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ABSTRACT
Recommender systems are traditionally evaluated using histori-
cal data, partitioned into a training- and test-set. �e system is
trained on the user-item interactions available in the training set
and evaluated on its performance to predict which interactions are
part of the test set. Leave-One-Out Cross-Validation (LOOCV) is a
commonly recurring evaluation procedure, widely used to present
novel algorithms as the state-of-the-art. However, the temporal
aspect that is inherent to many recommender system use cases is
entirely neglected with this technique, as well as potential biases
in the data (i.e. interactions are Missing-Not-At-Random (MNAR)).

In this paper we propose and experimentally validate an alter-
native method to perform o�ine evaluation using real-world data
from a live recommender system. Our novel approach adheres to
the aspects that are inherent to web-based recommender systems
in e.g. e-commerce much more tightly than LOOCV. Experimen-
tal results indicate that LOOCV is prone to overestimate model
performance in general, underestimate the power of popularity-
based baselines, and generally rank algorithms di�erently than our
methodology. Furthermore, we study the impact of live recommen-
dation algorithms in place during the time of data gathering on
the o�ine evaluation of other algorithms on said data. We exper-
imentally validate that such impact is indeed signi�cant. Finally,
we propose a scope for future research to model these MNAR bi-
ases and take them into account during training and evaluation to
provide unbiased recommendations.
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1 INTRODUCTION
Over the past decades, personalisation has played an ever-growing
role in how we consume content online. News websites, movie or
music streaming services, retail stores, etc. can all greatly bene-
�t from recommendation systems that accurately pair items with
users and suggest them. Users can be guided towards the subset of
catalogued items they are interested in, leading to more satisfying
experiences and an increase in user engagement.

When recommender systems �rst gained traction, the �eld fo-
cused on the task of rating prediction. �is assumes that a dataset
with explicit feedback from users is available, which is o�en hard to
collect. �e goal was then to predict users’ ratings for unseen items,
with the rationale that items with higher predicted ratings make
up be�er recommendations. In recent years, a shi� has occurred
towards item prediction from implicit feedback. �ese methods do
not require explicit ratings by users, but rather take into account
logged interactions between users and items to model inherent
preferences and correlations. �roughout our work, we will focus
on this task, as implicit feedback data is more prevalent in present
day e-commerce.

Speci�c goals of recommender systems can vary greatly depend-
ing on their respective applications. Where some systems will be
more focused on maximising user engagement in terms of time
spent browsing a website, others might only focus on clicks or sales.
User satisfaction, serendipity or diversity of the recommended items
are only a few examples of many more possible objectives. We focus
on maximising user engagement through clicks for the rest of this
work, but our methodology is easily extended towards maximis-
ing sales. Analogously, this work focuses on, but is not limited to,
collaborative �ltering (CF) algorithms.

Traditionally, the performance of recommender systems (learn-
ing from implicit feedback) is evaluated on historical transactional
data. As is o�en the case with classi�cation problems and super-
vised learning in general, a portion of the data is split o� and used
as a test or validation set to assess algorithmic performance [15].
Leave-One-Out Cross-Validation (LOOCV) is a commonly recur-
ring technique in the literature, where for every user one item-
interaction is randomly selected to be part of the test set. �e
training set then consists of all remaining user-item pairs. Com-
mon metrics such as the hit-rate-at-k (HR@k) then compute the
fraction of users for whom the removed item occurs in the top-k
recommendations computed by the system, or the normalised dis-
counted cumulative gain (NDCG@k) which evaluates the ranking
of the removed item in the recommendation-list, or others. �is
process is repeated with di�erent training-test splits, and perfor-
mance metrics are subsequently aggregated over di�erent runs in
order to get a stable �nal result. Algorithms that can generate more
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promising metrics are then assumed to generate more revenue
in an on-line se�ing than their competitors. �is technique has
been used widely and recently to present new algorithms as the
state-of-the-art [4, 8, 16–18, 21].

On-line evaluation methods such as live A/B-testing have been
shown to paint a clearer and more honest image of an algorithm’s
performance in providing meaningful and interesting recommenda-
tions, but are generally more expensive and complex to realise [25].
During an A/B-test, the user-base is divided into groups. Every
user in one of those groups is presented with recommendations
generated by a di�erent algorithm, speci�c to the group they belong
to. Metrics such as the click-through-rate (CTR) are then o�en used
to compare which algorithm generates the most clicks, and thus
is the most successful in generating revenue. Online evaluation is
o�en favoured over its o�ine counterpart, as it directly correlates
with the inherent goal of the system: to maximise user-interaction
with the shown recommendations.

Crucial di�erences between live A/B-tests and LOOCV are two-
fold: �rst there is a clear temporal dimension in many recommender
systems use cases that is inherently taken into account in the �rst,
but o�en neglected in the la�er. Predicting past preferences based
on future interactions is in many cases a considerably easier task
than vice versa, and as a consequence their performances are not
necessarily representative for each other.

Second, the goal of the evaluation technique is inherently dis-
similar; where A/B-tests can present and evaluate a wide range of
recommendations and evaluate how the user interacts with them,
LOOCV is entirely restricted to predicting which items the user
has already interacted with in the past. A top-k recommendation
list might be clicked in an A/B-test because it sparks the user’s
interest, but it won’t increase the hit-rate of LOOCV if the user
has no recorded interactions with these items in the historical
dataset. �is distinction between negative and missing feedback
is taken into account in the training phase of several well-known
algorithms [11, 19, 21], but is much less studied in the context of
o�ine evaluation.

Furthermore, if the available historical user-item interactions
were collected with a live recommender system in place, this indi-
cates the data are Missing-Not-At-Random (MNAR) [27]. We show
that the algorithm presenting recommendations to the user signi�-
cantly impacts o�ine evaluation results of di�erent algorithms on
the collected data. We adopt the terminology used by recent work
in counterfactual estimation for recommender system evaluation
and call such a live recommender system algorithm the logging
policy. �ese counterfactual estimators have been shown to act as
fast o�ine alternatives for more classical online methods such as
A/B-testing, and are proven to be more correlated with online met-
rics than classical o�ine alternatives. As a consequence, improving
these estimators has become a lively research direction in recent
years [2, 6].

Related work has studied the correlation of the above-mentioned
o�- and on-line evaluation methods. Comparison research studies
do exist for the speci�c �elds of research paper recommendation [3],
movie recommendation [22] and news recommendation [5], but
none for the more general case. What these studies have in com-
mon however, is that they shed doubt on the assumption being
made in many research papers that o�-line evaluations are good

indicators of on-line performance. A discussion of how recom-
mendation systems should be evaluated in an o�ine manner is
presented by Herlocker et al. [10]. �e authors identify a range of
di�erent goals the recommendation system and subsequently the
evaluation method might need to be tuned to. A comparison of
various evaluation metrics suggests that di�erent metrics can be
highly uncorrelated and make the evaluation procedure even less
deterministic.

�e contributions presented in this paper are the following:
(1) We present a novel o�ine evaluation procedure that is

more tightly coupled with the inherent goals of live rec-
ommender systems, and call it SW-EVAL.

(2) We show that SW-EVAL generates very di�erent results
than LOOCV in terms of absolute metrics, ratios among
algorithms and rankings among algorithms. We experi-
mentally validate our �ndings on real-world data from a
live e-commerce recommender system.

(3) We show that the algorithm behind the live recommender
system (or logging policy) induces a signi�cant bias on
collected data and as a consequence, severely in�uences
o�ine evaluation results on said data.

�e rest of this paper is structured as follows: we provide an
overview of our alternative evaluation strategy in Section 2, and
motivate our research questions. �e data and algorithms we used
for our experiments are presented and discussed in Section 3, along
with their results. Our work is concluded in Section 4, where we
�nalise with a scope for future research.

2 METHODOLOGY
In what follows, we provide an overview of our methods. �e fol-
lowing subsection focuses on preliminaries, a�er which we present
our evaluation procedures and metrics. We then go on to motivate
the research questions we aim to answer with this work, and how
we achieve this.

2.1 Preliminaries
�roughout this paper, we assume to work with a set of historical
transactional data, containing de-duplicated and timed logs of user-
item interactions. U denotes the set ofm unique users appearing
in the dataset, and I the set of n unique items. A transaction is
represented as a tuple (u, i, t) ∈ U × I × R+ where u is a user, i an
item, and t a timestamp. D is the set of all available transactions.
�ese transactions denote that user u has in some way consumed
or interacted with item i at time t , be it in the form of a product
purchase, a movie streaming, a click on a news article or otherwise.
We represent these interactions in the form of a sparse user-item
matrix R ∈ {0, 1}m×n , o�en called the rating or preference matrix.
Rows in this matrix are users represented by the items they have
consumed, and vice versa for columns: Ru,i = 1 if and only if user
u has consumed item i and Ru,i = 0 otherwise. For a given item i ,
we de�ne the set Ui as consisting of all users u that have consumed
item i , that is Ui = {u ∈ U : Ru,i = 1}, and Iu analogously for a
given user u: Iu = {i ∈ I : Ru,i = 1}. When we represent an item i
or a useru as their respective column- or row-vectors in R, we write
them as ®i or ®u. Time-intervals are characterised by subscripts: Dt
is the set of all interactions up to but not including time t , R[tx ,ty )
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is the preference matrix containing all transactions (u, i, t) ∈ D
where tx ≤ t < ty . �e timestamp of the latest transaction in D is
denoted by tmax.

Finally, as logged interactions in our se�ing originate from a
system running live A/B-tests, we distinguish Dπ as the set of
transactions generated under logging policy π . In the trivial case
where only one logging policy π is implemented, D = Dπ . Note
that sets of transactions generated under di�erent logging policies
typically contain disjoint sets of users, but the same sets of items.

2.2 Evaluation Procedure
As we have mentioned in Section 1, LOOCV is one of the most
commonly recurring evaluation techniques in recommender sys-
tem literature. For every user u, one item j is sampled uniformly at
random from Iu to be used in the validation phase; all other remain-
ing item-interactions {(u, i, t) ∈ D : i ∈ Iu\{j}} are used to train
the model and generate predictions. �e model is then evaluated
on its ability to predict which item was le� out. �is process is
repeated several times with di�erent random seeds, and results are
then aggregated over runs. In this way the approach generates
statistically stable results, covering every user in the dataset. We
argue that what impedes this approach from being a good proxy for
online behaviour, is that it completely ignores the chronological or-
dering of events. Not only does the model use future interactions to
predict past interactions for a given user, future information about
item correlations will be used as well to predict an interaction at a
given earlier time.

As all transactions are timed, the fairest method to perform the
train-test split would be a hard cut on a certain timestamp t : all
interactions in Dt are used for training, and all interactions in
D[t,tmax] can be used for testing. �is process can be repeated,
spli�ing on di�erent times t and aggregating results in order to get
statistically stable results over the full dataset. It is important to
note that not all users are included in the evaluation at every split:
to properly evaluate a user u, she should have recorded historical
interactions to base recommendations on (we do not consider the
extreme cold-start case [24]), and future interactions to predict and
evaluate on. As this set of users might possibly be very small at
certain points, we do not incorporate those where |Ut ∩U[t,tmax] | <
umin , with umin a prede�ned threshold. If the number of users
used for evaluation is too small, outliers will have an overly large
impact on the overall view.

Furthermore, live recommender systems are not as static as they
are made out to be in LOOCV. �ese systems are either incremen-
tally trained or fully retrained regularly, with possibly multiple
updates every hour. As a consequence, speci�c to the use case, it
might not be best practice to evaluate a system on its ability to
predict relevant items multiple weeks or even months in the fu-
ture. In our proposed evaluation procedure, we divide the dataset
into equidistant intervals of width t∆. At a given time t , we eval-
uate the model trained on Dt on its ability to generate relevant
recommendations w.r.t. the interactions present in D[t,t+t∆). �e
granularity of t∆ is relative to the use case. Where it might be very
small for a news recommender (new items arrive at high rates and
item popularity generally declines quickly over time, calling for fast

and frequent updates), retail recommenders might call for wider
intervals (daily or weekly, as sales are bound to seasonality).

�roughout the rest of this paper, we refer to our novel proposed
procedure as k-fold Sliding Window Evaluation (SW-EVAL) where
k indicates the number of intervals used in the validation step.

Our method corresponds to live A/B-testing in the sense that it
follows a clear chronological ordering of events, which we argue is
crucial to properly assess system performance. A major di�erence
that remains is that of an over-representation of false negatives
during the evaluation phase: where in a real-time se�ing a user
might click on a certain recommendation when it would be given,
that same recommendation will always be seen as non-relevant by
o�ine evaluation procedures if there exists no historical interaction
between said user and item. As this issue is very non-trivial to solve,
a careful choice of evaluation metrics that focus on rewarding true
positives instead of penalising false positives is appropriate. We
provide a brief overview of such metrics in the following subsection.

2.3 Evaluation Metric
As mentioned above, due to the inherent lack of user interaction in
o�ine evaluation, we focus on metrics that reward true positives
instead of those that penalise false positives. We will denote the
set of known relevant items for a given user u as Relu , where her
top-k recommendations are represented by Recu,k . Recall@k is
then given by equation 1.

Recall@k =
1
m

∑
u ∈U

|Relu ∩ Recu,k |
|Relu |

(1)

With the leave-one-out scheme, Relu will always consist of exactly
one item. In these cases, Recall@k is the same as HR@k : the
fraction of users for whom the le�-out item appears in the top-k
recommendations.

In the more general case, Recall@k is the average fraction of
retrieved relevant items in the top-k recommendations of all users.
Note that when the number of relevant items is higher than k , it is
impossible to achieve the perfect recall of 1. When k is set to the
number of relevant items for every user |Relu |, equation 1 is called
the R-precision, overcoming said issue.

2.4 LOOCV vs. SW-EVAL
�e �rst hypothesis to tackle is whether LOOCV and SW-EVAL
produce comparable results. We de�ne comparable by three criteria
in increasing order of importance:

Absolute metrics. One of the main goals of recommender systems
evaluation is to obtain a reliable estimate of the e�ectiveness of
a recommendation algorithm. �e order of magnitude of recom-
mendation accuracy is therefore of critical importance. Business
trade-o�s that require accurate estimations of e.g. model cost vs.
model performance cannot a�ord large errors here.

Ratios among algorithms. As recommendation accuracy is o�en
only one aspect of a broader evaluation, ratios among algorithms
should be accurate as well. From an o�ine evaluation procedure,
some model A might outperform some model B with a factor of 10.
However, model A might also be 5 times more costly. If in practice,
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modelA would only be twice as e�ective as model B, the inaccurate
evaluation procedure leads to suboptimal decisions.

Rankings among algorithms. In the case where model e�ciency
and cost are not taken into account, the ranking of competing al-
gorithms that emerges from a certain evaluation procedure is still
highly important. If simply the highest ranking model according
to o�ine tests is deployed, it is imperative that the optimal model
according to the o�ine evaluation procedure indeed re�ects the
best performer in an online se�ing as well. Naturally, an o�ine
evaluation procedure that correlates well with the system’s actual
online application is preferred.

As we motivated our evaluation procedure to be tightly coupled
with the inherent characteristics of live recommender systems in
e-commerce and other use cases, in the case of con�icting results
on any of the above-mentioned aspects, we would place more trust
in SW-EVAL than in LOOCV. To validate the e�ectiveness of SW-
EVAL compared to LOOCV, we aim to study the parity between
results of these o�ine evaluation procedures with those a�ained
through live A/B-tests in future work.

2.5 Impact of Logging Policy
A second hypothesis we aim to investigate with this work is whether
the logging policy π has signi�cant impact when evaluating results
on Dπ or more generally on any D s.t. Dπ ⊆ D. �e work of
Agarwal et al. provides a theoretical foundation for this problem
in the more general case, where data from multiple diverging sto-
chastic logging policies is naively combined [2]. However, to the
best of our knowledge, in the context of recommender systems,
no studies have conclusively proven or disproven that the impact
of π is indeed highly signi�cant with real-world data. If this is
indeed the case, interesting directions for future research include
modelling the bias π incurs, and deriving learning algorithms that
mitigate this bias.

�e impact of π can be de�ned by the same three aspects outlined
in the previous subsection: whether it in�uences absolute values,
ratios among algorithms, or rankings among algorithms. Intuitively,
one would assume algorithms that closely correlate with the logging
policy have an inherent advantage, as the disadvantages inferred
by the lack of interaction in o�ine evaluation are annulled in this
se�ing.

3 EXPERIMENTS
�e se�ing of our experiments is summarised in the following sec-
tion. We give an overview of the recommendation algorithms we
compared and go on by describing the dataset we used. Experimen-
tal results are presented and discussed in Subsections 3.3 and 3.4,
following the same distinction as the research questions presented
in Subsections 2.4 and 2.5 respectively.

3.1 Algorithms
Two simple baselines were used to compare algorithm performance
against: a global popularity baseline (POP) and a sliding window
popularity baseline (POP-N ). �e �rst sorts all items based on their
number of occurrences in the full training set, and the la�er sorts
items based on the number of occurrences in the last N recorded

interactions at the time of recommending. As the sliding window
approach does not apply to the leave-one-out scheme (as it requires
temporal information, which is not available), we do not include it
in the LOOCV results. However, the approach proves surprisingly
e�ective in our sliding window based evaluation method.

Apart from these baselines, we compared several well-known
and widely used algorithms. �e item k-nearest neighbour (I-kNN )
algorithm computes the recommendation score R̃u,i for a user u
and an item i as a weighted sum of cosine similarities between i
and items j ∈ Iu , as shown in Equation 2 [23].

R̃u,i =
1
|Iu |

∑
j ∈Iu

cos (®i, ®j) (2)

As a full similarity self-join on the set of items I is both time- and
space-consuming, only similarities between every item and its k
nearest neighbours are computed and retained. �is leads to a space
complexity of O(kn) instead of O(n2).

�e user k-nearest neighbour algorithm (U-kNN ) is a traditional
and intuitive collaborative �ltering algorithm that counts the occur-
rences of items that u has not yet consumed among the k nearest
neighbours of u. Items that are more popular with similar users are
then assumed to make up be�er recommendations [9].

Matrix factorization algorithms explicitly compute item- and
user-factors in a �xed number of latent dimensions. �e recommen-
dation score for a useru and item i is then de�ned as the dot-product
of their latent factors. We compute the factors using the well-known
Singular Value Decomposition (SVD) algorithm [31].

As the purpose of this work is not to determine which algorithm
generates optimal recommendations, we refrain from investigating
more advanced or recent state-of-the-art algorithms. However,
it should be noted that nearest-neighbour-based algorithms have
recently still been shown to a�ain competitive performance with
the state-of-the-art [12, 30].

If the top-k recommendation list Recu,k generated by any algo-
rithm contains items that were already in the history of u, we drop
them from the list and expand it. As we work with de-duplicated
interactions, re-targeting is out of the scope of this paper.

�e baselines, U-kNN, I-kNN and SVD were implemented using
Sci- and Num-Py [14, 29]. Optimal hyper-parameters were obtained
through an extensive grid search on LOOCV for optimal Recall@10
before experiments were conducted. For fair comparison, we did
not recompute optimal hyper-parameters for the SW-EVAL se�ing
or varying values of k , but retained the optimal ones for LOOCV
and k = 10.

3.2 Dataset
Retail is a proprietary dataset obtained from the logs of a live rec-

ommender system serving a Belgian retail website, over the course
of 4 months. During this period, 3 di�erent algorithms generated
recommendations in the fashion of an A/B-test. Approximately
25% of the recommendations were generated by a popularity base-
line, 25% by an undisclosed algorithm, and 50% by I-kNN. We will
respectively denote these logging policies by πp , πu and πi . It is
notable that the recommender system is subject to certain business
rules, and top-k recommendation lists can therefore not be shown
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Table 1: Characteristics of the dataset

|D| |U | |I | Sparsity
Retail 734 813 189 343 10 700 99.96%

to the user as is. However, how and exactly which recommenda-
tions were e�ectively shown to the user is not important for the
purposes of this work. Out of these 4 months, the last month acts
as validation period for SW-EVAL. With 30 folds, this corresponds
to daily updates and evaluations. Table 1 provides an overview of
the dataset’s size and properties.

3.3 LOOCV vs. SW-EVAL
In what follows we discuss the experimental results correspond-
ing to the research question laid out in Section 2.4. To determine
whether LOOCV and SW-EVAL produce comparable results as an
o�ine evaluation procedure, we report mean Recall@k for varying
k and relative performance to the best performer (in bold) for both
10-fold LOOCV and 30-fold SW-EVAL in Table 2. We set the thresh-
old umin to 100 for SW-EVAL, but generally multiple hundreds
of users were included for evaluation at every fold. Results are
visualised in Figure 1.

LOOCV results indicate that I-kNN is the clear best performer
regardless of the value of k , exceeding the Recall of its compet-
ing algorithms with a factor of 2 and even beating the baseline
algorithm with a factor of 10. However, SW-EVAL results paint an
entirely di�erent picture. First, the best performing algorithm has a
mean Recall@10 that is a factor 5 smaller than reported by LOOCV.
Second, we observe that the simple popularity baseline is able to
a�ain up to 44% of the Recall@10 of the best performer, in stark
contrast with the 11% reported by LOOCV. Furthermore, a simple
sliding window extension boosts this further up to 71% and even
98% for k = 5. �ird, where LOOCV concludes SVD and U-kNN to
be virtually equal for k = 10, SW-EVAL clearly prefers SVD with
81% of the optimal performance instead of just 49%.

We observe that both for LOOCV and SW-EVAL, the gap between
I-kNN and SVD closes as the number of generated recommendations
grows. For the reported Recall@20, only a 3% di�erence remains
between the two competing algorithms. �e gap between U-kNN
and I-kNN remains somewhat steady. A possible explanation for
this is that the optimal amount of a user’s neighbours to be taken
into account when generating recommendations for k = 10 might
be suboptimal for larger k , as the same candidate items might keep
reappearing instead of novel recommendations. We see a similar
but more stark e�ect for POP-N: as the optimal N obtained from
the hyper-parameter optimisation procedure was rather low, the
number of truly trending items might become less than k as k keeps
growing. Extending POP-N to include a more advanced recency
formula could certainly solve this issue.

It is clear that LOOCV and SW-EVAL do not yield comparable
results for the given dataset. LOOCV is prone to overestimate model
performance in general, vastly underestimate the e�ectiveness of
popularity-based baselines, and generally rank algorithms very
di�erently than SW-EVAL.

Figure 1: Mean Recall@k for the Retail dataset when using
10-fold LOOCV and 30-fold SW-EVAL respectively, for vary-
ing values of k . Note that the SW-EVAL y-axis is scaled down
by a factor of almost 5 in comparison with the LOOCV plot.

One might note that the number of relevant items for a given
user in the validation set |Relu | is important when computing the
Recall@k : for LOOCV, |Relu | = 1. If it di�ers greatly for SW-EVAL,
lower absolute numbers are to be expected. However, we also
conducted experiments where only the �rst item a user interacts
with in the validation interval is seen as relevant, e�ectively se�ing
|Relu | = 1 as well. Results were very comparable, but omi�ed for
brevity.

3.4 Impact of Logging Policy
In what follows we discuss the experimental results correspond-
ing to the research question laid out in section 2.5. To deter-
mine whether the logging policy π has a signi�cant impact on
results from o�ine evaluation procedures on Dπ , we report mean
Recall@k for varying k , and relative performance to the best per-
forming algorithm for both 10-fold LOOCV and 30-fold SW-EVAL
on Dπu , Dπp and Dπi respectively in Table 3. Even though the
number of users covered by a subset Dπ of D will be lower than
the number of users covered by the full set of transactions D, we
set umin to 100 as in our previous experiments. Equivalently to
those previous experiments, this lower bound was never a�ained.
Results are visualised in Figure 2, where the top and lower row
of plots respectively correspond to LOOCV and SW-EVAL results.
Every column represents results on a subset of logs corresponding
to a given logging policy.

When considering LOOCV results, algorithm ranking generally
does not seem to be impacted by varying π or k for this speci�c
case. However, absolute measurements as well as ratios among
competing algorithms clearly are. Under the undisclosed logging
policy πu and for k = 10, I-kNN only achieves roughly 65% of the
performance it reaches under its own logging policy πi . When
we consider the absolute performance of U-kNN over all logging
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Table 2: Mean Recall@k for the Retail dataset when using 10-fold LOOCV and 30-fold SW-EVAL respectively, for varying
values of k . ∆% denotes the relative performance of an algorithm compared to the best performer (in bold). �e sliding
window baseline POP-N is not included for LOOCV as it lacks the use of temporal information.

10-fold LOOCV 30-fold SW-EVAL

k POP ∆% SVD ∆% U-kNN ∆% I-kNN ∆% POP ∆% POP-N ∆% SVD ∆% U-kNN ∆% I-kNN ∆%
5 0.019 -92% 0.098 -58% 0.116 -50% 0.233 0.016 -61% 0.039 -2% 0.028 -29% 0.022 -44% 0.040
10 0.031 -89% 0.137 -51% 0.139 -51% 0.282 0.024 -56% 0.039 -29% 0.045 -19% 0.030 -45% 0.055
15 0.041 -87% 0.165 -46% 0.151 -50% 0.304 0.032 -50% 0.039 -39% 0.058 -10% 0.034 -46% 0.064
20 0.052 -84% 0.186 -41% 0.158 -50% 0.317 0.039 -45% 0.039 -45% 0.069 -3% 0.038 -47% 0.071

policies, we �nd it seems rather stable. However, the relative perfor-
mance of U-kNN compared to I-kNN varies from 58% to 92% for its
worst and best measurements respectively. While less pronounced,
SVD exhibits similar behaviour. �e popularity baseline seems
moderately stable. Although less evident for πu and πp , a clear bias
towards I-kNN is present in the data that was generated by showing
I-kNN recommendations to users on the website, becoming more
and more clear as k increases.

In the SW-EVAL results, the bias appears even more clear-cut.
We distinctly observe that absolute values, the ratio amongst com-
peting algorithms and the general ranking of algorithms is heavily
in�uenced by π . For both the undisclosed algorithm πu and the
popularity policy πp , the sliding window popularity baseline out-
performs all competing algorithms for small values of k . As in
the reported results from the previous section, SVD and I-kNN are
able to thrive when generating more recommendations, whereas
U-kNN and POP-N are much less able to do so. We suspect this is
an artefact of our hyper-parameter optimisation procedure, since
optimal parameters for k = 5 or k = 20 are bound to be di�erent
than those found for k = 10.

For the I-kNN policy πi , a clear bias is present towards the I-kNN
algorithm from the o�ine evaluation results. �is is not surprising,
as items that were e�ectively shown to a user have a much higher
probability of being clicked than those that were not shown. Even
though this clear bias is present, SVD a�ains up to 92% of I-kNN’s
performance for the largest value of k . �is phenomenon is widely
known as presentation bias [7], and can cause severe feedback loops
if not handled properly. �e e�ects of those feedback loops may
be detrimental to the performance of a recommender system, as
items in the long tail will never be considered fairly [20]. Recent
related work has focused on retrieving users’ intrinsic preferences
when such feedback loops are present [26]. Metrics or frameworks
that reward long-tail recommendations more than others are also a
possible way of alleviating this issue [1, 28].

4 CONCLUSION
In this work, we have motivated the need for alternative o�ine
evaluation procedures from LOOCV. We have identi�ed that de-
spite its clear �aws (ignoring all temporal information), LOOCV
still remains an extremely popular technique to experimentally
validate newly proposed algorithms as the state-of-the-art in re-
cent recommender systems research [4, 8, 16–18, 21]. To this end,
we have proposed a novel approach that much more tightly fol-
lows the important aspects of live recommender systems, such

as their dynamic and temporal nature. We have experimentally
validated on real-world data originating from the logs of a live rec-
ommender system that our approach yields very di�erent results
than LOOCV in terms of absolute metrics, ratios among competing
algorithms, and mutual rankings of competing algorithms. Further-
more, LOOCV vastly underestimates the performance of advanced
popularity-based approaches to recommendation.

Moreover, we motivated and discussed how live recommenda-
tion algorithms in place at the time of data collection can severely
in�uence said data and produce a clear presentation bias, which is
in turn prone to generate feedback loops. O�ine evaluation results
using traditional metrics on data gathered from a live recommender
system are therefore heavily in�uenced by these biases, and lead to
varying conclusions in terms of algorithm-speci�c performance.

4.1 Future Work
As most implicit feedback datasets for recommender systems origi-
nate from the logs of live systems, and more information about the
logging policy is o�en unavailable, the results presented through-
out this paper reveal an important issue with current evaluation
and learning procedures. We intend to further validate SW-EVAL
by studying the impact of the window size t∆, and by examin-
ing the correlation between its results and those a�ained through
large-scale online A/B-tests for di�erent recommendation use cases.
However, as the experimental results presented in Section 3.4 show,
the choice of logging policy π induces a signi�cant bias that heavily
impacts o�ine evaluation results on Dπ . To this end, a clear need
rises for bias-free learning and evaluation procedures.

�e work of Steck [28] tackles the issue of popularity bias by
proposing “Popularity-Strati�ed Recall” as an improved evaluation
metric. �e author goes on to present a model of item popularity,
and an accompanying learning procedure that optimises a ma-
trix factorization model for said novel metric. By adapting this
“Popularity-Strati�ed Recall” and the accompanying recommender
algorithm to a “Propensity-Strati�ed Recall” model, one might be
able to alleviate the presentation bias that is inherent in most real-
world datasets.

Recent work has tackled these biases by propensity-weighting in
Learning-to-Rank speci�cally for information retrieval systems [13].
By extending such works to include biases that are inherent to rec-
ommender systems, we believe fairer o�ine learning and evaluation
procedures for implicit feedback recommenders with MNAR data
are achievable.
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Table 3: Mean Recall@k for the di�erent A/B-groups corresponding to logging policies in the Retail dataset when using 10-
fold LOOCV and 30-fold SW-EVAL respectively, for varying values of k . ∆% denotes the relative performance of an algorithm
compared to the best performer (in bold). �e sliding window baseline POP-N is not included for LOOCV as it lacks the use of
temporal information.

10-fold LOOCV 30-fold SW-EVAL

k POP ∆% SVD ∆% U-kNN ∆% I-kNN ∆% POP ∆% POP-N ∆% SVD ∆% U-kNN ∆% I-kNN ∆%

Dπu

5 0.017 -89% 0.092 -40% 0.141 -8% 0.154 0.016 -57% 0.037 0.026 -28% 0.025 -31% 0.023 -36%
10 0.029 -84% 0.127 -32% 0.171 -8% 0.185 0.023 -43% 0.037 -8% 0.040 0.035 -13% 0.032 -21%
15 0.039 -81% 0.152 -25% 0.188 -7% 0.204 0.031 -37% 0.037 -26% 0.050 0.040 -20% 0.037 -25%
20 0.048 -78% 0.173 -19% 0.200 -7% 0.214 0.037 -36% 0.037 -36% 0.058 0.044 -25% 0.042 -29%

Dπp

5 0.021 -89% 0.097 -47% 0.139 -24% 0.183 0.016 -58% 0.037 0.029 -21% 0.230 -38% 0.032 -14%
10 0.033 -85% 0.134 -41% 0.169 -25% 0.225 0.025 -47% 0.037 -23% 0.048 0.031 -34% 0.046 -4%
15 0.045 -81% 0.159 -35% 0.186 -24% 0.245 0.033 -47% 0.037 -40% 0.061 0.038 -39% 0.053 -14%
20 0.056 -78% 0.180 -30% 0.197 -23% 0.257 0.039 -45% 0.037 -48% 0.071 0.041 -42% 0.058 -18%

Dπi

5 0.018 -91% 0.102 -52% 0.137 -35% 0.212 0.016 -61% 0.038 -6% 0.027 -33% 0.027 -35% 0.041
10 0.031 -89% 0.142 -50% 0.165 -42% 0.284 0.024 -58% 0.038 -33% 0.045 -21% 0.034 -40% 0.057
15 0.042 -86% 0.170 -44% 0.180 -41% 0.406 0.032 -51% 0.038 -43% 0.057 -15% 0.039 -42% 0.067
20 0.051 -84% 0.192 -40% 0.189 -41% 0.319 0.040 -46% 0.038 -48% 0.068 -8% 0.042 -43% 0.074

Figure 2: Mean Recall@k for the Retail dataset when using 10-fold LOOCV and 30-fold SW-EVAL respectively, subdivided by
logging policy, for varying values of k . Note that the SW-EVAL y-axes are scaled down by a factor of almost 5 in comparison
with the LOOCV plots.
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