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Abstract
Most graph query languages are rooted in logic. By contrast, in this paper we consider graph

query languages rooted in linear algebra. More specifically, we consider MATLANG, a ma-
trix query language recently introduced, in which some basic linear algebra functionality is sup-
ported. We investigate the problem of characterising equivalence of graphs, represented by their
adjacency matrices, for various fragments of MATLANG. A complete picture is painted of the
impact of the linear algebra operations in MATLANG on their ability to distinguish graphs.

1 Introduction
Motivated by the importance of linear algebra for machine learning on big data [6, 7, 11, 46, 53] there
is a current interest in languages that combine matrix operations with relational query languages in
database systems [21, 34, 40, 41, 43]. Such hybrid languages raise many interesting questions from
a database theoretical point of view. It seems natural, however, to first consider query languages for
matrices alone. These are the focus of this paper.

More precisely, we continue the investigation of the expressive power of the matrix query lan-
guage MATLANG, recently introduced as an analog for matrices of the relational algebra on rela-
tions [8]. Intuitively, queries in MATLANG are built-up by composing several linear algebra op-
erations. The language MATLANG was shown to be subsumed by aggregate logic with only three
non-numerical variables. Conversely, MATLANG can express all queries from graph databases to
binary relations that can be expressed in first-order logic with three variables. The four-variable
query asking if the graph contains a four-clique, however, is not expressible [8].

In this paper, we further zoom in on the expressive power of MATLANG on graphs. In par-
ticular, we investigate when two graphs are equivalent relative to some fragment of MATLANG.
These fragments are defined by allowing only certain linear algebra operations in the queries and
are denoted by ML(L ), with L the list of allowed operations. A total of six (sensible) fragments
are considered and ML(L )-equivalence of graphs, i.e., their agreement on all sentences in ML(L )
is characterised. Our results are as follows.

• For starters, we have the fragment ML( · , tr) that allows for matrix multiplication ( · ) and
trace (tr) computation (i.e., taking the sum of diagonal elements of a matrix). Equivalence
of graphs relative to ML( · , tr) coincides with being co-spectral, or equivalently, to having the
same number of closed walks of any length (Section 5);

• Another fragment, ML( · ,∗,1), allows for matrix multiplication, conjugate transposition (∗)
and the introduction of the vector 1, consisting of all ones. Here, equivalence coincides with
having the same number of (not necessarily closed) walks of any length (Section 6);

• When allowing both tr and 1, equivalence relative to ML( · , tr,1) coincides, not surprisingly,
to having the same number of closed and non-closed walks of any length (Section 6);

• More interesting is the fragment ML( · ,∗,1,diag), which also allows for the operation diag( ·)
that turns a vector into a diagonal matrix with that vector on its diagonal. In this case, equiv-
alence coincides with having a so-called common equitable partition, or equivalently, to C2-
equivalence. Here, C2 denotes the two-variable fragment of C, the extension of first-order
logic with counting (Section 7);
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• The combination of tr with diag results in a stronger notion of equivalence: Graphs are equiv-
alent relative to ML( · , tr,1,diag) when they are C2-equivalent and co-spectral (Section 7);

• Finally, equivalence relative to MATLANG is shown to correspond to C3-equivalence, the
three-variable fragment of C (Section 8). This is in agreement with the results from Brijder et
al. [8] mentioned earlier.

We remark that each of these fragments can be extended with addition and scalar multiplication at
no increase in distinguishing power. We exhibit examples separating all fragments.

The characterisations are shown in a pure algebraic way, without relying on simulations in logic.
Underlying are reductions of ML(L )-equivalence of graphs to similarity notions of their adjacency
matrices. For example, it is known that two graphs G and H are C2-equivalent if and only if they
are fractionally isomorphic [50, 55, 56]. This means that the adjacency matrices AG of G and AH of
H satisfy AG ·S = S ·AH for some doubly stochastic matrix S. As another example, C3-equivalence
of graphs corresponds to AG ·O = O ·AH for some orthogonal matrix O that is also an isomorphism
between the cellular algebras of G and H [19]. We provide similar characterisations for all our
matrix query language fragments. It is worth pointing out that beyond MATLANG, Ck-equivalence,
for k ≥ 4, can also be characterised in terms of solutions to linear problems [2, 28, 44].

Moreover, whenever possible, we also provide characterisations in terms of spectral properties
of graphs. A wealth of results exists in spectral graph theory on what information can be obtained
from the adjacency matrix, or from other matrices like the Laplacian, of a graph [9, 15, 25]. We rely
quite a bit on known results in that area. Nevertheless, we believe that the connections made in this
paper are of interest in their own right. They relate combinatorial and spectral graph invariants by
means of query languages. We refer to work by Fürer [23, 24] for more examples of the power of
graph invariants and to Dawar et al. [19] for connections between logic, combinatorial and spectral
invariants.

Finally, although links to logics such as C2 and C3 are made, the connection between MATLANG,
rank logics and fixed-point logics with counting, as studied in the context of the descriptive com-
plexity of linear algebra [17, 16, 18, 26, 29, 33], is yet to be explored. Similarly for connections to
logic-based graph query languages [1, 4].

2 Background
We denote the set of real numbers by R; the set of complex numbers by C. The set of m× n-
matrices over the real (resp., complex) numbers is denoted by Rm×n (resp., Cm×n). Vectors are
elements in Rm×1 (or Cm×1). The entries of an m× n-matrix A are denoted by Ai j, for i = 1, . . . ,m
and j = 1, . . . ,n; entries of a vector v are denoted by vi, for i = 1, . . . ,m. We often identify R1×1

with R; C1×1 with C. The following classes of matrices are of interest in this paper: square matrices
(elements in Rn×n or Cn×n), symmetric matrices (such that Ai j =A ji for all i and j), doubly stochastic
matrices (Ai j ∈ R, Ai j ≥ 0, ∑

n
j=1 Ai j = 1 and ∑

m
i=1 Ai j = 1 for all i and j), doubly quasi-stochastic

matrices (Ai j ∈ R, ∑
n
j=1 Ai j = 1 and ∑

m
i=1 Ai j = 1 for all i and j), and orthogonal matrices (O∈ Rn×n,

Ot ·O = I = O ·Ot, where Ot denotes the transpose of O obtained by switching rows and columns,
· denotes matrix multiplication, and I is the identity matrix in Rn×n).

We only need a couple of notions of linear algebra; we refer to the textbook by Axler [3] for more
background. An eigenvalue of a matrix A is a scalar λ in C for which there is a non-zero vector v
satisfying A ·v = λv. Such a vector is called an eigenvector of A for eigenvalue λ . The eigenspace
of an eigenvalue is the vector space obtained as the span of a maximal set of linear independent
eigenvectors. Here, the span of a set of vectors just denotes the set of all linear combinations of
vectors in that set. A set of vectors is linear independent if no vector in that set can be written as
a linear combination of other vectors. The dimension of an eigenspace is the minimal number of
eigenvectors that span the eigenspace.

We will only consider undirected graphs without self-loops. Let G = (V,E) be such a graph
with vertices V = {1, . . . ,n} and edges E ⊆V ×V . The order of G is simply the number of vertices.
Then, the adjacency matrix of a graph G of order n, denoted by AG, is an n×n-matrix whose entries
(AG)i j are set to 1 if and only if (i, j) ∈ E; all other entries are set to 0. It is a symmetric real
matrix with zeroes on its diagonal. The spectrum of an undirected graph can be represented as
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conjugate transposition (op(e) = e∗)
e(ν(X)) = A ∈ Cm×n e(ν(X))∗ = A∗ ∈ Cn×m (A∗)i j = A∗ji
one-vector (op(e) = 1(e))
e(ν(X)) = A ∈ Cm×n 1(e(ν(X)) = 1 ∈ Cm×1 1i = 1
diagonalization of a vector (op(e) = diag(e))
e(ν(X)) = A ∈ Cm×1 diag(e(ν(X)) = diag(A) ∈ Cm×m diag(A)ii = Ai,

diag(A)i j = 0, i 6= j
matrix multiplication (op(e1,e2) = e1 ·e2)
e1(ν(X)) = A ∈ Cm×n

e1(ν(X)) ·e2(ν(X)) =C ∈ Cm×o Ci j = ∑
m
k=1 Aik×Bk je2(ν(X)) = B ∈ Cn×o

matrix addition (op(e1,e2) = e1 + e2)
ei(ν(X)) = A(i) ∈ Cm×n e1(ν)(X)+ e2(ν(X)) = B ∈ Cm×n Bi j = A(1)

i j +A(2)
i j

scalar multiplication (op(e) = c× e, c ∈ C)
e(ν(X)) = A ∈ Cm×n c× e(ν(X)) = B ∈ Cm×n Bi j = c×Ai j
trace (op(e) = tr(e))
e(ν(X)) = A ∈ Cm×m tr(e(ν(X)) = c ∈ C c = ∑

m
i=1 Aii

e(ν(X)) = A ∈ Cm×1 tr(e(ν(X)) = c ∈ C c = ∑
m
i=1 Ai

pointwise function application (op(e1, . . . ,ep) = apply[ f ](e1, . . . ,ep)), f : Cp→ C ∈Ω

ei(ν(X)) = A(i) ∈ Cm×n apply[ f ]
(
e1(ν(X)), . . . ,ep(ν(X))

)
= B ∈ Cm×n Bi j = f (A(1)

i j , . . . ,A(p)
i j )

Table 1: Linear algebra operations (supported in MATLANG [8]) and their semantics. In the first
operation, for A ji ∈ C, A∗ji denotes complex conjugation. In the last operation, Ω =

⋃
k>0 Ωk, where

Ωk consists of functions f : Ck→ C.

spec(G) =

(
λ1 λ2 · · · λp
m1 m2 · · · mp

)
, where λ1 < λ2 < · · ·< λp are the distinct real eigenvalues of the

adjacency matrix AG of G, and where m1,m2, . . . ,mp denote the dimensions of the corresponding
eigenspaces. Two graphs are said to be co-spectral if they have the same spectrum. We introduce
other relevant notions throughout the paper.

3 Matrix query languages
As described in Brijder et al. [8], matrix query languages can be formalised as compositions of linear
algebra operations. Intuitively, a linear algebra operation takes a number of matrices as input and
returns another matrix. Examples of operations are matrix multiplication, conjugate transposition,
computing the trace, just to name a few. By closing such operations under composition “matrix
query languages” are formed. More specifically, for linear algebra operations op1, . . . ,opk the corre-
sponding matrix query language is denoted by ML(op1, . . . ,opk) and consists of expressions formed
by the following grammar:

e := X |op1
(
e1, . . . ,ep1

)
| · · · |opk

(
e1, . . . ,epk

)
,

where X denotes a matrix variable which serves to indicate the input to expressions and pi denotes
the number of inputs required by operation opi. We focus on the case when only a single matrix
variable X is present; the treatment of multiple variables is left for future work.

The semantics of an expression e(X) in ML(op1, . . . ,opk) is defined inductively, relative to an
assignment ν of X to a matrix ν(X) ∈ Cm×n, for some dimensions m and n. We denote by e

(
ν(X)

)
the result of evaluating e(X) on ν(X). As expected, we define opi(e1(X), . . . ,epi(X))(ν(X)) :=
opi
(
e1(ν(X)), . . . ,epi(ν(X))

)
for linear algebra operation opi. In Table 1 we list the operations

constituting the matrix query language MATLANG, introduced in Brijder et al. [8]. In the table we
also show their semantics. We note that restrictions on the dimensions are in place to ensure that
operations are well-defined. Using a simple type system one can formalise a notion of well-formed
expressions which guarantees that the semantics of such expressions is well-defined [8]. We only
consider well-formed expressions from here on.

REMARK 3.1. The list of operations in Table 1 differs slightly from the list presented in Brijder et
al. [8]: We explicitly mention scalar multiplication (×) and addition (+), and the trace operation (tr),
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all of which can be expressed in MATLANG. Hence, MATLANG and ML( · ,∗, tr,1,diag,+,×,apply[ f ],
f ∈Ω) are equivalent.

4 Expressive power
As mentioned in the introduction, we are interested in the expressive power of matrix query lan-
guages. In this paper, we consider sentences in these languages. We define an expression e(X)
in ML(op1, . . . ,opk) to be a sentence if e(ν(X)) returns a 1× 1-matrix for any assignment ν of X .
We note that the type system of MATLANG allows to check whether an expression in ML(L ) is a
sentence (see Brijder et al. [8] for more details). Having defined sentences, a notion of equivalence
naturally follows.

DEFINITION 4.1. Two matrices A and B in Cm×n are said to be ML(op1, . . . ,opk)-equivalent, de-
noted by A≡ML(op1,...,opk)

B, if and only if e(A) = e(B) for all sentences e(X) in ML(op1, . . . ,opk).

In other words, equivalent matrices cannot be distinguished by sentences in the matrix query lan-
guage under consideration. We aim to characterise equivalence for various matrix query languages.
We will, however, not treat this problem in full generality and instead, to gain intuition, start by
considering adjacency matrices of undirected graphs.

The corresponding notion of equivalence on graphs is defined, as expected:

DEFINITION 4.2. Two graphs G and H of the same order are said to be ML(op1, . . . ,opk)-equivalent,
denoted by G≡ML(op1,...,opk)

H, if and only if their adjacency matrices are ML(op1, . . . ,opk)-equivalent.

In the following sections we consider graph equivalence for various fragments, starting from simple
fragments only supporting a couple of operations, up to the full MATLANG matrix query language.
Most proofs are deferred to the appendix.

5 Expressive power of the matrix query language ML( · , tr)
We start with the smallest nontrivial fragment (in terms of number of operations) in which sentences
can be expressed: ML( · , tr). An example sentence in this fragment is #cwalkk(X) := tr(Xk), where
Xk stands for the kth power of X , i.e., X multiplied k times with itself. When evaluated on an
adjacency matrix AG, #cwalkk(AG) counts the number of closed walks of length k in G.

Indeed, the entries of the powers Ak
G of adjacency matrix AG are known to correspond to the

number of walks of length k in G. Recall that a walk of length k in a graph G = (V,E) is a sequence
(v0,v1, . . . ,vk) of vertices of G such that consecutive vertices are adjacent in G, i.e., (vi−1,vi) ∈ E
for all i = 1, . . . ,k. Furthermore, a closed walk is a walk that starts in and ends at the same vertex.
Hence, #cwalkk(AG) = ∑i(Ak

G)ii indeed counts closed walks of length k in G.
The following characterisations are known to hold.

PROPOSITION 5.1 ([9, 15]). Let G and H be two graphs of the same order. The following are
equivalent:
• G and H have the same total number of closed walks of length k, for all k ≥ 0;
• tr(Ak

G) = tr(Ak
H) for all k ≥ 0;

• G and H are co-spectral; and
• there exists a real orthogonal matrix O such that AG ·O = O ·AH . 2

EXAMPLE 5.2. The graphs G1 ( ) and H1 ( ) are the smallest pair (in terms of number of ver-
tices) of non-isomorphic co-spectral graphs [12]. 2

A characterisation of ML( · , tr)-equivalence now easily follows:

PROPOSITION 5.3. For two graphs G and H of the same order, G ≡ML( · , tr) H if and only if there
exists a real orthogonal matrix O such that AG ·O = O ·AH if and only if G and H have the same
number of closed walks of any length.
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PROOF. By definition, if G ≡ML( · , tr) H, then e(AG) = e(AH) for any sentence e(X) in ML( · , tr).
This holds in particular for the sentences #cwalkk(X) := tr(Xk) in ML( · , tr), for k ≥ 1. That is,
G≡ML( · , tr) H implies that tr(Ak

G) = tr(Ak
H) for all k ≥ 1. Since G and H are of the same order and

A0
G = A0

H = I (by convention), tr(A0
G) = tr(A0

H) = tr(I) = n. From the previous proposition it then
follows that there exists an orthogonal matrix O such that AG ·O = O ·AH .

For the converse, assume that AG ·O = O ·AH for some orthogonal matrix O. It can be shown
by induction on the structure of expressions in ML( · , tr) that e(AG) = e(AH) for any sentence e(X)
in ML( · , tr). The proof uses that O is an orthogonal matrix and that tr(P ·A ·P−1) = tr(A) for any
matrix A and any invertible matrix P. 2

From an expressiveness point of view, it tells that ML( · , tr)-equivalence of two graphs implies
that their adjacency matrices share the same rank, characteristic polynomial, determinant, eigenval-
ues, and their algebraic multiplicities, geometric multiplicities of eigenvalues, just to name a few.

Given that the trace operation is a linear mapping, i.e., tr(c×A+d×B) = c× tr(A)+d× tr(B)
for matrices A and B and complex numbers c and d, one would expect that matrix addition (+)
and scalar multiplication (×) can be added to ML( · , tr) without an increase in expressiveness. In-
deed, one can rewrite sentences in ML( · , tr,+,×) as a linear combination of sentences in ML( · , tr).
Combined with the linearity of tr( ·), Proposition 5.3 can be extended as follows.

COROLLARY 5.4. For two graphs G and H of the same order, we have that G ≡ML( · , tr) H if and
only if G≡ML( · , tr,+,×) H. 2

We can further strengthen Corollary 5.4 by allowing the application of any function f : Cp →
C in Ω, provided that apply[ f ](e1, . . . ,ep) is only allowed when each ei is a sentence. That is,
we only allow pointwise function applications on scalars. The restriction of such function ap-
plications is denoted by applys[ f ], for f ∈ Ω. Indeed, G ≡ML( · , tr,+,×) H implies that e(AG) =
e(AH) for any sentence e(X) in ML( · , tr,+,×). Clearly, when ei(AG) = ei(AH) for all i = 1, . . . , p,
applys[ f ](e1(AG), . . . ,ep(AG)) = applys[ f ](e1(AH), . . . ,ep(AH)).

COROLLARY 5.5. For two graphs G and H of the same order, we have that G≡ML( · , tr,+,×) H if and
only if G≡ML( · , tr,+,×,applys[ f ], f∈Ω) H. 2

Finally, we can also add conjugate transposition (∗) without increasing the expressive power,
provided that we mildly restrict the class Ω of pointwise functions. More precisely, we assume
that Ω is closed under complex conjugation in the sense that for every f ∈ Ωk also the functions
f̄ : Ck → C : (x1, . . . ,xk) 7→ f (x1, . . . ,xk) and f : Ck → C : (x1, . . . ,xk) 7→ f (x̄1, . . . , x̄k) are in Ωk,
where ¯ denotes complex conjugation in C. This assumption, together with standard properties of
complex conjugation and conjugate transposition (in particular, (A ·B)∗ = B∗ ·A∗, (A∗)∗ = A and
linearity) and using the fact that adjacency matrices of undirected graphs are symmetric, allows to
rewrite expressions in ML( · ,∗, tr,+,×,applys[ f ], f ∈ Ω) such that ∗ is only applied on scalars. As
a consequence, any expression in ML( · ,∗, tr,+,×,applys[ f ], f ∈ Ω) is equivalent to an expression
in ML( · , tr,+,×,applys[ f ], f ∈Ω).

COROLLARY 5.6. Let Ω be a class of pointwise functions that is closed under complex conjuga-
tion. Then, for two graphs G and H of the same order, G ≡ML( · , tr,+,×,applys[ f ], f∈Ω) H if and only if
G≡ML( · ,∗, tr,+,×,applys[ f ], f∈Ω) H. 2

As a consequence, the graphs G1 ( ) and H1 ( ) from Example 5.2 cannot be distinguished by
sentences in ML( · ,∗, tr,+,×,applys[ f ], f ∈Ω).

As we will see later, including any other operation from Table 1, such as 1( ·), diag( ·) or point-
wise function applications on vector or matrices, requires additional constraints on the orthogonal
matrix O linking AG with AH .

6 The impact of the 1( ·) operation
The 1( ·) operation, which returns the all-ones vector 1, allows to extract other information from
graphs than just the number of closed walks. Indeed, consider the sentences

#walkk(X) := (1(X))∗ ·Xk ·1(X) and #walk′k(X) := tr(Xk ·1(X)),
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in ML( · ,∗,1) and ML( · , tr,1), respectively. When applied on adjacency matrix AG of a graph G,
#walkk(AG) (and also #walk′k(AG)) returns the number of (not necessarily closed) walks in G of
length k. In relation to the previous section, co-spectral graphs do not necessarily have the same
number of walks of any length. Similarly, graphs with the same number of walks of any length are
not necessarily co-spectral.

EXAMPLE 6.1. It can be verified that the co-spectral graphs G1 ( ) and H1 ( ) of Example 5.2
have 16 versus 20 walks of length 2, respectively. As a consequence, ML( · ,∗,1) and ML( · , tr,1)
can distinguish G1 from H1 by means of the sentences #walk2(X) and #walk′2(X), respectively. By

contrast, the graphs G2 ( ) and H2 ( ) are not co-spectral, yet have the same number of
walks of any length. It is easy to see that G2 and H2 are not co-spectral (apart from verifying that
their spectra are different): H2 has 12 closed walks of length 3 (because of the triangles), whereas G2
has none. We argue below why they have the same number of walks. As a consequence, ML( · , tr)
(and thus also ML( · , tr,1)) can distinguish G2 and H2. It follows from Proposition 6.6 below that
these graphs cannot be distinguished by ML( · ,∗,1). 2

Graphs sharing the same number of walks of any length have been investigated before in spectral
graph theory [13, 14, 31, 51]. To state a spectral characterisation, the so-called main spectrum of
a graph needs to be considered. The main spectrum of a graph is the set of eigenvalues whose
eigenspace is not orthogonal to the 1 vector. More formally, for an eigenvalue λ and corresponding
eigenspace, represented by a matrix V whose columns are eigenvectors of λ that span the eigenspace,
the main angle βλ of λ ’s eigenspace is 1√

n‖V
t ·1‖2, where ‖·‖2 is the Euclidean norm. Hence, main

eigenvalues are those with a non-zero main angle. Two graphs are said to be co-main if they have
the same set of main eigenvalues and corresponding main angles. Intuitively, the importance of the
orthogonal projection on 1 stems from the observation that #walkk(AG) can be expressed as ∑i λ k

i β 2
λi

where the λi’s are eigenvalues of AG. Clearly, only those eigenvalues λi for which βλi > 0 matter
when computing #walkk(AG). This results in the following characterisation.

PROPOSITION 6.2 (THEOREM 1.3.5 IN CVETKOVIĆ ET AL. [15]). Two graphs G and H of the
same order are co-main if and only if they have the same total number of walks of length k, for
every k ≥ 0. 2

Furthermore, the following proposition follows implicitly from the proof of Theorem 3 in van
Dam et al. [58] (and is also shown in Theorem 1.2 in Dell et al. [20] in the context of distinguishing
graphs by means of homomorphism vectors).

PROPOSITION 6.3. Two graphs G and H of the same order have the same total number of walks
of length k, for every k ≥ 0, if and only if there is a doubly quasi-stochastic matrix Q such that
AG ·Q = Q ·AH , i.e., Q ·1 = 1 and Qt ·1 = 1.

EXAMPLE 6.4 (CONTINUATION OF EXAMPLE 6.1). Consider the subgraph G3 ( ) of G2 and the

subgraph H3 ( ) of H2. We have that

AG3 ·Q =


0 0 1 0 0 1
0 0 0 1 1 0
1 0 0 0 1 0
0 1 0 0 0 1
0 1 1 0 0 0
1 0 0 1 0 0

 ·


0 0 1
2 0 0 1

2
0 0 0 1

2
1
2 0

1
2 0 0 0 1

2 0
0 1

2 0 0 0 1
2

0 1
2

1
2 0 0 0

1
2 0 0 1

2 0 0

=



0 0 1
2 0 0 1

2
0 0 0 1

2
1
2 0

1
2 0 0 0 1

2 0
0 1

2 0 0 0 1
2

0 1
2

1
2 0 0 0

1
2 0 0 1

2 0 0

 ·


0 0 1 0 0 1
0 0 0 1 1 0
1 0 0 0 1 0
0 1 0 0 0 1
0 1 1 0 0 0
1 0 0 1 0 0

= Q ·AH3

and hence by Proposition 6.3, G3 and H3 have the same number of walks on any length. 2

As it turns out, the value of the sentences #walkk(AG) mentioned earlier, that count the number
of walks of length k in G, fully determine the value of any sentence in ML( · ,∗,1).

LEMMA 6.5. Let G and H be two graphs of the same order. Then, G ≡ML( · ,∗,1) H if and only if
#walkk(AG) = #walkk(AH) for all k ≥ 1. 2

The proof involves an analysis of expressions in ML( · ,∗,1). We may thus conclude from Proposi-
tion 6.3 and Lemma 6.5 that:
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PROPOSITION 6.6. For two graphs G and H of the same order, G ≡ML( · ,∗,1) H if and only if there
exists a doubly quasi-stochastic matrix Q such that AG ·Q = Q ·AH if and only if G and H have the
same number of walks of any length. 2

When it comes to ML( · , tr,1), we know from Proposition 5.1 and Theorem 5.3 that G≡ML( · , tr,1)
H implies that G and H are co-spectral. Combined with Proposition 6.2 and the fact that the sentence
#walk′k(X) count the number of walks of length k, we have that G ≡ML( · , tr,1) H implies that G and
H are co-spectral and co-main. The following is known about such graphs.

PROPOSITION 6.7 ([37, 58]). Two co-spectral graphs G and H of the same order are co-main if
and only if there exists an orthogonal matrix O such that AG ·O = O ·AH and O ·1 = 1. 2

In other words, G ≡ML( · , tr,1) H implies the existence of an orthogonal matrix O such that
O ·1 = 1 (i.e., O is also doubly quasi-stochastic) and AG ·O = O ·AH . An analysis of expressions in
ML( · , tr,1) shows that the converse also holds.

PROPOSITION 6.8. For two graphs G and H of the same order, G≡ML( · , tr,1) H if and only if there
exists an orthogonal matrix O such that AG ·O = O ·AH and O ·1 = 1 if and only if G and H have
the same number of closed walks and the same number of walks of any length. 2

An alternative characterisation (also in van Dam et al. [58]) is that G and H are co-spectral and
co-main if and only if both G and H and their complement graphs Ḡ and H̄ are co-spectral. Here,
the complement graph Ḡ of G is the graph with adjacency matrix given by J−AG− I, where J is the
all ones matrix; similarly for H̄.

EXAMPLE 6.9 (CONTINUATION OF EXAMPLE 6.1). Consider the subgraph G4 ( ) of G2 and the

subgraph H4 ( ) of H2. These are known to be the smallest non-isomorphic co-spectral graphs
with co-spectral complements [30]. From Proposition 6.8 it then follows that G4 and H4 have the
same number of walks of any length. Combined with our earlier observation in Example 6.4 that
also G3 and H3 have this property, we may conclude that G2 = G3 ∪G4 ( ) and H2 = H3 ∪H4

( ) have the same number of walks of any length, as anticipated in Example 6.1 2

We remark that as a consequence of Propositions 6.6 and 6.8, G ≡ML( · , tr,1) H implies that

G ≡ML( · ,∗,1) H. We already mentioned in Example 6.1 that the graphs G2 ( ) and H2 ( )
show that the converse does not hold.

As before, we observe that addition, scalar multiplication, conjugate transposition and pointwise
function application on scalars can be included at no increase in expressiveness.

COROLLARY 6.10. Let G and H be two graphs of the same order. Then,

• G≡ML( · ,∗,1,+,×,applys[ f ], f∈Ω) H if and only if G≡ML( · ,∗,1) H; and

• G≡ML( · ,∗, tr,1,+,×,applys[ f ], f∈Ω) H if and only if G≡ML( · , tr,1) H,

where Ω is assumed to be closed under complex conjugation. 2

7 The impact of the diag( ·) operation
We next consider the operation diag( ·) which takes a vector as input and returns a diagonal matrix
with the input vector on its diagonal. The smallest fragments in which vectors (and sentences) can
be defined are ML( · , tr,1) and ML( · ,∗,1). Therefore, in this section we consider equivalence with
regards to ML( · , tr,1,diag) and ML( · ,∗,1,diag).

Using diag( ·) we can again extract new information from graphs.

EXAMPLE 7.1. Consider graphs G4 ( ) and H4 ( ). In G4 we have vertices of degrees 0 and 2,
and in H4 vertices of degrees 1, 2 and 3. We will count the number of vertices of degree 3. To this
aim consider the sentence #3degr(X) given by(

1
6

)
×1(X)∗ ·

(
diag(X ·1(X)) · diag(X ·1(X)−1(X)) · diag(X ·1(X)−2×1(X))

)
·1(X),
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in which we, for convenience, allow addition and scalar multiplications. Each of the subexpressions
diag(X ·1(X)−d×1(X)), for d = 0,1 and 2, sets the diagonal entry corresponding to vertex v to 0
when v has degree d. By taking the product of these diagonal matrices, entries that are set to 0 will
remain zero in the resulting diagonal matrix. This implies that the only non-zero diagonal entries are
those corresponding to vertices of degree different from 0, 1 and 2. In other words, only for vertices
of degree 3 the diagonal entries carry a non-zero value, i.e., value 3(3−1)(3−2). By appropriately
rescaling by the factor 1

6 = 1
3(3−1)(3−2) , the diagonal entries for the degree three vertices are set to

1, and then summed up. Hence, #3degr(X) indeed counts the number vertices of degree three in G4
and H4. Since #3degr(AG4) = [0] 6= [1] = #3degr(AH4) we can distinguish these graphs. 2

The use of the diagonal matrices and their products as in our example sentence #3degr(X) can
be generalised to obtain information about so-called iterated degrees of vertices in graphs, e.g., to
identify and/or count vertices that have a number of neighbours each of which have neighbours
of specific degrees. Such iterated degree information is closely related to equitable partitions of
graphs (see e.g., Scheinerman et al. [52]). We phrase our results in terms of such partitions instead
of iterated degree sequences.

7.1 Equitable partitions
We show that the presence of diag( ·) allows to formulate a number of expressions, denoted by
eqparti(X), for i = 1, . . . , `, that together extract the coarsest equitable partition from a given graph.
Equitable partitions naturally arise as the result of the colour refinement procedure [5, 27, 59], also
known as the 1-dimensional Weisfeiler-Lehman algorithm, used as a subroutine in graph isomor-
phism solvers. Furthermore, there is a close connection to the study of fractional isomorphisms of
graphs [52, 55], already mentioned in the introduction. We recall: two graphs G and H are said
to be fractional isomorphic if there exists a doubly stochastic matrix S such that AG ·S = S ·AH .
Furthermore, a logical characterisation of graphs with a common equitable partition exists.

PROPOSITION 7.2 ([55], [35]). Let G and H be two graphs of the same order. Then, G and H
are fractional isomorphic if and only if G and H have a common equitable partition if and only if
G≡C2 H. 2

EXAMPLE 7.3. The matrix linking the adjacency matrices of G3 ( ) and H3 ( ) in Example 6.4

is in fact a doubly stochastic matrix (all its entries are either 0 or 1
2 ). Hence, G3 and H3 have a

common equitable partition, which in this case consists of a single part consisting of all vertices.
This generally holds for graphs that are k-regular (meaning, each vertex is adjacent to k vertices)
for the same k [50, 52]. By contrast, graphs G2 ( ) and H2 ( ) do not have a common
equitable partition. Indeed, fractional isomorphic graphs must have the same degree sequence [52],
which does not hold for G2 and H2. For the same reason, G1 ( ) and H1 ( ), and G4 ( ) and H4

( ) are not fractional isomorphic. 2

Formally, an equitable partition V = {V1, . . . ,V`} of G is partition of the vertex set of G such
that for all i, j = 1, . . . , ` and v,v′ ∈ Vi, deg(v,Vj) = deg(v′,Vj). Here, deg(v,Vj) is the number of
vertices in Vj that are adjacent to v. In other words, an equitable partition is such that the graph is
regular within each part, and is bi-regular between any two different parts. Two graphs G and H are
said to have a common equitable partition if there exists an equitable partition V = {V1, . . . ,V`} of
G and an equitable partition W = {W1, . . . ,Wm} of H such that (a) ` = m; (b) the sizes of the parts
agree, i.e., |Vi|= |Wi| for each i = 1, . . . , `; and (c) deg(v,Vj) = deg(w,Wj) for any v ∈Vi and w ∈Wi
and any i, j = 1, . . . , `. A graph always has an equitable partition: simply treat each vertex as a part
by its own. Most interesting is the coarsest equitable partition of a graph, i.e., the unique equitable
partition for which any other equitable partition of the graph is a refinement thereof [52].

In the following, L can be either {· , tr,1,diag} or {· ,∗,1,diag}. Furthermore, we denote by
L + the extension of L with linear combinations (i.e., + and ×), pointwise function applications
on scalars (i.e., applys[ f ], f ∈ Ω) and conjugate transposition (∗). The corresponding matrix query
languages are denoted by ML(L ) and ML(L +), respectively.

We start by reducing the problem of ML(L )-equivalence to ML(L +)-equivalence.

8



LEMMA 7.4. Let G and H be two graphs of the same order. Then, G ≡ML(L ) H if and only if
G≡ML(L +) H. 2

This lemma is verified by showing that expressions in ML(L +) can be seen as linear combinations
of expressions in ML(L ), in an analogous way as in the proof of Corollary 6.10. For example, it is
clear that #3degr(X) can be written as such a linear combination.

We next relate G≡ML(L +) H and common equitable partitions of G and H.

PROPOSITION 7.5. Let G and H be two graphs of the same order. Then, G≡ML(L +) H implies that
G and H have a common equitable partition.

PROOF. We show that the algorithm CGCR(AG), described in Kersting et al. [39], which computes
the coarsest equitable partition of a graph can be simulated by expressions in ML(L +). To describe
a partition V = {V1, . . . ,V`} of the vertex set of G we use indicator vectors. More precisely, we
define 1Vi as the n× 1-vector which has a “1” for those entries corresponding to vertices in Vi and
has all its other entries set to “0”. It is clear that we can also recover partitions from indicator
vectors. The simulation of CGCR(AG) results in a number of expressions, denoted by eqparti(X) for
i = 1, . . . , `, in ML(L +) that depend on G and such that the set {eqparti(AG)} consists of indicator
vectors of the coarsest equitable partition of G. Since the algorithm CGCR(AG) is phrased in linear
algebra terms [39], its simulation follows easily. Underlying this simulation is the use of products of
diagonal matrices as a means of taking conjunctions of indicator vectors, similar to the propagation
of zeroes used in #3degr(X). Details can be found in the appendix.

The expressions eqparti(X) are constructed based on G. Next, using our assumption G≡ML(L +)

H, we show that the vectors eqparti(AH), for i = 1, . . . , `, also correspond to the coarsest equitable
partition of H. This is done in a number of steps:

1. We verify that each eqparti(AH) is also an indicator vector containing the same number of 1’s
as eqparti(AG).

2. We verify that any distinct pair of indicator vectors in {eqparti(AH)} have no common entry
holding value “1”; This implies that the set {eqparti(AH)} also represents a partition.

3. Finally, we verify that the set {eqparti(AH)} corresponds to an equitable partition of H which,
together with the partition corresponding to {eqparti(AG)}, witnesses that G and H have a
common equitable partition. Since {eqparti(AG)} is an equitable partition,

diag(eqparti(AG)) ·AG · diag(eqpart j(AG)) = deg(v,Vj)×diag(eqparti(AG)),

for some v ∈ Vi. Here, V = {V1, . . . ,V`} denotes the equitable partition corresponding to
indicator vectors {eqparti(AG)}. Then, G ≡ML(L +) H implies that diag(eqparti(AH)) ·AH ·
diag(eqpart j(AH)) is the diagonal matrix deg(v,Vj)×diag(eqparti(AH)). Hence, deg(w,Wj)=
deg(w′,Wj), for any w,w′ ∈Wi, and furthermore, deg(v,Vj)= deg(w,Wj). Here, W = {W1, . . . ,
W`} denotes the partition corresponding to {eqparti(AH)}.

All combined, we may conclude that G and H have indeed a common equitable partition. 2

7.2 Characterisations
For ML( · ,∗,1,diag,+,×,applys[ f ], f ∈Ω) we also have the converse.

PROPOSITION 7.6. Let G and H be two graphs of the same order. If G and H have a common equi-
table partition, then e(AG)= e(AH) for any sentence e(X) in ML( · ,∗ ,1,diag,+,×,applys[ f ], f ∈Ω).

PROOF. Let V = {V1, . . . ,V`} and W = {W1, . . . ,W`} be the common coarsest equitable partitions
of G and H, respectively. Denote by {1Vi} and {1Wi}, for i = 1, . . . , `, the corresponding indicator
vectors. We know from Proposition 7.2 that there exists a doubly stochastic matrix S such that
AG ·S = S ·AH . In fact, S can be assumed to have a block structure in which the only non-zero
blocks are those relating 1Vi and 1Wi [52]. As a consequence, 1Vi = S ·1Wi and 1t

Vi
·S = 1t

Wi
for

i = 1, . . . , `. The key insight in the proof is that when e(AG) is an n×1-vector, it can be written as a
linear combination of 1Vi ’s, say ∑ai×1Vi . Moreover, also e(AH) = ∑ai×1Wi . As a consequence,
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e(AG) = S ·e(AH) meaning that e(AG) is just a permutation of e(AH). For this to hold, it is essential
that we work with equitable partitions common to G and H. For example, if e(X) := X ·1(X) then

e(AG) = AG ·1 =
`

∑
i=1

AG ·1Vi =
`

∑
i, j=1

deg(vi,Vj)×1Vi =
`

∑
i, j=1

deg(wi,Wj)× (S ·1Wi) = S ·e(AH),

for some vi ∈Vi and wi ∈Wi. The challenging case in the proof is when e(X) := diag(e′(X)). Based
on the decomposition of n×1-vectors and the block structure of S, we have

diag(e′(AG)) ·S =
`

∑
i=1

ai×diag(1Vi) ·S =
`

∑
i=1

ai× (S · diag(1Wi)) = S · diag(e′(AH)),

which allows to prove that AG ·S = S ·AH implies that e(AG) = e(AH) for all sentences in our frag-
ment. 2

All combined, we obtain the following characterisation.

THEOREM 7.7. Let G and H be two graphs of the same order. Then, G ≡ML( · ,∗,1,diag) H if and
only if G≡ML( · ,∗,1,diag,+,×,applys[ f ], f∈Ω) H if and only if there is doubly stochastic matrix S such that
AG ·S = S ·AH if and only if G≡C2 H. 2

As a consequence, following Example 7.3, sentences in ML( · ,∗ ,1,diag) can distinguish G1 ( )

and H1 ( ), G2 ( ) and H2 ( ), G4 ( ) and H4 ( ), but cannot distinguish G3 ( )

and H3 ( ).
We next turn our attention to ML( · , tr,1,diag)- and ML( · ,∗, tr,1,diag,+,×,applys[ f ], f ∈Ω)-

equivalence. Theorem 5.3 implies that G and H are co-spectral and we thus need to combine the
existence of a common equitable partition with the existence of an orthogonal matrix O such that
AG ·O = O ·AH . We remark that we cannot simply require O to be doubly stochastic as this would
imply that O is a permutation matrix 1, which in turn would imply that G and H are isomorphic,
contradicting that our fragments cannot go beyond C3-equivalence, as we see later.

A characterisation is obtained inspired by a characterisation of simultaneous equivalence of the
so-called 1-dimensional Weisfeiler-Lehman closure of adjacency matrices [54]. Let V = {V1, . . . ,V`}
and W = {W1, . . . ,W`} be common equitable partitions of G and H. Following Thüne [54], we say
that an orthogonal matrix O such that AG ·O = O ·AH is compatible with V and W if O can be block
partitioned into ` orthogonal matrices Oi of size |Vi| such that 1Vi = O ·1Wi , for all i = 1, . . . , `. Given
this notion, we have the following characterisation.

THEOREM 7.8. Let G and H be graphs of the same order. Then the following holds: G≡ML( · , tr,1,diag)
H if and only if G ≡ML( · ,∗, tr,1,diag,+,×,applys[ f ], f∈Ω) H if and only if G and H have a common equi-
table partition, say V and W , and furthermore AG ·O = O ·AH for some orthogonal matrix O that is
compatible with V and W .

PROOF. If G ≡ML( · ,∗, tr,1,diag,+,×,applys[ f ], f∈Ω) H, then for any k, tr(e(AG)
k) = tr(e(AH)

k) for any
expression e(X) such that e(AG) (and thus also e(AH)) is an n×n-matrix. As argued in Thüne [54]
this implies the existence of a single orthogonal matrix O such that AG ·O = O ·AH and e(AG) ·O =
O ·e(AH). (The proof relies on Specht’s Theorem which relates the existence of an orthogonal
matrix simultaneously linking sets of matrices to trace equality conditions [36].) In particular,
diag(eqparti(AG)) ·O = O · diag(eqparti(AH)), for i = 1, . . . , `, where eqparti(X) are the expres-
sions computing the equitable partition given in the proof of Proposition 7.5. Lemma 6 in Thüne [54]
shows that O must be compatible with the common equitable partitions represented by eqparti(AG)
and eqparti(AH).

For the converse, we argue as in Proposition 7.6, using orthogonal matrices (which preserve the
trace operation) instead of doubly stochastic matrices. 2

Note that G≡ML( · ,tr,1,diag) H implies G≡ML( · ,∗,1,diag) H. The converse does not hold.

1This is an immediate consequence of the Birkhoff-von Neumann Theorem which states that any doubly stochastic matrix
lies in the convex hull of permutation matrices [45].
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EXAMPLE 7.9. Consider G3 ( ) and H3 ( ). These graphs are fractional isomorphic but are not
co-spectral. Hence, G3 6≡ML( · , tr,1,diag) H3 since ML( · , tr,1,diag)-equivalence implies co-spectrality.

On the other hand, G5 ( ) and H5 ( ) are co-spectral regular graphs [57], with co-spectral
complements, which cannot be distinguished by ML( · , tr,1,diag). 2

A close inspection of the proofs of Proposition 7.6 and Theorem 7.8, shows that G ≡ML(L +) H
implies that for any expression e(X) in ML(L +) such that e(AG) (and thus also e(AH)) is an n×1-
vector, e(AG) is a permutation of e(AH). Indeed, both can be written as linear combinations of
indicator vectors, e(AG) in terms of 1Vi ’s and e(AH) in terms of 1Wi ’s, using the same coefficients.
This implies that we can allow pointwise function applications on vectors and scalars, denoted by
applyv[ f ], f ∈Ω, at no increase in expressiveness.

COROLLARY 7.10. Let G and H be two graphs of the same order. We have that G≡ML(L ) H if and
only if G≡ML(L +∪{applyv[ f ], f∈Ω}) H. 2

REMARK 7.11. An equitable partition can be defined without the diag( ·) operation, provided that
function applications on vectors are allowed. Hence, the same story holds when first adding point-
wise function applications on vectors to ML( · ,∗,1) and ML( · , tr,1), rather than first adding diag( ·)
like we did in this section.

8 The impact of pointwise functions on matrices
We conclude by considering pointwise function applications on matrices, the only operation from
Table 1 that we did not consider yet. As we will see shortly, pointwise multiplication of matrices,
also known as the Schur-Hadamard product, is what results in an increase in expressive power. We
denote the Schur-Hadamard product by the binary operator ◦, i.e., (A◦B)i j = Ai jBi j for matrices A
and B.

EXAMPLE 8.1. We recall that in expression #3degr(X) in Example 7.1, products of diagonal ma-
trices resulted in the ability to zoom in on vertices that carry specific degree information. When
diagonal matrices are concerned, the product of matrices coincides with pointwise multiplication of
the vectors on the diagonals. Allowing pointwise multiplication on matrices has the same effect,
but now on edges in graphs. As an example, suppose that we want to count the number of “triangle
paths” in G, i.e., paths (v0, . . . ,vk) of length k in G such that each edge (vi−1,vi) on the path is part
of a triangle. This can be done by expression

#∆pathsk(X) := 1(X)∗ ·((apply[ f>0](X2 ◦X))k ·1(X),

where f>0(x) = 1 if x 6= 0 and f>0(x) = 0 otherwise 2. Indeed, when evaluated on adjacency matrix
AG, A2

G ◦AG extracts from A2
G only those entries corresponding to paths (u,v,w) of length 2 such that

(u,w) is an edge as well, i.e., it identifies edges involved in triangles. Then, apply[ f>0](A2
G ◦AG)

sets all non-zero entries to 1. By considering the kth power of this matrix and summing up all its
entries, the number of triangle paths is obtained. It can be verified that for graphs G5 ( ) and

H5 ( ), #∆paths2(AG5) = [160] 6= [132] = #∆paths2(AH5) and hence, they can be distinguished
when the Schur-Hadamard product is available. Recall that all previous fragments could not distin-
guish between these two graphs. 2

In fact, in ML( · ,∗, tr,1,diag,+,×,◦) we can compute the coarsest stable edge colouring of a
graph G = (V,E) which arises as the result of applying the edge colouring algorithm by Weisfeiler-
Lehman [5, 10, 47, 59]. Initially, an edge colouring χ0 : V ×V → {0,1,2} is defined such that
χ0(v,v) = 2, χ0(v,w) = 1 if (v,w) ∈ E, and χ0(v,w) = 0 for v 6= w and (v,w) 6∈ E. Such a colouring
naturally induces a partitioning Πχ0 of V ×V . A colouring χ : V ×V →C for some set of colours C
is called stable if and only if for any two pairs (v1,v2) and (v′1,v

′
2) in V ×V ,

χ(v1,v2) = χ(v′1,v
′
2)⇔ L2(v1,v2) = L2(v′1,v

′
2),

2The use of apply[ f>0]( ·) is just for convenience and can be simulated when evaluated on given instances using · , +, ×
and ◦.
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where for a pair (v,v′) ∈V ×V and pairs (c,d) of colours in C,

L2(v,v′) := {(c,d, pc,d
v,v′) | pc,d

v,v′ 6= 0} and pc,d
v,v′ := |{v′′ ∈V | χ(v,v′′) = c,χ(v′′,v′) = d}|.

In other words, L2(v,v′) lists the number of triangles (v,v′,v′′) in which (v,v′′) has colour c and
(v′′,v) has colour d, for each pair of colours. Such a stable edge colouring χ is called coarsest when
the corresponding edge partition Πχ is the coarsest stable edge partition. That is, Πχ refines Πχ0 , χ

is stable and any other colouring satisfying these conditions results in a finer partition than Πχ .
Two graphs G = (V,E) and H = (W,F) are said to be indistinguishable by edge colouring,

denoted by G ≡2WL H, if the following holds. Let ΠχG = {E1, . . . ,E`} and ΠχH = {F1, . . . , F̀ } be
the edge partitions corresponding to stable edge colourings χG and χH of H. Then, G ≡2WL H if
there is a bijection ı : ΠχG → ΠχH such that Ei and Fı(i) have the same colour and the same number
of entries carrying value 1.

In the seminal paper by Cai, Fürer and Immerman [10], the following was shown.

THEOREM 8.2. Let G and H be two graphs of the same order. Then, G ≡2WL H if and only if
G≡C3 H. 2

We have the following characterisation of ML( · ,∗, tr,1,diag,+,×,◦)-equivalence.

THEOREM 8.3. Let G and H be two graphs of the same order, then G ≡ML( · ,∗, tr,1,diag,+,×,◦) H if
and only if G≡C3 H.

PROOF. We only have space here to sketch the proof. The proof is not that different from the
one used in the context of equitable partitions. Let G = (V,E) and H = (W,F) be two graphs.
First, we simulate algorithm 2-STAB(AG) [5], that computes the coarsest stable edge colouring, by
expressions stabcoli(X), for i = 1, . . . , `, in ML( · ,∗, tr,1,diag,+,×,◦). Each stabcoli(AG) is an
indicator matrix representing the part of the partition Π of V ×V corresponding to a specific colour.
Based on well-known properties of these indicator matrices (they form standard basis of the cellular
or coherent algebra associated with G [32]), we show that G ≡ML( · ,∗, tr,1,diag,+,×,◦) H implies that
{stabcoli(AH)} also represent a partition of W ×W corresponding to the coarsest stable colouring
of H. Finally, G and H are shown to be indistinguishable by edge colouring, based on the partitions
{stabcoli(AG)} and {stabcoli(AH)}. Hence, by Theorem 8.2, G ≡ML( · ,∗, tr,1,diag,+,×,◦) H implies
G≡C3 H.

For the converse, we use that G ≡2WL H implies that there exists an orthogonal matrix O such
that AG ·O = O ·AH and furthermore, the mapping Y 7→ O ·Y ·Ot is an isomorphism between the
cellular algebras of G and H. In particular, it commutes with the Schur-Hadamard product [22].
This is crucial to show that e(AG) = e(AH) for all sentences e(X) ∈ ML( · ,∗, tr,1,diag,+,×,◦).
More details can be found in the appendix. 2

REMARK 8.4. We can do some simplification in ML( · ,∗, tr,1,diag,+,×,◦). Indeed, the trace op-
erator can be simulated by tr(e(X)) = 1(X)∗ ·(e(X)◦diag(1(X))) ·1(X) and can hence be omitted.
Moreover, diag( ·) can be replaced by a simpler operator, denoted by Id, which returns the identity
matrix of the same dimensions as the input. Indeed, diag(e(X)) = (e(X) ·1(X)∗) ◦ Id(X). We can
thus work with ML( · ,∗,1, Id,+,×,◦) instead.

REMARK 8.5. Similar to Corollary 7.10, we can allow any pointwise function application on ma-
trices. This follows from the proof of Theorem 8.3 in which it is shown that for expressions ei(X),
for i = 1, . . . , p, such that each ei(AG) (and thus also each ei(AH)) is an n× n-matrix, ei(AG) =

∑a(i)j × stabcol j(AG) and e(AH) = ∑a(i)j × stabcoli(AH), for scalars a(i)j ∈ C. This implies that

apply[ f ]
(
e1(AG), . . . ,ep(AG)

)
= ∑ f (a(1)j , . . . ,a(p)

j )× stabcol j(AG),

and similarly,

apply[ f ]
(
e1(AH), . . . ,ep(AH)

)
= ∑ f (a(1)j , . . . ,a(p)

j )× stabcol j(AH).

As a consequence,

apply[ f ]
(
e1(AG), . . . ,ep(AG)

)
·O = O · apply[ f ]

(
e1(AH), . . . ,ep(AH)

)
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for the orthogonal matrix O in the proof of Theorem 8.3. This suffices to show that e(AG) = e(AH)
for any sentence e(X) in ML( · ,∗, tr,1,diag,+,×,apply[ f ], f ∈ Ω), or in other words, for any sen-
tence in MATLANG.

REMARK 8.6. The orthogonal matrix O in the proof of Theorem 8.3 can be taken to be compatible
with the common equitable partitions of G and H, just as in Theorem 7.8. This follows from the
fact that the diagonal indicator matrices diag(eqparti(AG)) are part of the indicator matrices that
constitute the basis of the cellular algebra of G [5].

9 Concluding Remarks
We have characterised ML(L )-equivalence for undirected graphs and clearly identified what addi-
tional distinguishing power each of the operations has. That natural characterisations can be obtained
once more attests that MATLANG is an adequate matrix language.

We conclude with some avenues for further investigation.
Although some of the results generalise to directed graphs (with asymmetric adjacency matri-

ces), an extension to the case when queries can have multiple inputs seems do-able but challenging.
The generalisation beyond graphs, i.e., for arbitrary matrices, is wide open.

Of interest may also be to connect ML(L )-equivalence to fragments of first-order logic (without
counting). A possible line of attack could be to work over the boolean semiring instead of over the
complex numbers (see Grohe and Otto [28] for a similar approach).

We also note that MATLANG was extended in Brijder et al. [8] with an operator inv that com-
putes the inverse of a matrix, if it exists, and returns the zero matrix otherwise. The extension,
MATLANG+ inv, was shown to be more expressive than MATLANG. For example, connectedness
of graphs can be checked by a single sentence in MATLANG+ inv. Of course, we here consider
equivalence of graphs. Even when considering a “classical” logic like FO3, the three-variable frag-
ment of first-order logic, G ≡FO3 H implies that G is connected if and only if H is connected.
Translated to our setting, for any fragment ML(L ) in which G≡ML(L ) H implies that the Laplacian
diag(AG ·1)−AG of G is co-spectral with the Laplacian of diag(AH ·1)−AH of H, G ≡ML(L ) H
implies that G is connected if and only if H is connected. It even implies that G and H must have the
same number of connected components, as this is determined by the multiplicity of the eigenvalue
0 of the Laplacian [9].

Nevertheless, we can also consider equivalence of graphs relative to MATLANG+ inv. We ob-
serve, however, that the inverse of a matrix can be computed using + and×, by the Cayley-Hamilton
Theorem [3], given the coefficients of the characteristic polynomial of the adjacency matrix. These
coefficients can be computed using +, × and tr. For fragments supporting · , +, × and tr, the op-
erator inv thus does not add distinguishing power. It is unclear what the impact is of inv for smaller
fragments such as ML( · , ,1) and ML( · ,∗,1,diag).

To relate our notion of equivalence more closely to the expressiveness questions studied in Bri-
jder et al. [8], it may be interesting to investigate notions of locality of ML(L ) expressions, as this
underlies the inexpressibility of connectivity of MATLANG [42]. It would be nice if this can be
achieved in purely algebraic terms, without relying on locality notions in logic.

Finally, MATLANG was also extended with an eigen operator which returns a matrix whose
columns consist of eigenvectors spanning the eigenspaces [8]. Since the choice of eigenvectors is
not unique, this results in a non-deterministic semantics. We leave it for future work to study the
equivalence of graphs relative to deterministic fragments supporting the eigen operator, i.e., such
that the result of expressions does not depend on the eigenvectors returned. As a starting point one
could, for example, force determinism by considering a certain answer semantics. That is, if e(X)
is an expression using eigen(X), one can define cert(e(AG)) :=

⋂
V e(AG,V ), where V ranges over

all bases of the eigenspaces. Distinguishability with regards to such a certain answer semantics
demands further investigation.
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Vrgoč. Foundations of modern query languages for graph databases. ACM Comput. Surv.,

13



50(5):68:1–68:40, 2017. http://doi.acm.org/10.1145/3104031.

[2] Albert Atserias and Elitza N. Maneva. Sherali-Adams relaxations and indistinguishability
in counting logics. SIAM J. Comput., 42(1):112–137, 2013. https://doi.org/10.1137/

120867834.

[3] Sheldon Axler. Linear Algebra Done Right. Springer, third edition, 2015. https://doi.

org/10.1007/978-3-319-11080-6.
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cyclopedia of Mathematics and its Applications. Cambridge University Press, 1997. https:

//doi.org/10.1017/CBO9781139086547.
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[23] Martin Fürer. On the power of combinatorial and spectral invariants. Linear Algebra and
its Applications, 432(9):2373–2380, 2010. https://doi.org/10.1016/j.laa.2009.07.

019.
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A Simplifications
We start with some general observations about ML(L )-equivalence. These observations are impor-
tant for many of the proofs of the results presented in the paper.

First, since we work with adjacency matrices that are symmetric (recall, we only consider undi-
rected graphs), we observe that conjugate transposition adds limited expressive power. Indeed, we
can safely replace complex conjugation ( ∗) by transposition ( t). In fact, the only place where trans-
position is needed is to create the transpose of the “all ones” vector 1. For this purpose, we introduce
a new operation, 1t( ·), defined such that it returns the transpose of the operator 1( ·).

We explicitly denote complex conjugation on scalars by the function ¯ : C→ C. We note that
this function can be regarded as conjugate transposition when applied to 1×1-matrices. The set Ω

of pointwise functions is said to be closed under complex conjugation if for any f : Ck → C in Ω,
also the function f̄ : Ck → C, defined as (x1, . . . ,xk) 7→ f (x1, . . . ,xk), is in Ω; Furthermore, also the
function f : Ck→C, defined as (x1, . . . ,xk) 7→ f (x̄1, . . . , x̄k), is in Ω. Finally, we denote by f : Ck→C

the function (x1, . . . ,xk) 7→ f (x̄1, . . . , x̄k). Clearly, when Ω is closed under complex conjugations, f
is in Ω as well.

We say that two expressions e(X) and e′(X) in some matrix query language fragments are equiv-
alent, denoted by e(X)≡ e′(X), if e(A) = e′(A) for all (adjacency) matrices A.

LEMMA A.1. Let Ω be a class of pointwise functions that is closed under complex conjugation.
Then, every expression e(X) in ML( · ,∗, tr,1,diag,+,×,◦,apply[ f ], f ∈ Ω) is equivalent to an ex-
pression e′(X) in ML( · , tr,1,1t,diag,+,×,◦,apply[ f ], f ∈Ω).

PROOF. The proof is by induction on the structure of expressions e(X) in ML( · ,∗, tr,1,diag,+,×,◦,
apply[ f ], f ∈Ω).
• (base case) e(X) := X∗. Clearly, e(X) ≡ e′(X) for e′(X) := X . Indeed, for any adjacency

matrix A, e(A)∗ = A∗ = A = e′(A), due to A being symmetric and real.
• (complex conjugate) e(X) := (e1(X)∗)∗. Then, e(X)≡ e′(X) for e′(X) := e1(X). Indeed, we

recall that conjugate transposition is an involution, i.e., (A∗)∗ for any matrix A.
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• (multiplication) e(X) := (e1(X) ·e2(X))∗. Then e(X) ≡ e′(X) for e′(X) := e2(X)∗ ·e1(X)∗.
Indeed, for any two matrices A and B, (A ·B)∗ = B∗ ·A∗.

• (ones vector) e(X) := 1(e1(X))∗. Then, e(X)≡ e′(X) for e′(X) := (1(e1(X))t.
• (addition) e(X) := (e1(X) + e2(X))∗. Then, e(X) ≡ e′(X) for e′(X) := e1(X)∗ + e2(X)∗.

Indeed, for any two matrices A and B, (A+B)∗ = A∗+B∗.
• (scalar multiplication) e(X) := (c× e1(X))∗. Then e(X) ≡ e′(X) for e′(X) := c× e1(X)∗.

Indeed, for scalar c and matrix A, (c×A)∗ = c×A∗.
• (Schur-Hadamard) e(X) := (e1(X)◦ e2(X))∗. Then, e(X) ≡ e′(X) where e′(X) := e1(X)∗ ◦

e2(X)∗. Indeed, for any two matrices A and B, ((A◦B)∗)i j = (A jiB ji)
∗ = A∗jiB

∗
ji = (A∗ ◦B∗)i j.

• (diagonalisation) e(X) := (diag(e1(X))∗. Then e(X)≡ e′(X) for e′(X) := diag((e1(X)∗)t).
• (pointwise functions) e(X) :=

(
apply[ f ](e1(X), . . . ,ek(X))

)∗. Then, e(X) ≡ e′(X) for ex-
pression e′(X) := apply[ f ](e1(X)∗, . . . ,ek(X)∗).

• (trace) e(X) := (tr(e1(X)))∗. Clearly, e(X)≡ e′(X) for e′(X) := tr(e1(X)∗).

All combined, this implies that we can push conjugate transpositions in e(X) is equivalent to
an expression e′(X) that does not contain conjugate transposition, at the cost of introducting the
transpose operation ( t). Furthermore, we can assume that transposition only occurs on top of ex-
pressions of the form 1(X). Indeed, we can use the same case analysis as above, this time applied
on e′(X) and by eliminating transposition rather than conjugate transposition. Complex conjugation
and transposition indeed satisfy the same properties as used above (i.e., (At)t = A, (A ·B)t = Bt ·At,
and so on). The only case where transposition cannot be eliminated is when it occurs in the form
(1(X))t, for which we introduced the operation 1t(X). As a consequence, e′(X) may be assumed to
be an expression in ML( · , tr,1,1t,diag,+,×,◦,apply[ f ], f ∈Ω). 2

A second observation is that addition and scalar multiplication do not add expressive power. We
leave out function applications for the moment; these will be discussed later on.

LEMMA A.2. Every expression e(X) in ML( · , tr,1,1t,diag,+,×,◦) is equivalent to a linear combi-
nation of expressions in ML( · , tr,1,1t,diag,◦). Furthermore, when e(X) ∈ML(L ,+,×) for some
L ⊆ {· , tr,1,1t,diag,◦} then e(X) is equivalent to a linear combination of expressions in ML(L )

PROOF. The lemma is shown by induction on the structure of expressions e(X) in ML( · , tr,1,1t,
diag,+,×,◦).
• (base case) e(X) := X . Clearly, e(X) is already in the desired form.
• (multiplication) e(X) := e1(X) ·e2(X). By induction, e1(X) ≡ ∑i ai× e(i)1 (X) and e2(X) ≡

∑ j b j× e( j)
2 (X). Hence, e(X)≡ ∑i, j(aib j)× (e(i)1 (X) ·e( j)

2 (X)).

• (ones vector) e(X) := 1(e1(X)). By induction, e1(X) ≡ ∑i ai× e(i)1 (X) and hence, e(X) ≡
1(e(1)1 (X)).
• (transposed ones vector) e(X) := 1t(e1(X)). By induction, e1(X) ≡ ∑i ai × e(i)1 (X) and

hence, e(X)≡ 1t(e(1)1 (X)).
• (addition) e(X) := e1(X)+e2(X). By induction, e1(X)≡∑i ai×e(i)1 (X) and e2(X)≡∑ j b j×

e( j)
2 (X). Hence, e(X)≡ ∑i ai× e(i)1 (X)+∑ j b j× e( j)

2 (X).

• (scalar multiplication) e(X) := c× e1(X). By induction, e1(X)≡ ∑i ai× e(i)1 (X) and hence,
e(X)≡ ∑i(cai)× e(i)1 (X).
• (Schur-Hadamard) e(X) := e1(X)◦e2(X). By induction, e1(X)≡∑i ai×e(i)1 (X) and e2(X)≡

∑ j b j× e( j)
2 (X). Hence, e(X)≡ ∑i, j(aib j)× (e(i)1 (X)◦ e( j)

2 (X)).

• (diagonalisation) e(X) := diag(e1(X)). By induction, e1(X) ≡ ∑i ai × e(i)1 (X) and hence
e(X)≡ ∑i ai×diag(e(i)1 (X)).
• (trace) e(X) := tr(e1(X)). By induction, e1(X) ≡ ∑i ai × e(i)1 (X) and hence we have that

e(X)≡ ∑i ai× tr(e(i)1 (X)).
This concludes the proof. 2

As an immediate consequence we have the following equivalence.

COROLLARY A.3. Let L ⊆ {· , tr,1,1t,diag,◦}. Then, G≡ML(L ,+,×) H if and only if G≡ML(L )

H.
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PROOF. Clearly, G ≡ML(L ,+,×) H implies G ≡ML(L ) H. For the converse, let e(X) be a sentence
in ML(L ,+,×). We know from the previous lemma that e(X) ≡ ∑i ai× ei(X) for sentences ei(X)
in ML(L ). Since G ≡ML(L ) H, we have ei(AG) = ei(AH). Hence, also e(AG) = ∑i ai× ei(AG) =

∑i ai× ei(AH) = e(AH). 2

When pointwise function applications are concerned, these do not add distinguishing power
when only applied on sentences. Let f : Ck→C be any function in Ω. We denote by applys[ f ](e1, . . . ,
ek) the application of f on e1(X), . . . ,ek(X) when each ei(X) is a sentence. That is, we only allow
pointwise function applications on scalars.

LEMMA A.4. For any two graphs G and H of the same order, we have that G≡ML(L ) H if and only
if G≡ML(L∪{applys[ f ], f∈Ω}) H.

PROOF. Clearly, G≡ML(L∪{applys[ f ], f∈Ω}) H implies G≡ML(L ) H. For the other direction, let e(X)
be a sentence in ML(L ,applys[ f ], f ∈ Ω). We show that G ≡ML(L ) H implies e(AG) = e(AH)
by induction on the nesting depth of occurrences of applys[ f ] in e(X) (we do not formalise the
notion of nesting depth; this is defined as one would expect). Clearly, if the nesting depth is zero,
e(X) ∈ ML(L ) and we are done. Otherwise, suppose that e(X) := applys[ f ](e1(X), . . . ,ek(X)),
where ei(X) are sentences in ML(L ,applys[ f ], f ∈Ω) in which applys[ f ] occurs at nesting depth at
most `. By induction, G≡ML(L ) H implies that ei(AG) = ei(AH) for all i = 1, . . . ,k. Hence,

e(AG) = f (e1(AG), . . . ,ek(AG)) = f (e1(AH), . . . ,ek(AH)) = e(AH).

So, the induction hypothesis also holds for sentences of nesting depth `+1. 2

In some cases, 1t( ·) can be completely eliminated. An obvious case is when we consider frag-
ments that do not contain 1( ·) (see the proof of Lemma A.1). We also identify the following case.

LEMMA A.5. We have that G≡ML( · ,tr,1,1t,diag) H if and only G≡ML( · ,tr,1,,diag) H.

PROOF. Clearly, G ≡ML( · ,tr,1,1t,diag) H implies G ≡ML( · ,tr,1,diag) H. For the converse, it is easily
verified by induction on expressions e(X) in ML( · , tr,1,1t,diag) that
• If e(AG) is an n×n-matrix, then e(X)≡ c× f (X) ·1(X) ·etr(X ,1) ·1t(X) ·g(X);
• If e(AG) is an n×1-matrix, then e(X)≡ c× f (X) ·1(X) ·etr(X);
• If e(AG) is a 1×n-matrix, then e(X)≡ c× etr(X) ·1t(X) ·g(X);
• If e(AG) is a 1×1-matrix, then e(X)≡ c× etr(X),

where c ∈ C, f (X) and g(X) are expressions in ML( · , tr,1,diag) and etr(X) is an expression of the
form

∏
i∈K

tr(hi(X)),

with hi(X) expressions in ML( · , tr,1,diag), for each i ∈ K. In all cases, f (X), g(X) are optional.
Also, in the first case 1(X) ·etr(X) ·1t(X) is optional and so are the expressions etr(X) in the other
cases. In the case analyses below, we only detail cases in which all these optional parts are included.
(base case) e := X . We have that e(X) = X , which is clearly of the desired form.
(multiplication) e(X) := e1(X) ·e2(X). We distinguish between the following cases, depending on
the dimensions of e1(AG) and e2(AG).
• (n×n,n×n): e1(AG) and e2(AG) are of dimension n× n. By induction, e1(X) ≡ c1 ×

f1(X) ·1(X) ·e(1)tr (X) ·1t(X) ·g1(X) and e2(X)≡ c2× f2(X) ·1(X) ·e(2)tr (X) ·1t(X) ·g2(X). This
implies that

e(X)≡ (c1c2)× f1(X) ·1(X) ·e(1)tr (X) ·1t(X) ·g1(X) · f2(X) ·1(X) ·e(2)tr (X ,1) ·1t(X) ·g2(X),

which is, because 1t(X) ·g1(X) · f2(X) ·1(X) is equivalent to etr(X) := tr(g1(X) · f2(X) ·1(X)),
equivalent to

(c1c2)× f1(X) ·1(X) ·e(1)tr (X) ·etr(X) ·e(2)tr (X) ·1t(X) ·g2(X),

which is in the desired form.
• (n×n,n×1): e1(AG) is of dimension n× n and e2(AG) is of dimension n× 1. By induc-

tion, e1(X)≡ c1× f1(X) ·1(X) ·e(1)tr (X) ·1t(X) ·g1(X) and e2(X)≡ c2× f2(X) ·1(X) ·e(2)tr (X).
Hence,

e(X)≡ (c1c2)× f1(X) ·1(X) ·e(1)tr (X) ·1t(X) ·g1(X) · f2(X) ·1(X) ·e(2)tr (X)

≡ (c1c2)× f1(X) ·1(X) ·e(1)tr (X) ·etr(X) ·e(2)tr (X),
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where etr(X) := tr(g1(X) · f2(X) ·1(X)).
• (n×1,1×n): e1(AG) is of dimension n×1 and e2(AG) is of dimension 1×n. By induction,

e1(X)≡ c1× f1(X) ·1(X) ·e(1)tr (X) and e2(X)≡ c2× e(2)tr (X) ·1t(X) ·g2(X). Hence,

e(X)≡ (c1c2)× f1(X) ·1(X) ·e(1)tr (X) ·e(2)tr (X) ·1t(X) ·g2(X),

which is in the desired form.
• (n×1,1×1): e1(AG) is of dimension n×1 and e2(AG) is of dimension 1×1. By induction,

e1(X)≡ c1× f1(X) ·1 ·e(1)tr (X) and e2(X)≡ c2× e(2)tr (X). Hence,

e(X)≡ (c1c2)× f1(X) ·1(X) ·e(1)tr (X) ·e(2)tr (X),

which is already in the desired form.
• (1×n,n×n): e1(AG) is of dimension 1×n and e2(AG) is of dimension n×n. By induction,

e1(X)≡ c1×e(1)tr (X) ·1t(X) ·g1(X) and e2(X)≡ c2× f2(X) ·1(X) ·e(2)tr (X) ·1t(X) ·g2(X). As
before, this implies that

e(X)≡ (c1c2)× e(1)tr (X) ·1t(X) ·g1(X) · f2(X) ·1(X) ·e(2)tr (X) ·1t(X) ·g2(X)

which is equivalent to

e(X)≡ (c1c2)× e(1)tr (X) ·etr(X) ·e(2)tr (X) ·1t(X) ·g2(X),

where etr(X) := tr(g1(X) · f2(X) ·1(X)).
• (1×n,n×1): e1(AG) is of dimension 1×n and e2(AG) is of dimension n×1. By induction,

e1(X)≡ c1× e(1)tr (X) ·1t(X) ·g1(X) and e2(X)≡ c2× f2(X) ·1(X) ·e(2)tr (X). Hence,

e(X)≡ (c1c2)× e(1)tr (X) ·1t(X) ·g1(X) · f2(X) ·1(X) ·e(2)tr (X).

As before, let etr(X) := tr(g1(X) · f2(X) ·1(X)). Then, e(X) is equivalent to

(c1c2)× e(1)tr (X) ·etr(X) ·e(2)tr (X),

as desired.
• (1×1,1×n): e1(AG) is of dimension 1×1 and e2(AG) is of dimension 1×n. By induction,

e1(X)≡ c1× e(1)tr (X) and e2(X)≡ c2× e(2)tr (X) ·1t(X) ·g2(X). Hence,

e(X)≡ (c1c2)× e(1)tr (X) ·e(2)tr (X) ·1t(X) ·g2(X),

which is in the desired form.
• (1×1,1×1): e1(A) and e2(A) are of dimension 1× 1. By induction, e1(X) ≡ c1× e(1)tr (X)

and e2(X)≡ c2×e(2)tr (X). Clearly, this implies that e(X)≡ (c1c2)×e(1)tr (X) ·e(2)tr (X) which is
in the desired form.

(ones vector) e(X) := 1(e1(X)). If e1(AG) returns an n× n-matrix or n× 1-vector, then e(X) is
equivalent to 1(X); if e1(AG) returns a 1× n-vector or 1× 1-matrix, then e(X) is equivalent to
tr(1(e1(X))).
(transposed ones vector) e(X) := 1t(e1(X)). This is completely analogous to the previous case.
(trace) e(X) := tr(e1(X)). If e1(AG) is a sentence, then e(X) ≡ e1(X). If e1(AG) is an n×
1-vector, by induction e1(X) ≡ c× f1(X) ·1(X) ·etr(X). Hence, e(X) ≡ c× tr( f1(X) ·1) ·etr(X),
which is the desired form. Finally, when e1(AG) is an n× n-matrix, by induction, e1(X) ≡ c×
f1(X) ·1(X) ·etr(X) ·1t(X) ·g1(X). We observe that

tr( f1(X) ·1(X) ·1t(X) ·g1(X))≡ 1t(X) ·g1(X) · f1(X) ·1(X)

≡ tr(g1(X) · f1(X) ·1(X)).

Hence,
e(X)≡ c× tr(g1(X) · f1(X) ·1(X)) ·etr(X).

(diagonalisation) e(X) := diag(e1(X)). Here, e1(X) can only be a 1×1-matrix or an n×1-vector.
In both cases, e1(X) is an expression in ML( · , tr,1,diag). Hence, also e(X) is an expression in this
fragment. 2

We note that we left out the operators Schur-Hadamard product in the previous Lemma. We
reconsider the impact of 1t( ·) for fragments containing this operators later.

We also note that when the Schur-Hadamard and 1t( ·) operators are present, we can replace
diag( ·) by a simple operation Id( ·) which returns the identity matrix in Rn×n when given an n×n-
matrix as input. Furthermore, the trace operation can be derived from other operations as well.
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LEMMA A.6. Any expression e(X) ∈ML( · , tr,1,1t,diag,◦) is equivalent to an expression e′(X) ∈
ML( · ,1,1t, Id,◦).

PROOF. Clearly, any sub-expression in e(X) of the form tr(e1(X)) can be replaced by 1t(X) ·(e1(X)◦
Id(X)) when e1(X) returns an n× n-matrix. When e1(X) returns an n× 1-vector, tr(e1(X)) ≡
1t(X) ·e1(X). Furthermore, any sub-expression in e(X) of the form diag(e1(X)) can be replaced
by the expression (e1(X) ·1t(X))◦ Id(X). So, indeed, diag( ·) and tr( ·) are not needed. 2

As a final observation, we note that when considering ML(L )-equivalence, we can arbitrarily
permute rows (and their corresponding columns) of the input matrices. This is a consequence of
the fact that all linear algebra operations considered are invariant under permutations (i.e., if AG is
a permutation of AH , then e(AG) will be a permutation of e(AH)). This property allows to simplify
some of the proofs later.

We recall that a permutation matrix is a 0/1-matrix that has exactly one “1” in each row and
column. Permutation matrices are orthogonal, that is Pt ·P = P ·Pt = I. Furthermore, P ·1 = 1 and
Pt ·1 = 1.

LEMMA A.7. For any sentence e(X) in ML( · , tr,1,1t,diag,◦,apply[ f ], f ∈ Ω) and matrix A, we
have that e(A) = e(P ·A ·Pt) for any permutation matrix P.

PROOF. The proof is an easy exercise, by induction on the structure of expressions. In particular, it
suffices to verify the following induction hypotheses:
• if e(A) returns an n×n-matrix, then e(P ·A ·Pt) = P ·e(A) ·Pt;
• if e(A) returns an n×1-vector, then e(P ·A ·Pt) = P ·e(A);
• if e(A) returns a 1×n-vector, then e(P ·A ·Pt) = e(A) ·Pt;
• if e(A) returns a 1×1-matrix, then e(P ·A ·Pt) = e(A).

for an arbitrary permutation matrix P. 2

The previous lemma implies that when showing G≡ML(L ) H, we can reorder G and H arbitrar-
ily.

COROLLARY A.8. Let P and Q be two permutation matrices. Let e(X) be a sentence in ML(L ).
Then, e(AG) = e(AH) if and only if e(P ·AG ·Pt) = e(Q ·AH ·Qt).

PROOF. Indeed, from the previous lemma we can infer that e(AG) = e(P ·AG ·Pt) and e(AH) =
e(Q ·AH ·Qt). The corollary follows immediately. 2

B Invariance under similarities
We next show that e(AG) = e(AH) for sentences e(X) in ML(L ) when AG ·T = T ·AH for some
matrix T . As we have seen in the main part of the paper, different matrix query language fragments
impose different constraints on the matrix T . We show how these constraints, starting from simple
to more complex constraints, ensure equivalence relative to the language considered.

B.1 All fragments
All matrix query languages considered contain multiplication and can use an input variable X . Ir-
regardless of what type of matrix T is used such that AG ·T = T ·AH holds, one can verify that the
following induction hypotheses hold in the base case (input variable X) and when expressions are
combined using multiplication.

• if e(AG) returns an n×n-matrix, then e(AG) ·T = T ·e(AH);
• if e(AG) returns an n×1-vector, then e(AG) = T ·e(AH);
• if e(AG) returns a 1×n-vector, then e(AG) ·T = e(AH); and finally,
• if e(AG) returns a 1×1-matrix, then e(AG) = e(AH).

(†)

We first verify these hypotheses for the base case.
(base case, (†)) e(X) := X . Clearly, by assumption e(AG) ·T = AG ·T = T ·AH = T ·e(AH).
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We next verify the hypotheses (†) for an expression e(X), assuming that they hold for any sub-
expression of e(X).
(multiplication, (†)) e(X) := e1(X) ·e2(X). We distinguish between the following cases, depending
on the dimensions of e1(AG) and e2(AG).
• (n×n,n×n): e1(AG) and e2(AG) are of dimension n×n. By induction, e1(AG) ·T =T ·e1(AH)

and e2(AG) ·T = T ·e2(AH). Hence,
e(AG) ·T = e1(AG) ·e2(AG) ·T = e1(AG) ·T ·e2(AH) = T ·e1(AH) ·e2(AH) = T ·e(AH).

• (n×n,n×1): e1(AG) is of dimension n×n and e2(AG) is of dimension n×1. By induction,
e1(AG) ·T = T ·e1(AH) and e2(AG) = T ·e2(AH). Hence,

e(AG) = e1(AG) ·e2(AG) = e1(AG) ·T ·e2(AH) = T ·e1(AH) ·e2(AH) = T ·e(AH).

• (n×1,1×n): e1(AG) is of dimension n×1 and e2(AG) is of dimension 1×n. By induction,
e1(AG) = T ·e1(AH) and e2(AG) ·T = e2(AH). Hence,

e(AG) ·T = e1(AG) ·e2(AG) ·T = e1(AG) ·e2(AH) = T ·e1(AH) ·e2(AH) = T ·e(AH).

• (n×1,1×1): e1(AG) is of dimension n×1 and e2(AG) is of dimension 1×1. By induction,
e1(AG) = T ·e1(AH) and e2(AG) = e2(AH). Hence,

e(AG) = e1(AG) ·e2(AG) = e1(AG) ·e2(AH) = T ·e1(AH) ·e2(AH) = T ·e(AH).

• (1×n,n×n): e1(AG) is of dimension 1×n and e2(AG) is of dimension n×n. By induction,
e1(AG) ·T = e1(AH) and e2(AG) ·T = T ·e2(AH). Hence,

e(AG) ·T = e1(AG) ·e2(AG) ·T = e1(AH) ·T ·e2(AH) = e1(AH) ·e2(AH) = e(AH).

• (1×n,n×1): e1(AG) is of dimension 1×n and e2(AG) is of dimension n×1. By induction,
e1(AG) ·T = e1(AH) and e2(AG) = T ·e2(AH). Hence,

e(AG) = e1(AG) ·e2(AG) = e1(AG) ·T ·e2(AH) = e1(AH) ·e2(AH) = e(AH).

• (1×1,1×n): e1(AG) is of dimension 1×1 and e2(AG) is of dimension 1×n. By induction,
e1(AG) = e1(AH) and e2(AG) ·T = e2(AH). Hence,

e(AG) ·T = e1(AG) ·e2(AG) ·T = e1(AG) ·e2(AH) = e1(AG) ·e2(AH) = e(AH).

• (1×1,1×1): e1(A) and e2(A) are of dimension 1× 1. By induction, e1(AG) = e1(AH) and
e2(AG) = e2(AH). Hence,

e(AG) = e1(AG) ·e2(AG) = e1(AH) ·e2(AH) = e(AH).

B.2 Fragments containing tr( ·)
For fragments containing the trace operation, the matrices T are restricted to orthogonal matrices.
We verify that the hypotheses (†) still hold in this case. It suffices to verify the hypotheses for
sentences e(X) := tr(e1(X)).
(trace, (†)) e(X) := tr(e1(X)). By induction, e1(AG) ·T = T ·e1(AH) in case that e1(AG) is an
n×n-matrix, and e1(AG) = e1(AH) in case that e1(AG) is a sentence. In the latter case, clearly also
e(AG) = tr(e1(AG)) = tr(e1(AH)) = e(AH). In the former case, we observe that
e(AG)= tr(e1(AG))= tr(T t ·e1(AG) ·T )= tr(T t ·T ·e1(AH))= tr(I ·e1(AH))= tr(e1(AH))= e(AH).

We here crucially rely on the fact that T is an orthogonal matrix and thus T t ·T = I. In addition,
we use that tr(P ·A ·P−1) = tr(A) for any matrix A and any invertible matrix P. We note that orthog-
onal matrices are invertible. We do not need to consider the case when e1(AG) is an n×1-vector as
this case only occurs when fragments also support 1( ·) or 1t( ·). Indeed, only these operations may
cause the creation of vectors.

B.3 Fragments containing 1( ·) and 1t( ·)
For fragments containing the 1( ·) and 1t( ·), the matrices T are restricted to matrices that satisfy
T ·1 = 1 and T t ·1 = 1. We verify that the hypotheses (†) still hold in this case.
(ones vector, (†)) e(X) := 1(e1(X)). We distinguish between the following cases, depending on the
dimensions of e1(AG).
• If e1(AG) is an n×n-matrix or n×1-vector, then e(AG) = e(AH) = 1∈Rn×1. Clearly, e(AG) =

1 = T ·1 = T ·e(AH).
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• if e1(AG) is an 1×n-vector or sentence, then e(AG) = e(AH) = [1] and thus these agree.
(transposed ones vector, (†)) e(X) := 1t(e1(X)). We distinguish between the following cases,
depending on the dimensions of e1(AG).
• If e1(AG) is an n× n-matrix or n× 1-vector, then e(AG) = e(AH) = 1t ∈ R1×n. Clearly,

e(AG) ·T = 1t ·T = (T t ·1)t = 1t = e(AH).
• if e1(AG) is an 1×n-vector or sentence, then e(AG) = e(AH) = [1] and thus these agree.

(trace operations (on vectors), (†)) e(X) := tr(e1(X)). We consider the case when e1(AG) is an
n× 1-vector (the other cases have been considered before). By induction, e1(AG) = T ·e1(AH).
Hence,

e(AG) = tr(e1(AG)) = 1t ·e1(AG) = 1t ·T ·e1(AH) = 1t ·e1(AH) = tr(e1(AH)) = e(AH).

Again, the requirements T ·1 = 1 and T t ·1 = 1 are crucial here.

B.4 Fragments containing diag( ·)
For fragments containing the diag( ·) operation, the matrices T are restricted to matrices that are
compatible with the common coarsest equitable partitions of G and H. Let V = {V1, . . . ,Vp} and
W = {W1, . . . ,Wp} be two such partitions in G and H, respectively. We represent these partitions
by their corresponding indicator vectors 1Vi and 1Wi , for i = 1, . . . , p. To simplify the proof a bit,
we rely on Lemma A.7 to permute AG and AH such that we can treat the vectors 1Vi and 1Wi , for
i = 1, . . . , p, as the same. We henceforth refer to these indicator vectors by 1i, for i = 1, . . . , `. That
these vectors indicate an equitable partition of G and H translates into

AG ·1i = ∑
j
deg(v j,Vi) ·1i = ∑

j
deg(w j,Wi) ·1i = AH ·1i,

where v j is some vertex in Vj; w j is some vertex in Wj. We let d ji := deg(v j,Vi) = deg(w j,Wi) for
i, j = 1, . . . , p. The compatibility of T with the common coarsest equitable partition means that

1i = T ·1i and 1i = T t ·1i,

for all i = 1, . . . , p. Furthermore, compatibility also requires a diagonal block-structure of T , which
can be expressed as requiring

diag(1i) ·T = T · diag(1i),

for all i = 1, . . . , p. We verify that the hypotheses (†) still hold in this case. To handle, however, the
case e(X) := diag(e1(X)), we need some additional induction hypotheses:

• if e(AG) returns an n×n-matrix, then e(AG) ·1i = ∑ai j×1 j = e(AH) ·1i;
• if e(AG) returns an n×n-matrix, then 1t

i ·e(AG) = ∑ai j×1t
j = 1t

i ·e(AH);
• if e(AG) returns an n×1-vector, then e(AG) = ∑ai×1i = e(AH); and
• if e(AG) returns a 1×n-vector, then e(AG) = ∑ai×1t

i = e(AH).

(‡)

These hypotheses basically state that vectors (resp., transposed vectors) obtained from AG and
AH can be written as the same linear combination of (resp. transposed) indicator vectors. We first
verify the hypotheses (‡) and then show that the hypotheses (†) remain to holds for expressions
containing diag( ·). For the hypotheses (‡) we do not need to consider when e(AG) is a sentence.
(base cases, (‡)) We have three base cases (a) e(X) := X ; (b) e(X) := 1(X); and (c) e(X) := 1t(X).
For case (a), we rely on the fact that 1i, for i = 1, . . . , p denote the common equitable partitions V
of G and W of H. Hence,

e(AG) ·1 j = AG ·1 j =
p

∑
i=1

di j = AH ·1 j = e(AH) ·1 j,

for some vi ∈Vi and wi ∈Wi. Since AG and AH are symmetric,

1t
j ·e(AG) = 1t

j ·AG = (AG ·1 j)
t =

p

∑
i=1

di j×1t
i = (AH ·1 j)

t = 1t
j ·AH = 1t

j ·e(AH).

For cases (b) and (c) we simply need that all 1i together, for i = 1, . . . , p, form a partition, i.e.,
1 = ∑

p
i=1 1i and 1t = ∑

p
i=1 1t

i . Hence, 1(AG) = 1 = ∑
p
i=1 1i = 1 = 1(AH), and similarly for case (c),

but using the transposed indicator vectors instead.
(multiplication, (‡)) e(X) := e1(X) ·e2(X). We distinguish between a number of cases, depending
on the dimensions of e1(AG) and e2(AG).
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• (n×n,n×n): e1(AG) and e2(AG) are of dimension n×n. By induction, e1(AG) ·1i = ∑ai j×
1 j = e1(AH) ·1i and e2(AG) ·1i = ∑bi j×1 j = e2(AH) ·1i. Hence,

e(AG) ·1k = e1(AG) ·e2(AG) ·1k = ∑
j

bk j× (e1(AG) ·1 j) = ∑
i, j

a jibk j×1i

= ∑
j

bk j× (e1(AH) ·1 j) = e1(AH) ·e2(AH) ·1k = e(AH) ·1k.

In an entirely similar way one can verify that 1t
i ·e(AG) = ∑ j ai j×1t

j = 1t
i ·e(AH).

• (n×n,n×1): e1(AG) is of dimension n×n and e2(AG) is of dimension n×1. By induction,
e1(AG) ·1i = ∑ai j×1 j = e1(AH) ·1i and e2(AG) = ∑bi×1i = e2(AH). Hence,

e(AG) = e1(AG) ·e2(AG) = ∑
j

b j(×e1(AG) ·1 j) = ∑
i, j

a jib j×1i

= ∑
j

b j× (e1(AH) ·1 j) = e1(AH) ·e2(AH) = e(AH).

• (n×1,1×n): e1(AG) is of dimension n×1 and e2(AG) is of dimension 1×n. By induction,
e1(AG) = ∑ai×1i = e1(AH) and e2(AG) = ∑bi×1t

i = e2(AH). Hence,
e(AG) ·1k = e1(AG) ·e2(AG) ·1k = ∑

i, j
aib j× (1i ·1t

j ·1k) = e1(AG) ·e2(AG) ·1k = e(AH) ·1k.

We observe that 1i ·1t
j ·1k = δ jk‖1 j‖1×1i, for Kronecker delta δi j and `1-norm ‖x‖1 = ∑ |xi|.

Hence,
e(AG) ·1k = ∑

i, j
aib jδ jk‖1 j‖1×1i = e(AH) ·1k,

showing that e(AG) and e(AH) can be expressed as the same linear combination.
• (n×1,1×1): e1(AG) is of dimension n×1 and e2(AG) is of dimension 1×1. By induction,

e1(AG) = ∑ai×1i = e1(AH) and e2(AG) = e2(AH) = [b] for some b ∈ C. Hence,
e(AG) = e1(AG) ·e2(AG) = ∑

i
ai× (1i ·e2(AG)) = ∑

i
(aib)×1i

= ∑
i

ai× (1i ·e2(AH)) = e1(AH) ·e2(AH) = e(AH).

• (1×n,n×n): e1(AG) is of dimension 1×n and e2(AG) is of dimension n×n. By induction,
e1(AG) = ∑ai×1t

i = e1(AH) and 1t
i ·e2(AG) = ∑ j bi j×1t

j = 1t
i ·e2(AH). Hence,

e(AG) = e1(AG) ·e2(AG) = ∑
i

ai× (1t
i ·e2(AG)) = ∑

i, j
(aibi j)×1t

j

= ∑
i

ai× (1t
i ·e2(AH)) = e1(AH) ·e2(AH) = e(AH).

• (1×1,1×n): e1(AG) is of dimension 1×1 and e2(AG) is of dimension 1×n. By induction,
e1(AG) = e1(AH) = [a] for some a ∈ C and e2(AG) = ∑bi×1t

i = e2(AH). Hence,
e(AG) = e1(AG) ·e2(AG) = ∑

i
bi× (e1(AG) ·1t

i) = ∑
i
(abi)×1t

i

= ∑
i

bi× (e1(AH) ·1t
i) = e1(AH) ·e2(AH) = e(AH).

(ones vector, (‡)) e(X) := 1(e1(X)). We only need to consider the case when e1(AG) is an n× n-
matrix or n×1-vector. In both cases, it suffices to observe that 1 = ∑1i. Indeed,

e(AG) = 1 = ∑1i = 1 = e(AH).

(transposed ones vector, (‡)) e(X) := 1t(e1(X)). This is analogous to the previous case, except
that 1t = ∑1t

i is used instead.
At this point, we have verified the hypotheses (‡) for all cases, except for when e(X) := diag(e1(X)).

We treat this case next.
(diagonalisation, (‡)) e(X) := diag(e1(X)) where e1(AG) is an n×1-vector. By induction, e1(AG)=

∑ai×1i = e1(AH). Hence,
e(AG) ·1 j = ∑

i
ai× (diag(1i) ·1 j) = e(AH) ·1 j,

and furthermore, since ∑i ai× (diag(1i) ·1 j) = a j‖1 j‖1×1 j,
e(AG) ·1 j = a j‖1 j‖1×1 j = e(AH) ·1 j.

24



In a similar way one can verify that
1t

j ·e(AG) = a j‖1 j‖1×1t
j = 1t

j ·e(AH).

So the hypotheses (‡) hold. We recall that the hypotheses (‡) were introduced for showing that
the hypotheses (†) still hold in the presence of diag( ·). We next verify that this is indeed the case.
(diagonalisation, (†)) Let e(X) := diag(e1(X)). We distinguish between two cases, depending on
the dimension of e1(AG). First, if e1(AG) is a sentence then we know by induction that e1(AG) =
e2(AG. Hence,

e(AG) = diag(e1(AG)) = e1(AG) = e1(AH) = diag(e1(AH)) = e(AH).

Next, if e1(AG) is an n× 1-vector we know, by induction using the hypotheses (‡), that e1(AG) =

∑ai×1i = e1(AH). We thus have that
e(AG) = diag(e1(AG)) = ∑

i
ai×diag(1i) = diag(e1(AH)) = e(AH).

Furthermore, since T is compatible with the equitable partition, diag(1i) ·T = T · diag(1i). Hence,
e(AG) ·T = ∑

i
ai× (diag(1i) ·T ) = ∑

i
ai× (T · diag(1i)) = T ·e(AH).

So also the hypotheses (†) remain to hold in the presence of diag( ·).

B.5 Fragments containing the Schur-Hadamard product (◦)
For fragments containing the ◦ operation, the matrices T are restricted to algebraic isomorphisms of
the Weisfeiler-Lehman closures of WL(AG, I,J) and WL(AH , I,J). In particular, if E = {E1, . . . ,Ep}
and F = {F1, . . . ,Fp} be the standard bases of WL(AG, I,J) and WL(AH , I,J), respectively. That is,
both E and F consist of pairwise disjoint 0/1-matrices that satisfy [5].

J =
p

∑
i=1

Ei

I = ∑
i∈K

Ei, for some subset K of {1, . . . , p}

for each i: Ei)
t = E j for some j

for any i, j: Ei ·E j = ∑ pk
i, j×Ek.

The constants pk
i, j are called the structure constants are the same for E and F .

Furthermore, by reordering rows and columns of AG and AH , we may assume that Ei and Fi for
i ∈ K are the diagonal matrices in E and F , respectively, that correspond to the common coarsest
equitable partitions of G and H, respectively. We may assume that Ei = Fi, for i ∈ K, and denote by
1i, for i = 1, . . . ,q, the corresponding indicator vectors. That is, Ei = Fi = diag(1i). We require the
orthogonal matrix T to satisfy

Ei ·T = T ·Fi for i = 1, . . . , p.
We also recall some properties that of the standard bases [32], there exists a function π : {1, . . . ,r}→
{1, . . . , p}×{1, . . . , p} such that

Ei ·1π2(i) = 1π1(i), and Ei ·1 j = 0 for j 6= π2(i).

Similarly, 1t
π1(i)
·Ei = 1t

π2(i)
and 1t

j ·Ei = 0t for j 6= π1(i), where 0 denotes the zero vector in Rn×1.
We have the same properties for the basis elements Fi, using the same function π . That is, Fi ·1π2(i) =
1π1(i) and Fi ·1 j = 0 for j 6= π2(i). Furthermore, 1t

π1(i)
·Fi = 1t

π2(i)
and 1t

j ·Fi = 0 for j 6= π1(i).
Furthermore, also Ei ◦E j = δi j×Ei for Kronecker delta δi j.

Given a matrix T as described above, it can be verified that AG ·T = T ·AH ; as this basically
follows from the fact that AG and AH can be written as the same linear combination of basis elements
(see below); J ·T = T ·J since J is the sum over all basis elements (this implies that T is doubly quas-
stochastic); and since

Ei ·T = T ·Fi for i ∈ K

for the diagonal matrices, after reordering we may assume T to be block-structured according the
equitable partitions induced by these diagonal elements. 1( ·), 1t and diag( ·). For the all ones vector
and its transpose, we observe that T ·1= 1, by the first condition on T . This suffices, combined with
the orthogonality of T , to deal with fragments containing the ones operations. By contrast, for the
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diagonal operation we introduced the hypotheses (‡). We will need to verify these still holds when
e(X) := e1(X)◦e2(X). Similarly, to show that sentences are preserved when AG ·T = T ·AH we also
need to verify hypotheses (†). To show these, we introduce yet another induction hypothesis:

• if e(AG) returns an n×n-matrix, then e(AG) = ∑ai×Ei and e(AH) = ∑ai×Fi. (§)

The key observation is that e(AG) can be represented in terms of the basis elements Ei and e(AH)
in terms of the basis elements Fi, in such a way that the coefficients ai in the linear combinations are
the same. Before showing that hypothesis (§) holds, we verify that this hypothesis indeed suffices to
conclude that also the hypotheses (†) and (‡) hold in the presence of the Schur-Hadamard product.
(Schur-Hadamard, (‡)) e(X) := e1(X)◦e2(X). We distinguish between a couple of cases, depend-
ing on the dimensions of e1(AG) and e2(AG).
• (n×n,n×n): e1(AG) and e2(AG) are of dimension n×n. By induction (using (§), e1(AG) =

∑a j×E j, e1(AH) = ∑a j×Fj, and e2(AG) = ∑b j×E j and e2(AH) = ∑b j×Fj. Hence,
e(AG) ·1k = (e1(AG)◦ e2(AG)) ·1k = (∑aib j× (Ei ◦E j)) ·1k

= ∑aibi× (Ei ·1k) = ∑
i,k=π2(i)

aibi×1k,

and similarly,
e(AH) ·1k = (e1(AH)◦ e2(AH)) ·1k = (∑aib j× (Fi ◦Fj)) ·1k

= ∑aibi× (Fi ·1k) = ∑
i,k=π2(i)

aibi×1k.

We can similarly show that 1t
k ·e(AG) = 1t

k ·e(AH) = ∑ci×1t
i for some coefficients ci ∈C.

• (n×1,n×1): e1(AG) and e2(AG) are of dimension n×1. By induction, e1(AG) = ∑a j×1 j =
e1(AH) and e2(AG) = ∑b j×1 j = e2(AH). Hence,

e(AG) = e1(AG)◦ e2(AG) = ∑aib j× (1i ◦1 j) = ∑aibi×1i

and similarly,
e(AH) = e1(AH)◦ e2(AH) = ∑aib j× (1i ◦1 j) = ∑aibi×1i.

• (1×n,1×n): e1(AG) and e2(AG) are of dimension 1×n. This case is completely analogous
to the previous one.

• (1×1,1×1): e1(AG) and e2(AG) are of dimension 1×n. By induction, e1(AG) = e1(AH) and
e2(AG) = e2(AH). Clearly, e(AG) = e(AH).

We may thus conclude that, assuming the validity of hypothesis (§), the hypotheses (‡) hold in the
presence of the Schur-Hadamard product. We next show the hypotheses (†) also remain to hold. We
only need to verify that the hypotheses hold when e(X) := e1(X)◦ e2(X).
(Schur-Hadamard, (†)). e(X) := e1(X)◦e2(X). We distinguish between a couple of cases, depend-
ing on the dimensions of e1(AG) and e2(AG).
• (n×n,n×n): e1(AG) and e2(AG) are of dimension n×n. By induction (using (§)), e1(AG) =

∑a j×E j, e1(AH) = ∑a j×Fj, and e2(AG) = ∑b j×E j and e2(AH) = ∑b j×Fj. Hence,
e(AG) ·T = (e1(AG)◦ e2(AG)) ·T = (∑aib j× (Ei ◦E j)) ·T

= (∑aibi×Ei) ·T = ∑aibi× (Ei ·T )
= ∑aibi× (T ·Fi) = T ·(∑aib j× (Fi ◦Fj)) = T ·(e1(AH)◦ e2(AH)) = T ·e(AH).

• (n×1,n×1): e1(AG) and e2(AG) are of dimension n×1. We know from our previous analysis
of the Schur-Hadamard product for the hypotheses (‡))

e(AG) = ∑aibi×1i = e(AH).

We recall that T ·1i = 1i. Hence, e(AG) = T ·e(AH).
• (1×n,1×n): e1(AG) and e2(AG) are of dimension 1×n. This case is completely analogous

to the previous case, but using transposed indicator vectors instead.
• (1×1,1×1): e1(AG) and e2(AG) are of dimension 1×1. By induction, e1(AG) = e1(AH) and

e2(AG) = e2(AH). Clearly, this implies that e(AG) = e(AH).
So, under the assumption that hypothesis (§) holds, we have shown that hypotheses (†) and (‡)

still hold. We now finally verify hypothesis (§).
We start by considering the base case.
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(base case, (§)) e(X) := X . We know that AG = ∑ai×Ei and AH = ∑bi×Fi. Moreover, by assump-
tion, we have

AG ·T = ∑ai× (Ei ·T ) = ∑ai× (T ·Fi) = T ·(∑ai×Fi) = T ·AH .

This implies that T ·(∑ai×Fi) = T ·(∑bi×Fi) and by orthogonality of T , ∑ai×Fi = ∑bi×Fi.
Next, we verify hypothesis (§) for expression e(X), assuming that the hypothesis holds for any

sub-expression of e(X). We note that it suffices to consider cases that return a n×n-matrix.
(multiplication, (§)) e(X) := e1(X) ·e2(X). We distinguish between a number of cases, depending
on the dimensions of e1(AG) and e2(AG). We only need cases that generate an n×n-matrix.
• (n×n,n×n): e1(AG) and e2(AG) are of dimension n× n. By induction, e1(AG) = ∑ai×Ei

and e1(AH) = ∑ai×Fi, and e2(AG) = ∑bi×Ei and e2(AH) = ∑bi×Fi. Hence,
e(AG) = e1(AG) ·e2(AG) = ∑

i, j
aibi× (Ei ·E j) = ∑

i, j,k
aibi pk

i j×Ek

and
e(AH) = e1(AH) ·e2(AH) = ∑

i, j
aibi× (Fi ·Fj) = ∑

i, j,k
aibi pk

i j×Fk.

• (n×1,1×n): e1(AG) is of dimension n× 1 and e2(AG) is of dimension 1× n. By induction
(using (‡)), e1(AG) = ∑ai×1i = e1(AH) and e2(AG) = ∑bi×1t

i = e2(AH). Hence,
e(AG) = e1(AG) ·e2(AG) = ∑

i, j
aibi× (1i ·1t

j) = ∑
i, j

aib j× (Ei ·1 ·1t ·E j)

= ∑
i, j,k

aib j× (Ei ·Ek ·E j) = ∑
i, j,k,`,m

aib j p`ik pm
` j×Em

and similarly for e(AH). Here we use that J = 1 ·1t = ∑Ei = ∑Fi.
(Identity, (§)) e(X) := Id(X). Clearly,

e(AG) = I = ∑
i

Ei = ∑
i

Fi = I = e(AH).

(Schur-Hadamard, (§)) e(X) := e1(X)◦ e2(X). We only need to consider the case that e1(AG) and
e2(AG) are n×n-matrices. By induction, e1(AG) = ∑ai×Ei and e1(AH) = ∑ai×Fi, and e2(AG) =

∑bi×Ei and e2(AH) = ∑bi×Fi. Hence,
e(AG) = e1(AG)◦ e2(AG) = ∑

i, j
aibi× (Ei ◦E j) = ∑

i
aibiEi

and
e(AH) = e1(AH) ·e2(AH) = ∑

i, j
aibi× (Fi ◦Fj) = ∑

i
aibiFi.

We may thus conclude that hypothesis (§) holds.

C Proofs of Section 5

C.1 Proof of Proposition 5.3
We show that G≡ML( · , tr) H if and only if AG ·O = O ·AH for an orthogonal matrix O.
⇒ By definition, if G ≡ML( · , tr) H, then e(AG) = e(AH) for any sentence e(X) in ML( · , tr).

This holds in particular for the sentences #cwalkk(X) := tr(Xk) in ML( · , tr), for k ≥ 1. That is,
G ≡ML( · , tr) H implies that tr(Ak

G) = tr(Ak
H) for all k ≥ 1. Since G and H are of the same order

and A0
G = A0

H = I (by convention), tr(A0
G) = tr(A0

H) = tr(I) = n. Hence, tr(Ak
G) = tr(Ak

H) for all
k ≥ 0. From Proposition 5.1 it then follows that there exists an orthogonal matrix O such that
AG ·O = O ·AH .
⇐ For the converse, assume that AG ·O=O ·AH for an orthogonal matrix O. We already showed in

Sections B.1 and B.2 that this indeed implies that e(AG) = e(AH) for all sentences e(X) in ML( · , tr).

C.2 Proof of Corollary 5.4
We show that G ≡ML( · , tr) H if and only if G ≡ML( · , tr,+,×) H. This is an immediate consequence
of the more general Corollary A.3 that states that addition and scalar multiplication do not add
distinguishing power.
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C.3 Proof of Corollary 5.5
We show that G ≡ML( · , tr) H if and only if G ≡ML( · , tr,+,×,applys[ f ], f∈Ω) H. This is an immediate
consequence of Corollary 5.4 and the more general Lemma A.4.

C.4 Proof of Corollary 5.6
We show that G≡ML( · , tr,+,×,applys[ f ], f∈Ω) H if and only if G≡ML( · , tr,+,×,applys[ f ], f∈Ω,∗) H. Inspecting
the proof of Lemma A.1 tells us that, in the absence of 1( ·) and diag( ·), conjugate transposition can
be completed eliminated, provided that Ω is closed under complex conjugation. hence, any expres-
sion in ML( · , tr,+,×,applys[ f ], f ∈Ω,∗) is equivalent to an expression in ML( · , tr,+,×,applys[ f ],
f ∈Ω).

D Proofs of Section 6

D.1 Proof of Proposition 6.6
We show that G ≡ML( · ,∗,1) H if and only if AG ·Q = Q ·AH for a doubly quasi-stochastic matrix Q.
The proof presented here is different (it is a more direct proof) than the one sketched in the paper.
⇒ Suppose that G ≡ML( · ,∗,1) H. By definition, this implies that e(AG) = e(AH) for any sentence

e(X) ∈ML( · ,∗,1). In particular, #walkk(AG) = #walkk(AH) for all k. This in turn is equivalent, by
Proposition 6.3, to the existence of doubly quasi-stochastic matrix Q such that AG ·Q = Q ·AH .
⇐ For the converse, assume that AG ·Q = Q ·AH for a doubly quasi-stochastic matrix Q. We

already showed in Sections B.1 and B.3 that this indeed implies that e(AG) = e(AH) for all sentences
e(X) in ML( · ,∗,1).

D.2 Proof of Proposition 6.8
We show that G≡ML( · ,tr,1) H if and only if AG ·O = O ·AH for a doubly quasi-stochastic orthogonal
matrix O.
⇒ Suppose that G≡ML( · , tr,1) H. This implies that #cwalkk(AG) = #cwalkk(AH) and #walk′k(AG) =

#walk′k(AH) for any k. Hence, G and H have the same number of closed walks of any length, and
hence are co-spectral by Proposition 5.1. Moreover, G and H also must have the same number of
walks of any length, and hence are co-main by Proposition 6.2. From Proposition 6.7 it then follows
that there exists an orthogonal matrix O satisfying O ·1 = 1 and such that AG ·O = O ·AH .
⇐ For the converse, assume that AG ·O = O ·AH for a doubly quasi-stochastic orthogonal matrix

O. We already showed in Sections B.1, B.2 and B.3 that this indeed implies that e(AG) = e(AH) for
all sentences e(X) in ML( · , tr,1).

D.3 Proof of Corollary 6.10
We first show that ML( · ,∗,1)-equivalence and ML( · ,∗,1,+,×,applys[ f ], f ∈ Ω)-equivalence co-
incide. Clearly, G ≡ML( · ,∗,1,+,×,applys[ f ], f∈Ω) H implies G ≡ML( · ,∗,1) H. We thus focus on the other
direction.

An immediate consequence of the more general Corollary A.3 is that G≡ML( · ,∗,1) H implies that
G≡ML( · ,∗,1,+,×) H. Furthermore, an immediate consequence of the more general Lemma A.4 is that
G≡ML( · ,∗,1,+,×) H implies G≡ML( · ,∗,1,+,×,applys[ f ], f∈Ω) H. In fact, we even know from Lemma A.1
that every such sentence is equivalent to an expression that only uses 1t(X), provided that Ω is
closed under complex conjugation.

We next show that ML( · , tr,1)-equivalence and ML( · , tr,1,+,×,applys[ f ], f ∈Ω,∗)-equivalence
coincide. Clearly, G ≡ML( · ,tr,1,+,×,applys[ f ], f∈Ω,∗) H implies G ≡ML( · ,tr,1) H. We thus focus on the
other direction.

Lemma A.1 implies that any sentence e(X) ∈ ML( · , tr,1,∗) is equivalent to an expression
e′(X) in ML( · , tr,1,1t). Lemma A.5 further implies that e′(X) can be assumed to an expression
in ML( · , tr,1). Hence, G ≡ML( · ,tr,1) H implies G ≡ML( · ,tr,1,∗) H. An immediate consequence of
the more general Corollary A.3 is that G≡ML( · ,tr,1,∗) H implies G≡ML( · ,tr,1,+,×,∗) H, Furthermore,

28



an immediate consequence of the more general Lemma A.4 is that G ≡ML( · ,tr,1,+,×,∗) H, implies
G≡ML( · , tr,1,+,×,applys[ f ], f∈Ω,∗) H.

D.4 Proof of Lemma 6.5
We show that G ≡ML( · ,∗,1) H if and only if #walkk(AG) = #walkk(AH) for all k ≥ 0. Clearly, if
G ≡ML( · ,∗,1) H holds, then G ≡ML( · ,∗,1) H for all k ≥ 0. After all, the expressions #walkk(X) are
sentences in ML( · ,∗ ,1).

The show the converse, we analyse the structure of expressions e(X) in ML( · ,∗ ,1). In the
following, w(x,y) is a word over variables x and y. We write w(X ,J) when every occurrence of
x in w(x,y) is replaced by matrix variable X , every occurrence y is replaced by J (the all ones
matrix which is a shorthand notation for 1(X) ·1t(X)), and concatenation of variables in w(x,y) is
interpreted as matrix multiplication. By Lemma A.1 we may assume that e(X) is an expression in
ML( · ,1,1t).

The following induction hypotheses underly the proof.
• if e(AG) is an n×n-matrix, then e(X)≡ c×w(X ,J), for a scalar c∈C and some word w(x,y);
• if e(AG) is an 1×n-matrix, then

e(X)≡ c×w(X ,J) ·1(X) ·∏
k∈K

#walkk(X)

for scalar c ∈ C, word w(x,y) and multiset of non-zero natural numbers K;
• similarly, if e(AG) is a 1×n vector, then

e(X)≡ c×∏
k∈K

#walkk(X) ·1t(X) ·w(X ,J),

and finally,
• if e(AG) is a 1×1-matrix, then

e(X)≡ c×1t(X) ·w(X ,J) ·1(X)≡ c′×∏
k∈K

#walkk(X), (1)

for scalars c,c′ ∈ C, word w(x,y) and multiset K of non-zero natural numbers.
It is the last case that is of interest here. Indeed, it states that any sentence e(X) in ML( · ,∗,1) is
equivalent to an expression of the form e′(X) = c′×∏k∈K #walkk(X). Hence, when #walkk(AG) =
#walkk(AH) for any k > 0, we have that e(AG) = e′(AG) = e′(AH) = e(AH), as desired.

We start by showing the second equivalence in equation (1). It suffices to observe that J` = n`−1J.
As a consequence,

e(X)≡ c×1t(X) ·w(X ,J) ·1(X)

= c×1t(X) ·Xk1 ·J`1 ·Xk2 ·J`2 · · ·J`p−1 ·Xkp ·1(X) (assuming w(x,y) = xk1y`1 · · ·y`p−1xkp )

= cn`1+···+`p−1−p×1t(X) ·Xk1 ·J ·Xk2 · · ·J ·Xkp ·1(X)

= cn`1+···+`p−1−p×
(
1t(X) ·Xk1 ·1(X)

)
·
(
1t(X) ·Xk2 ·1(X)

)
· · · · ·

(
1t(X)∗ ·Xkp ·1(X)

)
= c′×#walkk1(X) ·#walkk2(X) · · · · ·#walkkp(X),

for c′ = cn`1+···+`p−1−p.
It remains to verify that hypotheses by induction on the structure of expressions e(X) in ML( · ,∗,1).

(base case) e := X . We have that e(X) = X , which is clearly of the desired form.
(multiplication) e(X) := e1(X) ·e2(X). We distinguish between the following cases, depending on
the dimensions of e1(AG) and e2(AG).
• (n×n,n×n): e1(AG) and e2(AG) are of dimension n×n. By induction e1(X)≡ c1×w1(X ,J)

and e2(X) ≡ c2×w2(X ,J). Hence, e(X) ≡ c1c2×w1(X ,J) ·w2(X ,J) = c×w(X ,J), for c =
c1c2 and w(x,y) the concatenation of w1(x,y) and w2(x,y).

• (n×n,n×1): By induction, we have e1(X)≡ c1×w1(X ,J) and e2(X)≡ c2×w2(X ,J) ·1(X) ·
∏k∈K #walkk(X). Hence,

e(X)≡ c1c2×w1(X ,J) ·w2(X ,J) ·1(X)∏
k∈K

#walkk(X),

which can clearly be written in the form c×w(X ,J) ·1(X) ·∏k∈K #walkk(X), for c = c1c2 and
w(x,y) = w1(x,y)w2(x,y).

• (n×1,1×n): e1(AG) is of dimension n× 1 and e2(AG) is of dimension 1× n. e1(AG) is
of dimension n× n and e2(AG) is of dimension n× 1. By induction we have that e1(X) ≡
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c1×w1(X ,J) ·1(X) ·∏k∈K1
#walkk(X) and e2(X) ≡ c2×∏k∈K2

#walkk(X) ·1t(X) ·w2(X ,J).
Hence,

e(X)≡ c1c2×w1(X ,J) ·1(X) · ∏
k∈K1

#walkk(X) · ∏
k∈K2

#walkk(X) ·1t(X) ·w2(X ,J).

Since each #walkk(X) = 1(X)∗ ·Xk ·1(X), we can rewrite this expression back in the form
c×w(X ,J), as desired.
• (n×1,1×1): e1(AG) is of dimension n× 1 and e2(AG) is of dimension 1× 1. By induction

e1(X)≡ c1×w1(X ,J) ·1(X) ·∏k∈K1
#walkk(X) and e2(X)≡ c2×∏k∈K2

#walkk(X). Hence,

e(X)≡ c1c2w1(X ,J) ·1(X) · ∏
k∈K1

#walkk(X) · ∏
k∈K2

#walkk(X),

which can be rewritten as c×w1(X ,J) ·∏k∈K #walkk(X) for c = c1c2 and K the multiset union
of K1 and K2.
• (1×n,n×n): e1(AG) is of dimension 1×n and e2(AG) is of dimension n×n. By induction,

e1(X)≡ c1×∏k∈K #walkk(X) ·1t(X) ·w1(X ,J) and e2(X)≡ c2×w2(X ,J). Hence,
e(X)≡ c1c2×∏

k∈K
#walkk(X) ·1t(X) ·w1(X ,J) ·w2(X ,J),

which can clearly be written in the form c×∏k∈K #walkk(X) ·1t(X) ·w(X ,J) for c = c1c2 and
w(x,y) = w1(x,y)w2(x,y).
• (1×n,n×1): e1(AG) is of dimension 1× n and e2(AG) is of dimension n× 1. By in-

duction, e1(X) ≡ c1×∏k∈K1
#walkk(X) ·1t(X) ·w1(X ,J) and e2(X) ≡ c2×w2(X ,J) ·1(X) ·

∏k∈K2
#walkk(X). Hence,

e(X)≡ c1c2× ∏
k∈K1

#walkk(X) ·1(X)∗ ·w1(X ,J) ·w2(X ,J) ·1(X) · ∏
k∈K2

#walkk(X)

≡ c1c2× ∏
k∈K1

#walkk(X) ·1(X)∗ ·w(X ,J) ·1(X) · ∏
k∈K2

#walkk(X)

≡ c1c2c3× ∏
k∈K1

#walkk(X) · ∏
k∈K3

#walkk(X) · ∏
k∈K2

#walkk(X)

≡ c×∏
k∈K

#walkk(X),

for c = c1c2c3 and K the multiset union of K1, K2 and K3. In the second equivalence we use
our earlier observation that 1(X)∗ ·w(X ,J) ·1(X) = c3×∏k∈K3

#walkk(X) for some c3 ∈ C
and multiset K3.

• (1×1,1×n): e1(AG) is of dimension 1×1 and e2(AG) is of dimension 1×n. By induction,
e1(X)≡ c1×∏k∈K1

#walkk(X) and e2(X)≡ c2×∏k∈K2
#walkk(X) ·1t(X) ·w2(X ,J). Hence,

e(X)≡ c1c2× ∏
k∈K1

#walkk(X) · ∏
k∈K2

#walkk(X) ·1t(X) ·w2(X ,J),

which is clearly in the desired form.
• (1×1,1×1): e1(A) and e2(A) are of dimension 1× 1. By induction, we have e1(X) ≡ c1×

∏k∈K1
#walkk(X) and e2(X)≡ c2×∏k∈K2

#walkk(X). Hence,

e(X)≡ c×∏
k∈K

#walkk(X),

for c = c1c2 and K the multiset union of K1 and K2.
(ones vector) e(X) := 1(e1(X)). If e1(AG) returns an n× n-matrix or n× 1-vector, then e(X) is
equivalent to 1(X); if e1(AG) returns a 1× n-vector or 1× 1-matrix, then e(X) is equivalent to
1t(X) ·1(X), which are all expressions of the desired form.
(transposed ones vector) e(X) := 1t(e1(X)). This is completely analogous to the previous case.

E Proofs of Section 7

E.1 Proof of Lemma 7.4
We show that G≡ML(L ) H if and only if G≡ML(L +) H. It suffices to show that G≡ML(L ) H implies
G≡ML(L +) H. This follows from the more general Corollary A.3, Lemma A.4 and Lemma A.5.
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Algorithm 1: Computing coarsest equitable partition.
input : Adjacency matrix A
output: Indicator vectors corresponding to coarsest equitable partition

1 Let B(0) := 1;
2 Let i = 1;
3 while i≤ n do
4 Let M(i) := A ·B(i−1);

5 Let V (i) := {V (i)
1 , . . . ,V (i)

pi } a partition such that k, ` ∈V (i)
j if and only if M(i)

k∗ = M(i)
`∗ ;

6 Let B(i) := [1
V (i)

1
, . . . ,1

V (i)
pi
];

7 Let i = i+1;
8 end
9 Return B(n).

E.2 Proof of Proposition 7.5
We show that ML(L +) has sufficient power to compute the coarsest equitable partition of a given
graph G. To see this, we implement the algorithm GDCR for finding this partition given in [39].
We recall this algorithm (in a slightly different form than presented in Kersting et al. [39]) in Algo-
rithm 1.

In a nutshell, the algorithm starts by creating a partition consisting of a single part containing
all vertices, represented by the indicator vector 1 (line 1). Then, in the ith step, the current partition
is represented by pi−1 indicator vectors 1

V (i−1)
1

, . . . ,1
V (i−1)

pi−1
which constitute the columns of matrix

B(i−1). The refinement of this partition is then computed in two steps. First, the matrix M(i) :=
A ·B(i−1) (line 4) is computed; Second, each 1

V (i−1)
j

is refined by putting vertices k and ` in the

same part if and only if they have the same rows in M(i), i.e., when M(i)
k∗ = M(i)

`∗ holds (line 5). The
corresponding partition V (i) is then represented again by indicator vectors and stored as columns of
B(i) (line 6). This is repeated until no further refinement of the partition is obtained.

We next detail that we can indeed simulate a run of the algorithm using expressions in ML(L +).
We run the algorithm on AG. Initially, on line 1, we simulate B(0) by the expression b(0)(X) :=
1(X). Then, suppose by induction that we have pi−1 expressions b(i−1)

1 (X), . . . ,b(i−1)
pi−1 (X) such

that the indicator vectors in the partition of the vertex set of V , i.e., those in B(i−1), are given by
b(i−1)

1 (AG), . . . ,b
(i−1)
pi−1 (AG). We next show how the ith iteration is simulated. We first compute the

pi−1 vectors stored in the columns of M(i). More precisely, we consider

m(i)
j (X) := X ·b(i−1)

j (X), j = 1, . . . , pi−1.

To compute the refined partition in V (i), we need to inspect all m(i)
j (AG) and partition the vertices

(rows) according to the values in the matrix M(i) = [m(i)
1 (AG), . . . ,m

(i)
pi−1(AG)]. That is, two vertices

belong to the same part when their rows in M(i) are equal, as explained above.
It is in this test that the diag( ·) operation plays a crucial rule. Let D(i)

j be the set of values

occurring in m(i)
j (AG), for j = 1, . . . , pi. We assume for convenience that 0 does not occur in D(i)

j ; if
it does we add 1 by all values and work with those incremented values instead. We can compute an
indicator vector that identifies the rows in m(i)

j (AG) that hold a value c ∈ D(i)
j , as follows:

1(i), j
=c (X) =

1
∏c′ 6=c(c− c′)

× ∏
c′∈D(i)

j ,c′ 6=c

diag(m(i)
j (X)− c′×1(X)

)
Then, when considering

1(i)
=c1,...,cpi−1

(X) = diag(1(i),1
=c1 (X)) · · · · · diag(1(i),pi−1

=cpi−1
(X)) ·1(X)

we obtain an indicator vector identifying all rows in M(i) that hold the value combination (c1, . . . ,cpi−1).
Suppose that are pi distinct combinations that return a non-zero indicator vector. We denote by
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b(i)1 (X), . . . ,b(i)pi (X) the corresponding expressions of the form 1(i)
=c1,...,cpi−1

(X). Clearly, these repre-
sent the refined partition. This process is then repeated until no refinement takes place. At the end
of the algorithm, we let

eqparti(X) := b(n)i (X),

for i = 1, . . . , p.
We remark that these expressions only work for AG, as their definitions rely on the values oc-

curring in the matrices M(i) computed along the way. Indeed, we used these values to extract the
indicator vectors and also to find the number of expression needed.

Recall that we want to show that G and H have a common equitable partition. We use our
assumption that G ≡ML(L +) H holds to show that the vectors eqparti(AH), for i = 1, . . . , p, also
correspond to an equitable partition of H. This is done in a number of steps.

1. For each i = 1, . . . , p, we first check whether eqparti(AH) is also a binary vector containing
the same number of 1’s as eqparti(AG). We note that, by construction, eqparti(AH) is a real
vector. Consider the sentence

binary diag(X) := 1t(X) ·
(
(X ·X−X) ·(X ·X−X)

)
·1(X).

When evaluated on a diagonal real matrix ∆, binary diag(∆) = [0] if and only if ∆ is a binary
diagonal matrix. Indeed, if ∆ is a binary diagonal matrix, then ∆ ·∆ = ∆, ∆ ·∆−∆ = Z, and
hence binary diag(∆) = 1t ·Z ·Z ·1 = [0]. Conversely, suppose that binary diag(∆) = [0]. We
observe that (∆ ·∆−∆) ·(∆ ·∆−∆) is a diagonal matrix with squares on its diagonal. Hence,
binary diag(∆) = [0] implies that every element on the diagonal of ∆ ·∆−∆ must be zero.
Because we work with diagonal real matrices, this implies that ∆ is binary. Indeed, every
element on its diagonal must satisfy the equation x2−x = 0, implying that x = 0 or x = 1. We
also note that binary diag(X) can be expressed without 1t(X) when tr( ·) is present.

Clearly, G≡ML(L +) H implies that
binary diag(diag(eqparti(AG))) = [0] = binary diag(diag(eqparti(AH))),

for all i = 1, . . . , p. Hence, the matrices diag(eqparti(AH)) are indeed binary. In addition, we
must also have that 1t(X) ·eqparti(X) must return the same number when evaluated on AG
and AH . We may thus conclude that eqparti(AH) also has the same number of entries set to 1
as eqparti(AG).

2. We next verify that all eqparti(AH) together form a partition of the vertex set of H. This is
done by observing that for binary diagonal matrices ∆1 and ∆2, ∆1 ·∆2 holds on its diagonal
the conjunction of the binary vectors on the diagonals of ∆1 and ∆2, respectively. If we want
to test that all positions in which ∆1 and ∆2 carry value 1 are different, ∆1 ·∆2 should be the
zero matrix Z. Consider the sentence

zerotest diag(X) := 1t(X) ·X ·X ·1(X).

It is clear that for real diagonal matrices ∆, zerotest diag(∆) = [0] if and only if ∆ = Z. We
have that G≡ML(L +) H implies that for i 6= j,

[0] = zerotest diag(diag(eqparti(AG)) · diag(eqpart j(AG))) =

zerotest diag(diag(eqparti(AH)) · diag(eqpart j(AH))).

Hence, the indicator vectors eqparti(AH), for i = 1, . . . , p, are all pairwise disjoint, and based
on the fact that eqparti(AG) are a partition, and eqparti(AH) and eqparti(AG) contain the same
number of ones, this implies that also eqparti(AH) correspond to a partition of the vertex set
of H.

3. We know that, since the partition V = {V1, . . . ,Vp} corresponding to the indicator vectors
eqparti(AG) is an equitable partition of G, that

diag(eqparti(AG)) ·AG · diag(eqpart j(AG)) ·1 = deg(v,Vj)× eqparti(AG),

where v is any vertex in Vi, the part corresponding to the indicator vector diag(eqparti(AG)).
We can evaluate the expression

diag
(
diag(eqparti(X)) ·X · diag(eqpart j(X)) ·1(X)−deg(v,Vj)× eqparti(X)

)
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on AH , and check again whether the obtained diagonal matrix is the zero matrix, using the
sentence zerotest diag(X). This must be the case when G ≡ML(L +) H holds. As a conse-
quence, eqparti(AH) is also an equitable partition with the same parameters as the equitable
partition of eqparti(AG).

Hence G and H have indeed a common equitable partition.

E.3 Proof of Proposition 7.6
We show that if G and H have a common equitable partition, then e(AG) = e(AH) for all sentences
e(X) in ML( · ,∗,1,diag,+,×,applys[ f ], f ∈ Ω). If G and H have a common equitable partition,
then Proposition 7.2 tells that there exists a doubly stochastic matrix S such that AG ·S = S ·AH .
As observed in [52], after rearranging rows (and corresponding columns) of input matrices AG
and AH , the matrix S may be assumed to be block diagonal. That is, when V = {V1, . . . ,Vp} and
W = {W1, . . . ,Wp} denote the common coarsest equitable partitions of G and H, respectively, after
reordering one can assume that the indicator vectors of these partitions, i.e., 1Vi and 1Wi are the same.
More precisely, S can be taken to be

1
n1

Jn1 0 · · · 0
0 1

n2
Jn2 · · · 0

...
...

. . .
...

0 0 · · · 1
np

Jnp


where Jni is the all-ones matrix of size ni × ni where ni is the size of the part corresponding to
1Vi = 1Wi . Clearly, this implies that S is compatible with the equitable partitions of G and H. We
already showed in Sections B.1, B.3 and B.4 that this indeed implies that e(AG) = e(AH) for all
sentences e(X) in ML( · ,∗,1,diag). In view of Corollary A.3 and Lemma A.4, also e(AG) = e(AH)
holds for sentences in ML( · ,∗,1,diag,+,×,applys[ f ], f ∈Ω).

E.4 Proof of Theorem 7.7
Clearly, when G≡ML( · ,∗,1,diag) H then G≡ML( · ,∗,1,diag,+,×,applys[ f ], f∈Ω) H, as shown in Corollary A.3
and Lemma A.4. Then, proposition 7.5 tells that G and H must have a common equitable partition
and hence, by Proposition 7.2, this implies that there exists a doubly stochastic matrix S such that
AG ·S = S ·AH . Proposition 7.6 implies that G≡ML( · ,∗,1,diag) H. So all three statements in the theo-
rem are equivalent.

E.5 Proof of Theorem 7.8
We show that G ≡ML( · , tr,1,diag) H if and only if there exists an orthogonal doubly quasi-stochastic
matrix O that is compatible with the common coarsest equitable partitions of G and H and such that
AG ·O = O ·AH . Given such a matrix, we have argued in Sections B.1, B.2, B.3 and B.4 that this
indeed implies that e(AG) = e(AH) for all sentences e(X) in ML( · , tr,1,diag). We therefore focus
on the other direction.

The existence of the orthogonal matrix O is shown using Specht’s Theorem (see e.g., [36]),
which we recall next. Let A = {A1, . . . ,Ap} and B = {B1, . . . ,Bp} two sets of complex matrices
that are closed under complex conjugation. These sets are called simultaneously unitary equivalent
if there exists a unitary matrix U such that Ai ·U = U ·Bi, for i = 1, . . . , p. Here, a unitary matrix
U is such that U∗ ·U =U ·U∗ = I; it is the complex analogue of a real orthogonal matrix. Specht’s
Theorem provides a means of checking simultaneous unitary equivalence. Indeed, A and B are
simultaneously unitary equivalent if and only if

tr(w(A1, . . . ,Ap)) = tr(w(B1, . . . ,Bp)),

for all words w(x1, . . . ,xp) over the alphabet {x1, . . . ,xp}. When each xi is instantiated with a matrix
Ai, we interpret concatenation in w as matrix multiplication. As a note aside, only words of length

at most O(pn
√

2(pn)2

4(pn−1) +
1
4 +

pn−4
2 ) are needed [48]. Specht’s Theorem also holds when A and

B are real matrices and similarity is expressed in terms of orthogonal matrices [36]. The required
condition is that A and B are closed under transposition.
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We know that G ≡ML( · , tr,1,diag) H implies that G and H have a common equitable partition,
described in terms of the indicator vectors eqparti(AG), for i = 1, . . . , p, and eqparti(AH), for
i = 1, . . . , p, respectively. Consider the following sets of real symmetric matrices: AG := {AG,J}∪
{diag(eqparti(AG) | i = 1, . . . , p} and AH := {AH ,J}∪ {diag(eqparti(AH) | i = 1, . . . , p}. We ob-
serve that these sets are closed under transposition. By the real counterpart of Specht’s Theorem we
can check whether there exists an orthogonal matrix O such that

AG ·O = O ·AH

J ·O = O ·J
diag(eqparti(AG)) ·O = O · diag(eqparti(AH)),

for i = 1, . . . , p in terms of trace identities. These identities can be expressed by sentences in
ML( · , tr,1,diag). Indeed, we just need to consider sentences

ew(X) := tr(w(X ,1t(X) ·1(X),diag(eqpart1(X)), . . . ,diag(eqpartp(X)))),

where w(x, j,b1, . . . ,bp) is a word over variables x, j,b1, . . . ,bp. As before when x 7→ X , j →
1(X) ·1t(X), and bi 7→ diag(eqparti(X)), for i = 1, . . . , p, and interpreting concatenation as ma-
trix multiplication, ew(X) is a sentence in ML( · , tr,1,1t,diag). Lemma A.5 implies that ew(X) is
equivalent to a sentence in e′w(X) in ML( · , tr,1,diag).

Hence, G≡ML( · , tr,1,diag) H implies

e′w(AG)≡ tr(w(AG,J,diag(eqpart1(AG)), . . . ,diag(eqpartp(AG))))

= e′w(AH)≡ tr(w(AH ,J,diag(eqpart1(AH)), . . . ,diag(eqpartp(AH)))).

Since this equality holds for any such word (and thus any sentence ew(X) or e′w(X)), Specht’s The-
orem guarantees the existence of the orthogonal matrix O. We verify that O can indeed be chosen
to be a doubly quasi-stochastic (orthogonal) matrix that is compatible with the coarsest equitable
partitions of G and H.

Since J ·O = O ·J, we observe that 1 ·(1t ·O ·1) = (O ·1) ·(1t ·1) and also 1 ·(1t ·Ot ·1) =
(Ot ·1) ·(1t ·1). Since 1t ·1 = n, (1t ·Ot ·1) = (1t ·O ·1)t and 1t ·O ·1 is a real number, 1t ·Ot ·1 =
1t ·O ·1. Furthermore,

n = 1t · I ·1 = 1t ·O ·Ot ·1 = n
(1t ·O ·1)2

n2 =
(1t ·O ·1)2

n
,

or 1t ·O ·1 = n. In other words, O ·1 = 1 and Ot ·1 = 1.
The block diagonal structure of O (after possibly reordering rows and columns of AG and AH )

follows from the constraints diag(eqparti(AG)) ·O = O · diag(eqparti(AH)), for i = 1, . . . , p. Indeed,
in view of the common equitable partition, we can indeed reorder rows and columns such that the
indicator vectors of the partitions coincide. That is, we can use 1i = eqparti(AG) = eqparti(AH) for
i = 1, . . . , p to indicate both partitions in G and H, respectively.

It is routine exercise to show that diag(eqparti(AG)) ·O=O · diag(eqparti(AH)), for i= 1, . . . , p,
imply a diagonal block structure (see also Lemma 6 in Thüne [54]). We repeat the argument here,
for completeness. Indeed, define ∆1 = diag(11), ∆2 = I−∆1 and Oi j = ∆i ·O ·∆ j for i, j = 1,2. We
have Ot ·E1 ·O = E1 = O ·E1 ·Ot. This implies that O12 is the zero matrix and (O11)

t ·O11 = I and
also O21 is the zero matrix and (O22)

t ·O22 = I. Repeating the argument on O22 using diag(12), and
so forth results in the block diagonal structure. Combined O ·1 = 1 and Ot ·1 = 1, this implies that
O ·1i = 1i and Ot ·1i = 1i. When no reordering on the input matrices is applied, these conditions
correspond to 1Vi = O ·1Wi and Ot ·1Wi , for i = 1, . . . , p.

E.6 Proof of Corollary 7.10
Inspecting the proofs of Proposition 7.6 and Theorem 7.8, and more specifically by considering the
analysis carried out in Section B.4, we see that the induction hypotheses imply that for expressions
e(X) ∈ML(L +), when e(AG) is an n× 1-vector (or a 1× n-vector), then e(AG) is a permutation
of e(AH). (after reordering they can be assumed to be the same vectors.) This follows from the
observation that any vector is a linear combination of indicator vectors of the common equitable
partition, these indicator vectors are permutations of each other, and the coefficients in the linear
combination can be take the same for e(AG) and e(AH).

If we allow function application on vectors, consider f ∈ Ω and e(X) := applyv[ f ](e1(X), . . . ,
ep(X)), where either all ei(AG)’s are 1× 1-matrices, or all are n× 1, or 1× n-vectors. Clearly,
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Algorithm 2: Computing stable edge colouring.
input : Adjacency matrix A, initial colouring χ : V ×V →{0,1,2}
output: Coarsest stable edge colouring χ .

1 Let χ := χ0;
2 Let C := {0,1,2};
3 repeat
4 for (v,v′) ∈V ×V do
5 Compute L2(v,v′) relative to χ;
6 end
7 Replace C by a minimal set of new colours C′ and define χ ′ : V ×V →C′ such that
8 for pairs (v1,v2), (v′1,v

′
2) in V ×V do

9 χ ′(v1,v2) = χ ′(v′1,v
′
2)⇔ L2(v1,v2) = L2(v′1,v

′
2)

10 end
11 Let C :=C′;
12 Let χ := χ ′;
13 until |C| does not change;

G≡ML(L +) H implies that ei(AG) = ei(AH) for sentences, and we just observed that in case of vec-
tors, the ei(AG)’s are related by the same permutation to the ei(AH)’s. As a consequence, also e(AH)
is related as such. It now suffices to recall Corollary A.8 which states that we can allow arbitrary
permutations when showing equivalence. We may thus assume that e(AG) = e(AH). By further
induction, this implies that pointwise function application on vectors does not add distinguishing
power.

F Proofs of Section 8

F.1 Proof of Theorem 8.3
We show that ML( · ,∗, tr,1,diag,+,×,◦) has sufficient power to compute the coarsest stable edge
colouring of a given graph G. To see this, we implement the algorithm 2-STAB [5], that computes
the coarsest stable edge colouring, by expressions stabcoli(X), for i = 1, . . . , `, in ML( · ,∗, tr,1,
diag,+,×,◦). Each stabcoli(AG) is an indicator matrix representing the part of the partition Π of
V ×V induced by the stable edge colouring. In other words, these indicator matrices carry a 1 in
entries corresponding pairs (v,v′) ∈V ×V in the same part in the partition and carry 0’s everywhere
else. We recall the algorithm 2-STAB in Algorithm 2.

Initially, the algorithm starts with the initial colouring χ0 : V ×V → {0,1,2} (line 1) defined
such that χ0(v,v) = 2, χ0(v,w) = 1 if (v,w) ∈ E, and χ0(v,w) = 0 for v 6= w and (v,w) 6∈ E. We
simulate this colouring by considering expressions colpart(0)2 (X) := diag(1(X)); colpart(0)1 (X) :=X ;
and colpart

(0)
0 (X) := 1(X) ·1t(X)− X − diag(1(X). Clearly, colpart(0)0 (AG), colpart

(0)
1 (AG), and

colpart
(0)
2 (AG) represent the initial partition Πχ0 corresponding to χ0. The initial set of colours C is

equal to {0,1,2} (line 2).
In consequent steps, the algorithm refines the current colouring χ : V×V →C, based on L2(v,v′).

We recall that for a pair (v,v′) ∈V ×V and pairs (c,d) of colours in C,

L2(v,v′) := {(c,d, pc,d
v,v′) | pc,d

v,v′ 6= 0}, where pc,d
v,v′ := |{v′′ ∈V | χ(v,v′′) = c,χ(v′′,v′) = d}|.

These are computed on line 5 for any pair of vertices (v,v′)∈V ×V . The refinement χ ′ : V ×V →C′

uses an updated set of colours C and the corresponding partition Πχ ′ is a refinement of the partition
Πχ .

Suppose, by induction that, after iteration i, the current set of colours C consists of `i colours and
the colouring is χ : V×V →C. Assume that we have `i expressions colpart(i)c (X), one for each c∈C,
such that colpart(i)c (AG) are indicator matrices representing the edge partition Πχ corresponding to
χ . Given these, we construct expressions for the refined partition computed in the next iteration.

35



More precisely, we consider for each pair of colours (c,d) in C, the expression

Pc,d(X) := colpart
(i)
c (X) ·colpart(i)d (X)

which, on input AG, results in a matrix whose entry corresponding to vertices v and v′ holds the
value pc,d

v,v′ ; these are needed for L2(v,v′).
Let Pc,d be the set of values in Pc,d(AG). For each non-zero value p in Pc,d , we extract an

indicator matrix indicating the positions in Pc,d(AG) that hold value p. This can be done using an
expression indc,d,p(X) which works in a similar way as #3deg(X) in Example 7.1, but uses the
Schur-Hadamard product instead of products of diagonal matrices. More precisely,

indc,d,p(X) :=
1

p∏pi(p− pi)
X ◦ (X− p1×1(X) ·1t(X))◦ · · · ◦ (X− pr×1(X) ·1t(X))

where p1, . . . , pr are all values in Pc,d different from p. In fact, the construction of indicator matrices
pointing out the entries in a matrix that hold a specific value is referred to as the Schur-Wielandt
Principle [49].

We now look at L2(v,v′) for all v,v′ in V . If we denote by C′ the new list of colours (one for each
unique L(v,v′)), then a colour c in C′ corresponds to a set of s triples (c1,d2, pc1,d1

v,v′ ), . . . ,(cs,ds, pcs,ds
v,v′ )

for some pair v, v′ of vertices. The Schur-Hadamard product plays a key part in finding those vertex
pairs having colour c. Indeed, we consider the expression

colpart
(i+1)
c (X) := ind

c1,d2,p
c1,d1
v,v′

(X)◦ · · · ◦ indcs,ds,p
cs ,ds
v,v′

(X).

On input AG, colpart(i+1)
c (AG) returns an indicator matrix in which the entries holding a 1 corre-

spond precisely to the pairs (v′′,v′′′) ∈ V ×V such that c = L2(v′′,v′′′) = L2(v,v′). In other words,
colpart

(i+1)
c (AG) represent the refined edge partition corresponding to the new colour c. We do

this for every new colour. Clearly, all colpart(i+1)
c (AG) together represent the refined partition Πχ ′

corresponding to χ ′ : V ×V →C′ as computed on line 9.
We continue in this way until the colouring stabilises. i.e., no further colours are needed. We de-

note by stabcoli(X) the final expressions obtained. We have that stabcoli(AG) are indicator matrices
of the partition induced by the stable edge colouring.

The construction of the expressions stabcoli(X) depend on AG; at first sight, correctness is only
guaranteed for this adjacency matrix. Nevertheless, when G≡ML( · ,∗,tr,1,+,×,◦) H, we next show that
stabcoli(AH) also corresponds to a partition corresponding to the stable edge colouring on H. To
check this, we rely on an equivalent characterisation of partitions induced by stable edge colourings.
More precisely, {stabcoli(XH)} represents a stable edge colouring of H if and only if they form
the standard basis of the cellular algebra of H. Here, the cellular algebra of H, sometimes also
referred to as the Weisfeiler-Lehman closure WL(AH , I,J) of AH , I and J, is the smallest algebra
containing AH , I and J, and which is closed under the Schur-Hadamard product [5, 32]. More
precisely, stabcoli(AH) is the partition of a stable edge colouring χH of H if and only if

J =
`

∑
i=1

stabcoli(AH)

I = ∑
i∈K

stabcoli(AH), for some subset K of {1, . . . , `}

for each i: (stabcoli(AH))
t = stabcol j(AH) for some j

for any i, j: stabcoli(AH) ·stabcol j(AH) = ∑ pk
i, j× stabcolk(AH),

where pk
(i, j) := p(i, j)

(w,w′) for some (w,w′) ∈W 2 such that χ(w,w′) = k, where χH is a stable edge
colouring on H.. We know that stabcoli(AG) satisfies these conditions and they thus represent the
standard basis of WL(AG, I,J). We use G≡ML( · ,∗,tr,1,+,×,◦) H to show that stabcoli(AH) also satisfies
these conditions. At the same time we derive the necessary ingredients to show that G and H cannot
be distinguished by edge-colouring. This is done in a number of steps.

1. For each i = 1, . . . , `, we first check whether stabcoli(AH) is also a binary matrix. We observe,
based on inspecting the defining expressions, that stabcoli(AH) is a real matrix. If we consider
the sentence

binary(X) := 1t(X) ·
(
(X ◦X−X)◦ (X ◦X−X)

)
·1(X),
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then this sentence will return [0], when given a real matrix as input A, if and only if the input
matrix is a binary matrix. Indeed, for a binary matrix A, A◦A = A and hence A◦A−A = Z.
Since Z ◦Z = Z, binary(A) = 1t ·Z ·1= [0]. For the converse, assume that binary(A) = [0]. We
observe that each entry in (A ◦A−A) ◦ (A ◦A−A) is non-negative value. Indeed, all entries
are squares of real numbers. This implies that A◦A−A = Z. Clearly, this implies that A can
only contain 0 or 1 as entries, since these are the only real values satisfying x2− x = 0.

Hence, when G≡ML( · ,∗,tr,1,+,×,◦) H this implies
binary(stabcoli(AG)) = [0] = binary(stabcoli(AH)),

for all i = 1, . . . `. So indeed, stabcoli(AH) is a binary matrix.

2. Next, we check that the matrices stabcoli(AH), for i ∈ K, are diagonal matrices. We will use
the following zero test:

zerotest(X) := 1t(X) ·(X ◦X) ·1(X).

A similar reasoning as before shows that zerotest(A) = [0] for a real matrix A if and only if
A = Z. If we consider

diagtest(X) := zerotest(X ◦ (1(X) ·1t(X)−diag(1(X)))),

then diagtest(A)= [0] if and only if A is a diagonal matrix. We have that G≡ML( · ,∗,tr,1,+,×,◦) H
implies

diagtest(stabcoli(AG)) = [0] = diagtest(stabcoli(AH)),

for all i ∈ K. Hence, stabcoli(AH) for i ∈ K are indeed diagonal matrices.

3. We next check that stabcoli(AG) and stabcoli(AH) have the same number of ones. This
will be important when showing indistinguishability of G and H by edge-colouring. Clearly,
G≡ML( · ,∗,tr,1,+,×,◦) H implies

tr(stabcoli(AG) ·1(AG)) = tr(stabcoli(AH) ·1(AH)),

for i = 1, . . . , `, which implies that the number of ones agree.

4. We also verify that all stabcoli(AH) are disjoint, i.e., all the occurrences of 1 are in differ-
ent positions. This, together with the fact that ∑

`
i=1 stabcoli(AG) = J, ∑i∈K stabcoli(AG) = I

and that stabcoli(AG) and stabcoli(AH) have the same number of ones, this implies that
∑
`
i=1 stabcoli(AH) = J and ∑i∈K stabcoli(AH) = I. To check disjointness, we uses sentences

disjointi, j(X) := zerotest(stabcoli(X)◦ stabcol j(X)),

for i 6= j. We have that G ≡ML( · ,∗,tr,1,+,×,◦) H implies disjointi, j(AG) = [0] = disjointi, j(AH)
for all i 6= j, establishing the pairwise disjointness of the stabcoli(AH)’s.

5. Next, we proceed in a similar way to show that, when (stabcoli(AG))
t = stabcol j(AG) holds,

also (stabcoli(AH))
t = stabcol j(AH) holds. To this aim, we consider the sentence

is transposei, j(X) := zerotest((stabcoli(X))t− stabcol j(X)),

where (i, j) are such that stabcol j(AG) is the transpose of stabcol j(AG). Then, clearly, we
have that G ≡ML( · ,∗,tr,1,+,×,◦) H implies is transposei, j(AG) = [0] = is transposei, j(AH) for
all valid pairs (i, j). So, we may again conclude that (stabcoli(AH))

t = stabcol j(AH) when
(stabcoli(AG))

t = stabcol j(AG) holds.

6. We also verify that (stabcoli(AH) ·stabcol j(AH))◦ stabcolk(AH) = pk
i, j× stabcolk(AH) holds.

This is again done in the same way as before, i.e., we consider the sentences
structconsti, j,k := zerotest

(
(stabcoli(X) ·stabcol j(X))◦ stabcolk(X)− pk

i, j× stabcolk(X)
)
.

Then, G≡ML( · ,∗,tr,1,+,×,◦) H implies that structconsti, j,k(AG) = [0] = structconsti, j,k(AH), for
all i, j,k = 1, . . . , `.

7. Finally, we know that AG = ∑i∈L stabcoli(AG) for some subset L⊆ {1, . . . , `}. Indeed, AG be-
longs to WL(AG, I,J) and thus AG = ∑

`
i=1 ai× stabcoli(AG). Since we have that stabcoli(AG)

and stabcol j(AG), for i 6= j, are disjoint and binary matrices, and also AG is a binary ma-
trix, the coefficients ai must be either 0 or 1. If we let L be the index set such that ai = 1,
we indeed have that AG = ∑i∈L stabcoli(AG). We next show that AH = ∑i∈L stabcoli(AH)
as well. We know already that AH = ∑bi× stabcoli(AH) and for the same reasons as above,
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AH =∑i∈L′ stabcoli(AH) for some subset L′⊆{1, . . . , `}. We verify that G≡ML( · ,∗,tr,1,+,×,◦) H
implies that L = L′. Consider the sentence

includedi(X) := 1t(X) ·(X ◦ stabcoli(X)) ·1(X).

We have that includedi(AG)= [0] if and only if i∈ L. Similarly, includedi(AH)= [0] if and only
if i ∈ L′. Suppose, for the sake of contradiction that i ∈ L′ \L (the case i ∈ L\L′ is analogous).
Then, includedi(AG) 6= [0] = includedi(AH), contradicting that G ≡ML( · ,∗,tr,1,+,×,◦) H holds.
We may thus conclude that L = L′.

All combined, stabcol j(AH), for i = 1, . . . , `, satisfy the conditions to be the standard basis of
WL(AH , I,J), and hence these indicator matrices represent a stable edge colouring of H. We also
have that G ≡2WL H. To see this, it suffices to show that stabcol j(AG) and stabcol j(AH) repre-
sent a part in their corresponding stable partitions that have the same colour. Indeed, since both
stabcol j(AG) and stabcol j(AH) contain the same number of pairs, this implies that G≡2WL H.

Let χG : V ×V → C and χH : W ×W → C the stable edge-colourings corresponding to the
indicator matrices stabcoli(AG) and stabcoli(AH). We know the colours of pairs of vertices in
stabcoli(AG), as the expressions stabcoli(X) were constructed by running 2-STAB on AG. For
stabcoli(AH), we only know that they correspond to indicator matrices of a stable edge-colouring.
We argue that χG and χH can be taken the same edge-colouring function. This is done by induction
on the number of steps of 2-STAB on AG and AH .

More precisely, we show that for any i = 1, . . . , `, χH(w,w′) = χG(v,v′) for any pair (w,w′)∈W 2

and pair (v,v′) ∈V 2 such that stabcoli(AH) and stabcoli(AG) has a 1 in the positions corresponding
to these pairs of vertices.

Initially, we know that when stabcoli(AG) is a diagonal matrix if and only if stabcoli(AH) is a di-
agonal matrix. Similarly, we have shown that AG = ∑i∈L stabcoli(AG) and AH = ∑i∈L stabcoli(AH).
Since J = ∑

`
i=1 stabcoli(AG) and J = ∑

`
i=1 stabcoli(AH), also J−AG− I = ∑i∈M stabcoli(AG) and

J−AH − I = ∑i∈M stabcoli(AH). This implies that the initial colourings of G and H will assign the
same colour to corresponding indicator matrices. Indeed, recall that the initial colouring is fully
determined by self-loops, edges in the graph, and edges in the complement graph.

Suppose, by induction, that stabcol j(AG) and stabcol j(AH) are coloured the same, when the
algorithm 2-STAB starts a refinement step. The recipe for refinement was explained before and is
fully determined by L2(v,v′) for AG, and L2(w,w′) for AH . It suffices to show that these are the same
for pairs of vertices in stabcol j(AG) and stabcol j(AH), respectively. This in turn pours down to
showing that for each pair of colours (c,d) in C (the current colours in the colouring function of G
and H), pc,d

v,v′ = pc,d
w,w′ . For a pair (v,v′) in the partition stabcolk(AG), let Lc and Ld be the index sets

of partitions coloured by c and d, respectively. We know from before that(
∑

i∈Lc, j∈Ld

stabcoli(AG) ·stabcol j(AG)
)
◦ stabcolk(AG) =

(
∑

i∈Lc, j∈Ld

pk
i, j
)
× stabcolk(AG),

and that pc,d
v,v′ = ∑i∈Lc, j∈Ld

pk
i, j. We know that stabcoli(AH) share the same structure constants with

stabcoli(AG), hence, pc,d
w,w′ = ∑i∈Lc, j∈Ld

pk
i, j = pc,d

v,v′ . This holds for every colour pair (c,d) and ver-
tex pairs (v,v′) and (w,w′) in stabcolk(AG) and stabcolk(AH), respectively. As a consequence,
L2(v,v′) = L2(w,w′) for every such pairs of vertices. Hence, after refinement the updated colour
functions χ ′G and χ ′H will be the same.

To conclude, we have that G ≡ML( · ,∗, tr,1,diag,+,×,◦) H implies that for every colour c, there is
unique, by stability, k such that stabcolk(AG) and stabcolk(AH) have colour c. Since these carry the
same number of ones (as shown earlier), G and H cannot be distinguished by edge-colouring and
thus G ≡WL H. As a consequence, by Theorem 8.2, G ≡2WL H if and only if G ≡C3 H. Hence,
G≡ML( · ,∗, tr,1,diag,+,×,◦) H implies G≡C3 H.

For the converse, it is known that G ≡C3 H implies that there exists an isomorphism between
the Weisfeiler-Lehman closures WL(AG, I,J) and WL(AH , I,J) [19]. This can be shown by using
that G ≡C3 H and G ≡2WL H are equivalent [10], and that the latter implies that there is a so-
called algebraic isomorphism between the coherent configurations underlying the coherent algebras
WL(AG, I,J) and WL(AH , I,J) [49]. The latter is known to be equivalent to the existence of a unitary
matrix U such that stabcoli(AG) ·U = U ·stabcoli(AH) [49]. Since the indicator matrices are real
matrices, closed under transposition, U may be assumed to be an orthogonal matrix O (see e.g.,
Jing [36] or Theorem 65, Section 2.6. in Kaplansky [38]).
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We can also directly infer from ML( · ,∗, tr,1,diag,+,×,◦)-equivalence that there exists an or-
thogonal matrix O satisfying stabcoli(AG) ·O = O ·stabcoli(AH). This is shown in precisely the
same way as in the proof of Theorem 7.8, by relying the Specht’s Theorem. The two sets, that are
closed under transposition, are now A := {stabcoli(AG) | i = 1, . . . , `} and B := {stabcoli(AH) | i =
1, . . . , `}. We remark that when stabcoli(AG) ·O = O ·stabcoli(AH) implies AG ·O = O ·AH , since
AG = ∑ i ∈ Lstabcoli(AG) and AH = ∑i∈L stabcoli(AH). Furthermore, J ·O = O ·J, because J is the
sum over all indicator matrices. We may thus assume that O ·1 = 1 (and thus also Ot ·1 = 1), as
argued in the proof of Theorem 7.8. Moreover, we may reorder the input matrices AG and AH such
that O has a block structure compatible with the common coarsest equitable partitions of G and H,
induced by the diagonal basis elements stabcoli(AG) and stabcoli(AH), for i ∈ K.

Given such an orthogonal matrix O, we have already argued in Section B.5 that this suffices to
ensure that e(AG) = e(AH) for all sentences e(X) in ML( · ,∗, tr,1,diag,+,×,◦).

F.2 Functions on matrices
in Section B.5 we have shown that for expressions e(X) in ML( · ,∗, tr,1,diag,+,×,◦), if AG ·O =
O ·AH for an orthogonal matrix which is an (algebraic) isomorphism between WL(AG, I,J) and
WL(AH , I,J), then e(AG) and e(AH) (when they return an n× n-matrix) can be written as a linear
combination of elements in the standard bases of the coherent algebras, and more importantly, these
are linear combinations with the same coefficients. That is, e(AG) = ∑ai×Ei and e(AH) = ∑ai×Fi,
for standard bases E = {E1, . . . ,E`} and F = {F1, . . . , F̀ }.

We next show that the induction hypotheses (†), (‡), and (§) remain to hold when pointwise
function applications on matrices are considered.
(pointwise functions, (†, §)) e(X) := apply[ f ](e1(X), . . . ,ep(X)). We consider the case when all
ei(X) return n×n-matrices. By induction, using (§), we have that ei(AG) =∑ j a(i)j ×E j and ei(AH) =

∑ j a(i)×Fj. Since all Ei’s are pairwise disjoint (have entries with 1 in different positions), we have
that

e(AG) = apply[ f ](e1(AG), . . . ,ep(AG)) = ∑
j

f (a(1)j , . . . ,e(p)
j )×Ei,

and similarly,

e(AH) = apply[ f ](e1(AH), . . . ,ep(AH)) = ∑
j

f (a(1)j , . . . ,e(p)
j )×Fi.

From Ei ·O = O ·Fi, it then follows that e(AG) ·O = O ·e(AH) and the hypotheses (†) remains satis-
fied. The expressions above also show that hypothesis (§) is satisfied.
(pointwise functions, (‡)) e(X) := apply[ f ](e1(X), . . . ,ep(X)). We need to show that when e(AG)
is an n×n-matrix, then e(AG) ·1i = ∑ai j ·1 j = e(AH) ·1i. As observed above, we have that e(AG) =

∑ai×Ei and e(AH) = ∑ai×Fi. This follows from properties of the standard basis, described earlier.
That is, Ei ·1i is either the zero vector or a specific vector 1 j; similarly for Fi ·1i. This implies that
hypotheses (‡) remain satisfied.
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