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Abstract. Graphs or networks are used as a representation of data in
many different areas, ranging from Biology to the World Wide Web. In
this paper, a novel approach to graph characterization based on a prob-
abilistic (de)composition into a linear sequence of frequent subgraphs is
presented. The resulting probabilistic models are generative for a family
of graphs sharing common structural properties. An evolutionary com-
puting approach is used to learn the model parameters for unknown
graph classes. This paper describes the (de)composition procedure and
illustrates its use in characterizing and discriminating a number of graph
types. To demonstrate its practical usefulness, the method is applied to
the problem of modeling transcriptional regulatory networks (TRN).

1 Introduction

Research has demonstrated the existence of recurring small graph structures in
many types of networks from domains as diverse as computer science and biol-
ogy [8]. These recurring subgraph patterns are variously called network motifs,
graphlets or more simply subgraphs. It has also been shown that complex net-
works can be compared and classified into distinct functional families, based on
their typical motifs [7].

Moreover, biomolecular networks are hierarchical structures that consist of
smaller modules of interacting components [2]. Therefore, global metrics, such
as degree distribution and clustering coefficient, can not be used to completely
analyze their properties [9] and, as a result, local approaches have become more
prominent in the study of networks structure. The hierarchical and modular
nature of biological networks [5, 13] has also been elucidated. Graph motifs ag-
gregate into larger clusters and some of the global topological characteristics of
graphs originate from the local combinations of smaller subunits.

Furthermore, close investigation into the structure of transcriptional and
metabolic networks of E. coli and S. cerevisiae has suggested that this com-
bination of motifs is not random. There appears to be a type of preferential
attachment where homologous motifs cluster together [6]. All this implies that
a network’s large-scale topological organisation and its local subgraph structure
mutually define and predict each other and that networks need also to be eval-
uated beyond the level of single subgraphs, at the level of subgraphs clusters
[13].



The above observations served as inspiration for the creation of a new net-
work model that integrates global knowledge about the presence of network
motifs and their local combinations. More specifically, global statistical knowl-
edge about the presence of subgraphs is combined with local knowledge about
the specific way in which these motifs are interconnected. Two additional ideas
were incorporated to allow better integration of this knowledge into a practi-
cal analysis method. The first is linearization of the network into an ordered
sequence of motifs. Secondly, a probabilistic approach was chosen that in-
corporates the ideas of growth and preferential attachment together with
knowledge about recurring structural elements to allow both decomposition of
existing graphs and composition of similar graphs.

2 The model

The translation from graph to sequence is accomplished using a probabilistic
model that describes the occurrence of, and connections between motifs. Be-
cause of the probabilistic nature of the model a sequence of symbols describes
instances of a graph family, rather than one single graph. Using the probability
distributions as a central source of information, this method can be used to both
decompose existing graphs in to sequences, and compose new instances starting
from such a sequence.

Motifs are detected in an existing graph by mapping their edges onto edges
in the graph. Additional motifs are connected to already detected motifs by
merging some of their vertices. As a result, each edge in the graph belongs to
exactly one motif in the sequence, while graph vertices can belong to multiple
motifs.

All of the information needed to construct the model is contained in a set
of motifs. It is important to clarify that the term motif takes on additional
meaning relative to its use in existing literature [11, 8]. Intuitively a motif can
be understood to be a small graph with additional information that specifies
which vertices can attach to other vertices and associated rules that govern
the way it can connect to other motifs. These preference rules are expressed as
probability distributions.

2.1 Graph decomposition

To illustrate graph decomposition, the example graph depicted in Fig. 1(d) is
decomposed using the motif set in Fig. 1(a). This set becomes the alphabet of
the decomposition sequence. In this example, the set consists of a 4-node cycle
(4C), a 3-node cycle (3C) and a reflexive edge structure with 2 nodes and 2 edges
(R). In general, the choice of motif set can be driven by domain knowledge or
by graph mining techniques that compose a set based on a collection of example
graphs (see also Section 3.1)

The initial step involves choosing a vertex that will serve as the starting point
for motif detection. The start vertex can be any vertex in the source graph but
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Fig. 1. Example graph decomposition using a sample set of motifs

its choice will influence the decomposition process and the resulting sequence.
In the example, vertex V 0 is chosen as the start vertex. Decomposition is a
gradual process, during which motifs are detected in a selected area around the
already explained graph. This area of the graph is referred to as the motif search
space. The depth of the search space depends on the undirected diameter of the
biggest motif in the motif set. The motif search space grows by adding edges
and vertices, expanding outwards from fringe vertices. Initially, the only fringe
vertex is the start vertex.

At each step edges and vertices within an undirected distance of Ed from
the fringe vertices are added to the search space. In our example the expansion
depth of the motif search space at each iteration is two, the largest diameter of
any motif in the set. This means that, following the initial expansion from the
start vertex V 0, the motif search space contains vertices V 0 through V 3, V 6
and all edges connecting them. Vertices V 2 and V 6 are separated from V 0 by
two edges and are therefore not expanded further until they are explained by a
motif (situation in Fig. 1(b)).

Edges and vertices that are explained by a motif become part of the explained
graph. Every consecutive motif in the sequence is required to share its attaching
vertices with the part of the graph that has already been explained. The exact
number of shared vertices is a function of the motif definition.

At this point, the only matching subgraph is a 4C motif, which becomes the
first motif in the growing sequence. The only requirement for the initial motif is
that it contains the starting vertex. Vertices V 0, V 1, V 2 and V 3 now become
part of the explained graph. It is important to note that only the edges of this
first motif are removed from the search space. The decomposition is edge-based:



an edge in the source graph can be explained by only one motif in the sequence,
while vertices connect motifs and are shared between them.

Starting from this situation, a new expansion is done, and vertices V 4, V 5,
V 7 and V 8 are added to the search space, along with their interconnecting edges
(Fig. 1(c)).

Both a second 4C motif or an R motif can now be mapped onto the currently
unexplained edges. Both would share one vertex (V 2 and V 3 respectively) with
the first 4C motif. In principle, either one could become the next motif in the se-
quence. To make the choice between candidate motifs, it is necessary to introduce
the mechanism that can express relative preference for each of the candidates.
This is accomplished using the concept of preferential attachment.

Preferential attachment rules (Fig. 2) provide a way to evaluate the like-
lihood of candidate motifs and their interconnections, during both graph com-
position and decomposition. Three essential concepts are combined to determine
which candidate should become the next motif in the sequence. Each aspect is
described using a probability distribution. These distributions will become the
central pieces of information for both graph decomposition and composition.

Motif-set prior. The first component is a prior preference for specific types
of motifs in the motif set. In the example that we are discussing this is a uniform
distribution over the motifs in the set because no particular preference has been
assigned to any of them.

Motif-Vertex preference. As described in the example, motifs are regarded
in the context of their connection to adjacent motifs in the graph. Such connec-
tions give rise to a partitioning of a motif’s vertices into a set of attaching ver-
tices A and a set of non-attaching vertices. Attaching vertices serve as connection
points to already explained motifs, while non-attaching vertices are mapped onto
previously unexplained vertices in the current motif search space. Every attach-
ing vertex has an associated probability distribution over all possible vertices in
the motif set, indicating its affinity for specific motifs and vertices belonging to
them. The distribution effectively defines which motifs and vertices are preferred
candidates for attachment.

Sequence Distance Rule. The final concept is the sequence distance rule.
Each attaching vertex of a motif contains an additional probability distribu-
tion governing its affinity for a target based on a concept of distance in the
(de)composition sequence. Differential preference can be given to attachment
between motifs depending on the number of motifs in the sequence that sepa-
rate them.

During decomposition, the likelihood that any newly discovered motif be-
comes the next one in the sequence is evaluated in the context of the already
explained graph and the growing sequence. A newly detected candidate motif m
is connected by its attaching vertices to a set of already detected motifs. Each
attaching vertex v ∈ A is merged with a vertex v′ belonging to a motif m′ earlier
in the sequence. The distance d(m,m′) between motif m and motif m′ is defined
as the number of motifs separating them in the sequence.



Fig. 2. Example motif set and preferential attachment rules (motif prior Θ, motif-
vertex preference Ψm and sequence distance rule Δm) for one of the motifs.

Definition 1. Probability of attachment. The probability of the attachment
is the product over all attaching vertices of the three preferential attachment
components: the motif prior Θ, the motif-vertex preference Ψm and the sequence
distance rule Δm:

Pr(Att) = Θ(m) ×
∏
v∈A

[
Ψm(m′, v′) × Δm(d(m,m′))

]

Back in our example, the choice between a 4C and an R motif is resolved
by calculating the likelihood for each attachment. First, it is necessary to check
whether every attaching vertex is mapped onto an already explained vertex in
the discovered subgraph. If we accept that the example 4C motif has only one
attaching vertex and the R motif has two, the only valid decomposition sequence
is 4C − 4C −R. Should the motif set contain multiple variants of the 4C and R
motifs with a different number of attaching vertices, both candidates could be
valid. Their preferential attachment rules would then determine their order in
the sequence. If candidates are equally likely, the choice is made randomly.

Continuing this procedure, and given that the correct sequence is 4C − 4C −
R− 3C, all vertices in the source graph have now been explained. However, this
still leaves one edge unexplained, the self-loop at V 4. This demonstrates that
even with a well-chosen motif set that quite accurately captures the structural
characteristics of the source graph it may not be possible to completely decom-
pose a graph. To deal with this, glue motifs can be introduced into the motif set
to collect edges or vertices that can not otherwise be mapped with the conven-
tional motifs. An adequate choice of the motif set would limit the necessity for
glue motifs.



2.2 Graph composition

Graph composition is governed by the same preferential attachment rules as
graph decomposition. Starting from a sequence of motifs a graph instance is
generated by probabilistically adding edges and vertices as determined by the
motifs in the sequence. Attaching motif vertices are merged with graph vertices
created by motifs earlier in the sequence. Non-attaching motif vertices create
new graph vertices. The number of edges in the resulting graph equals the sum
of the number of edges of all motifs in the sequence.

When adding the next motif in the sequence, every attaching vertex has to
be mapped onto a graph vertex. To do so, all of the graph vertices are evaluated
as potential candidates, using the preferential attachment rules. Two additional
constraints guide this process: an attachment may not introduce parallel edges
and two vertices belonging to the same motif may not be merged, since this
would fundamentally alter the structure of the motif.

The likelihood for each valid attachment point is calculated and an ultimately
one is chosen using roulette-wheel selection.

3 Experimental evaluation

3.1 Learning

In order to use the system in a new setting — for example the characterization
of gene regulatory networks — it is necessary to construct a motif set that
adequately characterizes the desired graph family. Because for complex networks
it is not feasible to construct the model manually, a machine learning was chosen
in this work.

Given a training set of positive examples of a certain graph class, an evo-
lutionary algorithm [4] was used to learn a motif set that can generate similar
graphs and classify graphs as belonging to this class. In one experiment the
largest connected component of the E. coli transcriptional regulatory network
as described by [11] was used as a training set (Fig. 3(a)). Fig. 3(b) shows an
example graph composed with the learned model.

3.2 Classification

Starting with the same motif set (Fig. 4(c), a = 0, b = 1) a variety of trees
was composed from a motif sequence by changing the sequence distance rule.
When using a geometric distribution with p = 0.9, the trees that are generated
are very chain-like, with very few and short branches (Fig. 4a). In this case it is
extremely likely that new motifs in the sequence attach to adjoining motifs while
with p = 0.1 attachments further up the chain are much more likely, resulting
in the creation of many branches(Fig. 4b).

One thousand chain-like and one thousand highly-branched trees were gen-
erated from a one hundred motif sequence with appropriate parameters. Every
tree was decomposed, starting from the root vertex, using the motif set that
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Fig. 3. (a) Largest connected component of the E. coli TRN used as training set for
learning the TRN model. (b) Example of a graph composed with the learned model.
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Fig. 4. A chain-like tree (a), characterized by a low number of very short branches and
a highly-branched tree (b). Motif set used to generate them (c).

generates chain-like trees. As explained in Section 2.1, during the decomposi-
tion, the likelihood that any newly discovered motif becomes the next one in
the sequence is evaluated in the context of the already explained graph and
the growing sequence. The sum of these likelihoods, expressed as negative log-
probabilities (Def. 2), can be interpreted as an overall score for the plausibility
of the decomposition.

Definition 2. Likelihood of decomposition. The likelihood L of decomposi-
tion of a graph G, given a motifset M into a motif sequence S(M) is defined
as

L =
∑

a∈S(M)

−log(Pr(Att)a)

This likelihood can also be seen as a measure for the probability of generating
the decomposed graph from the sequence, given the specific motif set. Fig. 5(a)
shows the histogram of the resulting log-probability scores for all decompositions.
As expected, the likelihood of the decomposition is much higher for the chain-
like trees than for the highly-branched trees. The introduction of new branches



results in lower scores because new motifs do not attach to the most recently
discovered motifs, but to motifs further away in the sequence, which is unlikely
given the geometric distribution with p = 0.9.

Histogram of decomposition likelihood

−log(P)

F
re

qu
en

cy

0 1000 2000 3000 4000

0
20

40
60

80
10

0 Chain−like Trees
Highly−branched Trees

(a)

ROC curve: DSF vs AB (AUC = 0.88)

False positive rate

T
ru

e 
po

si
tiv

e 
ra

te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b)

Fig. 5. (a) Histogram of decomposition likelihood for two families of trees: chain-like
(blue) and highly-branched (red). (b) Receiver operating characteristic (ROC) curve for
two-way classification between AB and DSF graphs.

A similar experiment using a motif set learned from the E. coli TRN [11]
was used to decompose a series of random graphs generated with the Albert-
Barabási (AB)[1] and the directed scale free (DSF) [3] models. The likelihood
of the decomposed sequence was then used as a score for the overall plausibility
of the decomposition. Fig. 5(b) shows that it is possible to distinguish these
different graph classes using the learned model.

4 Conclusions

This paper presented a model that allows characterization of graph families
through a (de)composition method based on probabilistic sequences of motifs.
Given a motif set, a sequence can probabilistically produce many graphs by
sequentially combining the motifs. Both decomposition and composition are
governed by the same probability distributions, that dictate the order of mo-
tif detection or combination.

The feasibility of using a machine learning approach to construct a suitable
motif set for a new family of graphs was demonstrated. These learned motif sets
can then be used to distinguish between different classes of graphs.
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