any documents that are below this accumulated value (line 12-17). We stop when a pivot
document is identified, meaning the first document that is higher than the upper bound. We
then compute the full similarity for the pivot instance and add it to the heap, where it will
replace a candidate if the similarity is higher (line 19). Finally, we advance each posting list to
the next document. If the next document identifier is larger than the pivot, we do not update
the offset. Otherwise, we advance the posting list to point to a document with an identifier after
the current pivot. In the worst case, the pivot document is always the first candidate, and we

Algorithm 4.8: INSTANCEKNNFAST(xq ,k,Φ) Finds the exact k-nearest neighbours from
D based on two traversal strategies and pruning

Input : A query instance xq , number of neighbours k, partitioned inverted index
structuresΦ

Result: k-nearest neighbours
/* (i) Taat traversal */

1 KNNtaat ← INSTANCEKNNSEARCH(xq ,k, IIDtaat);
2 heap ← CREATE_HEAP(KNNtaat);
/* (ii) Daat traversal and pruning using Wand */

3 UBq ← 0.0|xq |;
4 for xq , j 6= 0 in xq do // Computer upper bound
5 UBq , j ← xq , j ·MAXdaat[j];
6 offsets ← 0|xq |;
7 while offsets 6= [−1, . . . ,−1] do
8 next ← {} ; // Enumerate next instances
9 for xq , j 6= 0 in xq and offsets j 6= −1 do

10 next ← next ∪ IIDdaat[j][offsets j];

11 next ← SORT ASCENDING on document ID;
12 pivot ←; ; // Find the first candidate or pivot
13 UBcur ← 0;
14 for 〈xi , xi , j 〉 in next do
15 UBcur ← UBcur +UBq , j ;
16 if UBcur > MIN_HEAP(heap) then
17 pivot ← xi ; break;
18 simq ,p ← xq ·pivot ; // Compute similarity with pivot
19 heap ← PUSH_POP(heap,pivot,simq ,p);
20 Advance offsets so next instances are after pivot
21 return heap;

94 CHAPTER 4. EXTREME MLC USING INSTANCE AND FEATURE KNN

advance by one document at a time. In the best case, however, there are |xq | documents and
the pivot document is the last document. Then we can advance by |xq |−1 documents, thereby
pruning these documents without computing the full similarity.

4.5 Experiments

We now study the accuracy and efficiency of LCIF and INSTANCEKNNFAST.

4.5.1 Experimental Setup

Datasets

We have selected five large and five extreme datasets. Table 4.1 shows the most important
characteristics of each dataset. The datasets are available in well known multi-label reposito-
ries (Tsoumakas et al. 2011; Read et al. 2016; Bhatia et al. 2016).

The Medical dataset consists of nearly 1000 documents containing free clinical text, origi-
nally collected at a children’s hospital medical centre’s department of radiology. The problem
is to assign one or more medical diagnoses or procedures coded using ICD-9-CM based on
free clinical text. The documents are represented using a sparse bag-of-words encoding. The
Corel5k dataset is a scene classification dataset. Labels represent familiar concepts such as sea,
sky, cat or forest. The images are represented using 499 binary features. A feature value of 1
indicates that a certain segment in the image belongs to a certain cluster. The Bibtex dataset
represents a tag assignment problem. The Delicious dataset is similar to Bibtex. Wiki10 corre-
sponds to 20000 Wikipedia articles. For these three datasets, the labels (or tags) were assigned
using the social tagging sites Bibsonomy and Del.icio.us. Note that the label cardinality with so-
cial tagging is higher. In the IMDB-F dataset, the task is to assign one or more of the 28 movie
genres, based on movie summary texts from IMDB. This dataset is larger, containing more than
100000 summaries. However, there are only 28 movie genres, and the total dictionary of terms
is limited.

The extreme Eurlex dataset is a collection of documents about European law and has close to
4000 categories. Reuters Corpus Volume I (RCV1) is a benchmark dataset for text categorisation

Table 4.1: Characteristics of five large and five extreme multi-label datasets

Dataset Train Test Features Labels lcard fcard Avg. Avg.

N Ntest M L ldens fdens

Medical 333 645 1 449 45 1.2 13.4 0.0277 0.0092

Corel5k 5 000 500 499 374 3.5 8.3 0.0094 0.0166

Bibtex 4 880 2 515 1 836 159 2.4 68.7 0.0151 0.0374

Delicious 12 920 3 185 500 983 19.1 18.3 0.0193 0.0366

IMDB-F 72 551 48 368 1 001 28 2.0 19.4 0.0714 0.0194

Eurlex 15 539 3 809 5 000 3 956 5.3 237.0 0.0013 0.0474

Wiki10 14 147 6 617 101 890 30 940 18.6 669.0 0.0006 0.0065

RCV1 623 847 155 962 46 672 2 456 4.8 74.0 0.0019 0.0016

AmazonCat 1 186 239 306 782 203 873 13 330 5.1 71.1 0.0004 0.0003

WikiLSHTC 1 778 352 587 085 1 617 899 325 056 3.3 42.5 0.0001 0.0001

4.5. EXPERIMENTS 95

containing more than 700000 labelled news articles made available by the press agency Reuters.
AmazonCat contains over a million instances of Amazon products with labels and reviews. We
selected the version that has more than 13000 labels. Finally, WikiLSHTC consists of more
than a million instances and features and 325000 categories. The source is Wikipedia. A large
number of features is due to the large corpus size. For this dataset, there is also a hierarchy
between the labels available which we ignore. The dataset originates from the large-scale
hierarchical text classification challenge (Partalas et al. 2015). Eurlex, Wiki10, RCV1, AmazonCat
and WikiLSHTC are extreme datasets since they have thousands of labels (Bhatia et al. 2016).
We remark that although the extreme datasets contain more labels and features, they are also
extremely sparse and the cardinality of labels and features remains comparable to the large
datasets. A key advantage is that we optimised our method for sparse datasets.

State-of-the-art Methods

For the large datasets, we compare the performance of the instance- and feature-based kNN
methods and their linear combination LCIF with the following state-of-the-art algorithms.
Multi-label k-nearest neighbours (ML-KNN) (Zhang and Zhou 2007) and instance-based logistic
regression (IBLR) (Cheng and Hüllermeier 2009) are two seminal instance-based multi-label
algorithms. Binary relevance with support vector machines as a binary classifier (BR-SMO) is
one of the best-performing algorithms (Zeng et al. 2008; Tsoumakas and Katakis 2006). For
optimising the threshold for the other methods, we use OneThreshold, which optimises a single
threshold on the selected evaluation metric (Read et al. 2008). For the extreme datasets, we
compare the results of LCIF with the published results of FASTXML (Prabhu and Varma 2014), a
fast tree-based method for extreme multi-label classification.

For the state-of-the-art methods, we use the implementations available in the Mulan li-
brary (Tsoumakas et al. 2011). We implemented LCIF in C++ and made the source code publicly
available2. We use 64 threads to compute similarities and predictions in parallel on a test server
from 2013, which has two 8-core processors (Intel E5-2690) and 64 GB RAM. Remark that we
cannot use Mulan, or Meka (Read et al. 2016), for extreme datasets since methods like BR-SMO

employ the binary relevance strategy for training L binary classifiers, which is not feasible.

Evaluation Metrics

Multi-label evaluation metrics can be organised in different ways. Examplebased evaluation
metrics are averaged over all instances. Label-based evaluation metrics look at the different
ratios between true-positive, false-positive and false-negative predictions for each label. Label-
-based micro scores give each instance the same weight, while macro scores give each label the
same weight, giving equal weight to frequent and infrequent labels. Within the Example-based
category, we make the distinction between metrics based on the bipartition between relevant
and non-relevant labels, metrics based on the ranking of confidence scores, and metrics based
on the individual score for each label.

Definition 4.14 (Example-based metrics). We report the following example-based multi-label
evaluation metrics:

Example-based Accuracy = 1

N

N∑
i=1

|yi ∩ ŷi|
|yi ∪ ŷi|

,

Hamming loss = 1

N

N∑
i=1

1

L
|yi4ŷi|,

2https://bitbucket.org/len_feremans/lcif

https://bitbucket.org/len_feremans/lcif

96 CHAPTER 4. EXTREME MLC USING INSTANCE AND FEATURE KNN

where N is the number of test instances, ŷi is the predicted set of labels and yi4ŷi is the symmetric
difference (or XOR) of actual and predicted labels.

Definition 4.15 (Label-based metrics). We define for each label yk the number of true positives,
false negatives, false positives and corresponding metrics as

tp =
N∑

i=1
δ(yk ∈ yi ∧ yk ∈ ŷi) fn =

N∑
i=1

δ(yk ∈ yi ∧ yk ∉ ŷi)

fp =
N∑

i=1
δ(yk ∉ yi ∧ yk ∈ ŷi) precision = tp

tp+ fp

recall = tp

tp+ fn
F1 = 2 · precision · recall

precision+ recall
.

For label-based evaluation metrics, we report both micro and macro F1 metrics. Micro F1 is
based on the previous definitions but based on totals of true positives, false negatives and false
positives over all labels L. For macro F1, we first compute precision and recall for each label
separately and then compute the average.

Definition 4.16 (Micro and macro precision). We define micro and macro precision (analogous
for recall and F1) as:

precisionmicro =
∑L

j=1 tp j∑L
j=1 tp j +

∑L
j=1 fp j

precisionmacro = 1

L

L∑
j=1

tp j

tp j + fp j
.

For the extreme datasets, we omit hamming loss which was close to 0 given the extreme
number of labels and is a less suitable metric in such settings (Jain et al. 2016). Instead, we
report precision@k.

Definition 4.17 (Precision at k). We compute precision@k based on the k predictions with the
highest confidence score, defined as:

precision@k = 1

N ·k

N∑
i=1

∑
y j∈ yi

δ(rank(y j , ŷi) ≤ k),

where rank(y j , ŷi) returns the rank for label y j in the list of predictions sorted on descending
confidence score.

Hyperparameter Tuning

For each method, we have to optimise several hyperparameters. The parameter k is often set to
a fixed value in other research, or only iterated over a small set of possible values (e.g., 5, 10,
15). However, optimising k can have a significant effect on reported evaluation metric values.
Therefore, we vary k for ML-KNN and IBLR between 1 and 59 in steps of 2. For instance-based
kNN, we vary k in steps of 50, that is k ∈ {1,5,50,100, . . . ,350}. We remark that the large values
of k are due to the similarity weighted scores and common within user-based collaborative
filtering. We vary α and β for the power transform of instance- and feature-based kNN in
{0.5,1.0,1.5,2.0}. For LCIF, we vary λ between 0.0 and 1.0 in steps of 0.1. Remark that we re-use
the neighbour (and similarity) matrix and only compute it once for the maximal value of k
speeding up grid search considerably. For optimising the single threshold t , we perform two

4.5. EXPERIMENTS 97

passes: first, we vary t between 0.0 and 1.0 in steps of 0.1 to obtain a temporary optimum tpass1,
and then we take steps of 0.01 and vary between tpass1 −0.05 and tpass1 +0.05 to obtain the final
value. For the state-of-the-art methods, this is implemented by OneThreshold in Mulan. We
use the same procedure for LCIF but minimise the difference between predicted and actual
label cardinality (see Section 4.3.4) instead of maximising a selected evaluation metric. Finally,
for the extreme datasets, we employ feature selection and select the top s features using entropy.
We search for the optimal value of s ∈ M × {0.01,0.1,0.25,0.5,0.75,0.99,1.0}. Note that we do
not perform a full grid search, but instead first find the optimal value of s, assuming default
parameters for other values (i.e., k = 100,λ= 0.5,α=β= 1.0). Next, we find the optimal value
of k assuming α= 1.0 and the value of s previously found, then for α using the optimal k and s,
then for β, λ and finally for t using the previously computed parameters.

To have a stable estimate for hyperparameters selected using grid search, we perform
10-fold cross-validation for LCIF on the training set for the large datasets. After the 10-fold cross-
validation search finishes, we choose the average parameter combination that optimises the
selected evaluation metric on the training data. For ML-KNN and IBLR, we report the optimal
hyperparameters optimised directly on the test set, thereby making the Oracle assumption for
performance reasons. For BR-SMO, we keep default parameters for the (linear) kernel function.
For the extreme datasets, we skip 10-fold cross-validation for performance reasons and instead
perform grid search on a sample consisting of the first 10 000 instances (1 000 instances for
Eurlex and Wiki10). We report results computed on the publicly available train-test splits.

4.5.2 Classification Performance LCIF

Here we discuss accuracy on different evaluation metrics for large and extreme datasets.

Large Datasets

We compare our algorithms based on a variety of evaluation metrics for multi-label classifi-
cation. This is common practice since different methods have different biases towards each
metric (Gibaja and Ventura 2014). Table 4.2 shows the results for each different evaluation met-
ric on the large datasets for LCIF and the selected state-of-the-art multi-label classifiers. Results
highlighted in bold perform best on the selected metric and dataset. Missing values for IBLR for
the Delicious and IMDB-F datasets are due to time-out on our test server.

If we compare the ranking of all algorithms, we see that LCIF performs better than ML-
KNN, IBLR and BR-SMO for both accuracy, micro F1 and macro F1. On hamming loss, BR-SMO

performs best, but the difference with LCIF is small. We also see that instance-based kNN ranks
second for both accuracy, micro F1 and macro F1 outperforming both ML-KNN and BR-SMO.
The feature-based kNN, by itself, does not perform great, but is comparable with ML-KNN,
while requiring no k-nearest neighbour search at test time. Note that the current version of
feature-based kNN is significantly better than the preliminary version described in (Feremans
et al. 2017b). Compared to the original version, we now compute the full similarity matrix and
not only the top-k highest similarities and scale similarities using the parameter β.

Extreme Datasets

For extreme multi-label classification (XML) we compare with the published results of FASTXML

(Prabhu and Varma 2014; Bhatia et al. 2016). Table 4.3 shows the results on the extreme
datasets. Results of micro or macro F1 are generally not available for other XML methods and
are thus provided for information. LCIF performs better than FASTXML on Eurlex, Wiki10

98 CHAPTER 4. EXTREME MLC USING INSTANCE AND FEATURE KNN

Table 4.2: Comparing the accuracy of LCIF with ML-KNN, IBLR and BR-SMO on the large datasets

Metric Datasets INS. KNN FEAT. KNN LCIF ML-KNN IBLR BR-SMO

Accuracy ↑ Medical 0.563 0.601 0.636 0.421 0.442 0.699

Corel5k 0.163 0.174 0.170 0.147 0.105 0.098

Bibtex 0.347 0.218 0.341 0.208 0.174 0.321

Delicious 0.230 0.122 0.230 0.193 n/a 0.130

IMDB-F 0.250 0.235 0.250 0.244 n/a 0.005

Avg. rank 2.2 3.4 1.8 4.2 5.6 3.8

Micro F1 ↑ Medical 0.622 0.645 0.690 0.505 0.506 0.773

Corel5k 0.266 0.263 0.274 0.245 0.163 0.166

Bibtex 0.426 0.276 0.427 0.315 0.250 0.416

Delicious 0.368 0.214 0.369 0.322 n/a 0.224

IMDB-F 0.341 0.337 0.346 0.358 n/a 0.014

Avg. rank 2.6 4.0 1.4 3.6 5.8 3.6

Macro F1 ↑ Medical 0.339 0.447 0.492 0.245 0.247 0.457

Corel5k 0.315 0.308 0.315 0.326 0.161 0.317

Bibtex 0.321 0.129 0.328 0.170 0.147 0.315

Delicious 0.180 0.067 0.181 0.088 n/a 0.098

IMDB-F 0.090 0.055 0.084 0.056 n/a 0.011

Avg. rank 2.5 4.6 1.7 3.6 5.6 3.0

Hamming Medical 0.025 0.026 0.021 0.024 0.029 0.012

loss ↓ Corel5k 0.014 0.010 0.010 0.022 0.027 0.012

Bibtex 0.017 0.017 0.014 0.020 0.021 0.016

Delicious 0.025 0.030 0.024 0.021 n/a 0.018

IMDB-F 0.094 0.083 0.082 0.101 n/a 0.072

Avg. rank 3.9 3.6 1.9 4.0 6.0 1.6

and WikiLSHTC, but not on AmazonCat. We remark that many other recent, rank-based
optimised, XML methods exist (Bhatia et al. 2016). However, in classification benchmarks, the
best results are reported by ensemble methods that combine many models, possibly using
different algorithms and feature representations. Comparing a single simple model with a
complex ensemble-based method would not be informative. We conclude that our method
produces excellent results on extreme datasets.

Imbalanced Datasets

LCIF improves the accuracy on minority labels in imbalanced datasets. Firstly, we remark
that feature-based cosine similarity is corrected for label imbalance since we normalise all
label vectors to unit length during preprocessing. As such, weights for infrequent labels (and
features) will be much higher. In Figure 4.1 we show the frequency of the top 30 most frequent
labels (and predicted labels) on the Corel5k dataset where hyperparameters are optimised on
the macro F1 metric during grid search. By using a single threshold, our method overestimates
majority labels and underestimates minority labels. However, by using label-specific thresholds,

4.5. EXPERIMENTS 99

Table 4.3: Comparing the accuracy of LCIF with FASTXML on the extreme datasets

Metric Dataset INS. KNN FEAT. KNN LCIF FASTXML

Micro F1 ↑ Eurlex 0.506 0.222 0.517 n/a

Wiki10 0.359 0.274 0.358 n/a

RCV1 0.637 0.450 0.632 n/a

AmazonCat 0.611 0.418 0.625 n/a

WikiLSHTC 0.329 0.144 0.342 n/a

Macro F1 ↑ Eurlex 0.509 0.381 0.512 n/a

Wiki10 0.324 0.261 0.324 n/a

RCV1 0.152 0.071 0.152 n/a

AmazonCat 0.463 0.285 0.463 n/a

WikiLSHTC 0.130 0.130 0.130 n/a

Precision@1 ↑ Eurlex 0.763 0.407 0.776 0.713

Wiki10 0.832 0.722 0.832 0.830

RCV1 0.830 0.762 0.840 n/a

AmazonCat 0.775 0.657 0.811 0.931

WikiLSHTC 0.491 0.258 0.518 0.497

Precision@3 ↑ Eurlex 0.611 0.302 0.622 0.599

Wiki10 0.724 0.531 0.724 0.675

RCV1 0.663 0.615 0.672 n/a

AmazonCat 0.665 0.589 0.698 0.782

WikiLSHTC 0.317 0.178 0.336 0.331

Precision@5 ↑ Eurlex 0.504 0.244 0.514 0.504

Wiki10 0.637 0.469 0.637 0.578

RCV1 0.480 0.449 0.487 n/a

AmazonCat 0.547 0.504 0.577 0.634

WikiLSHTC 0.238 0.141 0.251 0.244

0 5 10 15 20 25
Label

0

50

100

150

200

250

Fr
eq

ue
nc

y

Labels
Predictions

(a) Single threshold

0 5 10 15 20 25
Label

0

20

40

60

80

100

Fr
eq

ue
nc

y

Labels
Predictions

(b) Label-specific threshold

Figure 4.1: Effect of thresholding on the distribution of actual versus predicted labels on the
imbalanced dataset Corel5k

100 CHAPTER 4. EXTREME MLC USING INSTANCE AND FEATURE KNN

we get a better match in the distribution of actual versus predicted labels. Here, we base the
class-specific thresholds on the prior distribution of classes in the training dataset. We report
an average gain of 1.1% on macro F1 on the large datasets.

4.5.3 Runtime Performance INSTANCEKNNFAST

We now compare INSTANCEKNNFAST with the following state-of-the-art methods in top-k
query retrieval: TAAT without pruning, Fagin et al. (2003) Threshold Algorithm (FAGIN TA) and
Fontoura et al. (2011) in-memory variant of DAAT with Weak-AND pruning (M-WAND).

Analysis Term-at-a-time

First, we analyse the runtime behaviour of baseline kNN algorithm INSTANCEKNNSEARCH

shown in Algorithm 4.2. This algorithm has three properties that make it efficient. We will
use dataset characteristics from the extreme dataset WikiLSHTC for illustration (see Table 4.1).
Firstly, we compute a sparse dot product between the query instance and each instance from
the training dataset. In this dataset, there are M ≈ 1.6×106 features, however on average an
instance has only 42 nonzero features, i.e., fcard is 42. Clearly, computing a million of zero
multiplications for the naive full dot product is wasteful. Using the TAAT traversal strategy, we
only compute xq , j · xi , j terms that have a nonzero value for feature value xi , j . Secondly, the
inverted index causes a form of rudimentary pruning by only considering candidate instances xi

having a nonzero feature in common with the query instance. We experimented on WikiLSHTC
and computed the average number of candidates for 500 random test instances. We found
that on average, only for 42% of instances the similarity is computed, thereby pruning about
a million of instances from the training dataset (see Table 4.4). Thirdly, we also compute
confidence scores in a sparse manner, thereby only computing nonzero terms for the confidence
score for candidate labels, i.e., labels that occur for at least one neighbour. This is important
since on average, each training instance has only 3 labels, i.e. lcard is 3.3, while L ≈ 0.3×106.

Pruning Performance

The runtime performance is dependent on pruning, i.e., the number of candidate instances
for which we compute the cosine similarity. We compare the average number of candidate
instances for each state-of-the-art method. We set k to 100 and use the first 1000 test instances
to compute this average. We remark that INSTANCEKNNFAST is identical to M-WAND if m = 0,
and identical to INSTANCEKNN when m is set high (such that Id aat =;). For INSTANCEKNNFAST,
we vary the hyperparameter m ∈ {1,5,10,15,20,25,100} (not m = 0) and assume an Oracle that
selects the best parameter.

The results are shown in Table 4.4 where we report both the absolute value and relative per-
centage of the average number of candidates. For the large datasets, all features are binary,
however, after normalisation to unit length there is more variation in feature values, which
is beneficial for pruning with our method. On the large datasets, we see this effect, where
INSTANCEKNNFAST evaluates fewer candidate instances compared to other techniques. For ex-
ample, on the IMDB-F dataset, we compute cosine similarity for 46% of the training instances
for INSTANCEKNNSEARCH, 39% for FAGIN TA, 28% for M-WAND and only 22% for INSTANCEKN-
NFAST. If we look at the extreme datasets, we find that M-WAND outperforms both FAGIN TA

and INSTANCEKNNFAST on the majority of datasets. For small values of m, the number of in-
stances in Itaat is large, leading to a higher number of full evaluations. By considering only
instances with a maximum feature value for low-density features, this could be resolved, but we

4.5. EXPERIMENTS 101

Table 4.4: Pruning of INSTANCEKNNFAST and state-of-the-art top-k query retrieval methods

Dataset FAGIN TA M-WAND INS. KNNFAST INS. KNNSEARCH

Avg number of candidate instances ↓
Medical 197 (59%) 214 (64%) 214 (64%) 224 (67%)

Corel5k 681 (14%) 641 (14%) 455 (10%) 719 (16%)

Bibtex 4 404 (90%) 4 553 (93%) 4 762 (97%) 4 860 (99%)

Delicious 3 412 (26%) 3 120 (24%) 3 115 (24%) 4 141 (32%)

IMDB-F 28 389 (39%) 20 716 (28%) 16 170 (22%) 33 509 (46%)

Eurlex 14 091 (91%) 11 785 (76%) 12 355 (79%) 15 528 (99%)

Wiki10 13 727 (97%) 12 592 (89%) 14 110 (99%) 14 118 (99%)

RCV1 305 002 (48%) 176 038 (28%) 196 453 (31%) 569 297 (91%)

AmazonCat 195 488 (11%) 227 326 (19%) 290 450 (24%) 741 380 (62%)

WikiLSHTC 462 939 (26%) 367 645 (20%) 594 107 (33%) 899 071 (50%)

will see in the next subsection, where we compare runtimes, that this is less important. Overall
we conclude that INSTANCEKNNFAST for pruning is theoretically always better than or equal to
M-WAND without partitioning and performs better than FAGIN TA and INSTANCEKNNSEARCH,
under the assumptions of sparse datasets and high-dimensional queries.

Runtime Performance

We now compare our method with state-of-the-art-methods and report elapsed wall time.
We do not report results for FAGIN TA since in our experiments we found that the random
access cost and associated zero computations for computing full cosine similarity at each
iteration caused much worse performance than the TAAT baseline without pruning. We report
the number of milliseconds required for INSTANCEKNNSEARCH, M-WAND and INSTANCEKNN-
FAST with m in {1,20,100,500,1000}. For each dataset, we take the first 1000 test instances and
report the average time it takes to retrieve the exact set of 100 nearest neighbours using each
algorithm. From the timings (averaged over 10 runs) we excluded time needed to load the data
and create the inverted indexes since this took less than 1 minute on WikiLSHTC.

The results are shown in Table 4.5. We omitted the results for the large datasets since the
differences in milliseconds are too small. First, we remark that there is no clear one-to-one
correspondence between pruning and runtime performance. Because of its simplicity and

Table 4.5: Runtime of INSTANCEKNNFAST and state-of-the-art top-k query retrieval methods

Dataset M- INSTANCEKNNFAST INST. KNN

WAND m=1 m=20 m=100 m=500 m=1000 SEARCH

Avg time (ms) to retrieving top kNN ↓
Eurlex 17.4 12.8 1.4 1.3 1.4 1.4 1.5

Wiki10 62.4 1.8 1.6 1.5 1.6 1.7 1.7

RCV1 103.7 97.4 43.8 32.6 32.6 33.9 37.5

AmazonCat 215.4 174.1 45.1 37.7 38.7 45.1 45.2

WikiLSHTC 171.1 94.3 35.7 27.7 27.9 27.6 28.6

102 CHAPTER 4. EXTREME MLC USING INSTANCE AND FEATURE KNN

sparse optimisations, our current implementation of the INSTANCEKNNSEARCH method is far
more efficient than M-WAND. M-WAND has overhead because of the computation and book-
keeping required for computing and comparing with the upper bound, such as the sort on
document ID required to find the pivot. Note that both M-WAND and INSTANCEKNNFAST use
the same code. We see that INSTANCEKNNFAST, when m is set appropriately large, outper-
forms both state-of-the-art methods by a considerable margin on all extreme datasets. This is
especially so for AmazonCat, where it is 6 times faster than M-WAND and 25% faster than IN-
STANCEKNNSEARCH. We find that, on the one hand, when only a few instances in the inverted
index match the current query, the overhead of computing and verifying the upper bound is
probably not justified. On the other hand, when only low similarity instances remain, and there
is a high likelihood for pruning, pruning becomes the faster alternative. We see this in Amazon-
Cat, where for m = 100, 98.6% of instances are indexed for TAAT traversal and 1.4% for DAAT

traversal. However, during TAAT only 39% of instances are pruned (because of the inverted in-
dex), while during DAAT more than 99% of instances (in the remaining sample of about 16.000
instances) are pruned. We conclude that INSTANCEKNNFAST finds a natural balance between
fast unpruned TAAT traversal and fast DAAT traversal with WAND pruning.

4.5.4 Runtime Performance LCIF

Large Datasets

We now compare the total runtime required for both training and applying the model of LCIF

and each of the state-of-the-art algorithms for large datasets. The results are shown in Table 4.6.
For the large datasets, the difference in wall time is quite large as LCIF takes seconds or minutes
where other methods take minutes or hours to complete. For Corel5k the relatively long runtime
of 34.3 minutes for IBLR is due to learning the optimal weights using logistic regression for each
label: training the optimal weights takes about 10 seconds per label but must be repeated for
374 labels. Due to this reason, IBLR was not able to complete on Delicious and IMDB-F. BR-SMO

does finish for Delicious and IMDB-F but runs for a full day when LCIF takes less than 1 minute.
Table 4.6 also shows the runtime of instance- and feature-based kNN. The runtime of LCIF is
approximately equal to the total runtime of the two components. We conclude that LCIF is
orders of magnitude faster than ML-KNN, BR-SMO and IBLR.

Table 4.6: Runtime results of LCIF and the state-of-the-art multi-label classifications methods
on the large datasets

Dataset FEAT. KNN INS. KNN LCIF ML-KNN IBLR BR-SMO

Total train and test time for classifier ↓
Medical 0.1 s 0.0 s 0.1 s 0.5 s 1.5 s 6.5 s

Corel5k 0.0 s 0.1 s 0.1 s 15.5 s 34.3 m 6.5 m

Bibtex 1.9 s 0.3 s 2.6 s 1.7 s 8.2 m 10.1 m

Delicious 0.6 s 0.2 s 1.3 s 3.3 m n/a 14.0 h

IMDB-F 13.5 s 33.8 s 49.2 s 2.1 h n/a 29.4 h

Extreme Datasets

In Table 4.7 we show the total time required by LCIF on the extreme datasets. We report
subtotals for running instance-based k-nearest neighbours search, feature-based similarity

4.6. RELATED WORK 103

matrix computation and feature-based predictions. For LCIF the total time is the sum of
these steps. The remaining time needed for data loading, indexing, making instance-based
predictions, combining predictions and computing and applying a single threshold is relatively
small. Additionally, we report time to perform grid search for tuning hyperparameters. All
experiments were run on a single test server with very moderate hardware specifications as
described previously.

On WikiLSHTC, LCIF took less than 3 hours to finish on more than 500000 test instances,
including grid search using a validation set of 10000 instances. Averaged over the number
of test instances this means 22 ms per instance on average, of which the bulk is required for
running the instance-based k-nearest neighbours search. Feature-based kNN predictions
require less than 10 minutes in total and less than 1 ms per instance on average. In FASTXML

the authors report wall times of 1.5 hours on WikiLSHTC for training only, depending on the
hyperparameters (Prabhu and Varma 2014). However, some hyperparameters, such as the
parameter that controls the number of iterations have a serious influence on both runtime and
precision, and it is unclear how to optimise this and the 7 other hyperparameters efficiently.
We conclude that our algorithm is very efficient and does hyperparameter tuning, training and
predictions in a few hours on commodity hardware for extreme datasets, taking less than 22 ms
per instance to predict labels.

Table 4.7: Runtime results of LCIF on the extreme datasets

Dataset Grid INS. KNN FEAT. KNN LCIF

search search simil predict total

Total grid search, train and test time for classifier ↓
Eurlex 51.4 s 4.6 s 0.8 s 12.7 s 24.4 s

Wiki10 9.9 m 9.8 s 26.4 s 3.6 m 5.1 m

RCV1 8.2 m 58.9 m 6.0 s 2.9 m 63.0 m

AmazonCat 11.6 m 136.3 m 28.8 s 5.7 m 145.2 m

WikiLSHTC 11.8 m 154.8 m 31.1 s 8.3 m 167.9 m

4.6 Related Work

We have examined the most important related work in Section 4.1 and experimentally com-
pared our method with existing state-of-the-art methods in Section 4.5. We now place our work
into the wider context of multi-label classification.

Instance-based Learning

Several instance-based learning methods for multi-label classification have been developed.
ML-KNN was one of the first methods. Zhang and Zhou (2007) first apply traditional kNN, using
Euclidean distance. Next, they count the number of times each label occurs in the neighbour-
hood. Then they apply the maximum a posteriori principle for each label independently to
determine if a label is relevant or not. They estimate prior probabilities by computing kNN for
each training instance and then compute these probabilities for each label. In theory, ML-KNN

could also adopt an inverted index and sparse computation of similarities, probabilities and

104 CHAPTER 4. EXTREME MLC USING INSTANCE AND FEATURE KNN

predictions. However, the complexity is worse than that of LCIF, which is O(N ×M) for the kNN
search and O(N ×N ×M) steps for computing probabilities. The authors experimentally show
that ML-KNN outperformed other techniques, such as RANK-SVM on different example-based
evaluation metrics. A possible disadvantage of ML-KNN is that it does not take label dependen-
cies into account, which was addressed by subsequent research into dependent multi-label
k-nearest neighbours (Younes et al. 2008).

In combining instance-based learning and logistic regression for multi-label classification
(IBLR), Cheng and Hüllermeier (2009) compute the k-nearest neighbours using Euclidean
distance. Then the authors use label counts from the nearest neighbours as a feature vector and
apply logistic regression to learn the optimal hyper-plane for each label. This approach comes
down to stacking and does account with dependencies between labels since all label counts
are used as input for the logistic regression. However, applying logistic regression for each
label independently does take considerable resources, as shown in our experiments, where the
implementation from Mulan was unable to finish on some large datasets. Both ML-KNN and
IBLR are considered state-of-the-art methods (Gibaja and Ventura 2014).

Spyromitros et al. (2008) propose BRKNN, where kNN is combined with the binary relevance
method. Like BRKNN, we compute the k-nearest neighbours once, independently of the number
of labels. The authors also implement two extensions: BRKNN-a and BRKNN-b. The BRKNN-b
variant minimises the label cardinality between predicted and actual label sets, while BRKNN-a
returns the highest-scoring label as relevant, even if this label is below the threshold since for
most benchmark multi-label datasets an empty set of labels is rare. Both ideas are implemented
by our method. Compared to instance-based kNN, BRKNN uses a different scoring function,
which is the fraction of labels found in the k-nearest neighbours. Also, BRKNN does not make
use of an inverted index. In future work, it could be interesting to experimentally validate
different variations of instance-based prediction functions.

Wang et al. (2011) propose the Enhanced kNN algorithm (EKNN), that uses a weighted
prediction function similar to instance-based kNN, but based on BM25 similarity and a more
elaborate thresholding scheme. EKNN scored first in the challenge on large scale hierarchical
text classification on example-based accuracy and F1 (Partalas et al. 2015). However, EKNN

has a larger range of hyperparameters (both for BM25 and thresholding) to tune and is only
applicable for text categorisation. The implementation of EKNN is based on an inverted index,
similar to INSTANCEKNNSEARCH.

Imbalanced Datasets

Different authors have studied how to improve the accuracy of imbalanced datasets. SMOTE is
an algorithm for synthetic oversampling of multi-class instances with minority labels (Chawla
et al. 2002). In preliminary experiments, we tried to adopt SMOTE for oversampling instances
with minority labels together with downsampling of majority labels to generate balanced
datasets. However, this did not significantly improve results on macro F1. Moreover, SMOTE

has additional parameters for each minority label, making adoption challenging.
Tan (2005) proposes NWKNN, a neighbour-weighted kNN algorithm that achieves a per-

formance improvement for text categorisation on imbalanced datasets. Like NWKNN, our
instance-based kNN method performs distance weighting and a power transform. Unlike
NWKNN, we do not take the size of the membership of labels into account in the instance-based
confidence score.

Liu et al. (2014) present a hybrid coupled k-nearest neighbour classification algorithm
(HC-KNN) for mixed-type data. They employ feature weighting proportional to the number of
feature-label co-occurrences and inversely proportional to the global label frequency. This is

4.6. RELATED WORK 105

related to feature-based cosine similarity since we measure the feature-label co-occurrences by
computing the cosine similarity between each feature and label column-wise and by normalis-
ing label vectors to unit length, we are dividing by the global label frequency (assuming binary
positive data). The instance-based cosine similarity is related to the inter-coupled similarity
measure if we employ one-hot-encoding of categorical features during preprocessing.

There is no related work on instance-based multi-label classification optimised for imbal-
anced extreme datasets. For example, Liu et al. (2014) propose an optimisation procedure to
learn the correspondence between each feature value and label, but this has a complexity of
O(M 3 ·L). Therefore, we adopted a label-specific threshold to improve results on macro F1
(Draszawka and Szymański 2013). However, we acknowledge that given a long tail of minority
labels (e.g. occurring less than 5 times), high precision and recall remain challenging.

Other Similarity Measures

In general, many other similarity measures exist, e.g., centred cosine similarity is often used
in collaborative filtering where the idea is that some users are more generous in giving rating,
and we normalise against user bias in giving ratings. A more recent technique proposes soft
cosine similarity (Sidorov et al. 2014), where we consider the similarity of two features, i.e., the
word “play” and “game” are different but related. We remark that many similarity measures
that - when computed on sparse datasets - consist mostly of zero similarity terms can also
be computed efficiently by LCIF. For instance, it would not be hard to adjust LCIF to handle
BM25, centred cosine, Dice or Jaccard similarity. Additionally, we have not investigated other
domain-specific feature extraction techniques, i.e., different word (or sentence) embeddings
for text datasets or different mid-level feature extraction methods for scene classification.

Fast Nearest Neighbours

We did not consider combining TAAT traversal with pruning (Fontoura et al. 2011). For exam-
ple, we could prune entire dimensions using max_score pruning. While this technique is useful
for pruning more instances, it remains uncertain if this would decrease the overall wall time
for high-dimensional sparse datasets as is the case with INSTANCEKNNFAST. We also did not
consider approximate kNN strategies used by other authors in extreme multi-label classifica-
tion (Zadeh and Goel 2013; Tagami 2017). Since our algorithm can compute the exact set of
k-nearest neighbours efficiently on extreme datasets, approximations are of less interest.

Predicting Drug Side Effects and Drug-target Interactions

Recently, Zhang et al. (2015) proposed to apply multi-label classification for predicting drug
side effects. Here, the authors proposed an advanced method to select feature subsets with high
information gain and use ML-KNN to make final predictions. Given that their dataset consists
of thousands of labels, suffers from label skew and that in our experiments LCIF outperforms
ML-KNN, it would be interesting to validate if performance would increase using LCIF in this
application. In another study Zhang et al. (2017) proposed to predict interactions between
drugs and target proteins. Interestingly, they also compute the similarity between instances,
that is, the similarity between drugs, and predict protein targets, which are labels. In general,
we argue that there are many more applications where the efficiency and accuracy of LCIF on
(extreme) multi-label classification could be beneficial.

106 CHAPTER 4. EXTREME MLC USING INSTANCE AND FEATURE KNN

Collaborative Filtering

In this Chapter we were inspired by baseline algorithms from collaborative filtering. However,
many recent methods from recommender systems could also be adapted for extreme multi-
label classification. Specifically it would be of interest to adapt SLIM that improves results
compares to state-of-the-art recommender algorithms and can be efficiently computed on
large sparse datasets (Ning and Karypis 2011). Like item-based collaborative filtering, SLIM

employs a similarity matrix between all items (or features and labels in our case). However,
SLIM learns a similarity matrix that optimizes the difference with the original user-item matrix
and combines L1 and L2 regularisation. The recommender systems community has also
investigated the cold-start problem, where the aim is to improve results for new users (or items)
with only limited information on past preferences (Bobadilla et al. 2012). It would also be of
interest to adapt solutions to the cold-start problem to online multi-label classification, i.e., to
improve results for new labels.

4.7 Conclusion

In this Chapter we propose LCIF, a new algorithm for multi-label classification inspired by
recent work in recommender systems research, i.e., user-based and item-based collaborative
filtering. Our predictions are based on the labels of the nearest neighbours in the training
dataset. The instance-based method finds the top k instances that are most similar using
the features of the current test instance. The feature-based method gives higher weight to
labels that are the most similar to each feature, where similarity is defined column-wise over
all instances. A linear combination of the similarity weighted instance- and feature-based
neighbourhood is computed to make the final prediction.

We created an efficient algorithm for finding the k- nearest neighbours using an inverted
index and efficient sparse computation of cosine similarities and predictions. We extend this
algorithm and create an even faster k-nearest neighbours search algorithm, by partitioning
instances and combining term-at-a-time and document-at-a-time traversal with a tighter
upper bound for Weak-AND pruning. We validated that this method can be 25% faster than
the baseline method, and up to 6 times faster than existing top-k query retrieval algorithms,
assuming high-dimensional sparse datasets. LCIF requires only seconds to complete on large
datasets, where classic methods take minutes or hours. For extreme datasets, we require less
than 20 milliseconds per instance to predict labels on commodity hardware.

Experiments on ten real-world multi-label datasets from different domains, i.e., text cate-
gorisation, scene classification and social tagging domain, show that LCIF outperforms state-
-of-the-art algorithms such as multi-label kNN, instance-based logistic regression and binary
relevance with support vector machines on accuracy, micro F1 and macro F1. LCIF also pro-
duces excellent results on extreme datasets compared to FASTXML. Because of its efficiency at
both train and test time, the possibility to generate explainable results, and excellent evaluation
accuracy, LCIF is interesting for any extreme multi-label application, especially when making
a trade-off between model/computational complexity and performance improvement. The
source code of LCIF is publicly available and enables end-users to perform accurate extreme
multi-label classification without the need for expensive clusters.

In future work, we see potential to improve further extreme multi-label learning algorithms
inspired by advances in the related field of collaborative filtering. We also see potential to boost
the prediction accuracy of LCIF by creating ensembles using boosting or stacking and adopting

4.7. CONCLUSION 107

embedding algorithms, such as word or sentence embeddings learned using neural networks
(Mikolov et al. 2013; Devlin et al. 2018).

“The more you know, the more you know you don’t know.”

- Aristotle

CHAPTER 5
Conclusion and Outlook

In this thesis, we proposed two new methods for mining interesting patterns in a sequence
of events and an efficient method for multi-label classification that handles datasets with an
extreme number of labels.

5.1 Main Contributions

• In Chapter 2, we proposed FCIseq, an algorithm that finds different types of patterns
in event sequences. We evaluate the quality of the discovered itemsets using cohesion,
a measure of how far apart the items making up the itemset are on average. We dis-
cover strong patterns that are not necessarily very frequent in the data, that existing
state-of-the-art methods fail to find. We use an upper bound of the cohesion, thereby
generating fewer candidate patterns, and prove theoretically that this bound is sound.
Based on the discovered cohesive itemsets, we then search for sequential patterns and
episodes, which offer additional information about the order in which the pattern items
occur. Furthermore, we mine association rules, with a confidence measure based on the
cohesion of the antecedent and consequent, rather than the frequency-based definition
common in literature. We integrate the mining process of all four pattern types into a
single efficient algorithm. Experiments on text datasets show that we rank interesting
patterns highly, including patterns with high frequency, while avoiding spurious patterns
that consist of unrelated items that often co-occur purely because they all occur very fre-
quently. Moreover, on the Zimmermann (2014a) benchmark, we validate that cohesion
is more robust to a variety of artificially induced types of noise that occur in real-world
settings and that we outperform both frequency-based and Compact Minimal Windows
(Tatti 2014a) on this benchmark.

• In Chapter 3 we proposed QCSP, an algorithm for mining all quantile-based cohesive se-
quential patterns. We define quantile-based cohesion as the proportion of occurrences
of the pattern that are cohesive, i.e., where the minimal window is small. This measure
is easy to interpret and reports both frequent and less frequent, but always strongly cor-
related, sequential patterns, that other methods often fail to find. Since quantile-based
cohesion is not an anti-monotonic measure, we rely on an upper bound to prune can-
didate sequential patterns and all possible supersequences. We prove theoretically that
this bound is sound. We empirically show that QCSP is very efficient, that is, about an or-
der of magnitude faster than FCIseq. FCIseq needs to scan the sequence for computing the

112 CHAPTER 5. CONCLUSION AND OUTLOOK

minimal windows for each candidate pattern. In contrast, QCSP uses prefix-projected pat-
tern growth. Therefore, we evaluate the bound on quantile-based cohesion only on the -
monotonically decreasing - projection of each candidate pattern. Compared to FCIseq,
quantile-based cohesion is also robust in the presence of outliers and finds all sequen-
tial patterns, including patterns with repeating items. Additionally, we compared with
two recent algorithms that find interesting sequential patterns in multiples sequences
proposed by Petitjean et al. (2016) (SKOPUS) and Hoang et al. (2014) (GOKRIMP). Com-
pared to SKOPUS, quantile-based cohesion is not biased towards shorter patterns or
patterns consisting of frequent items. Compared to GOKRIMP, QCSP seems to discover
the same patterns GOKRIMP reports; however, the reverse is not true. Additionally, both
methods require a sliding window of fixed length during preprocessing to create multiple
sequences.

• In Chapter 4, we propose LCIF, a new algorithm for extreme multi-label classification
inspired by user-based and item-based collaborative filtering. We make a prediction using
a linear combination of similarity weighted prediction scores using both instance- and
feature-based neighbourhoods. The instance-based method finds the top-k instances
that are most similar using the features of the current test instance. The feature-based
method gives higher weight to labels that are the most similar to each feature, where
similarity is defined column-wise over all instances. The baseline algorithms use an
inverted index for efficient sparse computation of cosine similarities and predictions.
For the instance-based method, we create an even faster k-nearest neighbours search
algorithm inspired by recent advances in information retrieval. INSTANCEKNNFAST

partitions the training database and combines term-at-a-time and document-at-a-time
traversal with a tighter upper bound for Weak-AND pruning. We experimentally show that
INSTANCEKNNFAST can be 25% faster than the baseline method, and up to 6 times faster
than existing top-k query retrieval algorithms by Fagin et al. (2003) and Fontoura et al.
(2011), assuming high-dimensional sparse datasets and queries with a higher number of
non-zero features than typical in information retrieval. In experiments on ten real-world
multi-label datasets from different domains, we show that LCIF outperforms multi-label
kNN (Zhang and Zhou 2007), instance-based logistic regression (Cheng and Hüllermeier
2009) and binary relevance with support vector machines on both accuracy, micro F1 and
macro F1. Additionally, LCIF has excellent results on precision@k on extreme datasets
compared to FASTXML (Prabhu and Varma 2014). To the best of our knowledge, LCIF is
the only publicly available method that enables end-users to perform accurate extreme
multi-label classification and requires less than 20 milliseconds per instance to train and
predict labels on a single computer.

5.2 Outlook

As research evolves, there are always more things to investigate. In this section, we discuss
several ideas and observations that provide some perspective for future research. We discuss
possible avenues for improving the proposed algorithms, but also consider applications of
pattern mining and multi-label classification. For instance, applying quantile-based cohesive
sequential patterns for prediction, classification or anomaly detection within temporal data.

5.2. OUTLOOK 113

5.2.1 Future of Pattern Mining In Sequences

Anytime, Streaming and Big Data Cohesive Pattern Mining

In future work, we could study optimising the proposed algorithms for different settings.
First, we can study anytime algorithms. By prioritising more likely candidates and relaxing

the problem of finding the exact set of most cohesive patterns, we can mine cohesive patterns
more quickly. That is, instead of enumerating all possible candidates that can theoretically
satisfy the threshold on minimal cohesion, we can employ greedy- or A* search. We can use the
upper bounds on cohesion as a heuristic and stop mining after a fixed number of iterations (or
stop if there is no change in the top-k most cohesive patterns after several iterations).

Second, we can investigate streaming cohesive pattern mining algorithms. That is, to mine
the cohesive candidate patterns and then update the candidate patterns incrementally using
periodic batch updates. Similar to Cheung et al. (1996) we can make a distinction between
removing existing patterns (losers) and mining new patterns (winners). We remark that quantile-
based cohesion can be computed incrementally by splitting it in two parts: occurrences of
the pattern in the already mined dataset and occurrences of the pattern in the new batch.
Therefore, we can efficiently update quantile-based cohesion for existing patterns and only
compute the number of minimal windows satisfying the threshold on α in the new batch. For
finding new candidate sequential patterns satisfying the top k threshold this becomes more
difficult. Naively we could re-run QCSP on the whole updated datasets, however, it would be
interesting to study re-using initial computations instead of computing everything from scratch.
The following example indicates that there is potential to prune more patterns in an incremental
setting. Assume a candidate sequential pattern occurring 20 times in past batches and 4 times
in the new batch. If we assume a threshold of 1/4 on minimal quantile-based cohesion on the
entire dataset, we require a total of 24×1/4 = 6 cohesive occurrences. If the pattern was not
cohesive enough in the original batch, we can deduce that at most 4 occurrences were cohesive.
Therefore, we require that 2 additional occurrences must be cohesive in the new batch. This
implies that the constraint on quantile-based cohesion should be at least 1/2, and not 1/4, local
to the new batch. Further study is required, but the given example is indicative that by keeping
summary statistics from the previous batches, such as the frequency of all items, we can further
tighten constraints and efficiently filter candidate patterns based on the new batch.

Finally, we can study distributed algorithms for cohesive pattern mining on different servers
for handling Big Data sequences. Moens et al. (2013) have proposed to scale frequent pattern
mining using MapReduce. For cohesive pattern mining, we could process different branches of
the search space in parallel. However, further study is required for balancing the search tree
and ways to minimise inter-server communication costs.

Next-generation Interestingness Measures

In our qualitative experiments, we found that different interesting measures have different
biases towards patterns. FCIseq and QCSP directly mine cohesive patterns and find less frequent
cohesive patterns other methods fail to discover. SKOPUS ranks interesting, shorter and more
frequent patterns using leverage. CMW also finds longer patterns and was also able to find some
patterns with high locality that were missed by FCIseq. Finally, GOKRIMP finds a pattern set that
best compresses the data. Arguably, the perfect algorithm would find the union of patterns
discovered with different interestingness measures.

One area of attention for a next-generation of algorithms is balancing redundancy in the
output pattern set. If a very long pattern is fully cohesive, FCIseq and QCSP, in practice, will
enumerate most subpatterns. Both SKOPUS and CMW report many highly overlapping patterns,

114 CHAPTER 5. CONCLUSION AND OUTLOOK

i.e., with patterns such as (paper,show), (paper,result), etc. for SKOPUS and superpatterns of
(stock,market,hit,high) for CMW. In contrast, GOKRIMP does not report any patterns sharing
items. While this produces satisfactory results on textual datasets, this seems a somewhat
restrictive constraint in many domains, especially when the vocabulary is limited, such as
DNA sequences. For FCIseq and QCSP a possible solution would be to define closed or maximal
cohesive patterns. We argue that, in general, each method would benefit from taking measures
that penalise, to a degree, too many overlapping patterns.

Related to the previous issue, is that all methods ignore, to some extent, the temporal
context in very long sequences can miss locally interesting patterns. CMW, SKOPUS and
GOKRIMP ignore temporal context entirely by relying on a smaller fixed sliding window. FCIseq

and QCSP rely on minimal windows, that can span the entire sequence, but in essence we
also count occurrences and ignore the actual timestamp of each occurrence. For example,
both (Captain) and (Captain,Ahab) occur frequently in Moby Dick. An interesting local pattern
is (Captain,Peleg) which occurs 30 times, but only in chapter 16. A remaining challenge is
thus to efficiently measure cohesion local to a larger subsequence of a very long sequence,
i.e., a chapter-specific interesting pattern. A possible solution that is available in the open-
source code of FCIseq is to partition a single long sequence into medium long sequences for
mining. Then we can mine each medium long sequence using any of the techniques above and
aggregate these pattern sets. Unfortunately, we would then miss interesting patterns scattered
over the entire sequence. Further study is required to find a non-redundant set of patterns that
are both locally and globally interesting.

Sequence Classification

Zhou et al. (2016) proposed mining cohesive patterns and association rules for sequence classi-
fication. They first discover interesting patterns, with interestingness defined as the product
of cohesion and frequency, then mine confident associations rules and finally build a rule-
based classifier. They also studied the usage of patterns as embedding, that is, using frequent
and cohesive pattern occurrences as a feature vector and applying various machine learning
algorithms.

It would be of interest to investigate if the work of Zhou et al. (2016) for classification of
sequences can be improved. For improving runtime efficiency, we remark that we have provided
two efficient algorithms that directly mine the most cohesive patterns. Additionally, we also
presented a very efficient algorithm for mining cohesion-based rules. In contrast, Zhou et al.
first mine all frequent patterns and filters patterns on their cohesion-based interestingness
measure during post-processing, which is less efficient.

For improving accuracy, we first remark that our definition of rule-confidence, based on
the extended average minimal window size, is different from the traditional frequency-based
definition. Second, we remark that since quantile-based cohesion is more robust to outliers, it is
possible to define a more robust definition of rule confidence based on quantile-based cohesion
of the antecedent and consequent. For example, given a rule a ⇒ b, with minimal windows sizes
{2,2,2,2,100} of (a,b) for each instance of a, the confidence is quite low because of the single
outlier. Intuitively, the confidence should be 0.8, which would be the case with confidence
based on quantile-based cohesion. Additionally, we would like to study an embedding based
on quantile-based cohesive patterns, investigate discriminative patterns and combine it with
machine learning. Remark that we also proposed (frequent) pattern-based embeddings in the
context of anomaly detection (Feremans et al. 2019a), which is also relevant in this context.
Therefore, we believe that integrating our research with the rule-based classifier proposed by
Zhou et al. (2016) could result in further improvements.

5.2. OUTLOOK 115

Mining Complex Patterns on Complex Event Sequences

In Chapters 2 and 3 we have proposed relatively simple definitions of temporal sequences and
patterns. It is not hard to find examples of real-world datasets that are more complex.

For instance, a journal publishes a new volume each year, and each volume consists of a
series of abstracts. A new problem setting is to mine patterns that summarise all abstracts over
all years. Here, we should consider the order between words in each abstract and the order of
each volume. That is, we could represent the dataset as a sequence of sequential databases. For
example, we could report interesting patterns trending each decade, such as “pattern mining”
that was trending in 2000-2009, and “deep-learning” in 2009-2020, or temporal chains between
patterns such as “cohesive pattern mining” is precipitated by “frequent pattern mining”. In this
setting, Shahaf and Guestrin (2010) have proposed an algorithm for extracting useful knowledge
from large datasets. We believe that it would be original to start from cohesive patterns and
study interesting non-redundant definitions of patterns and pattern links in this context.

A second problem setting is the study of interesting patterns in multiple long sequences
with mixed-type attributes. This type of sequential data occurs naturally, for instance, in
wind turbine datasets. Here, also contextual attributes and different levels of temporal
granularity are essential. For example, a hot day in the winter is unusual. We proposed
a framework for pattern mining and anomaly detection (Feremans et al. 2019b). In this
framework, we consider patterns spanning multiple sequences, i.e., finding patterns such as
{low_power_day,high_windspeed_hour,stop_turbine}. However, reducing all data to a single
discrete event sequence might lead to suboptimal performance for anomaly detection or se-
quence classification. Therefore, we suggest further study of pattern mining algorithms that
can process multiple time series and event logs directly. That is mining complex patterns - rep-
resenting multi-sequence and multi-granular events - that are non-redundant and interesting
without ad hoc preprocessing.

Combining Deep-learning and Word Embeddings with Mining Interesting Patterns

Very recently, Li et al. (2017) proposed a method that mines discriminative patterns from a huge
number of image patches that outperforms state-of-the-art methods on the task of mid-level
visual element discovery. They first train a convolutional neural network and then create items
based on the activation of each image patch in the final layers of the neural network and learn
association rules. We are also interested in extending this idea to other applications, such as
sequence classification, and in combining deep-learning with mining interesting patterns. For
example, we could train a convolutional neural network on labelled sequences. After training,
activation weights in the final layers of this neural network will be discriminative towards each
label. Next, we can transform the raw sequences to a sequence of activation weights and mine
higher-order cohesive itemsets and association rules. Thus, further study might yield advances
in accuracy and explainable sequence, or time series, classification.

Likewise, for finding patterns in text data, we can study adopting more advanced feature
extraction than transforming words to lower case and stemming. It could be interesting to use
feature extraction algorithms for natural language processing, such as word2vec (Mikolov et al.
2013). For example, we can replace each word with the highest value in the embedding space
(or top-k highest values), and then mine cohesive patterns after transforming each word in the
sequence to a latent feature. For example, assuming both “King” and “Queen” have a latent
feature, roughly corresponding with “royalty”, we can mine sequential patterns, where “royalty”
co-occurs with another latent feature and discover more semantically interesting patterns.

116 CHAPTER 5. CONCLUSION AND OUTLOOK

5.2.2 Improving Extreme Multi-label Classification

Extending Feature-based Nearest Neighbourhood

In Chapter 4 we have adapted the item-based collaborative filtering technique of Sarwar et al.
(2001) for multi-label classification. By itself, feature-based kNN is already quite useful: it
outperforms IBLR and is comparable with ML-KNN. From a performance perspective, feature-
based kNN requires no nearest neighbour search at test time and can make highly explainable
predictions within one millisecond on extreme datasets. More recently, Ning and Karypis (2011)
proposed SLIM, an extension to item-based collaborative filtering that learns a sparse similarity
matrix by combining L2 and L1 regularisation. SLIM achieves significant improvements both in
run time performance and recommendation quality over the best existing methods. Therefore,
we consider adapting SLIM for extreme multi-label classification.

Boosting the Performance of LCIF

LCIF is a straightforward method that is extremely efficient at test and, especially, training time.
Recently many extreme multi-label methods have been proposed that compete on benchmark
datasets on precision@k (Bhatia et al. 2016). Some methods reduce the dimensionality of the
label space, while others build a hierarchical ensemble of tree-based models. We compared LCIF

with FASTXML (Prabhu and Varma 2014) , but not with ANNEXML (Tagami 2017), that uses an
approximate nearest neighbour search, SLEEC (Bhatia et al. 2015), that computes sparse local
embeddings, or DISMEC (Babbar and Schölkopf 2017), which is an efficient parallel algorithm
for learning one-versus-rest linear classifiers.

We argue that in classification benchmarks, the best results are reported by ensemble meth-
ods that combine many models, possibly using different algorithms and feature representations.
Therefore, comparing LCIF as-is, with the aforementioned ensemble-based methods would not
result in superior results. However, we see potential to improve results on precision@k by creat-
ing ensembles using boosting or stacking and adopting embeddings. For text categorisation, we
consider that the results of multiple runs of LCIF using different feature extraction algorithms
from natural language processing, such as word or sentence embeddings learned using neu-
ral networks (Mikolov et al. 2013; Devlin et al. 2018) and different similarity measures, such
as BM25, could improve results. In general, we can compute predictions on different - pos-
sibly randomised - subsets of features, different samples of datasets, using different settings
for the hyperparameters, and then use voting or machine learning, to make final predictions
based on different runs of LCIF. Finally, we can also study creating an ensemble that combines
predictions from LCIF with any of the aforementioned techniques.

5.2. OUTLOOK 117

APPENDIX A
Additional Material for FCIseq

A.1 Computing Minimal Windows for Sequential Patterns

For mining sequential patterns we must adapt SUM_MIN_WINS. For example, given a sequence
a1 b2 a3 we need to take into account that both sequential patterns (a1,b2) and (b2, a3) occur at
time stamp 2. Algorithm SUM_MIN_WINSseq is an adaptation of the original SUM_MIN_WINS

and is shown in Algorithm A.1. Remark that we omit unmodified code for brevity. The main
difference compared to the original algorithm, is that we now return a list of minimal win-
dows, where for each occurrence t we maintain possibly multiple instances of the minimal
windows at each occurrence. The list of final windows is first initialised (line 2) and returned
(line 21) together with the sum of minimal windows. As a result, within the inner loop, we
now not only update the minimal width of active windows but maintain, where necessary,
multiple instances of windows with the same minimal length (lines 7 to 13). If a new window
is found with a lower minimal width, we reset the instances of active windows (line 10). If
a new window is found with the same minimal width, we add that window to the instances
(line 12). For example, given sequence . . .bxaba . . ., for itemset {a,b}, we will find one mini-
mal window for the two occurrences of a, and the first occurrence of b, but we will find two
minimal windows for the second occurrence of b. Note that, compared to Algorithm 2.3, we
omitted the condition of removing windows where window.width == |X | from the list of active
windows (line 13), because we now want to enumerate all instances of the minimal window.

120 APPENDIX A. ADDITIONAL MATERIAL FOR FCI

Algorithm A.1: SUM_MIN_WINSseq(S , X ,Y) Compute the sum and the set of minimal
windows of each occurrence of X in S

Input : An event sequence S , candidate itemset X , set of items Y
Result: Sum and set of minimal windows (possibly with multiple instances)
/* Initialisation as in Sum_Min_Wins */

1 . . .; // Unmodified code is omitted for brevity
2 final_windows ←;;
3 for index in N (X) do

/* Abandon if running sum too high to be cohesive */
4 . . .;

/* If new minimum in current window */
5 if minpos 6= −∞ and minpos > prev_min then

/* Inner loop over previous non-final windows */
6 for window in active_windows do

/* Manage multiple minimal window instances */
7 newwidth ← maxpos−min(minpos, window.pos)+1;
8 if newwidth < window.width then
9 window.width ← newwidth;

10 window.instances ← { INSTANCE(minpos, maxpos) };
11 if newwidth = window.width then
12 window.instances ← window.instances ∪

{ INSTANCE(minpos, maxpos) };
/* Check if minimal window is final */

13 if window.pos < minpos or
window.width < (maxpos−window.pos+1) then

14 active_windows ← active_windows \ {window};
15 final_windows ← final_windows ∪ {window};
16 smw ← smw+window.width;
17 active_windows ← active_windows ∪ { WINDOW(current_pos,

maxpos−minpos+1, INSTANCE(minpos,maxpos))};
18 prev_min ← minpos;
19 smw ← smw+∑

window ∈active_windows window.width;
20 final_windows ← final_windows ∪active_windows;
21 return 〈smw,final_windows〉;

A.2 Compute Support of an Episode

For discovering dominant episodes, we must compute the support for each candidate episode.
Algorithm COMPUTE_SUPPORT_EPISODE is shown in Algorithm A.2. We first loop over each
occurrence (or minimal window) and then over each minimal window instance. As discussed
in section 2.4, it is important to loop over multiple minimal window instances since there can
be more than one minimal window instances for a single occurrence of an item. For example,
sequence a1 b2 a3 has two minimal window instances for itemset {a,b} at timestamp 2, namely
a1 b2 and b2 a3. We optimise our computation in two cases: When any edge is not covered by
the current instance (line 10) we do not check remaining edges for the current instance, and
when an instance is covered we do not check other instances (line 11).

A.3. TOP 25 PATTERNS DISCOVERED BY FCISEQ ON SPECIES 121

Algorithm A.2: COMPUTE_SUPPORT_EPISODE(S , X ,G) Compute the support of a can-
didate episode in a sequence based on a cohesive itemset X

Input : An event sequence S , frequent cohesive itemset X , episode G where V (G) = X
Result: Number of occurrences of G , that is |occpo(G)|

1 〈smw,min_windowsseq〉← SUM_MIN_WINSseq(S , X ,;);
2 support_G ← 0;
3 for win in min_windowsseq do

/* Check partial order holds in minimal window */
4 covers_window ← false;
5 for win_ins in win do
6 covers_instance ← true;
7 pos ← {〈i , t〉| i ∈ X ∧win_ins.min ≤ t ≤ win_ins.max};
8 for 〈i1, i2〉 ∈ E(G) do
9 covers_edge ←∃〈i1, t1〉,〈i2, t2〉 ∈ pos : t1 < t2;

10 if not covers_edge then
covers_instance ← false; break ;

11 if covers_instance then
covers_window ← true; break ;

12 if covers_window then
support_G ← support_G+1 ;

13 return support_G;

A.3 Top 25 Patterns Discovered by FCIseq on Species

Tables A.1, A.2 and A.3 show the top 25 itemsets, sequential patterns and association rules
discovered by FCIseq and the state-of-the-art methods on Species. Patterns for FCIseq in bold
are not discovered by any other state-of-the-art method in the top 1000; likewise, patterns in
bold for other methods are not discovered by FCIseq in the top 1000. As discussed in Section 2.8,
FCIseq produced fewer than 25 sequential patterns due to the usage of the minimal occurrence
ratio threshold. A lower threshold would naturally result in more patterns. Still, we argue that
these patterns are better omitted from the output, since they are not representative for the
occurrences of the underlying itemset.

122 APPENDIX A. ADDITIONAL MATERIAL FOR FCI

Table A.1: Top 25 itemsets discovered by FCIseq and the other methods on Species

FCIseq WINEPI LAXMAN MARBLESW CMW

del, fuego, tierra natur, select natur, select natur, select absenc, island, mammal,
ocean, terrestri

facit, natura,
saltum

speci, varieti form, speci speci, varieti altern, glacial, north,
period, south

del, fuego form, speci speci, varieti distinct, speci bat, island, mammal,
ocean, speci, terrestri

del, tierra natur, speci natur, speci form, speci bat, island, mammal,
ocean, terrestri

facit, saltum distinct, speci distinct, speci condit, life cross, fertil, hybrid, mon-
grel, offspr, varieti

facit, natura gener, speci gener, speci natur, speci differ, endow, incident,
special, steril

fuego, tierra differ, speci differ, speci anim, plant ag, earli, inherit, success,
superven, variat

natura, saltum case, speci case, speci genu, speci glacial, northern, period,
southern, temper

ithomia, leptali condit, life case, natur differ, speci ag, earli, inherit, period,
superven, variat

leptali, mimick genu, speci natur, organ be, organ inhabit, island, mainland,
nearest, relat

ithomia, leptali,
mimick

anim, plant select, speci group, speci fertil, mongrel, offspr,
univers, varieti

ithomia, mimick group, speci group, speci gener, speci cross, fertil, mongrel,
offspr, varieti

hexagon, sphere number, speci number, speci genera, speci mountain, northern,
southern, temper

forcep, urchin case, natur genera, speci cross, speci ag, earli, inherit, super-
ven, variat

rufescen, san-
guinea

genera, speci charact, speci individu, speci absenc, island, ocean,
terrestri

pyramid, rhomb cross, speci plant, speci case, speci crop, fantail, pouter, tail
natur, select be, organ form, varieti alli, speci cross, differ, incident,

system, unknown
sur, tom close, speci anim, plant number, speci exist, geometr, increas,

ratio, struggl
natur, speci charact, speci form, natur form, life absenc, mammal, ocean,

terrestri
prism, pyramid,
rhomb

descend, speci condit, life descend, speci connect, exist, intermedi,
lesser, number, varieti

busk, chela individu, speci natur, variat alli, close fittest, man, natur, select,
surviv

form, speci form, varieti organ, speci case, natur absenc, island, mammal,
terrestri

gener, speci natur, variat individu, speci exist, speci altern, glacial, north,
period

matthew, vol natur, organ natur, select, speci close, speci cross, differ, incident,
reproduct, system

saint, sur select, speci anim, speci produc, speci endow, incident, special,
steril

A.3. TOP 25 PATTERNS DISCOVERED BY FCI ON SPECIES 123

Table A.2: Top 25 sequential patterns discovered by FCIseq and other methods on Species.

FCIseq WINEPI LAXMAN MARBLESW CMW

tierra, del, fuego natur, select natur, select natur, select struggl, exist, geometr,
ratio, increas

natura, facit,
saltum

varieti, speci varieti, speci distinct, speci variat, superven, earli, ag,
inherit

del, fuego speci, varieti speci, form varieti, speci form, life, chang, simul-
tan, world

tierra, del distinct, speci speci, varieti condit, life variat, superven, earli,
inherit, ag

facit, saltum speci, form form, speci speci, varieti steril, speci, cross, hybrid,
offspr

natura, facit form, speci speci, natur organ, be wide, diffus, speci, larger,
genera, vari

tierra, fuego condit, life natur, speci speci, genu success, variat, superven,
earli, inherit

natura, saltum speci, natur distinct, speci speci, form inhabit, island, nearest,
mainland

natur, select speci, genu speci, gener form, speci chapter, geolog, success,
organ, be

vol, matthew natur, speci case, speci individu, speci varieti, exist, lesser, num-
ber, intermedi

avicularia, vibrac-
ula

organ, be gener, speci close, alli glacial, period, north,
south

eject, foster,
brother

speci, gener speci, differ speci, natur incident, differ, reprod-
uct, system

eject, foster differ, speci differ, speci anim, plant natur, system, genealog,
arrang

oviger, frena speci, differ speci, case group, speci tierra, del, fuego

movabl, zooid case, speci condit, life speci, genera seiz, place, economi,
natur

inter, se speci, genera select, natur alli, speci superven, earli, ag, in-
herit

sphere, prism gener, speci speci, distinct differ, speci natura, facit, saltum

foster, brother individu, speci number, speci form, life instinct, slave, make, ant
sown, mix group, speci speci, genu speci, gener varieti, exist, lesser, num-

ber, connect
sphere, hexagon,
prism, rhombic

number, speci speci, genera natur, speci direct, action, extern,
condit

hexagon, prism speci, distinct group, speci speci, differ ocean, island, terrestri,
mammal

anim, plant speci, group number, speci natur, select, extinct,
diverg, charact

alli, speci case, natur speci, group exist, geometr, ratio,
increas

speci, group charact, speci fresh, water revers, long, lost, charact
speci, case individu, speci case, speci form, naturalist, rank,

distinct, speci

124 APPENDIX A. ADDITIONAL MATERIAL FOR FCI

Table A.3: Top 25 rules discovered by FCIseq and other methods on Species

FCIseq WINEPI MARBLESM MARBLESW

fuego, tierra → del divis, kingdom → anim hive → bee divis, kingdom → anim

del, fuego → tierra averag, genera → speci mivart → mr fuego, tierra → del

del, tierra → fuego cuckoo, lai, nest → egg case, select, structur →
natur

independ, ordinari →
view

facit, natura → saltum varieti, zone → inter-
medi

candol → de natura, saltum → facit

natura, saltum → facit genera, present, varieti
→ speci

case, organ, select →
natur

inherit, superven →
earli

facit, saltum → natura cape, hope → good distinct, rank, varieti →
speci

accumul, act, natur →
select

fuego → del accumul, act, natur →
select

breed, rock → pigeon rang, vari → speci

del → fuego inherit, superven →
earli

diverg, select → natur economi, seiz → place

tierra → del fuego, tierra → del wallac → mr ag, inherit, superven →
earli

del → tierra differ, genera, varieti →
speci

humbl → bee exist, select, theori →
natur

fuego → del, tierra genu, greater → speci function, select → natur inherit, superven, variat
→ earli

tierra → del, fuego select, structur, theori →
natur

independ, select →
natur

act, natur, sole → select

del → fuego, tierra genera, smaller, varieti
→ speci

life, physic → condit newli, varieti → form

facit → saltum independ, ordinari →
view

charact, secondari →
sexual

exist, varieti, zone →
intermedi

saltum → facit charact, secondari, speci
→ sexual

favour, select, speci →
natur

ask, distinct → speci

natura → facit creat, independ, view →
speci

select, speci, theori →
natur

ag, inherit, superven,
variat → earli

facit → natura inherit, superven, variat
→ earli

charact, diverg, select →
natur

bottom, rest → side

natura → facit, saltum genera, larger, number
→ speci

malai → archipelago end, mean → gain

facit → natura, saltum exist, select, theori →
natur

genu, manner → speci rang, vari, wide → speci

saltum → facit, natura action, diverg, natur →
select

genu, produc → speci incident, reproduct →
differ

prism → hexagon action, diverg, select →
natur

fittest → surviv english, face → short

fuego → tierra natura, saltum → facit incipi, varieti → speci economi, natur, seiz →
place

tierra → fuego ag, inherit, superven →
earli

cell, hive → bee larger, relat → genera

natura → saltum rang, vari → speci genera, larger, varieti →
speci

manner, mivart → mr

saltum → natura bird, cuckoo, lai, nest →
egg

fritz → muller life, organ, physic →
condit

A.4. TOP 25 PATTERNS DISCOVERED BY FCISEQ ON TRUMP 125

A.4 Top 25 Patterns Discovered by FCIseq on Trump

Tables A.4, A.5 and A.6 show the top 25 patterns discovered on Trump. For more details
concerning reporting see Section A.3.

Table A.4: Top 25 itemsets discovered by FCIseq and other methods on Trump

FCIseq WINEPI LAXMAN MARBLESW CMW

puerto, rico fake, new fake, new fake, new ab, japan, minist, prime
hunt, witch cut, tax cut, tax cut, tax high, hit, market, stock,

time
harbor, pearl america, great america, great america, great abc, cnn, fake, nbc, new
lago, mar great, make great, peopl america, make alabama, big, luther,

strang, vote
arabia, saudi america, make great, make great, make lowest, market, stock,

unemploy, year
jong, kim great, peopl great, job state, unit base, immigr, merit,

system
davo, switzerland america, great,

make
countri, great great, honor high, hit, job, market,

stock
davo, wef great, job great, todai korea, north abc, cb, cnn, fake, new
davo, switzerland,
wef

great, honor america, make great, job greatest, histori, hunt,
witch

switzerland, wef countri, great great, tax america, great,
make

alabama, great, luther,
state, strang

unga, usaatunga fake, media great, state great, peopl high, hit, market, stock
prstrong, ricar-
dorossello

great, state big, great media, new donald, presid, proclaim,
trump

rex, tillerson state, unit great, new hard, work korea, moon, presid,
south

fake, new great, tax america, great,
make

fake, media bail, compani, democrat,
insur

minist, prime great, todai great, honor market, stock fail, fake, media, new,
nytim

christma, merri great, work great, work great, state high, market, stock, un-
employ

korea, north media, new fake, media hous, white abc, cnn, nbc, new
cut, tax great, new cut, great republican, senat high, job, market, stock,

time
america, make dai, great great, presid countri, great alabama, luther, strang,

vote
chain, migrat big, great american, great dai, great high, market, record,

stock, time
great, peopl hard, work great, year great, new big, luther, senat, strang
market, stock korea, north dai, great great, meet court, state, suprem, unit
america, great fake, media, new great, republican great, todai cnn, fail, fake, new, nytim
fake, great, new cut, great cut, great, tax cut, reform high, market, stock, time
america, great,
make

american, great fake, great minist, prime alabama, great, luther,
senat, strang

126 APPENDIX A. ADDITIONAL MATERIAL FOR FCI

Table A.5: Top 25 sequential patterns discovered by FCIseq and other methods on Trump

FCIseq WINEPI LAXMAN MARBLESW CMW

puerto, rico fake, new fake, new fake, new stock, market, hit, time,
high

witch, hunt tax, cut tax, cut tax, cut job, stock, market, time,
high

pearl, harbor america, great america, great america, great greatest, witch, hunt,
histori

mar, lago make, america make, great make, america stock, market, hit, high
saudi, arabia make, great make, america unit, state presid, moon, south,

korea
kim, jong make, america,

great
great, peopl make, great presid, donald, trump,

proclaim
davo, switzerland unit, state make, america,

great
great, honor fake, new, fail, nytim, cnn

switzerland, wef great, honor great, job north, korea market, hit, time, high
usaatunga, unga fake, media great, honor make, america,

great
stock, market, time, high

ricardorossello,
prstrong

great, job peopl, great new, media stock, market, hit, time

rex, tillerson great, peopl great, state stock, market stock, hit, time, high
fake, new new, media fake, media fake, media massiv, tax, cut, reform
prime, minist north, korea great, countri white, hous healthcar, tax, cut, re-

form
merri, christma stock, market great, tax work, hard fake, new, cnn, abc
north, korea great, state unit, state great, job republican, senat, work,

hard
tax, cut fake, new, media tax, great great, peopl radic, islam, terror
chain, migrat white, hous great, todai great, state fake, new, cnn, nbc
stock, market work, hard great, work republican, senat new, media, fail, nytim
luther, strang great, countri countri, great prime, minist make, america, great,

fake, new
fake, media tax, reform north, korea tax, reform greatest, witch, hunt
berni, sander peopl, great great, america fake, new, media joint, press, confer
radic, islam republican, senat great, american crook, hillari prime, minist, ab

great, tax great, presid cut, reform behalf, flotu, melania
great, american new, great great, countri stock, market, hit, high,

great
great, meet new, media men, women m, gang, member

A.4. TOP 25 PATTERNS DISCOVERED BY FCI ON TRUMP 127

Table A.6: Top 25 rules discovered by FCIseq and other methods on Trump

FCIseq WINEPI MARBLESM MARBLESW

puerto → rico hit, stock → market cut, reform → tax honor, minist → prime
rico → puerto high, hit, stock →

market
puerto → rico confer, joint → press

hunt → witch bill, reform, tax → cut rico → puerto immigr, merit → base
witch → hunt biggest, cut, histori →

tax
witch → hunt greatest, hunt → witch

migrat → chain ab, prime → minist hunt → witch donald, proclaim →
trump

pearl → harbor abc, fake → new great, white → hous hit, record, stock →
market

harbor → pearl honor, minist →
prime

high, market → stock immigr, merit, system →
base

merri → christma behalf, melania →
flotu

cut, dem → tax law, offic → enforc

saudi → arabia hit, stock, time →
market

cut, pass → tax liyuan, madam → peng

arabia → saudi massiv, reform, tax →
cut

biggest, cut → tax donald, presid, proclaim
→ trump

lago → mar abc, cnn, fake → new market, record →
stock

chain, visa → migrat

mar → lago confer, joint → press alabama, strang →
luther

great, honor, minist →
prime

kim → jong immigr, merit → base suprem → court high, hit, record, stock →
market

jong → kim abc, fake, nbc → new great, prime → minist cut, massiv, work → tax
sander → berni high, hit, stock, time

→ market
great, minist → prime great, high, stock →

market
usaatunga → unga biggest, reform → tax great, puerto → rico histori, witch → hunt
rex → tillerson biggest, reform → cut hous, tax → cut jame, leak → comei
switzerland → davo biggest, reform → cut,

tax
cut, hous → tax bill, massiv, tax → cut

wef → davo hit, record, stock →
market

fake, nytim → new famili, thought → prayer

davo → switzerland biggest, reform, tax →
cut

big, cut, great → tax men, protect → women

switzerland → davo,
wef

biggest, cut, pass →
tax

birthdai → happi jone, pelosi, puppet →
schumer

switzerland, wef →
davo

biggest, cut, reform →
tax

xi → china great, job, market →
stock

wef → davo, switzer-
land

immigr, merit, system
→ base

premium → oba-
macar

american, cut, massiv →
tax

switzerland → wef alabama, big, strang
→ luther

great, strang → luther high, stock, unemploy →
market

davo, switzerland →
wef

budget, cut → tax north, presid → korea anthem, great, stand →
nation

APPENDIX B
Additional Material for QCSP

B.1 Weighted Quantile-based Cohesion

While quantile-based cohesion is more robust to outliers than cohesion, it does not take the
size of the minimal windows into account. In response to this observation, we propose the
following variant, namely weighted quantile-based cohesion1:

Definition B.1 (Weighted quantile-based cohesion).

Cquan_weighted(Xs) =
∑

t∈cover(Xs)∧Wt (Xs)<α·|Xs | |Xs | ·Wt (Xs)−1

support(Xs)

Since Cquan_weighted(Xs) ≤ Cquan(Xs), Cquan(Xs) is an upper bound for weighted quantile-
based cohesion and we can re-use the QCSP algorithm and re-rank sequential patterns on
Cquan_weighted during post-processing. We have not performed experiments on re-ranking on
this variant. For some scenario’s (see the example below) it makes sense to rank patterns
on weighted quantile-based cohesion. However, it could be that Cquan(Xs1) >Cquan(Xs2), but
Cquan_weighted(Xs1) <Cquan_weighted(Xs2) and re-ranking might perform worse, e.g., if Xs1 have a
minimal window of size 4 for 10 out of 20 occurrences and Xs2 has a minimal window of size 2
for 10 out of 30 occurrences, which is preferred? In this scenario, a simple solution is to first sort
on Cquan(Xs) and then break ties using Cquan_weighted(Xs). Alternative, the final ranking can be
chosen specifically to each application, i.e., giving more weight to the ratio between cohesive
versus non-cohesive occurrences, more weight the absolute number of cohesive occurrences or
more weight relative to the size of minimal windows. Therefore, further experimental validation
is required to consider this variant.

Example B.1. For example, assume we have two sequential patterns Xs1 = (a,b) and
Xs2 = (b,c) and the minimal window sizes are {2,2,2,2,100,100,100,100} for Xs1 and
{4,4,4,4,100,100,100,100} for Xs2 . In this scenario, 4 occurrences of (a,b) are next to each
other, while for (c,d) there are two items, or gaps, between c and d in 4 occurrences. How-
ever, quantile-based cohesion ignores the actual size of minimal windows, that is, w.r.t. α= 3,
Cquan(Xs1) =Cquan(Xs2) = 0.5. In contrast, weighted quantile-based cohesion would rank Xs1

first, that is, Cquan_weighted(Xs1) = 4·2/2
8 = 0.5 >Cquan_weighted(Xs2) = 4·2/4

8 = 0.25

1This variant was not discussed in the original publication (Feremans et al. 2018).

130 APPENDIX B. ADDITIONAL MATERIAL FOR QCSP

B.2 Top 20 Sequential Patterns Discovered by QCSP

Tables B.1, B.2 and B.3 show the top 20 patterns for the text datasets. Patterns not found either
exactly or as sub-patterns in the top 250 of other methods are shown in bold. We see that
QCSP finds many interesting patterns that other methods fail to rank highly. On the other hand,
the patterns SKOPUS ranks highly and other methods do not are typically combinations of
very frequent items. GOKRIMP, in general, produces few patterns and misses out on many
interesting patterns altogether.

Table B.1: Top 20 sequential patterns discovered by QCSP and other methods on Moby

mobi, dick um, um sperm, whale ginger, ginger
mrs, hussey seven, seventi town, ho ha, ha

QCSP ii, octavo cape, horn ii, iii jack, knife
crow, nest o, clock dough, boy mast, head

iii, duodecimo hither, thither beef, bread inclin, plane

sperm, whale mobi, dick said, i d, ye

white, whale captain, ahab whale, him ye, see
SKOPUS though, yet right, whale look, like quarter, deck

old, man whale, head cri, ahab ahab, him
mast, head whale, ship one, side now, whale

mobi, dick captain, ahab cri, ahab

sperm, whale said, i

GOKRIMP mast, head right, whale

white, whale quarter, deck

old, man d, ye

Table B.2: Top 20 sequential patterns discovered by QCSP and other methods on JMLR

mont, carlo reproduc, hilbert support, machin bayesian, network
nearest, neighbor real, world state, art high, dimens

QCSP support, vector belief, propag vector, machin collabor, filter
http, www support, vector,

machin
messag, pass naiv, bay

cross, valid plai, role data, set learn, algorithm

paper, show base, result paper, propo paper, set
paper, result paper, method vector, machin support, machin

SKOPUS paper, experi learn, result paper, new learn, data
paper, algorithm problem, experi algorithm, result problem, result
support, vector learn, experi paper, base algorithm, experi

support, vector,
machin

high, dimens well, known

real, world neural, network hilbert, space

GOKRIMP machin, learn compon, analysi experi, result

state, art supervi, learn
reproduc, hilbert,
space

support, vector

B.2. TOP 20 SEQUENTIAL PATTERNS DISCOVERED BY QCSP 131

Table B.3: Top 20 sequential patterns discovered by QCSP and other methods on Trump

QCSP puerto, rico goofi, elizabeth, war-
ren

luther, strang https, co

witch, hunt prime, minist stock, market fake, news

elizabeth, warren goofi, warren self, fund novemb, 8th
las, vega radic, islam suprem, court white, hous

goofi, elizabeth e, mail mitt, romney common, core

SKOPUS make, america america, again thank, trump2016 crook, clinton

make, great great, again thank, makeamerica-
greatagain

donald, trump

crook, hillari make, again fake, news last, night

hillari, clinton thank, you 2016, fals thank, co
america, great https, co ted, cruz interview, enjoy

GOKRIMP make, america, great,
again

thank, you trump2016http, co north, carolina

https, co last, night 00, m north, korea

crook, hillari hillari, clinton new, york make, america, great

fake, news 2016, fals donald, trump white, hous

ted, cruz look, forward south, carolina work, hard

APPENDIX C
Additional Material for LCIF

C.1 Second Order Instance-based kNN

A possible disadvantage of the instance-based kNN method proposed in Section 4.3.1 is that
inter-label dependencies are ignored: the prediction for a given label is obtained independently
of the values of other labels. Additionally, in user-based collaborative filtering there is no
distinction between features and labels and cosine similarity is defined using all items. This is
not possible in the multi-label classification setting since for any test instance xq , by problem
definition, there is no label information. In this section, we propose a variant of instance-based
kNN that does regard other labels in the prediction process and uses cosine similarity defined
on both features and labels. That is, second order instance-based kNN does a neighbours of
neighbours search where the similarity between features and labels for training instances is
used.

Definition C.1 (Full cosine similarity). The cosine similarity using both features and labels
between two training instances xi and x j in D is defined as

simALL(xi , x j) = xi · x j + yi · y j√∑M
k=1 x2

i ,k +
∑L

k=1 y2
i ,k ·

√∑M
k=1 x2

j ,k +
∑L

k=1 y2
j ,k

= xi · x j + yi · y j =
M∑

k=1
xi ,k x j ,k +

L∑
k=1

yi ,k y j ,k

where yi and y j are both vectors of size L containing the labels corresponding to instances xi

and x j and we ensure that all instance vectors (consisting of both feature and label values) are
normalised to unit length during preprocessing.

Definition C.2 (Second order label weight). Given a training instance xi in D we define the
re-weighted value for label yi , j as

rw(yi , j) =

∑
xk∈ kNN(xi)

yk, j · simALL(xi , xk)∑
xk∈ kNN(xi)

simALL(xi , xk)

where the k-nearest neighbours are computed using simALL. Note that the first neighbour is the
instance itself.

134 APPENDIX C. ADDITIONAL MATERIAL FOR LCIF

Definition C.3 (Second order instance-based confidence score). To compute the confidence
score for instance xq for (a single) label y j we define the following function:

ŷ INS2
q , j =

∑
xi∈kNN(xq)

rw(yi , j) · simINS(xq , xi)∑
xi∈kNN(xq)

simINS(xq , xi)

The motivation behind changing each binary label in D to a re-weighted value is that we
use the similarity function simALL. By using a measure of similarity within the space of both
features and labels, we expect that this weight better reflects local clusters of co-occurring
labels. It is somewhat counter-intuitive to change the given binary labels, but this approach
has the advantage that we do account for local neighbours of each training instance (like a
micro-cluster around each training instance). We remark that the second order approach has
some similarity with ML-KNN that also employs a neighbours of neighbours search thereby
counting the labels of the neighbours for each training instance to make final predictions
(Zhang and Zhou 2007). It is also related to the idea proposed by Breunig et al. (2000) in which
they identify local outliers as points that have low local density, that is, where the (relative)
distance to its nearest neighbours is high. Here, the re-weighted label values will be higher
for labels with a high local density and lower for labels with low local density. Finally we
propose a variation of the linear combination, named LCIF2, where we re-use Equation 4.9 but
take a linear combination of the second order instance-based confidence score ŷ INS2

q , j with the

feature-based confidence score ŷ FL
q , j .

Limitation

A limitation of this variation is that in many benchmark multi-label datasets the label cardinality
is very small, with on average fewer than 5 labels for each instance. In this case, it does not make
sense to apply this variation since the effect on the second order neighbourhood computed
using simALL versus simINS will be minor. As a rule of thumb we apply it on datasets where the
average number of labels is comparable to the average number of features.

Complexity

The main computational cost is that we have to perform a kNN search over all training instances
requiring O(1

2 N 2×(M+L)) steps. We compute this neighbourhood efficiently using an inverted
index (for features and labels) and only compute nonzero terms of the full cosine similarity
between all training instance pairs. In practice, the number of instances N that actually share a
single feature with other training instances is much smaller, and we observe an average runtime
of O(1

2 N × ñ × (m̃ + l̃)). Here ñ is proportional to the average number of candidate instances
fetched from the inverted index (sharing at least one 1 feature), and m̃ and l̃ are proportional
to the average number of nonzero features and labels.

Classification Performance

We apply the second order instance variation (and the linear combination with feature-based
kNN) on datasets where the average number of labels and features is comparable. Given our
selection of datasets we find that the Delicious dataset has a label cardinality of 19.1 and a
feature cardinality of 18.3 (see Table 3.1) and is applicable.

The classification accuracy for the second order instance variation on the Delicious dataset
is shown in Table C.1. We see that the second order instance variation further improves the

135

result of the instance-based kNN. We remark that the effect of feature-based kNN in LCIF2
is negligible in this dataset except for Hamming Loss. The second order variation performs
better than ML-KNN and BR-SMO on Delicious on all metrics except Hamming Loss. We did
not include results on IBLR since it timed-out on our test server because it has to learn L = 983
different models for Delicious. Based on these results we argue that the second order instance-
based kNN is a promising variation on datasets where the label cardinality is close to the feature
cardinality.

Table C.1: Comparing the accuracy of second order instance-based kNN with instance-based
kNN, ML-KNN and BR-SMO on Delicious

Metric INS.
KNN

SECOND

INS. KNN
FEAT.
KNN

LCIF LCIF2 ML-KNN BR-SMO

Accuracy ↑ 0.227 0.237 0.101 0.227 0.237 0.193 0.130

Micro F1 ↑ 0.362 0.372 0.189 0.363 0.372 0.322 0.224

Macro F1 ↑ 0.182 0.184 0.050 0.184 0.184 0.088 0.098

Hamming
Loss ↓

0.024 0.023 0.021 0.021 0.021 0.021 0.018

Runtime Performance

Table C.2 shows the runtime of feature-based kNN, instance-based kNN and second order
instance variation in seconds. In contrast to Chapter 4 we used the previous implementation
available in Java1. The difference between the second order instance-based kNN compared to
instance-based kNN is clear. However, if we make a distinction between training time and test
time we remark that the additional time required for second order instance-based kNN is only
required at training. Finally, we remark that the total runtime of the second order variation is
still excellent compared to ML-KNN, IBLR and BR-SMO which are still an order of magnitude
slower (or time-out after a full day of computation).

Table C.2: Comparing the runtime of the second order instance-based kNN variation on large
datasets

Dataset FEAT. KNN INS. KNN SECOND

INS. KNN

Total train and test time for classifier ↓
Medical 0.3 s 0.3 s 0.3 s

Corel5k 0.4 s 0.4 s 1.6 s

Bibtex 1.6 s 2.6 s 12.4 s

Delicious 1.5 s 3.1 s 30.1 s

IMDB-F 5.7 s 58.0 s 658.7 s

1https://bitbucket.org/len_feremans/lcif_knn_pub

https://bitbucket.org/len_feremans/lcif_knn_pub

List of Figures

1.1 Fragment of the novel Moby Dick written by Herman Melville. We highlight 4 se-
quential patterns . 2

1.2 Data for 15 days of activity of a wind turbine. On the first day (W5) pattern 6 occurs,
meaning that events 203,221,224,225,309 and 310 co-occur and the wind turbine
has stopped. On the second and fifth day (W6 and W9) pattern 122 occurs, meaning
events 221,224,225,230 and 310 co-occur and the turbine is remotely paused and
re-started . 2

1.3 Frequent sequential patterns mined in the fragment of Moby Dick 3
1.4 Cohesive sequential patterns mined in the fragment of Moby Dick 4
1.5 Example of a cohesive itemset, a sequential pattern and an episode 5
1.6 Illustrative example of k-nearest neighbours classification 6
1.7 Illustrative example of finding the nearest neighbours using term-at-a-time and

document-at-a-time with pruning . 7

2.1 Example of a cohesive itemset, a representative sequential pattern and a dominant
episode . 21

2.2 Effect of varying noise on the discovery of a single episode by state-of-the-art meth-
ods and FCIseq . 39

2.3 Effect of varying the alphabet size on the discovery of a single episode by state-of-
the-art methods and FCIseq . 40

2.4 Effect of varying the probability of omitting events of source episodes on the discovery
of a single episode by state-of-the-art methods and FCIseq 40

2.5 Effect of varying maximum time delay on the discovery of a single episode by state-
of-the-art methods and FCIseq . 41

2.6 Effect of varying the number of episodes and the discovery of them by state-of-the-art
methods and FCIseq . 42

2.7 Effect of min_coh, θ and max_size thresholds on the number of patterns and runtime 51
2.8 Effect of mining representative sequential patterns, dominant episodes and associa-

tion rules on runtime on Species and Trump . 53

3.1 Fragment of the novel Moby Dick written by Herman Melville. We highlight 4 se-
quential patterns having a high value of quantile-based cohesion 61

3.2 Illustrative example of QCSP, a prefix-projected pattern growth algorithm that em-
ploys pruning using mingap and an upper bound on quantile-based cohesion . . . 68

3.3 Number of candidates (log scale) visited by QCSP with and without pruning 74

4.1 Effect of thresholding on the distribution of actual versus predicted labels on the
imbalanced dataset Corel5k . 99

138

List of Tables

2.1 Example of computing minimal windows of itemset {a,b,c} in sequence aabccccacb 30
2.2 Top 5 itemsets discovered by FCIseq and the state-of-the-art methods on Species and

Trump . 44
2.3 Overlap in the top k itemsets discovered by FCIseq and the state-of-the-art methods

on Species and Trump . 45
2.4 Top 5 sequential patterns discovered by FCIseq on Species 45
2.5 Top 5 sequential patterns discovered by FCIseq and the state-of-the-art methods on

Species and Trump . 46
2.6 Top 5 dominant episodes discovered by FCIseq on Species 47
2.7 Top 5 episodes discovered by the state-of-art methods on Species 48
2.8 Top 5 rules discovered by FCIseq and the state-of-the-art methods on Species and

Trump . 49
2.9 Top 5 rules discovered by FCIseq on sequences of characters in different languages . 50
2.10 Effect of varying max_size on the number of candidates enumerated by FCIseq on

Species . 52

3.1 Characteristics of datasets for comparing the performance of QCSP versus state-of-
the-art methods . 73

3.2 Runtimes for QCSP and state-of-the-art methods on all datasets 74
3.3 Top 5 sequential patterns for QCSP and state-of-the-art methods on Synthetic 75
3.4 Top 5 sequential patterns for QCSP and the state-of-the-art methods on Moby, JMLR

and Trump . 76

4.1 Characteristics of five large and five extreme multi-label datasets 94
4.2 Comparing the accuracy of LCIF with ML-KNN, IBLR and BR-SMO on the large datasets 98
4.3 Comparing the accuracy of LCIF with FASTXML on the extreme datasets 99
4.4 Pruning of INSTANCEKNNFAST and state-of-the-art top-k query retrieval methods . 101
4.5 Runtime of INSTANCEKNNFAST and state-of-the-art top-k query retrieval methods . 101
4.6 Runtime results of LCIF and the state-of-the-art multi-label classifications methods

on the large datasets . 102
4.7 Runtime results of LCIF on the extreme datasets . 103

A.1 Top 25 itemsets discovered by FCIseq and the other methods on Species 122
A.2 Top 25 sequential patterns discovered by FCIseq and other methods on Species. . . . 123
A.3 Top 25 rules discovered by FCIseq and other methods on Species 124
A.4 Top 25 itemsets discovered by FCIseq and other methods on Trump 125
A.5 Top 25 sequential patterns discovered by FCIseq and other methods on Trump 126
A.6 Top 25 rules discovered by FCIseq and other methods on Trump 127

B.1 Top 20 sequential patterns discovered by QCSP and other methods on Moby 130
B.2 Top 20 sequential patterns discovered by QCSP and other methods on JMLR 130

140

B.3 Top 20 sequential patterns discovered by QCSP and other methods on Trump 131

C.1 Comparing the accuracy of second order instance-based kNN with instance-based
kNN, ML-KNN and BR-SMO on Delicious . 135

C.2 Comparing the runtime of the second order instance-based kNN variation on large
datasets . 135

List of Algorithms

2.1 FCIseq(S , θ, max_size, min_coh, min_or, min_por, min_conf) Mine cohesive item-
sets, representative sequential patterns, dominant episodes and association rules
in a single sequence . 23

2.2 DFS(S , X , Y , max_size, min_coh, min_or, min_por, min_conf) Pruned depth-first
search to find cohesive itemsets and post-processing for other types of patterns
and rules . 23

2.3 SUM_MIN_WINS(S , X ,Y) Compute sum of minimal windows of each occurrence
of X in S . 29

2.4 FIND_SEQUENTIAL_PATTERNS(S , X) Generate sequential patterns based on cohe-
sive itemset X . 31

2.5 FIND_DOMINANT_EPISODE(S , X ,sps,min_por) Generate a dominant episode
based on cohesive itemset X . 33

2.6 FIND_RULES(S , X ,min_conf) Generate confident association rules from cohesive
itemset X . 36

3.1 QCSP(S ,k,α,max_size) Mine top-k quantile-based cohesive sequential patterns
in a single sequence . 65

3.2 PROJ_CANDIDATES(S , Xs ,PXs) Compute candidate itemset Y based on projection 66
3.3 PROJECT(S , Zs ,PXs ,α,max_size) Computes pseudo-projection incrementally . . . 67

4.1 CREATEINDEX(D) Creates an inverted index for instance-based kNN baseline . . . 85
4.2 INSTANCEKNNSEARCH(xq ,k, IID) Finds the k-nearest neighbours for xq in D . . . 86
4.3 INSTANCEKNNPREDICT(xq , KNN, α) Computes instance-based confidence scores

for labels . 86
4.4 CREATESIMILMATRIX(D) Computes similarities between all features and labels for

feature-based kNN . 88
4.5 FEATUREKNNPREDICT(xq ,S,β) Computes feature-based confidence scores for labels 88
4.6 LCIF(D, Xtest ,k,α,β,λ, t) Predicts labels based on a linear combination of instance-

and feature-based weighted similarities . 90
4.7 CREATEINDEXPARTITION(D,m) Partitions data and builds indexes for both TAAT

and DAAT traversal . 92
4.8 INSTANCEKNNFAST(xq ,k,Φ) Finds the exact k-nearest neighbours from D based

on two traversal strategies and pruning . 93

A.1 SUM_MIN_WINSseq(S , X ,Y) Compute the sum and the set of minimal windows of
each occurrence of X in S . 120

A.2 COMPUTE_SUPPORT_EPISODE(S , X ,G) Compute the support of a candidate
episode in a sequence based on a cohesive itemset X 121

142

List of Definitions, Problems and Theorems

2.1 Definition (Event sequence) . 16
2.2 Definition (Itemset support) . 16
2.3 Definition (Minimal window) . 17
2.4 Definition (Cohesion) . 17
2.1 Problem (Frequent cohesive itemset) . 17
2.5 Definition (Sequential pattern) . 18
2.6 Definition (Sequential pattern occurrence ratio) . 18
2.7 Definition (Representative sequential pattern) . 19
2.8 Definition (Episode) . 19
2.9 Definition (Episode occurrence ratio) . 19
2.10 Definition (Intersecting episode) . 20
2.11 Definition (Dominant episode) . 20
2.12 Definition (Extended average window size) . 21
2.13 Definition (Rule confidence) . 21
2.14 Definition (Upper bound cohesion) . 24
2.1 Lemma (A ratio inequality) . 25
2.2 Theorem (Upper bound on cohesion) . 25
2.3 Theorem (Upper bound sum of minimal windows) 28
2.4 Theorem (Computing rule confidence based on single antecedents) 35

3.1 Definition (Event sequence) . 62
3.2 Definition (Sequential pattern) . 62
3.3 Definition (Minimal window) . 62
3.4 Definition (Support sequential pattern) . 62
3.5 Definition (Quantile-based cohesion) . 63
3.1 Problem (Top-k quantile-based cohesive sequential patterns) 63
3.6 Definition (Supersequence) . 64
3.7 Definition (Projection) . 64
3.8 Definition (Candidate items) . 64
3.9 Definition (Minimal gap) . 68
3.1 Theorem (Limit quantile-based cohesion using mingap) 68
3.2 Theorem (Upper bound on quantile-based cohesion) 70

4.1 Definition (Multi-label dataset) . 83
4.2 Definition (Cardinality) . 83
4.3 Definition (Column) . 84
4.4 Definition (Density) . 84

144

4.1 Problem (Multi-label classification) . 84
4.5 Definition (Instance-based cosine similarity) . 84
4.6 Definition (Instance-based confidence score) . 85
4.7 Definition (Feature-based cosine similarity) . 87
4.8 Definition (Feature-based confidence score) . 87
4.9 Definition (LCIF confidence score) . 89
4.10 Definition (Single threshold) . 89
4.11 Definition (Label-specific threshold) . 89
4.12 Definition (Partition) . 91
4.13 Definition (Upper bound cosine similarity) . 92
4.14 Definition (Example-based metrics) . 95
4.15 Definition (Label-based metrics) . 96
4.16 Definition (Micro and macro precision) . 96
4.17 Definition (Precision at k) . 96

B.1 Definition (Weighted quantile-based cohesion) . 129

C.1 Definition (Full cosine similarity) . 133
C.2 Definition (Second order label weight) . 133
C.3 Definition (Second order instance-based confidence score) 134

145

Bibliography

R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In International
Conference on Very Large Data Bases, volume 1215, pages 487–499, 1994.

D. C. Anastasiu and G. Karypis. Fast parallel cosine k-nearest neighbor graph construction. In
Proceedings of the Sixth Workshop on Irregular Applications: Architectures and Algorithms,
pages 50–53. IEEE Press, 2016.

A. Awekar and N. F. Samatova. Fast matching for all pairs similarity search. In 2009
IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent
Technology, volume 1, pages 295–300. IEEE, 2009.

R. Babbar and B. Schölkopf. Dismec: Distributed sparse machines for extreme multi-label
classification. In Proceedings of the Tenth ACM International Conference on Web Search and
Data Mining, pages 721–729. ACM, 2017.

R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all pairs similarity search. In Proceedings of the
16th International Conference on World Wide Web, pages 131–140. ACM, 2007.

K. Bhatia, H. Jain, P. Kar, M. Varma, and P. Jain. Sparse local embeddings for extreme multi-label
classification. In Advances in Neural Information Processing Systems, pages 730–738, 2015.

K. Bhatia, K. Dahiya, H. Jain, Y. Prabhu, and M. Varma. The extreme classification repository:
multi-label datasets & code. http://manikvarma.org/downloads/XC/XMLRepository.html,
2016.

J. Bobadilla, F. Ortega, A. Hernando, and J. Bernal. A collaborative filtering approach to mitigate
the new user cold start problem. Knowledge-based systems, 26:225–238, 2012.

J. S. Breese, D. Heckerman, and C. Kadie. Empirical analysis of predictive algorithms for
collaborative filtering. arXiv preprint arXiv:1301.7363, 2013.

M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. Lof: identifying density-based local outliers.
In Proceedings of the 2000 ACM SIGMOD International Conference on Management of data,
pages 93–104. ACM, 2000.

A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer, and J. Zien. Efficient query evaluation using
a two-level retrieval process. In Proceedings of the twelfth International Conference on
Information and Knowledge Management, pages 426–434. ACM, 2003.

N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. Smote: synthetic minority over-
sampling technique. Journal of artificial intelligence research, 16:321–357, 2002.

W. Cheng and E. Hüllermeier. Combining instance-based learning and logistic regression for
multilabel classification. Machine Learning, 76(2-3):211–225, 2009.

148

D. W. Cheung, J. Han, V. T. Ng, and C. Wong. Maintenance of discovered association rules in
large databases: An incremental updating technique. In IEEE International Conference on
Data Engineering, pages 106–114. IEEE, 1996.

K. W. Church and R. L. Mercer. Introduction to the special issue on computational linguistics
using large corpora. Computational linguistics, 19(1):1–24, 1993.

B. Cule, B. Goethals, and C. Robardet. A new constraint for mining sets in sequences. In
Proceedings of the 2009 SIAM International Conference on Data Mining, pages 317–328.
Society for Industrial and Applied Mathematics, 2009.

B. Cule, N. Tatti, and B. Goethals. Marbles: Mining association rules buried in long event
sequences. Statistical Analysis and Data Mining: The ASA Data Science Journal, 7(2):93–110,
2014.

B. Cule, L. Feremans, and B. Goethals. Efficient discovery of sets of co-occurring items in event
sequences. In Joint European Conference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases, pages 361–377. Springer, 2016.

B. Cule, L. Feremans, and B. Goethals. Efficiently mining cohesion-based patterns and rules in
event sequences. Data Mining and Knowledge Discovery, 33(4):1125–1182, 2019.

P.-J. Daems, L. Feremans, T. Verstraeten, B. Cule, B. Goethals, and J. Helsen. Fleet-oriented
pattern mining combined with time series signature extraction for understanding of wind
farm response to storm conditions. In Second World Congress on Condition Monitoring, 2019.

C. Darwin. On the origin of species by means of natural selection, or the preservation of favoured
races in the struggle for life (DATASET). 1859. URL http://www.gutenberg.org/ebooks/1228.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

C. Dickens. David copperfield (DATASET). 1850. URL http://www.gutenberg.org/ebooks/766.

S. Ding and T. Suel. Faster top-k document retrieval using block-max indexes. In Proceedings of
the 34th International ACM SIGIR Conference on Research and development in Information
Retrieval, pages 993–1002. ACM, 2011.

K. Draszawka and J. Szymański. Thresholding strategies for large scale multi-label text classifier.
In 6th International Conference on Human System Interactions, pages 350–355. IEEE, 2013.

A. Elisseeff, J. Weston, et al. A kernel method for multi-labelled classification. In NIPS, volume 14,
pages 681–687, 2001.

R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middleware. Journal of
Computer and System Sciences, 66(4):614–656, 2003.

L. Feremans. Mining cohesion-based patterns and rules in event sequences (SOFTWARE). 2019.
URL https://bitbucket.org/len_feremans/fci_public.

L. Feremans, B. Cule, C. Devriendt, B. Goethals, and J. Helsen. Pattern mining for learning
typical turbine response during dynamic wind turbine events. In ASME 2017 International
Design Engineering Technical Conferences and Computers and Information in Engineering
Conference. American Society of Mechanical Engineers Digital Collection, 2017a.

http://www.gutenberg.org/ebooks/1228
http://www.gutenberg.org/ebooks/766
https://bitbucket.org/len_feremans/fci_public

149

L. Feremans, B. Cule, C. Vens, and B. Goethals. Combining instance and feature neighbors for
efficient multi-label classification. In 2017 IEEE International Conference on Data Science
and Advanced Analytics, pages 109–118. IEEE, 2017b.

L. Feremans, B. Cule, and B. Goethals. Mining top-k quantile-based cohesive sequential
patterns. In Proceedings of the 2018 SIAM International Conference on Data Mining, pages
90–98. Society for Industrial and Applied Mathematics, 2018.

L. Feremans, V. Vercruyssen, B. Cule, W. Meert, and B. Goethals. Pattern-based anomaly
detection in mixed-type time series. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases. Springer, 2019a.

L. Feremans, V. Vercruyssen, W. Meert, B. Cule, and B. Goethals. A framework for pattern mining
and anomaly detection in multi-dimensional time series and event logs. In Post-Proceedings
of the International Workshop on New Frontiers in Mining Complex Patterns. Springer, 2019b.

L. Feremans, B. Cule, C. Vens, and B. Goethals. Combining instance and feature neighbors for
extreme multi-label classification. International Journal of Data Science and Analytics, 2020.

M. Fontoura, V. Josifovski, J. Liu, S. Venkatesan, X. Zhu, and J. Zien. Evaluation strategies for
top-k queries over memory-resident inverted indexes. Proceedings of the VLDB Endowment,
4(12):1213–1224, 2011.

P. Fournier-Viger, J. C.-W. Lin, A. Gomariz, T. Gueniche, A. Soltani, Z. Deng, and H. T. Lam. The
spmf open-source data mining library version 2. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pages 36–40. Springer, 2016.

J. Fowkes and C. Sutton. A subsequence interleaving model for sequential pattern mining. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 835–844. ACM, 2016.

E. Gibaja and S. Ventura. Multi-label learning: a review of the state of the art and ongoing
research. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 4(6):411–
444, 2014.

P. D. Grünwald. The minimum description length principle. MIT press, 2007.

J. Han, J. Pei, Y. Yin, and R. Mao. Mining frequent patterns without candidate generation: A
frequent-pattern tree approach. Data Mining and Knowledge Discovery, 8(1):53–87, 2004.

T. Hoang, F. Mörchen, D. Fradkin, and T. Calders. Mining compressing sequential patterns.
Statistical Analysis and Data Mining: The ASA Data Science Journal, 7(1):34–52, 2014.

H. Jain, Y. Prabhu, and M. Varma. Extreme multi-label loss functions for recommendation,
tagging, ranking & other missing label applications. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 935–944. ACM,
2016.

J. S. Justeson and S. M. Katz. Technical terminology: some linguistic properties and an algorithm
for identification in text. Natural language engineering, 1(1):9–27, 1995.

S. Laxman, P. Sastry, and K. Unnikrishnan. A fast algorithm for finding frequent episodes in event
streams. In Proceedings of the 13th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 410–419. ACM, 2007.

150

M. Leemans and W. M. van der Aalst. Discovery of frequent episodes in event logs. In Inter-
national Symposium on Data-Driven Process Discovery and Analysis, pages 1–31. Springer,
2014.

Y. Li, L. Liu, C. Shen, and A. Van Den Hengel. Mining mid-level visual patterns with deep cnn
activations. International Journal of Computer Vision, 121(3):344–364, 2017.

C. Liu, L. Cao, and S. Y. Philip. A hybrid coupled k-nearest neighbor algorithm on imbalance
data. In 2014 International Joint Conference on Neural Networks, pages 2011–2018. IEEE,
2014.

Y. Liu. Crafting Concurrent Data Structures. PhD dissertation, Lehigh University, 2015.

H. Mannila, H. Toivonen, and A. I. Verkamo. Discovery of frequent episodes in event sequences.
Data Mining and Knowledge Discovery, 1(3):259–289, 1997.

C. D. Manning and H. Schütze. Foundations of statistical natural language processing. MIT
press, 1999.

N. Méger and C. Rigotti. Constraint-based mining of episode rules and optimal window sizes.
In Joint European Conference on Machine Learning and Principles and Practice of Knowledge
Discovery in Databases, pages 313–324. Springer, 2004.

H. Melville. Moby-dick; or, the whale (DATASET). 1851. URL http://www.gutenberg.org/ebooks/
2701.

T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word representations in
vector space. arXiv preprint arXiv:1301.3781, 2013.

S. Moens, E. Aksehirli, and B. Goethals. Frequent itemset mining for big data. In SML: BigData
2013 Workshop on Scalable Machine Learning. IEEE, 2013.

X. Ning and G. Karypis. Slim: Sparse linear methods for top-n recommender systems. In 2011
IEEE 11th International Conference on Data Mining, pages 497–506. IEEE, 2011.

I. Partalas, A. Kosmopoulos, N. Baskiotis, T. Artières, G. Paliouras, É. Gaussier, I. Androutsopou-
los, M. Amini, and P. Gallinari. LSHTC: A benchmark for large-scale text classification. arXiv
preprint arXiv:1503.08581, 2015.

J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal, and M.-C. Hsu. Mining
sequential patterns by pattern-growth: The prefixspan approach. IEEE Transactions on
Knowledge and Data Engineering, 16(11):1424–1440, 2004.

J. Pei, J. Han, and W. Wang. Constraint-based sequential pattern mining: the pattern-growth
methods. Journal of Intelligent Information Systems, 28(2):133–160, 2007.

F. Petitjean, T. Li, N. Tatti, and G. I. Webb. Skopus: Mining top-k sequential patterns under
leverage. Data Mining and Knowledge Discovery, 30(5):1086–1111, 2016.

Y. Prabhu and M. Varma. Fastxml: A fast, accurate and stable tree-classifier for extreme
multi-label learning. In Proceedings of the 20th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 263–272. ACM, 2014.

J. Read, B. Pfahringer, and G. Holmes. Multi-label classification using ensembles of pruned sets.
In 2008 Eighth IEEE International Conference on Data Mining, pages 995–1000. IEEE, 2008.

http://www.gutenberg.org/ebooks/2701
http://www.gutenberg.org/ebooks/2701

151

J. Read, B. Pfahringer, G. Holmes, and E. Frank. Classifier chains for multi-label classification.
Machine learning, 85(3):333–359, 2011.

J. Read, P. Reutemann, B. Pfahringer, and G. Holmes. Meka: a multi-label/multi-target extension
to weka. The Journal of Machine Learning Research, 17(1):667–671, 2016.

P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl. Grouplens: an open architecture
for collaborative filtering of netnews. In Proceedings of the 1994 ACM Conference on Computer
Supported Cooperative Work, pages 175–186. ACM, 1994.

B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collaborative filtering recommen-
dation algorithms. In Proceedings of the 10th International Conference on World Wide Web,
pages 285–295. ACM, 2001.

R. E. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated predictions.
Machine learning, 37(3):297–336, 1999.

D. Shahaf and C. Guestrin. Connecting the dots between news articles. In Proceedings of the
16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages
623–632, 2010.

G. Sidorov, A. Gelbukh, H. Gómez-Adorno, and D. Pinto. Soft similarity and soft cosine measure:
Similarity of features in vector space model. Computación y Sistemas, 18(3):491–504, 2014.

E. Spyromitros, G. Tsoumakas, and I. Vlahavas. An empirical study of lazy multilabel classifi-
cation algorithms. In Hellenic conference on Artificial Intelligence, pages 401–406. Springer,
2008.

R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and performance
improvements. In International Conference on Extending Database Technology, pages 1–17.
Springer, 1996.

Y. Tagami. Annexml: Approximate nearest neighbor search for extreme multi-label classification.
In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 455–464. ACM, 2017.

S. Tan. Neighbor-weighted k-nearest neighbor for unbalanced text corpus. Expert Systems with
Applications, 28(4):667–671, 2005.

N. Tatti. Discovering episodes with compact minimal windows. Data Mining and Knowledge
Discovery, 28(4):1046–1077, 2014a.

N. Tatti. Mining closed strict episodes, includes implementation of WINEPI, LAXMAN and
MARBLESW (SOFTWARE). 2014b. URL https://users.ics.aalto.fi/ntatti/software.shtml.

N. Tatti. Ranking episodes using a partition model. Data Mining and Knowledge Discovery, 29
(5):1312–1342, 2015.

N. Tatti and B. Cule. Mining closed strict episodes. Data Mining and Knowledge Discovery, 25
(1):34–66, 2012.

N. Tatti and J. Vreeken. The long and the short of it: summarising event sequences with serial
episodes. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 462–470. ACM, 2012.

https://users.ics.aalto.fi/ntatti/software.shtml

152

N. Tax, N. Sidorova, R. Haakma, and W. M. van der Aalst. Mining local process models. Journal
of Innovation in Digital Ecosystems, 3(2):183–196, 2016.

I. Triguero and C. Vens. Labelling strategies for hierarchical multi-label classification techniques.
Pattern Recognition, 56:170–183, 2016.

D. Trump. Tweets of president donald trump (DATASET). 2017. URL http://www.
trumptwitterarchive.com.

G. Tsoumakas and I. Katakis. Multi-label classification: An overview. International Journal of
Data Warehousing and Mining, 3(3), 2006.

G. Tsoumakas, E. Spyromitros-Xioufis, J. Vilcek, and I. Vlahavas. Mulan: A java library for
multi-label learning. Journal of Machine Learning Research, 12:2411–2414, 2011.

W. M. Van Der Aalst, H. A. Reijers, A. J. Weijters, B. F. van Dongen, A. A. De Medeiros, M. Song,
and H. Verbeek. Business process mining: An industrial application. Information Systems, 32
(5):713–732, 2007.

C. Vens, J. Struyf, L. Schietgat, S. Džeroski, and H. Blockeel. Decision trees for hierarchical
multi-label classification. Machine Learning, 73(2):185–214, 2008.

K. Verstrepen and B. Goethals. Unifying nearest neighbors collaborative filtering. In Proceedings
of the 8th ACM Conference on Recommender systems, pages 177–184. ACM, 2014.

J. Wang and J. Han. Bide: Efficient mining of frequent closed sequences. In IEEE International
Conference on Data Engineering, pages 79–90. IEEE, 2004.

J. Wang, A. P. De Vries, and M. J. Reinders. Unifying user-based and item-based collaborative
filtering approaches by similarity fusion. In Proceedings of the 29th International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages 501–508. ACM,
2006.

X.-l. Wang, H. Zhao, and B. Lu. Enhanced k-nearest neighbour algorithm for largescale hierar-
chical multi-label classification. In Proceedings of the Joint ECML/PKDD PASCAL Workshop
on Large-Scale Hierarchical Classification, Athens, Greece, volume 5, 2011.

G. I. Webb. Self-sufficient itemsets: An approach to screening potentially interesting associa-
tions between items. ACM Transactions on Knowledge Discovery from Data, 4(1):3, 2010.

C. Xiao, W. Wang, X. Lin, and H. Shang. Top-k set similarity joins. In IEEE International
Conference on Data Engineering, pages 916–927. IEEE, 2009.

Y. Yang. A study of thresholding strategies for text categorization. In Proceedings of the 24th
International ACM SIGIR Conference on Research and Development in Information Retrieval,
pages 137–145. ACM, 2001.

Z. Younes, F. Abdallah, and T. Denœux. Multi-label classification algorithm derived from k-
nearest neighbor rule with label dependencies. In 2008 16th European Signal Processing
Conference, pages 1–5. IEEE, 2008.

R. B. Zadeh and A. Goel. Dimension independent similarity computation. Journal of Machine
Learning Research, 14(1):1605–1626, 2013.

http://www.trumptwitterarchive.com
http://www.trumptwitterarchive.com

153

M. J. Zaki. Scalable algorithms for association mining. IEEE Transactions on Knowledge and
Data Engineering, 12(3):372–390, 2000.

M. J. Zaki. Spade: An efficient algorithm for mining frequent sequences. Machine Learning, 42
(1-2):31–60, 2001.

Z.-Q. Zeng, H.-B. Yu, H.-R. Xu, Y.-Q. Xie, and J. Gao. Fast training support vector machines using
parallel sequential minimal optimization. In 2008 3rd International Conference on Intelligent
System and Knowledge Engineering, volume 1, pages 997–1001. IEEE, 2008.

M.-L. Zhang and Z.-H. Zhou. Ml-knn: A lazy learning approach to multi-label learning. Pattern
Recognition, 40(7):2038–2048, 2007.

W. Zhang, F. Liu, L. Luo, and J. Zhang. Predicting drug side effects by multi-label learning and
ensemble learning. BMC bioinformatics, 16(1):365, 2015.

W. Zhang, Y. Chen, and D. Li. Drug-target interaction prediction through label propagation
with linear neighborhood information. Molecules, 22(12):2056, 2017.

C. Zhou, B. Cule, and B. Goethals. Pattern based sequence classification. IEEE Transactions on
Knowledge and Data Engineering, 28(5):1285–1298, 2016.

A. Zimmermann. Understanding episode mining techniques: Benchmarking on diverse, realis-
tic, artificial data. Intelligent Data Analysis, 18(5):761–791, 2014a.

A. Zimmermann. Generate event sequences (SOFTWARE). 2014b. URL https://zimmermanna.
users.greyc.fr/software.html.

https://zimmermanna.users.greyc.fr/software.html
https://zimmermanna.users.greyc.fr/software.html

	Samenvatting
	Acknowledgements
	Contents
	Publications
	Introduction
	Mining Patterns in an Event Sequence
	Event Sequence
	Pattern Mining
	Itemsets and Episodes
	Association Rules

	Multi-label Classification
	Nearest Neighbours Classification
	Top k-queries
	Item-based Collaborative Filtering

	Overview
	Open-source Code

	Efficiently Mining Cohesive Patterns and Rules in Sequences
	Introduction
	Problem Setting
	Frequent Cohesive Itemsets
	Representative Sequential Patterns
	Dominant Episodes
	Association Rules

	Mining Cohesive Itemsets
	Depth First Search
	Pruning
	Computing the Sum of Minimal Windows

	Mining Representative Sequential Patterns
	Computing Minimal Windows for Sequential Patterns
	Algorithm

	Mining Dominant Episodes
	Mining Association Rules
	Efficiently Computing Confidence
	Algorithm

	Setting Parameters and Top-k Mining
	Experiments
	Comparison on Synthetic Benchmark
	Quality Comparison on Text Datasets
	Association Rules
	Performance Analysis

	Related Work
	Conclusion

	Mining Quantile-based Cohesive Patterns in Sequences
	Introduction
	Problem Setting
	Mining Quantile-based Cohesive Sequential Patterns
	Prefix-projected Pattern Growth
	Incremental Computation of Prefix-projections
	Pruning

	Experiments
	Datasets
	Performance Comparison
	Quality Comparison

	Related Work
	Conclusion

	Extreme Multi-label Classification using Instance and Feature Neighbours
	Introduction
	Problem Setting
	Linear Combination of Instance- and Feature-based kNN
	Instance-based kNN
	Feature-based kNN
	Linear Combination
	Thresholding

	Fast kNN Search
	Indexing
	Taat and Daat Traversal with Weak-And Pruning

	Experiments
	Experimental Setup
	Classification Performance Lcif
	Runtime Performance InstanceKnnFast
	Runtime Performance Lcif

	Related Work
	Conclusion

	Conclusion and Outlook
	Main Contributions
	Outlook
	Future of Pattern Mining In Sequences
	Improving Extreme Multi-label Classification

	Additional Material for FCIseq
	Computing Minimal Windows for Sequential Patterns
	Compute Support of an Episode
	Top 25 Patterns Discovered by FCIseq on Species
	Top 25 Patterns Discovered by FCIseq on Trump

	Additional Material for QCSP
	Weighted Quantile-based Cohesion
	Top 20 Sequential Patterns Discovered by Qcsp

	Additional Material for Lcif
	Second Order Instance-based kNN

	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

