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Abstract—Today’s communication is mainly done over wireless
networks, with IEEE 802.11 (Wi-Fi) at the forefront. There are
billions of devices and millions of access points (APs), but only
very few non-overlapping channels. As a result, the performance
of Wi-Fi devices is severely degraded, because perfect channel
allocation - with every AP alone in its channel - is close to
impossible. Even in situations where all networks are under
centralised control, existing approaches quickly tend to be either
unscalable or suboptimal. By focusing on a subset of problems,
identifying Wireless Local Area Networks (WLANs) that severely
interfere with each other, performance can be improved even
in such a complex situation. We tackle this problem through
machine learning and coin it Bad Neighbour Detection (BND).
Based on this output alongside monitoring data about the
networks’ activity, we then propose a channel allocation that
optimises performance and as a side effect, stabilises networks
that we do not control. We evaluate our approach in a field trial
and show that we significantly improve the experience for users,
eliminating virtually all interference-related issues.

I. INTRODUCTION

Wireless devices, and especially Wi-Fi devices, are ubiqui-
tous in our society. This leads to a high amount of interference
and congestion as the medium is shared by all devices. With it
comes performance degradation and an overall decreasing user
experience. The root cause of problems can be categorised into
medium access problems on transmitter side, (i.e. the medium
is occupied by other Wi-Fi or non-Wi-Fi devices) and frame
delivery problems affecting the link capacity [1]. The latter can
be caused by radio path issues such as high path loss as well
as by interference/collisions at receiver side which will both
trigger the Wi-Fi link to step back and use slower but more
robust physical layer rates. This reduced link capacity results
in a less efficient usage of the medium, contributing indirectly
to congestion of the medium. Problems can even be caused by
probe requests, which have been shown to cause a significant
decrease in throughput in crowded wireless areas [2].

In recent years, along with the rise of Internet of Things
(IoT), wireless network usage has continued to grow at aston-
ishing rates. In densely populated areas, it is not uncommon
for a Wi-Fi access point to share the medium with dozens
of neighbouring networks. Biswas et al. substantiate that
most of the interference Wi-Fi networks endure, originates
from neighbouring Wi-Fi networks operating on the same or
partially overlapping frequency channels [3].

This suggests that congestion (sharing Wi-Fi) and interfer-
ence problems (related to medium access as well as frame
delivery) can in many cases be tackled by moving the AP to
a less occupied channel. However, in densely populated areas,
finding such a “clean” channel is a non-trivial task.

Throughout this work we use passive monitoring data on
AP-level concerning network utilisation, scan lists and such,
obtained through the Wi-Fi Doctor™ platform. From this
gathered data, aggregate metrics are calculated that quantify
the performance loss in a given channel due to interference
and/or congestion. Using these metrics properly allows to find
the best channel to use in more or less stable environments.
On a higher level of aggregation, metrics that reflect the
user experience are calculated from the radio and station
related statistics of the APs based on the detection of Wi-
Fi bottlenecks - i.e. when little to no bandwidth is available
beyond the bandwidth consumed by applications using the Wi-
Fi link. These metrics are substantiated throughout Sections III
and IV.

The rise of Software-Defined Networking (SDN) entails
a growing interest towards managed Wi-Fi networks, where
parameters are centrally configured. These environments, how-
ever, ask for more advanced resource management algorithms
in turn. One of the main challenges remains to define an
optimal channel allocation in order to minimise the amount
of interference and congestion for all APs. The amount of
data collected by the APs and the recent advances in machine
learning provide a basis for this problem. Therefore, we
propose a novel scheme considering airtime overlap, as well
as a method called Bad Neighbour Detection (BND) that
identifies devices that are interfering with each other and
proposes different channels for them in the following channel
allocation algorithm. As this might cause new problems with
other devices and Wi-Fi usage patterns can change over time,
this process is repeated iteratively. Later on we show that our
method succeeds in improving user experience for all involved
devices over time.

Our contributions are therefore threefold. First, we provide
a novel method to identify interfering devices in a highly
complex wireless environment. Second, we present our novel
iterative algorithm to perform channel allocation with the
interfering devices in mind, based on minimising the overlap in
airtime usage amongst neighbouring networks. Third, we eval-
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uate our algorithm in a field trial with a European Internet Ser-
vice Provider (ISP) and show a clear decrease in interference
issues that degrade Quality of Experience (QoE). Due to this
real-world evaluation, room for further experimentation with
extensions that include Tx power adjustment and the 5 GHz
band into the algorithm was limited. However unfortunate, this
opens up interesting directions for future research.

The remainder of this paper is structured as follows. First,
we explore related work in Section II. Afterwards, we present
our novel architecture including BND in Section III. Then
we evaluate the architecture in Section IV, followed by a
discussion in Section V. We conclude in Section VI.

II. RELATED WORK

Multiple centralised iterative schemes for network-
controlled channel allocation have been proposed in recent
years. Lim et al. propose a centralised scheme to allocate
channels and consider the unmanaged neighbouring APs [4].
Their solution estimates the channel utilisation based on the
received beacon signals. Assigning clients to channels that
are just good enough to maximise the number of clients
per AP and leaving other channels to APs that need more
throughput, Kasasbeh et al. propose an algorithm that takes
out-of-system interference, random AP deployment, and
unmanaged APs into account [5]. Taking channel monitoring
results and data traffic from APs into account, Abeysekera
et al. propose a centralised algorithm that computes the
quasi-optimal frequency channel of each AP [6]. Balbi et al.
use a centralised algorithm to organise APs in a way to
minimise interference between networks [7]. Not only the
networks managed by the controller are taken into account,
but unmanaged networks as well. Baid and Raychaudhuri
examine the correlation between low cost residential APs
and APs managed by an ISP [8]. They conclude that central
control is beneficial even in the case of unmanaged APs
and that for a percentage increase of managed APs, the
throughput can be improved.

But not only centralised algorithms were proposed, decen-
tralised were as well. While traditionally, AP placement and
channel selection are performed separately, Zhao et al. propose
an algorithm that optimises both at once and therefore im-
proves performance compared to other solutions [9]. Dynamic
channel assignment based on channel segregation, improves
the co-channel interference compared to traditional channel
assignments when the environment changes [10]. Gazis et al.
present a self-organizing system that utilises communication
between APs [11]. The algorithm converges fast and reaches
a stable solution.

However, all these works rely on results obtained either
through simulations or relatively small test-beds. Seyede-
brahimi et al. propose an algorithm for jointly adjusting the
transmission power levels and optimising the channel assign-
ment of APs. Taking into account the flow’s required qualities
it shows a performance improvement of up to 25 % [12]. Static
traffic needs are assumed throughout the experimental results,
with a focus on optimising the throughput throughout the

Fig. 1. The full iterative channel allocation process

network. We argue that static traffic needs are unrealistic for
real-world environments, as different applications will require
different amounts of bandwidth. As a consequence, we will
not focus on overall throughput optimisation throughout the
rest of this work, but rather on user-experience based metrics
w.r.t. Wi-Fi usage.

Other recent work has shown that, especially in densely
populated areas, a need rises for channel allocation schemes
that collaboratively take information from other APs into
account in order to minimise inter-cell interference [13]. Our
iterative approach achieves this by matching collected data
about network usage and measured interference in order to
identify disruptive neighbouring networks, and consecutively
taking this information into account when computing a global
channel allocation. Moreover, our method provides a scalable
channel assignment procedure that only uses data provided
by the AP, which makes it widely deployable with minimal
end-user intrusion.

III. ARCHITECTURE AND ALGORITHMS

In what follows we provide an overview of the architecture
of our approach, its different components and how they fit
together. Figure 1 visualises the full iterative process, from
passive monitoring to deployment. For simplicity and without
loss of generality, we focus on the classical case of Wi-
Fi networks in the 2.4 GHz spectrum throughout the rest
of this paper. Note however that our approach can easily
be generalised to include the 5 GHz band, provided some
additional measures are taken w.r.t. varying channel widths.

We set up the controlled APs to periodically scan the
medium to detect neighbouring networks, generating scan lists
that contain information from the detected beacons: Service
Set Identifier (SSID), measured Received Signal Strength
Indicator (RSSI), et cetera. Let G = (V,E) be an undirected
graph, where V denotes the set of vertices and E the set
of edges. Let every AP i be a vertex vi and let the set of
neighbouring APs derived from a scan list performed by AP
i be denoted as S(vi). To incorporate possible changes in the
environment over time, we define Su(vi) as the union of all
observed sets S(vi).

Su(vi) = ∪∀S(vi)S(vi)



An edge exists from vi to every other AP vj observed in its
scan lists, i.e.:

∃e ∈ E : vi 7→ vj ,∀vj ∈ SU (vi).

This graph model of the environment could, for example, be
extended by weighting edges with the mean measured RSSI
values; we decided not to further explore this option. It is non-
trivial to draw a priori conclusions from RSSI measurements
alone: intuitively one would avoid to share the channel with a
neighbour with a strong RSSI. But a case could be made that
higher RSSI values would lead to less disturbing networks,
since they are less likely to produce interfering Wi-Fi packets
as chances are high that all Wi-Fi nodes in the network will
see each other, allowing the listen-before-talk IEEE 802.11
Medium Access Control (MAC) protocol to work properly.
It would be far worse to introduce hidden nodes than an
AP we can efficiently share the medium with. We provide
and discuss results w.r.t. the correlation between RSSI and
interfering networks in Section IV-D.

A. Community Detection and Dynamic Programming

As large-scale metropolitan areas are prone to generate
densely interconnected graphs, any optimal computation in-
volving them quickly becomes unscalable. We therefore look
into community detection techniques, which divide graphs into
logical components.

Once we have obtained these community structures in the
network graph, we use this information to break down the
global channel allocation problem into a local allocation per
such community. Later on, additional constraints are added to
minimise channel overlap between neighbouring nodes that
belong to different communities when combining the local
allocations to form the global solution. The methodology of
solving a complex problem through its often simpler sub-
problems is widely known as Dynamic Programming.

By detecting communities and solving the channel alloca-
tion per community in a first iteration, we also take the limi-
tations of our model into account: by looking at communities
rather than individual links, we incorporate the most probable
candidate APs to generate (hidden node) interference into the
set of neighbouring APs for every AP.

A first logical step when detecting communities is to look
at individual connected components instead of the super-graph
as a whole [14].

a) Label Propagation Algorithm: The Label Propagation
Algorithm (LPA) is a stochastic algorithm with linear runtime
complexity. Initially, unique random labels are assigned to
every node. These labels are then consecutively propagated
throughout the network, according to the labels occurring with
the highest frequency among a node’s neighbours [15].

b) Girvan-Newman: The Girvan-Newman algorithm it-
eratively removes the edge with the highest betweenness
centrality (as defined by Freeman [16]) from the network [17].
As it is considerably more computationally expensive than
LPA, but generally yields intuitive and deterministic results,
we apply it where LPA falls short.

B. Minimising Airtime Overlap

Define V as the set of all access points vi we want to allocate
channels to and K as the set of non-overlapping channels to
allocate. Assume we have |V| = n access points and |K| = m
channels. We define the inter-AP distance matrix D as

D = (dij) ∈ Rn×n

dij = dst(vi, vj),∀vi, vj ∈ V

dst : V× V 7→ R+

where dst is a distance function. Note that this is a conceptual
distance, and not related to physical distance or RSSI values.

Furthermore, the channel allocation matrix C is defined as

C = (cik) ∈ Rn×m

where

cik =

{
1, if AP i is assigned channel k
0, if AP i is not assigned channel k.

Assuming a fixed distance function for now, our objective
function is formalised as follows:

Minimise

F (D,C) =
∑
k∈K

∑
i∈V

∑
j∈V

1

1 +Dij
CikCjk (1)

subject to ∑
k∈K

Cik = 1,∀vi ∈ V. (2)

The rationale behind Equation 1 is that APs with the largest
distance between them should be assigned to the same channel,
as they are less likely to interfere with each other than APs
with a smaller distance between them. The constraints in
Equation 2 are added to ensure every AP gets assigned exactly
one channel, thus avoiding the trivial solution where all Cik

are set to zero.
1) Activity-based distance function: We propose an

activity-based distance function to be used when constructing
the matrix D. Wi-Fi activity in a WLAN is indicated by the
airtime usage (transmitting or receiving) in the radio statistics
of the APs. For a week of reference data, we discretise airtime
usage over this week into 672 bins representing a 15 minute
window:

∀v ∈ V : uv ∈ R672.

Next, we use the constraint dynamic time warping technique
(cdtw) proposed by Sakoe and Chiba [18] to compute the
distance between two such time series. The constraint is set
to 3, representing a one-hour window.

cdtw(ui, uj) : Rn × Rn 7→ R+

∀vi, vj ∈ V : dst(vi, vj) = cdtw(ui, uj)

With this approach we effectively minimise airtime overlap
between medium sharing APs: a heavy user during evening
hours could perfectly well share the medium with a heavy



user during office hours, because of the minimality in airtime
usage overlap.

We introduce a learning method that takes the weighted
average of historical and new data, that is:

ui+1 = α.ui + (1− α)unew.

Where ui is the usage pattern up to last week, unew is the usage
pattern during the last week, and ui+1 is the eventual updated
pattern. 0 ≤ α ≤ 1 is the learning rate, specifying whether
there should be an emphasis on either new or historical data.

C. Linear Programming

Linear programming is a commonly known method to
compute the global optimum for a linear objective function
of a mathematical model represented by linear relationships,
subject to linear equality or inequality constraints. It was
first proposed by Luenberger and has been a very active
field of research, with various extensions such as quadratic
programming, mixed integer programming, et cetera [19]. The
specific subcategory we use is binary integer programming, i.e.
the special case where all variables are required to be either
0 or 1.

The mathematical model and objective function defined
in the previous section consist of linear relationships and
linear equality constraints. The objective function, however, is
quadratic. Various linearisation techniques to tackle this issue
are proposed by Adams and Sherali [20].

For each pair of binary variables x, y that appear in
quadratic relationships, define z = x.y, subject to

z ≤ x

z ≤ y

z ≥ x+ y − 1.

The first two constraints ensure the newly defined variable is
0 if any of the original variables is, whereas the latter makes
sure z will be set to 1 when both x and y are as well.

D. Bad Neighbour Detection

As we have collected data regarding the networks’ airtime
usage as well as other measurements on the medium, we can
exploit this to detect and analyse performance issues. We de-
fine BND as the problem of identifying pairs of neighbouring
networks where at least one network is disruptive in terms
of available bandwidth for the other network. In this way we
detect a suffering neighbour along with a bad neighbour (the
relationship is often symmetrical, meaning that the suffering
neighbour is in itself also a bad neighbour and vice versa).

Our approach works on aggregated measurement data of
airtime usage and Relative Channel Interference (RCI). RCI
quantifies the amount of performance that is lost due to
interference relative to the theoretical maximum performance
of a Wi-Fi link. It is defined as the relative performance
improvement that would be obtained in case all interference
and/or congestion could be removed. This metric - which is
used as an input to the channel recommendation provided

TABLE I
BND DATA EXAMPLE

Radio Interval Channel RCI Airtime usage
A B

A 00:00:00 - 00:00:10 1 0.7 0.2 0.6
A 00:00:10 - 00:00:20 1 0.5 0.2 0.4
A 00:00:20 - 00:00:30 1 0.3 0.2 0.2
A 00:00:30 - 00:00:40 1 0.8 0.2 0.7

B 00:00:00 - 00:00:10 1 0.2 0.2 0.6
B 00:00:10 - 00:00:20 1 0.2 0.2 0.4
B 00:00:20 - 00:00:30 1 0.2 0.2 0.2
B 00:00:30 - 00:00:40 1 0.2 0.2 0.7

by Wi-Fi Doctor™- is calculated based on the radio and
station related statistics reported by the AP for all active
Wi-Fi links [21]. The main line of reasoning is that we
try to explain the interference a network experiences by a
weighted sum of medium usage of its bad neighbours, along
with some bias. Medium usage by any or all Wi-Fi links
associated to this radio, either by the radio transmitting or
receiving frames from its associated stations, is measured over
2 second intervals and later aggregated over 10 seconds. RCI
is calculated over the same 10 s interval. After aligning the
measurement intervals between APs, the data is transposed to
match a row of measured RCI in a certain radio to medium
usage of its neighbours. Table I shows the structure of the final
preprocessed data. In this toy example, it might very well be
that radios A and B are bad neighbours: their RCI is perfectly
correlated with each others medium usage (plus some bias
term). Naturally, an APs’ own medium usage is not taken into
account when computing bad neighbours for said AP.

1) Feature Selection: As we target densely populated areas
with densely interconnected network graphs as a consequence,
Table I grows exponentially. Our approach to solving this
regression problem should thus be able to handle the high-
dimensional nature of the data both for scalability and pre-
venting over-fitting. With this criteria in mind, we use Least
Absolute Shrinkage and Selection Operator (LASSO) regres-
sion [22] with the RCI as dependent variable to predict, based
on the neighbours’ medium usage as independent variables.
We include a bias term and force non-negative coefficients: we
do not want to find inverse correlations between medium usage
in network A and interference in network B. For our model
selection procedure, we perform LASSO through least angle
regression with the Bayes Information Criterion as metric to
evaluate lambdas [23]. All medium usage inputs that do not
have a 0 coefficient in the result, are retained after feature
selection. The other independent variables are dropped for both
the training and testing procedures.

2) Neighbour Importance: After this feature selection pro-
cedure promoting model sparsity, we perform Ordinary Least-
Squares (OLS) regression instead of directly evaluating on the
LASSO model [24]. This two-step approach yields two-fold
benefits: it allows for non-penalised coefficients whilst still
delivering a sparse solution, as well as full control over which



independent is left out (which we exploit when evaluating
candidate bad neighbours).

The performance of the OLS model is measured by cal-
culating the R2 metric of the trained model when predicting
for the test set. Intuitively, it represents the proportion of the
variance in RCI that can be explained by the model, through
the neighbours’ medium usage.

Next, for every possible bad neighbour, a new OLS model
is trained on the train set, omitting that neighbours’ medium
usage. The R2 metric is calculated for the test set with every
new model.

The final bad neighbours score of every radio is the R2-
score of the full OLS model minus the R2-score of the OLS
model that excluded the medium usage of said radio. This in
effect gives an estimate on how much of the variance is at
least due to that specific radio.

The higher the score, the worse the neighbour is. Low
scores are unlikely to represent actual bad neighbours, high
scores are most likely to be main causes of interference. From
experimentation, a hard cut-off on this score can prevent most
false positives, if needed.

E. Iterative Updates

In what follows we combine the methods outlined above to
formalise our final channel allocation algorithm.

1) We analyse the networks’ scan lists and generate a
graph representing the network topology. In the case of
differing results (e.g. A’s Basic Service Set Identifier
(BSSID) is sometimes present in network B’s scan lists,
and sometimes not) we decide to use a conservative
approach: if a BSSID is seen in a scan list at least once,
an edge between both APs is drawn.

2) We perform community detection. Depending on the
network topology, different techniques are preferential.
For smaller networks with lots of connected compo-
nents, the Girvan-Newman algorithm performs very
well. For larger networks that are more interconnected,
the use of LPA proves to be more scalable. If attainable,
a good goal is to aim for communities no larger than
25 APs, with a diameter of no more than 4 hops. This
first limit is to keep the linear programming algorithm’s
optimality computations feasible, whereas the latter rests
on the fact that when the number of hops between two
APs increases, in the limit, the probability of generating
hidden nodes will decrease.

3) For every detected community, we compute the optimal
channel allocation with respect to the activity-based
distance function formulated in Equation 1. We generate
a mapping for every AP to one of three channels.

4) We merge these individual results for every community
together: where edges between different communities
are present, we calculate the optimal permutation of
community A’s mapping compared to community B.
Formally: community A has a mapping for every AP
to one of three channels {x, y, z}, whereas B’s APs are
mapped to {x′, y′, z′}. For every possible permutation

TABLE II
BASIC PROPERTIES OF THE NETWORK GRAPH

# Nodes # Edges Avg. degree Min. degree Max. degree

60 128 4 1 8

of A’s channels, we compute the objective function for
the inter-community edges. For the optimal permutation,
channels are then mapped onto each other.

5) We now have a mapping from AP to {x, y, z} for
the whole network. Similarly, we compute an objective
function for every permutation of the available channels
{1, 6, 11}. We minimise the average number of external
BSSIDs every AP sees, based on the scan lists. The
rationale behind this is an attempt to minimise external
influences on our network.

6) We recompute distances between APs based on their
updated usage patterns on a weekly iterative basis.
Results from the BND technique outlined above are
included into the model as hard constraints: pairs of
bad neighbours should not be allowed to be allocated
the same channel.

IV. EVALUATION

We experimentally validated our approach during a real-
life field trial with a large European ISP over the course of
several weeks. The ISP operates several Multiple Dwelling
Units (MDUs) (large apartment buildings where a significant
amount of residential units occur in vicinity of each other).
Such MDUs often have an exclusive arrangement with their
ISP, ensuring a maximally controllable and minimally contam-
inated environment. Updates to the channel assignment were
deployed on a weekly basis.

Our results are evaluated on four different aspects, broadly
relating with the steps lined out in Section III: first we
analyse the environment and its degree of controllability, then
we provide results of our community detection approach;
afterwards we assess the evolution in regards of QoE, and
finally we study the correlation between RSSI values (obtained
through periodic scan lists) and the occurrence of validated
bad neighbours. Furthermore, we discuss the impact of our
approach on uncontrolled neighbouring networks.

A. Environment

An elementary quantitative breakdown of the MDU used
for the field trial can be found in Table II. When modelling
the network graph, we chose to only take Wi-Fi Doctor™ en-
abled devices into account, as uncontrolled devices are not
explicitly considered during the optimisation procedure of our
channel allocation algorithm. However, we exploit information
about the occurrence of neighbouring uncontrolled networks
when mapping the abstract channels from the algorithm onto
physical channels.

Table III presents an overview of the number of respectively
known and unknown APs seen by Wi-Fi Doctor™ enabled



TABLE III
NUMBER OF (UN)KNOWN NEIGHBOURING APS

Min. Max. Avg.

Known 1 8 4.27
Unknown 0 5 1.99

All 2 13 6.25

Fig. 2. A visualisation of community detection results on the network graph
of the experimental environment, every colour denotes a different community

TABLE IV
QUANTITATIVE ANALYSIS OF THE COMMUNITY DETECTION RESULTS

SHOWN IN FIGURE 2

Colour cid |Vc| degintra deginter d

� 0 12 4.50 0.08 3
� 1 14 5.67 0.07 3
� 2 8 4.00 0.00 3
� 3 9 2.89 0.00 4
� 4 14 4.14 0.00 4
� 5 3 2.00 0.00 1

Mean 10 4.23 0.03 3

devices. With on average nearly 70 % of the environment being
controlled devices, it proved to be a perfect environment for
our experiments.

B. Community Detection

Figure 2 visualises the result of the community detection
procedure laid out in Section III on the MDU used in the field
trial. A quantitative analysis of the generated communities is
presented in Table IV. We define the intra-community degree
as the number of outgoing edges to vertices within the same
community, whereas we define the inter-community degree as
the number of outgoing edges to vertices in other communities.
The diameter of every community is shown as d, this is the
longest shortest path between any two nodes belonging to the
same community.

As the network graph clearly consists of multiple connected
components, performing community detection on this graph
is reduced to a rather trivial case. To further validate our
approach, we show community detection results on another
network consisting of 196 APs in one single connected com-
ponent in Figure 3. As the controlled part of the environment

Fig. 3. Community detection results on the network graph of a second
environment

from which the graph is constructed was only 15 %, we
used a different, more decentralised methodology to tackle
interference issues.

C. Quality of Experience

1) Metrics: Wi-Fi Doctor™ provides a metric called Wi-
Fi Experience Index (WFEI) to indicate the end user Wi-
Fi QoE of a given network over a given longer period
of time - typically one week. In order to calculate WFEI,
an intermediate metric called Wuxi is calculated for each
10 s interval of each active Wi-Fi link in the WLAN. This
metric quantifies the estimated chance that the observed Wi-Fi
conditions result in a problem that is noticeable to the end user.
It is based on the calculation of the available bandwidth and
the observed data rate consumed by the application(s) using
the Wi-Fi link in order to identify Wi-Fi bottlenecks [1, 25].
WFEI is obtained through the summation of Wuxi for all Wi-
Fi links in the WLAN over the longer time period into SWuxi,
and performing a logarithmic transformation function that has
been calibrated to cover all cases observed in large scale field
trials involving thousands of end user WLANs. WFEI 100
indicates a near-perfect WLAN, whereas WFEI 0 indicates
WLANs where the bandwidth available to applications is
fully bottlenecked during several hours by the reduced Wi-
Fi bandwidth.

In order to distinguish between the different causes of QoE
problems, interference or radio path issues, the weight of these
causes is calculated for each sample by comparing how much
bandwidth could be gained by removing each of the problem
causes separately. For example, if a Wi-Fi link only has
10 Mbps available because the medium is occupied for 90 %
of the time and the signal strength is such that the link speed
is reduced to half the theoretical maximum, a gain of 90 Mbps
and 10 Mbps could be obtained by removing interference and
radio path issues respectively, leading to a 90 % and 10 % for
interference and radio path “weight”.

2) Results: Figure 4 shows the evolution of the trend in
WFEI for the APs involved in the field trial, throughout the
field trial. We provide the mean and minimum WFEI: this
gives a global overview as well as the worst case. The mean
WFEI shows an upward trend throughout the field trial, but as
it already starts quite high this is hard to notice. For the worst



Fig. 4. Wi-Fi Experience Index trend throughout the field trial

Fig. 5. SWuxi trend throughout the field trial

performers however, we can clearly see the WFEI rising from
∼ 70% to ∼ 80%.

Note that this graph alone gives the total picture, resulting in
a skewed overview: WFEI is not only dependent on problems
caused by interference, but radio path issues are included
as well. On top of that, the metric’s inherent non-linearity
makes it unintuitive to compare results. Lastly, artefacts of
the environment can come at play here: the environment could
very well contain devices with issues that cannot be solved by
channel allocation.

To mitigate the above-mentioned issues we include the
SWuxi trends in Figure 5. As SWuxi is inversely correlated
with WFEI, we show the maximum instead of the minimum
trend. Figure 6 shows the trend in SWuxi after we filtered out
issues that were not caused by interference-related problems
using the interference weight factor. As a consequence, what
is left focuses purely on those QoE degrading moments that
can be solved through intelligent channel allocation. Here, we
clearly see the impact of our algorithm, decreasing the worst
performers’ throttled link time by a factor of 3.

Finally, Figure 7 visualises the WFEI computed from the
SWuxi shown in Figure 6, thus providing a clearer, less skewed
and more relevant overview than Figure 4. It is clear to see
that we mitigated virtually all interference-related issues, by
raising the minimum WFEI from ∼ 80% to ∼ 100% over the
course of only six iterations.

Fig. 6. SWuxi trend due to interference

Fig. 7. Wi-Fi Experience Index trend due to interference

Fig. 8. RSSI distribution for pairs of ”good” and ”bad” neighbours throughout
the field trial

D. Bad Neighbours

Figure 8 shows the distribution in average RSSI measure-
ments for all pairs of neighbouring APs throughout the field
trial, based on their scan lists. Identified bad neighbour couples
are shown by red bars, whereas blue bars represent those
couples whose airtime did not have a significant impact on
each other’s measured RCI.

E. Uncontrolled Neighbours

Figure 9 shows the evolution of the channels uncontrolled
neighbouring networks operate on over time. The first week
in the graph is a reference week during which we only pas-

OIivier Jeunen




Fig. 9. Evolution of channel choice for uncontrolled neighbours

sively monitored data to gather initial data for the community
detection, airtime-minimisation and BND procedures.

V. DISCUSSION

A good community detection should minimise the inter-
community degree to intra-community degree ratio whilst sub-
dividing the graph into meaningful and manageable clusters.
This ensures that the most probable interfering Wi-Fi networks
are taken into account together, whereas those that are entirely
unrelated are optimised independently of each other. Figure 2
and Table IV clearly show both trends: intra-community edges
were much more prevalent than inter-community edges, indi-
cating that the communities accurately represent the network
structure as a whole. The network environment depicted in
Figure 2 was rather structured and less chaotic, so we
used the Girvan-Newman algorithm. However, Figure 3 shows
LPA results on a more complex environment, validating the
effectiveness of our approach. Defining the optimal number of
communities is less formal and more empirical: we managed to
reduce the problem size to a point where the exact optimality
of our linear programming approach and its computations
for every community became feasible and practical. Although
it has been shown that binary integer programming is NP-
complete [26], our approach managed to find a solution
within seconds on commodity hardware. After only a few
iterations, the BND algorithm described in Section III-D
no longer identified pairs of neighbouring Wi-Fi networks
that were in bad conditions due to each other’s presence,
which also indicates we effectively selected those networks
that should share a channel and prevented new pairs from
arising. There were still correlations between airtime usage
in one network and interference in the other, but no loss in
QoE as a consequence of it. This confirms the phenomenon
presented by Biswas et al.: the mere presence of a network on
a channel does not predict channel utilization [3]. Analogously,
more than once, the linear programming method identified the
same interfering pairs as the BND technique and assigned
them to different channels, demonstrating how these different
techniques worked in a complementary fashion. We fixed the
learning rate α for the airtime-vectors to 0.5 for the first
few weeks, and later on decreased it to 0.1 when we gained
confidence in the identified patterns. Optimising this parameter
might very well result in a performance gain, but we did not

have the resources to explore this further due to the real-world
field trial we were bound to.

The RSSI distribution in Figure 8 confirms our reserva-
tions about using RSSI. Interfering APs can not be uniquely
identified using RSSI measurements alone as bad neighbour
couples seem to appear evenly spread over the range of
measured values, which justifies the use and advantage of our
methodology.

When studying the channel evolution for uncontrolled
neighbouring networks as shown in Figure 9, it is clear to see
that the environment is extremely chaotic: controlled and un-
controlled neighbouring networks constantly switch channels
in an attempt to bypass interference and saturation, but fail to
find a static equilibrium. As a side effect of our approach, we
can clearly see that after we deployed our more static channel
allocation scheme, uncontrolled neighbours were also able to
transition into a more harmonious environment.

VI. CONCLUSION

In this paper, we proposed a novel method for performing
channel allocation in IEEE 802.11 networks, based on passive
monitoring data obtained from said networks. Our method
is data-driven, based on graph analysis, linear programming
and regression. We introduced a novel objective function to
minimise the overlap in medium usage between neighbouring
APs, and a novel methodology to identify and validate pairs
of disruptive neighbouring networks that impact each other’s
QoE, which we have coined BND. These techniques cooperate
in a complementary fashion: identifying networks that should
or should not be allowed to share frequency channels. Our
approach learns from new data over time, making it flexible
and dynamic. We presented results from a real-life field trial,
and have shown that our iterative technique leads to a clear
improvement of QoE and a decrease in QoE loss due to Wi-Fi
interference, for the average as well as the worst performers.
After only 6 iterations, we were able to solve virtually all
interference-related issues. On top of this, as a side effect, we
have stabilised the uncontrolled neighbouring networks in the
environment.

We have shown that merely using RSSI measurements is
insufficient to accurately identify pairs of disruptive neigh-
bouring networks.

Further extensions that are worth studying include the use
of partially overlapping adjacent channels, broadening our
solution space from the classical 3 non-overlapping channels
in the 2.4 GHz band. A coupling factor could be included in
Equation 1 to indicate non-existent, full or partial coupling
between frequency channels. For this, a thorough quantitative
analysis of interference effects on Orthogonal Frequency-
Division Multiplexing (OFDM) systems would need to be
conducted.

ACKNOWLEDGEMENT

Patrick Bosch is funded by FWO, a fund for fundamental
scientific research, and the Flemish Government.



REFERENCES

[1] D. Neves da Hora, K. Van Doorselaer, K. Van Oost,
R. Teixeira, and C. Diot, “Passive Wi-Fi Link Capacity
Estimation on Commodity Access Points,” in Traffic
Monitoring and Analysis Workshop (TMA) 2016, 2016.

[2] X. Hu, L. Song, D. Van Bruggen, and A. Striegel, “Is
There WiFi Yet? How Aggressive WiFi Probe Requests
Deteriorate Energy and Throughput,” Proc. of the 2015
ACM Conference on Internet Measurement Conference,
pp. 317–323, 2015.

[3] S. Biswas, J. Bicket, E. Wong, R. Musaloiu-E, A. Bhartia,
and D. Aguayo, “Large-scale measurements of wireless
network behavior,” in Proc. of the 2015 ACM Conference
on Special Interest Group on Data Communication, ser.
SIGCOMM ’15. ACM, 2015, pp. 153–165.

[4] T. H. Lim, W. S. Jeon, and D. G. Jeong, “Centralized
channel allocation scheme in densely deployed 802.11
wireless lans,” in 2016 18th International Conference
on Advanced Communication Technology (ICACT), 2016,
pp. 249–253.

[5] H. Kasasbeh, F. Wang, L. Cao, and R. Viswanathan,
“Generous throughput oriented channel assignment for
infra-structured wifi networks,” in 2017 IEEE Wireless
Communications and Networking Conference (WCNC),
2017, pp. 1–6.

[6] B. A. H. S. Abeysekera, K. Ishihara, Y. Inoue, and
M. Mizoguchi, “Network-controlled channel allocation
scheme for ieee 802.11 wireless lans: Experimental and
simulation study,” in 2014 IEEE 79th Vehicular Technol-
ogy Conference (VTC Spring), 2014, pp. 1–5.

[7] H. Balbi, N. Fernandes, F. Souza, R. Carrano, C. Albu-
querque, D. Muchaluat-Saade, and L. Magalhaes, “Cen-
tralized channel allocation algorithm for IEEE 802.11
networks,” in 2012 Global Information Infrastructure
and Networking Symposium (GIIS), 2012, pp. 1–7.

[8] A. Baid and D. Raychaudhuri, “Understanding channel
selection dynamics in dense Wi-Fi networks,” IEEE
Communications Magazine, vol. 53, no. 1, pp. 110–117,
2015.

[9] W. Zhao, Z. Fadlullah, H. Nishiyama, N. Kato, and
K. Hamaguchi, “On joint optimal placement of access
points and partially overlapping channel assignment for
wireless networks,” in 2014 IEEE Global Communica-
tions Conference, 2014, pp. 4922–4927.

[10] Y. Matsumura, S. Kumagai, T. Obara, T. Yamamoto, and
F. Adachi, “Channel segregation based dynamic channel
assignment for WLAN,” in 2012 IEEE International
Conference on Communication Systems (ICCS), no. 1,
2012, pp. 463–467.

[11] V. Gazis, K. Sasloglou, N. Frangiadakis, P. Kikiras,
A. Merentitis, K. Mathioudakis, and G. Mazarakis, “Co-
operative communication in channel assignment strate-
gies for IEEE 802.11k WLAN systems,” in 2013 IEEE
24th Annual International Symposium on Personal, In-
door, and Mobile Radio Communications (PIMRC),

2013, pp. 1924–1929.
[12] M. Seyedebrahimi, F. Bouhafs, A. Raschella, M. Mackay,

and Q. Shi, “Fine-grained radio resource management to
control interference in dense wi-fi networks,” in 2017
IEEE Wireless Communications and Networking Confer-
ence (WCNC), 2017, pp. 1–6.

[13] F. den Hartog, A. Raschella, F. Bouhafs, P. Kempker,
B. Boltjes, and M. Seyedebrahimi, “A pathway to solving
the wi-fi tragedy of the commons in apartment blocks,”
in 2017 27th International Telecommunication Networks
and Applications Conference (ITNAC), 2017, pp. 1–6.

[14] P. Erdos and A. Renyi, “On random graphs i,” Publi-
cationes Mathematicae (Debrecen), vol. 6, pp. 290–297,
1959.

[15] U. N. Raghavan, R. Albert, and S. Kumara, “Near linear
time algorithm to detect community structures in large-
scale networks,” Physical review E, vol. 76, no. 3, p.
036106, 2007.

[16] L. C. Freeman, “A set of measures of centrality based on
betweenness,” Sociometry, pp. 35–41, 1977.

[17] M. Girvan and M. E. J. Newman, “Community structure
in social and biological networks,” Proc. of the National
Academy of Sciences, vol. 99, no. 12, pp. 7821–7826,
2002.

[18] H. Sakoe and S. Chiba, “Dynamic programming algo-
rithm optimization for spoken word recognition,” IEEE
transactions on acoustics, speech, and signal processing,
vol. 26, no. 1, pp. 43–49, 1978.

[19] D. G. Luenberger, Introduction to linear and nonlinear
programming, 1973, vol. 28.

[20] W. P. Adams and H. D. Sherali, “Linearization strategies
for a class of zero-one mixed integer programming
problems,” Operations Research, vol. 38, no. 2, pp. 217–
226, 1990.

[21] K. Van Oost and K. Van Doorselaer, “Method
for testing a wireless link of a wi-fi node,
and circuit performing the method,” Patent US
20 160 226 740 A1, 04 08, 2016. [Online]. Available:
http://www.freepatentsonline.com/y2016/0226740.html

[22] R. Tibshirani, “Regression shrinkage and selection via
the lasso,” Journal of the Royal Statistical Society. Series
B (Methodological), pp. 267–288, 1996.

[23] B. Efron, T. Hastie, I. Johnstone, R. Tibshirani et al.,
“Least angle regression,” The Annals of Statistics, vol. 32,
no. 2, pp. 407–499, 2004.

[24] A. Belloni, V. Chernozhukov et al., “Least squares after
model selection in high-dimensional sparse models,”
Bernoulli, vol. 19, no. 2, pp. 521–547, 2013.

[25] K. Van Doorselaer, K. Van Oost, and N. Godman,
“Method for evaluating a wireless link, respective
device, computer program and storage medium,” Patent
US 20 180 077 591 A1, 03 15, 2018. [Online]. Available:
http://www.freepatentsonline.com/y2018/0077591.html

[26] R. M. Karp, “Reducibility among combinatorial prob-
lems,” in Complexity of computer computations, 1972,
pp. 85–103.


