
On the Expressive Power of XQuery-based
Update Languages

Jan Hidders, Jan Paredaens, and Roel Vercammen?

University of Antwerp

Abstract. XQuery 1.0, the XML query language which is about to
become a W3C Recommendation, lacks the ability to make persistent
changes to instances of its data model. A number of proposals to ex-
tend XQuery with update facilities have been made lately, including a
W3C Working Draft. In order to investigate some of the different con-
structs that are introduced in these proposals, we define an XQuery-
based update language that combines them. By doing so, we show that
it is possible to give a concise, complete and formal definition of such
a language. We define subsets of this language to examine the relative
expressive power of the different constructs, and we establish the rela-
tionships between these subsets in terms of queries and updates that can
be expressed. Finally, we discuss the relationships between these subsets
and existing XQuery-based update languages.

1 Introduction

With the growing acceptance of XQuery as the main query language for XML
data, there has also been a growing need for an extension that allows updates.
This has lead to several proposals such as [11], [9], UpdateX [10, 1], XQuery! [3]
and the XQuery Update Facility [2]. Next to introducing operations for manipu-
lating nodes such as inserting and deleting, these proposals often also introduce
special operations such as the snap operation (in XQuery!) and the transform
operation (in XQuery Update Facility) to extend the expressive power of the lan-
guage, sometimes for queries as well as updates. For example, the snap operation
allows us write queries in XQuery that use side effects and bounded iteration.
Another example is the transform operation that allows us to concisely express
a transformation that copies an entire tree and makes a few minor changes to
it. In this paper we investigate the relative expressive power of such constructs
for expressing queries as well as updates. In addition we examine the strict sep-
aration of expressions in updating and non-updating expressions, and determine
whether this influences the ability to express certain queries and updates.

To investigate the mentioned questions we define LiXQuery+ by taking LiX-
Query[7], a concise and formally defined subset of XQuery, and extending it with
all the mentioned constructs.
? Roel Vercammen is supported by IWT – Institute for the Encouragement of Inno-

vation by Science and Technology Flanders, grant number 33581.

The remainder of this paper is organized as follows. Section 2 presents the
syntax of LiXQuery+ and discusses its semantics informally. Section 3 presents
the formal framework necessary for defining the semantics. Section 4 defines the
semantics of expressions in LiXQuery+. Section 5 presents the results on the
expressive power of the different constructs 1 . Section 6 relates these results to
existing proposals in the literature and finally Section 7 contains the conclusion.

2 Syntax and Informal Semantics

Due to space limitations, we do not give the complete LiXQuery+ syntax, but
only show how to extend the LiXQuery grammar to obtain LiXQuery+. We start
from the grammar as given in [4], remove the start symbol 〈Query〉 and intro-
duce a new start symbol 〈Program〉, which is a sequence of variable and function
declarations followed by an expression. The syntax of LiXQuery+ programs is
given in Fig. 1 as an abstract syntax, i.e., it assumes that extra brackets and
precedence rules are added for disambiguation. The ellipsis in the non-terminal
〈Expr〉 refer to the right-hand side of this non-terminal in the LiXQuery gram-
mar. The XQuery features that we can express in non-recursive LiXQuery include
FLWOR-expressions, path expressions, typeswitches, node and value compar-
isons, sequence generations (using the “to”-operation), sequence concatenation,
and some simple arithmetic.

〈Program〉 ::= ((〈VarDecl〉 | 〈FunDecl〉) “;”)∗ 〈Expr〉
〈VarDecl〉 ::= “declare” “variable” 〈Var〉 “:=” 〈Expr〉
〈FunDecl〉 ::= “declare” “function” 〈Name〉 “(” (〈Var〉 (“,” 〈Var〉)∗)? “)” “{” 〈Expr〉 “}”
〈Expr〉 ::= . . . | 〈Insert〉 | 〈Rename〉 | 〈Replace〉 | 〈Delete〉 | 〈Snap〉 | 〈Transform〉
〈Insert〉 ::= “insert” 〈Expr〉 (“into” | “before” | “after”) 〈Expr〉
〈Rename〉 ::= “rename” 〈Expr〉 “as” 〈Expr〉
〈Replace〉 ::= “replace” “value” “of” 〈Expr〉 “with” 〈Expr〉
〈Delete〉 ::= “delete” 〈Expr〉
〈Snap〉 ::= “snap” ((“unordered” (“nondeterministic” | “deterministic”)) |

“ordered”) “{” 〈Expr〉 “}”
〈Transform〉 ::= “transform” “copy” 〈Var〉 “:=” 〈Expr〉 “modify” 〈Expr〉 “return” 〈Expr〉

Fig. 1. Syntax of LiXQuery+

We assume the reader is already familiar with XQuery. We therefore only
describe the semantics of the new expressions and sketch the modifications to
the semantics of the other expressions.

We first describe the semantics of the update expressions, i.e., the “insert”,
“rename”, “replace” and “delete” operations. The “insert” operation makes
a copy of the nodes in the result of the first expression and adds these (after-
wards) at the position that is indicated by either “into”, “before”, or “after”
and which is relative to the singleton result node of the second expression. The
“rename” operation renames an element or an attribute, and the “replace”
operation replaces the value of a text or an attribute node with a new atomic
value. Both operations are node-identity preserving, i.e., the identity of the up-
dates node is not changed. The “delete” expression removes the incoming edges
1 We only give sketches of the proofs, for the full proofs we refer to [5]

for a set of nodes, which can then be garbage collected iff they are not accessible
anymore through variable bindings or the result sequence.

For most expressions we assume a snapshot semantics, which intuitively
means that a snapshot of the store is being made before the evaluation of the
expression and the resulting updates are not yet performed, but instead they are
added to a list of pending updates. There are four exceptions to this: the “snap”
operation, expressions at the end of a program, expressions at the right-hand
side of a variable declaration and the “transform” expression. We discuss these
four cases in the following.

A “snap” operation applies the list of pending updates that is generated by
the subexpression to the store and returns an empty update list. If the snap ex-
pression contains the keyword “ordered”, then the pending updates are applied
in the same order as they were generated. Else the order of application is un-
defined and the keywords “deterministic” and “nondeterministic” specify
whether the order of the application of pending updates is allowed to affect the
set of possible result stores. As an illustration of the “snap” expression consider:

for $d in //dept return (

snap ordered { replace value of $d/salarytotal with 0 },

for $e in $d/emp return

snap ordered {

replace value of $d/salarytotal

with $d/salarytotal + $e/salarytotal })

This expression computes for each department the total of the salaries of its
employees. Note that if we replace the two “snap” operations with one big “snap”
operation around the whole expression then it will compute for each department
the salary of the last employee since the value of $d/salarytotal is not updated
during the evaluation.

When evaluating an expression at the end of a program or the right-hand
side of a variable declaration, an implicit top-level “snap ordered” is presumed,
i.e., the list of pending updates that is generated by the expression is applied to
the store.

The final exception to the snapshot semantics is the “transform” operation.
It makes a deep copy of the result of the first subexpression, evaluates the second
subexpression and applies the resulting pending updates provided these are only
on the deep copy, and finally evaluates the return clause and returns its result.
As an illustration of the “transform” expression consider:

transform copy $d := //dept[@name = "Security"]

modify delete $d//*[@security-level > 3]

return $d

This expression retrieves all information about the security department except
the subtrees which have a security level higher than three. Note that the trans-
form operation cannot update an existing fragment in the XML store.

Finally, all other operations were already in LiXQuery and their semantics
is now extended in such a way that the result is not only the result sequence,
but also the concatenation of all lists of pending updates that were generated
during the evaluations of subexpressions.

3 Formal Framework

We now proceed with the formal semantics of LiXQuery+. Due to space lim-
itations, we will not fully introduce all concepts of LiXQuery here, but refer
to [7] for some examples and a more elaborated introduction. We assume a set
of strings S and a set of names N ⊆ S, which contains those strings that may
be used as tag names. The set of all atomic values is denotes by A and is a
superset of S. We also assume four countably infinite sets of nodes Vd, Ve, Va

and Vt which respectively represent the set of document, element, attribute and
text nodes. These sets are pairwise disjoint with each other and the set of atomic
values. The set of all nodes is denoted as V, i.e., V = Vd∪Ve∪Va∪Vt. In the rest
of this paper, we use the following notation: v for values, x for items, n for nodes,
r for roots, s for strings and names, f for function names, b for booleans , i for
integers, e for expressions and p for programs. We denote the empty sequence
as 〈〉, non-empty sequences as for example 〈1, 2, 3〉 and the concatenation of two
sequences l1 and l2 as l1 ◦ l2. Finally, if l is a list or sequence, then the set of
items in l is denoted as Set(l) and the bag (unordered list) representation of l
is denoted by Bag(l).

3.1 XML Store

Expressions are evaluated against an XML store which contains XML fragments.
This store contains the fragments that are created as intermediate results, but
also the web documents that are accessed by the expression. Although in practice
these documents are materialized in the store when they are accessed for the first
time, we assume here that all documents are in fact already in the store when
the expression is evaluated.

Definition 1 (XML Store). An XML store is a 6-tuple St = (V,E,�, ν, σ, δ):

– V is a finite subset of V2;
– (V,E) is a directed acyclic graph where each node has an in-degree of at most

one, and hence it is composed of trees; if (m,n) ∈ E then we say that n is a
child of m; we denote by E∗ the reflexive transitive closure of E;

– � is a total order on the nodes of V ;
– ν : V e ∪ V a → N labels element and attribute nodes with their node name;
– σ : V a ∪ V t → S labels attribute and text nodes with their string value;
– δ : S → Vd a partial function that associates a URI with a document node.

Moreover, some additional properties must hold for such a tuple in order to be
a valid XML store. We refer to the technical report [6] on LiXQuery+ for these
properties.

Note that this definition slightly differs from our original definition of an
XML Store [7], since we now have included the document order in the store
instead of the sibling order. In the rest of this paper we will write VSt to denote
the set of nodes of the store St, and similarly we write ESt, �St, νSt, σSt and
δSt to denote respectively the second to the sixth component of the 6-tuple St.
2 We write V d to denote V ∩ Vd, and use a similar notation for V e, V a, and V t

3.2 Evaluation Environment

Expressions are evaluated against an environment. Assuming that X is the set
of LiXQuery+-expressions this environment is defined as follows.

Definition 2 (Environment). An environment of an XML store St is a tuple
En = (a,b,v,x) with a partial function a : N → N ∗ that maps a function name
to its formal arguments, a partial function b : N → X that maps a function
name to the body of the function, a partial function v : N → (V ∪A)∗ that maps
variable names to their values, and x which is either undefined (⊥) or an item
of St and indicates the context item.

If En is an environment, n a name and y an item then we let En[a(n) 7→ y]
(En[b(n) 7→ y], En[v(n) 7→ y]) denote the environment that is equal to En
except that the function a (b, v) maps n to y. Similarly, we let En[x 7→ y]
denote the environment that is equal to En except that x is defined as y if
y 6= ⊥ and undefined otherwise.

3.3 List of Pending Updates

A new concept in the LiXQuery+ semantics, when compared to LiXQuery, is the
list of pending updates. This list contains a number of primitive update opera-
tions which have to be performed after the evaluation of the entire expression.

Definition 3 (Primitive Update Operations). Let n, n1, . . . , nm be nodes
in a store St, and s ∈ S. A primitive update operation on the store St is
one of following operations: insBef(n, 〈n1, . . . , nm〉), insAft(n, 〈n1, . . . , nm〉),
insInto(n, 〈n1, . . . , nm〉), ren(n, s), repV al(n, s), del(n).

Before proceeding with the formal semantics, we first give some intuition
about these primitive update operations. The operation insBef (insAft, insInto)
moves nodes n1 to nm before (after, into) the node n. In the formal semantics
of LiXQuery+, we will see that the nodes n1 to nm are always copies of other
nodes. Note that the operation insInto can have several result stores, since the
list of nodes can be inserted in an arbitrary position among the children. The
operations ren and repV al change respectively the name and the value of n to s.
Finally, the operation del removes the incoming edge from n and hence detaches
the subtree rooted at n. Note that del can, similar to insInto, have more than
one result store, due to the resulting document order. More precisely, the subtree
that is detached by a del operation has to be given another place in document
order, since otherwise this tree would be mixed in document order with the tree
from which we deleted the edge, which is a violation of one of the additional
properties of Definition 1. The exact location in document order of the detached
subtree is chosen in a non-deterministic manner.

We write St ` o ⇒U St′ to denote that applying the primitive update opera-
tion o to St can result in the store St′. The definition of ⇒U is given in Fig. 2 by
means of inference rules. Each rule consists of a set of premises and a conclusion

St
′
= St[ν(n) 7→ s]

St ` ren(n, s) ⇒U
St

′

St
′
= St[σ(n) 7→ s]

St ` repV al(n, s) ⇒U
St

′′

St
′
= (St \ n) ∪ St[n]

St ` del(n) ⇒U
St

′

St \ n1 \ . . . \ nm = St
′ \ n1 \ . . . \ nm = St

′′

St[n1] = St
′
[n1] . . . St[nm] = St

′
[nm]

(n, n1) ∈ ESt′ . . . (n, nm) ∈ ESt′
n1 �St′ n2 . . . nm−1 �St′ nm

St ` insInto(n, 〈n1, . . . , nm〉) ⇒U
St

′

n1, . . . , nm ∈ Ve ∪ Vt

St \ n1 \ . . . \ nm = St
′ \ n1 \ . . . \ nm = St

′′

St[n1] = St
′
[n1] . . . St[nm] = St

′
[nm]

n
′ ∈ VSt′′ ⇒ (n �St′ n

′ ⇔ nm �St′ n
′
)

n �St′ n1
n1 �St′ n2 . . . nm−1 �St′ nm

St ` insAft(n, 〈n1, . . . , nm〉) ⇒U
St

′

n1, . . . , nm ∈ Ve ∪ Vt

St \ n1 \ . . . \ nm = St
′ \ n1 \ . . . \ nm = St

′′

St[n1] = St
′
[n1] . . . St[nm] = St

′
[nm]

n
′ ∈ VSt′′ ⇒ (n

′ �St′ n ⇔ n
′ �St′ n1)

nm �St′ n
n1 �St′ n2 . . . nm−1 �St′ nm

St ` insBef(n, 〈n1, . . . , nm〉) ⇒U
St

′

Fig. 2. Semantics of the Primitive Update Operations.

of the form St ` o ⇒U St′. The free variables in the rules are always assumed to
be universally quantified. In these rules we use some additional notations, which
we will now explain.

Let St be a store and n an element of VSt. We define V n
St as {n′|(n, n′) ∈ E∗

St},
i.e., the set of nodes in the subtree rooted at n in St. The projection of St to a
set of nodes N is denoted by ΠN (St) and is the restriction of all components of
St to N instead of VSt. The restriction of St to n is defined as ΠV n

St
(St) and is

denoted by St[n]. The exclusion of n from St is defined as ΠVSt−V n
St

(St) and is
denoted by St \ n. For both restriction and exclusion it is not hard to see that
the projection always results in a store. Finally, if St is a store, n a node in St,
and s a string, then we let St[δ(n) 7→ s] (St[ν(n) 7→ s]) denote the store that is
equal to St except that δSt′(n) = s (νSt′(n) = s).

We now define a list l of pending updates over a store St as a list of primitive
update operations on St. The set of affected nodes of l is denoted by Targets(l)
and defined as the set of nodes that occur as the first argument in a primitive
update operation appearing in l.

The notation St ` o ⇒U St′, used to specify the semantics of primitive
update operations, is overloaded for sequences of primitive update operations.
For such a sequence l = 〈o1, . . . , om〉 we define St ` l ⇒U St′ by induction on
m such that (1) St ` 〈〉 ⇒U St and (2) if St ` 〈o1, . . . , om−1〉 ⇒U St′ and
St′ ` om ⇒U St′′ then St ` 〈o1, . . . , om〉 ⇒U St′′.

For some lists of pending updates, we can reorder the application of these
primitive update operations without changing the semantics. Therefore we say
that l is execution-order independent if for every sequences l′ such that Bag(l) =
Bag(l′) and store St′ it holds that St ` l ⇒U St′ iff St ` l′ ⇒U St′.

Finally, the following lemma gives an algorithm to decide execution-order
independence of a list of pending updates:

Lemma 1. A list of pending updates l = 〈o1, . . . , om〉 over a store St is execution-
order dependent iff there are two primitive update operations oi and oj in l such
that i 6= j, and there are n, n1, . . . , nm, n′1, . . . , n

′
l ∈ VSt and s, s′ ∈ S, such that

s 6= s′, 〈n1, . . . , nm〉 6= 〈n′1, . . . , n′l〉 and one of the following holds:
- oi = ren(n, s) ∧ oj = ren(n, s′)
- oi = repV al(n, s) ∧ oj = repV al(n, s′)
- oi = insBef(n, 〈n1, . . . , nm〉) ∧ oj = insBef(n, 〈n′1, . . . , n′l〉)
- oi = insAft(n, 〈n1, . . . , nm〉) ∧ oj = insAft(n, 〈n′1, . . . , n′l〉)

3.4 Program Semantics

We now define the semantics of programs. We write (St,En) ` p ⇒ (St′, v) to
denote that the program p, evaluated against the XML store St and environment
En of St, can result in the new XML store St′ and value v of St′. Similarly,
(St,En) ` e ⇒E (St′, v, l) means that the evaluation of expression e against
St and En may result in St′, v, and the list of pending updates l over St′. The
semantics of expressions is given in Section 4. Finally, the semantics of a program
is defined by following reasoning rules:

St, En[a(f) 7→ 〈s1, . . . sm〉][b(f) 7→ e] ` p ⇒ (St
′
, v

′
)

St, En ` declare function f ($s1, . . . , $sm){ e } ; p ⇒ (St
′
, v

′
)

St, En ` e ⇒ (St
′
, v) St

′
, En[v(s) 7→ v] ` p ⇒ (St

′′
, v

′′
)

St, En ` declare variable $s := e ; p ⇒ (St
′′

, v
′′
)

(St, En) ` e ⇒E
(St

′
, v, l) St

′ ` l ⇒U
St

′′

(St, En) ` e ⇒ (St
′′

, v)

Note that in the last rule, v is a value of St′′, since VSt′ = VSt′′ .

3.5 Auxiliary Notions

We conclude this section by giving some notational tools for the rest of this
paper. First, we define some auxiliary operations on stores.

Two stores St and St′ are disjoint, denoted as St∩St′ = ∅, iff VSt∩VSt′ = ∅.
The definition of the union of two disjoint stores St and St′, denoted as St∪St′,
is straightforward. The resulting document order is extended to a total order in
a nondeterministic way.

An item of an XML store St is an atomic value in A or a node in St. Given
a sequence of nodes l in an XML store St we let OrdSt(l) denote the unique
sequence l′ = 〈y1, . . . , ym〉 such that Set(l) = Set(l′) and y1 �St . . . �St ym.

Two trees defined by two nodes n1 and n2 in a store St can be equal up to
node identity, in which case we say that they are deep equal and denote this as
DpEqSt(n1, n2).

4 Semantics of Expressions

Similar to LiXQuery, the semantics of LiXQuery+ expressions is specified by
means of inference rules. Each rule consists of a set of premises and a conclusion

of the form (St,En) ` e ⇒E (St′, v, l). The free variables in the rules are assumed
to be universally quantified. Due to the lack of space we only give the rules for
the expressions that are new in LiXQuery+ and illustrate how the other rules
can be obtained.

4.1 Basic Update Expressions

The delete results into a set of pending updates which will delete the incoming
edges of the selected nodes.

(St, En) ` e ⇒E
(St1, 〈n1, . . . , nm〉, l)

(St, En) ` delete e ⇒E
(St1, 〈〉, l ◦ 〈del(n1), . . . , del(nm)〉)

The rename and replace value expressions evaluate two subexpressions
which have to result in respectively one node and one string value. Similar to
the delete expression we add new primitive operation to the list of pending
updates. For the exact inference rules we refer to the technical report[6]. An
insert expression makes a copy of the nodes that are selected by the first
subexpression and puts these copies at a certain place w.r.t. the node that is
returned by the second expression. The position is indicated by either “before”,
“after”, or “into”. In case of insertion into a node n, the relative place of the
copied nodes among the children of n is chosen arbitrarily, but the relative order
of the copies has to be preserved. We show the semantics for the “insert ...
into ...” expression.

(St, En) ` e1 ⇒E
(St1, 〈n〉, l1)

(St1, En) ` e2 ⇒E
(St2, 〈n1, . . . , nm〉, l2) St

′
= St2 ∪ St

′
1 ∪ . . . ∪ St

′
m

DpEqSt′ (n1, n
′
1) . . . DpEqSt′ (nm, n

′
m) V

n′1
St′

1
= VSt′

1
. . . V

n′m
St′m

= VSt′m

(St, En) ` insert e2 into e1 ⇒E
(St3, 〈〉, l1 ◦ l2 ◦ 〈insInto(n, 〈n′1, . . . , n

′
m〉)〉)

4.2 Snap Expression

The snap operation comes in three different flavours: ordered, unordered deter-
ministic and unordered nondeterministic. The ordered mode specifies that the
pending updates have to be applied in the same order as they were generated,
the unordered deterministic mode requires that the list of pending updates has
to be execution-order independent, while the unordered nondeterministic mode
applies the pending updates in an arbitrary order.

(St, En) ` e ⇒E
(St

′
, v, l) St

′ ` l ⇒U
St

′′

(St, En) ` snap ordered { e } ⇒E
(St

′′
, v, 〈〉)

(St, En) ` e ⇒E
(St

′
, v, l) Bag(l) = Bag(l

′
) St

′ ` l
′ ⇒U

St
′′

(St, En) ` snap unordered nondeterministic { e } ⇒E
(St

′′
, v, 〈〉)

(St, En) ` e ⇒E
(St

′
, v, l)

l is execution-order independent Bag(l) = Bag(l
′
) St

′ ` l
′ ⇒U

St
′′

(St, En) ` snap unordered deterministic { e } ⇒E
(St

′′
, v, 〈〉)

4.3 Transform Expression

The transform expression first evaluates the first subexpression which should
result in a sequence of nodes. Then it makes deep copies of each of these nodes,
placed relatively in document order as the original nodes were ordered in the
result sequence. The second subexpression is evaluated with the variable bound
to the deep-copied nodes, and if the resulting list of pending updates only af-
fects nodes in the deep copies then these are applied to the store and the last
subexpression is evaluated.

(St, En) ` e1 ⇒E
(St1, 〈n1, . . . , nm〉, 〈〉)

St
′
1 = St1 ∪ St1,1 ∪ . . . ∪ St1,m DpEqSt′

1
(n1, n

′
1) . . . DpEqSt′

1
(nm, n

′
m)

V
n′1

St1,1
= VSt1,1 . . . V

n′m
St1,m

= VSt1,m
n
′
1 �St′

1
n
′
2 �St′

1
. . . �St′

1
n
′
m

En1 = En[v(s) 7→ 〈n′1, . . . , n
′
m〉] (St

′
1, En1) ` e2 ⇒E

(St2, v, l)

Targets(l) ⊆ VSt′
1
− VSt1 St2 ` l ⇒U

St
′
2 (St

′
2, En1) ` e3 ⇒E

(St3, v
′
, 〈〉)

(St, En) ` transform copy $s:= e1 modify e2 return e3 ⇒E
(St3, v

′
, 〈〉)

4.4 Other Expressions

To illustrate the semantics of expressions already in LiXQuery we present the
reasoning rules for the concatenation and the for-expression. The other rules
can be obtained from those in [7] in a similar way by extending them such that
the lists of pending updates of the subexpressions are concatenated.

(St, En) ` e1 ⇒E
(St1, v1, l1) (St1, En) ` e2 ⇒E

(St2, v2, l2)

(St, En) ` e1, e2 ⇒E
(St2, v1 ◦ v2, l1 ◦ l2)

(St, En) ` e ⇒E
(St0, 〈x1, . . . , xm〉, l) (St0, En[v(s) 7→ x1][v(s

′
) 7→ 1]) ` e

′ ⇒E
(St1, v1, l1)

. . . (Stm−1, En[v(s) 7→ xm][v(s
′
) 7→ m]) ` e

′ ⇒E
(Stm, vm, lm)

(St, En) ` for $s at $s
′
in e return e

′ ⇒E
(Stm, v1 ◦ . . . ◦ vm, l ◦ l1 ◦ . . . ◦ lm)

5 Expressive Power of Fragments of LiXQuery+

In this section we compare the relative expressive power of a number of constructs
of LiXQuery+ by looking at different fragments of the language that do or do
not contain these constructs.

5.1 LiXQuery+ Fragments

The motivation for these fragments follows by their correspondence to existing
query and update languages for XML, based on XQuery. In Section 6 we discuss
the relation between these fragments and the existing update languages. First,
we define the following four fragments of LiXQuery+:

– The fragment XQ corresponds intuitively to non-recursive XQuery. More
precisely, the non-terminals 〈Insert〉, 〈Rename〉, 〈Replace〉, 〈Delete〉, 〈Snap〉,
and 〈Transform〉 are removed from LiXQuery+, as well as 〈FunDecl〉.

– The fragment XQt corresponds to non-recursive XQuery extended with
transformations. It is defined as LiXQuery+ without 〈Snap〉 and 〈FunDecl〉
and where 〈Insert〉, 〈Rename〉, 〈Replace〉, and 〈Delete〉 only occurs within
the body of the “modify” clause of a 〈Transform〉 expression.

– The fragment XQ+ corresponds to non-recursive XQuery extended with
the update operations, but without the 〈Snap〉 operation. It is defined as
LiXQuery+without 〈Snap〉 and 〈FunDecl〉.

– The fragment XQ! corresponds to non-recursive XQuery extended with up-
dates and snap operations. It is defined as LiXQuery+ without 〈FunDecl〉.

We can add (recursive) function definitions to all these fragments, which we
denote by adding a superscript R to the name of the fragments.

5.2 Expressiveness Relations between Fragments

It seems intuitive to say that two programs express the same update function
if they map the same input stores to the same output stores. However, a pro-
gram can make changes to the store that cannot be observed, since the modified
nodes are not reachable through the result sequence of the program or through
document calls. Therefore, we assume that the result store of a program does
not contain nodes that are no longer reachable, since such nodes can be safely
garbage collected. More precisely, the garbage collection is defined by the func-
tion Γv that, given a sequence v, maps a store St to a new store St′ by removing
all trees from St for which the root node is not in the range of δSt and for which
no node of the tree is in v.

We now define the query and update relations that correspond to LiXQuery+

programs. Since programs can return sequences over another store than the input
store, we only consider mappings from a store to a sequence of atomic values
in this paper, i.e., we only look at queries that do not return nodes. The query
relation of a LiXQuery+ program p is the relation RQ

p between stores St and
sequences of atomic values v such that (St, v) ∈ RQ

p ⇔ ∃St′ : (St, (∅, ∅, ∅,⊥)) `
p ⇒ (St′, v). The update relation of a LiXQuery+ program p is the relation RU

p

between stores St and St′ such that (St, St′) ∈ RU
p ⇔ ∃St′′, v : (St, (∅, ∅, ∅,⊥

)) ` p ⇒ (St′′, v) ∧ Γv(St′′) = St′.
The following two partial orders are defined on LiXQuery+ fragments:

- XF1 �Q XF2 iff ∀p ∈ XF2 : ∃p′ ∈ XF1 : RQ
p = RQ

p′ .
- XF1 �U XF2 iff ∀p ∈ XF2 : ∃p′ ∈ XF1 : RU

p = RU
p′ .

Based on these partial orders �Q and �U we define in the usual way the strict
partial orders �Q and �U , and the equivalence relations ≡Q and ≡U which are
called query-equivalence and update-equivalence, respectively. Note that XF1 6≡Q

XF2 ⇒ XF1 6≡U XF2, since we can translate in all fragments a result sequence
of atomic values to a node containing a sequence of nodes that each contain one
of the atomic values, and vice versa.

XQ
XQt

XQ+

XQ!

XQR

XQR
t

XQR
+

XQR
!

XQ

XQt

XQ+

XQ!

XQR

XQR
t

XQR
+

XQR
!

(a) (b)

Fig. 3. Relations between the fragments in terms of expressive power of (a) mappings
from stores to sequences of atomic values and (b) mappings from stores to stores.

Theorem 1. For the graph in part (a) of Fig. 3 and for all fragments XF1, XF2

it holds that XF1 ≡Q XF2 ⇐⇒ XF1 and XF2 are within the same node, and
XF1 �Q XF2 ⇐⇒ there is a directed path from the node containing XF2 to
the node containing XF1.

Proof. (Sketch) This theorem will be proven in the remainder of this section. We
now sketch which lemmas are needed to complete this proof. From Lemma 4 it
follows that XQ ≡Q XQt ≡Q XQ+, and from Lemma 2, Lemma 3, and Lemma 5
it follows that XQR ≡Q XQR

t ≡Q XQR
+ ≡Q XQR

! . From Lemma 7 and Lemma 8
follows that XQ! �Q XQ+ and from Lemma 9 follows that XQR

! �Q XQ!.

Theorem 2. For the graph in part (b) of Fig. 3 and for all fragments XF1, XF2

it holds that XF1 ≡U XF2 ⇐⇒ XF1 and XF2 are within the same node, and
XF1 �U XF2 ⇐⇒ there is a directed path from the node containing XF2 to
the node containing XF1.

Proof. (Sketch) This theorem will be proven in the remainder of this section.
We now sketch which lemmas are needed to complete this proof. From Lemma 3
it follows that XQR ≡U XQR

t and from Lemma 2 follows that XQR
+ ≡U XQR

! .
From Lemma 7 and Lemma 8 follows that XQ! �U XQ+ and from Lemma 9
follows that XQR

! �U XQ! and XQR
t �U XQt. Moreover, we know by Lemma 6

that XQ+ �U XQt and XQR
+ �U XQR

t . By Lemma 10 and Lemma 11 we get
that XQt �U XQ. Finally, it follows from Lemma 6 and Lemma 9 that XQ!

and XQ+ are incomparable with XQR.

5.3 Expressibility Results

In this subsection, we present the lemmas that are used to prove the query- or
update-equivalence of LiXQuery+ fragments.

Lemma 2. For all XQR
! programs p it holds that there is a XQR

+ program p′

that has the same update relation and the same query relation.

Proof. (Sketch) In [8] we have shown that node construction in XQR does not
add expressive power for “node-conservative deterministic queries”. This was
shown by encoding the store into a sequence of atomic values and simulating
expressions with node construction to manipulate this encoded store. Using a
similar simulation technique we can encode the output store, output sequence
and list of pending updates in one sequence. Note that we have to use recursive
functions to simulate the behavior of for-loops, since the encoded result store of
one iteration has to be the input encoded store of the next iteration. Moreover,
to ensure a correct computation, we have to apply updates on the encoded
store as soon as they are applied in the XQR

! expression. Note also that in
the simulation we have to use node construction as source of non-determinism
in order to have the same update relations. This can be done by expressions
like (element {"a"} {()}) << (element {"a"} {()}). Finally, we obtain the
result store by performing the (encoded) lists of pending updates and performed
updates in the correct order.

Lemma 3. For all XQR
t programs p it holds that there is a XQR program p′

that has the same update relation and the same query relation.

Proof. (Sketch) We use the same simulation as sketched in the proof of Lemma 2.
Since the nodes of the input store are not modified by transform-expressions, we
only extend the input store. The result store can be obtained at the end of the
simulation by using a recursive function that creates new nodes for nodes that
are in the encoded output store but not in the input store.

Lemma 4. For all XQ+ programs p it holds that there is a XQ program p′ that
has the same query relation.

Proof. (Sketch) Similar to the proof of Lemma 2 and Lemma 3 we can simulate
all expressions to work on an encoded store. However, since we now do not have
recursive functions to do the simulation, we have to keep track of the transitive
closure of E, which we can obtain by using the descendant axis. It can be shown
that all updates that are expressible in XQ+ can be simulated, since we can
express the corresponding updates on the encoded descendant relation in XQ.

Lemma 5. For all XQR
! programs p it holds that there is a XQR program p′

that has the same query relation.

Proof. (Sketch) The proof of this lemma is similar to that of Lemma 2 and
Lemma 4. However, at the end we do not have to create the result store, but it
suffices to return the result sequence, which only contains atomic values.

5.4 Inexpressibility Results

We now present the lemmas that are used to show that two LiXQuery+ fragments
are not query- or update-equivalent.

Lemma 6. There are XQ+ programs which have an update relation that we
cannot express by a program in XQR

t .

Proof. (Sketch) This can easily be seen by the fact that in XQ+ we can modify
nodes from the input store, while we cannot do this in XQR

t .

Lemma 7. For all XQ+ programs p it holds that the largest number (atomic
value) in the output sequence is polynomially bounded by the number of nodes
in the input store, the length of the longest sequence in the environment and the
largest number (atomic value) in both the store and the environment.

Proof. (Sketch) This can be shown by induction on the structure of the program.
In [4] this was shown for the fragment that we refer to as XQ in this paper.
From the simulation used to prove Lemma 4 it holds that the same polynomial
upper bounds also holds for XQ+ expressions, because the size of the simulating
expression is polynomially bounded by the size of the simulated expression.

Lemma 8. XQ! can express all primitive recursive functions over integers.

Proof. (Sketch) We can give a translation that maps primitive recursive func-
tions to XQ! expressions with one free variable, which models the arguments of
such functions, i.e., tuples of natural numbers. It can easily be seen that the zero
function, the succesor function, the projection and the composition can already
be expressed in XQ. Primitive recursion can be simulated in XQ! by using the
for-expression and the snap operation, which allows us to do bounded iteration.

Lemma 9. There are programs in XQR which have a query relation that we
cannot express by a program in XQ!.

Proof. (Sketch) It can be shown that all XQ! programs can be simulated by
Turing machines that always halt, while XQR is Turing-complete.

Lemma 10. For all XQ programs there is a depth d such that all nodes that are
in the result store, but not in the input store and that have at least d ancestors
are deep-equal to nodes in the input store.

Proof. (Sketch) This property can be shown by induction on the structure of the
program. Only node construction can create new nodes and the result is a new
tree in the store, where all nodes except for the root are deep-equal to nodes
that already existed, i.e., that are in the result store of the subexpression.

Lemma 11. The property of Lemma 10 does not hold for XQt programs.

Proof. (Sketch) This XQt program does not satisfy the property of Lemma 10:

transform copy $x := doc("a.xml")

modify (for $y in $x//a return rename $y as "b")

return $x

6 Relation to Other XQuery-based Update Languages

In this section we briefly discuss the relationship of various LiXQuery+ fragments
and a number of existing proposals that extend XQuery with updates.

The first proposal that we consider is UpdateX [10, 1] which corresponds
closely to XQ+ and with XQR

+ if recursive function definitions are allowed.
They have a notion similar to a list of pending updates and the updates in this
list are applied in the order that they are generated, as in XQ+. The constructs
of XQ+ that are not in UpdateX include transform and rename operations.
However, as can be seen from the proof of Lemma 4 it is possible to simulate
programs that contain transform expressions with programs that do not.

The second proposal that we consider is XQuery! which is an extension of
UpdateX with a snap operation. Hence it closely corresponds to XQ! and with
XQR

! if recursive function definitions are allowed. A small difference is that in
UpdateX the semantics of the implicit top-level snap expressions is of the type
unordered deterministic, a mode that they call conflict-free.

The final and third proposal that we consider is the XQuery Update Fa-
cility which corresponds closely to XQ+ and with XQR

+ if recursive function
definitions are allowed. The semantics of this proposal differs in some details
with the semantics of LiXQuery+. For example, their semantics of the “replace
value of” operation allows to change the content of element nodes, which can
be simulated in LiXQuery+. This proposal has an explicit “transform” opera-
tion, which the other two proposals lack but is included in XQ+. An important
difference is that at the time of writing the working draft does not allow to mix
updating and non-updating expressions anymore, i.e., queries and updates are
split. We propose that, as is demonstrated by the presented syntax and semantics
of LiXQuery+, it is straightforward to define the semantics of a language that
does not have this restriction. Moreover, it can be shown that for all LiXQuery+

programs p there exists an equivalent program p′ where all queries and updates
are split, i.e., there are no subexpressions that return both a non-empty result
sequence and a non-empty list of pending updates. To prove this, we can use
again a simulation of the store and list of pending updates, similar as used in
the proof of Lemma 5. We can do this as follows. First we declare a variable
as the encoded result of the simulating expression. Note that the simulating ex-
pression generates no real pending update list, only an encoded one. Then we
extract and perform the encoded list of pending updates, and bind the resulting
empty sequence to a variable. Finally, we can extract the result sequence from
the encoded result sequence and return this as result of the program.

7 Conclusion

In order to investigate the relative expressive power of some special constructs
that were introduced in XQuery-based update languages, we define LiXQuery+

which combines these constructs. The syntax and semantics of this language is
formally defined, demonstrating that this can be done in a concise and complete

fashion. We compare several subsets of LiXQuery+ in terms of queries and up-
dates that can be expressed. One observation that is made is that the “snap”
operation adds expressive power, even for expressing queries, because it allows
the simulation of primitive recursive functions without using recursive function
definitions. Another observation is that the “transform” operation allows the
construction of new trees that would require recursion in XQuery.

In future research we intend to look at the relative expressive power of the
different types of “snap” operations. Another subject of interest is finding better
characterizations of the expressive power of the presented fragments. For exam-
ple, we suspect that XQ! can express exactly all primitive recursive functions
over XML trees.

References

1. M. Benedikt, A. Bonifati, S. Flesca, and A. Vyas. Adding updates to XQuery:
Semantics, optimization, and static analysis. In XIME-P, 2005.

2. D. Chamberlin, D. Florescu, and J. Robie. XQuery update facility. W3C Working
Draft, 2006. http://www.w3.org/TR/xqupdate/.

3. G. Ghelli, C. Ré, and J. Siméon. XQuery!: An XML query language with side
effects. In DataX 2006, Munich, Germany, 2006.

4. J. Hidders, S. Marrara, J. Paredaens, and R. Vercammen. On the expressive power
of XQuery fragments. In DBPL 2005, Trondheim, Norway, 2005.

5. J. Hidders, J. Paredaens, and R. Vercammen. Comparing the expressive power of
XQuery-based update languages. Technical Report TR UA 2006-10, University of
Antwerp, Dept. of Mathematics and Computer Science, 2006. http://adrem.ua.

ac.be/pub/TR2006-10.pdf.
6. J. Hidders, J. Paredaens, and R. Vercammen. LiXQuery+: an XQuery-based up-

date language. Technical report, University of Antwerp, Dept. of Mathematics and
Computer Science, 2006. http://adrem.ua.ac.be/pub/lixqueryplus.pdf.

7. J. Hidders, J. Paredaens, R. Vercammen, and S. Demeyer. A light but formal
introduction to XQuery. In XSym 2004, Toronto, Canada, 2004.

8. W. Le Page, J. Hidders, P. Michiels, J. Paredaens, and R. Vercammen. On the
expressive power of node construction in XQuery. In WebDB 2005, 2005.

9. D. Obasanjo and S. B. Navathe. A proposal for an XML data definition and
manipulation language. In Proc. of EEXTT 2002, London, UK, 2003.

10. G. M. Sur, J. Hammer, and J. Siméon. UpdateX - an XQuery-based language for
processing updates in XML. In PLAN-X, 2004.

11. I. Tatarinov, Z. G. Ives, A. Y. Halevy, and D. S. Weld. Updating XML. In SIGMOD
Conference, 2001.

