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ABSTRACT
The problem of computing all pairwise similarities in a large collec-
tion of vectors is a well-known and common data mining task. As
the number and dimensionality of these vectors keeps increasing,
however, currently existing approaches are often unable to meet
the strict efficiency requirements imposed by the environments
they need to perform in. Real-time neighbourhood-based collabora-
tive filtering (CF) is one example of such an environment in which
performance is critical.

In this work, we present a novel algorithm for efficient and exact
similarity computation between sparse, high-dimensional vectors.
Our approach exploits the sparsity that is inherent to implicit feed-
back data-streams, entailing significant gains compared to other
methods. Furthermore, as our model learns incrementally, it is nat-
urally suited for dynamic real-time CF environments. We propose
a MapReduce-inspired parallellisation procedure along with our
method, and show how even more speed-up can be achieved. Addi-
tionally, in many real-world systems, many items are actually not
recommendable at any given time, due to recency, stock, seasonality,
or enforced business rules. We exploit this fact to further improve
the computational efficiency of our approach. Experimental eval-
uation on both real-world and publicly available datasets shows
that our approach scales up to millions of processed user-item
interactions per second, and well advances the state-of-the-art.
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1 INTRODUCTION
Many important recommender system use-cases are highly dy-
namic in nature: news, movie, music or retail recommenders all
want to incorporate new behaviour into their models as quickly as
possible. With new user-item interactions arriving at high rates, the
need for dynamic models that can efficiently handle incremental
updates in approximately real time becomes more and more appar-
ent [9]. In the context of highly dynamic environments where items
have limited lifetimes, this issue becomes even more pressing. News
websites typically only want to recommend recent articles, and in-
teractions with newly written articles need to be incorporated into
the model as quickly as possible. Auction websites frequently deal
with items that are only available for a few days and face the same
concerns. Many more examples exist. Traditional Collaborative Fil-
tering (CF) approaches fall short in this setting, as frequent model
updates often become too time consuming. Typically, the entire
CF model will be retrained at certain fixed points in time, after
which the updated model is then deployed. For highly dynamic use-
cases, the time between subsequent model updates should ideally
be kept minimal, in order to allow information from new incoming
user-item interactions to be incorporated into the recommenda-
tion process as soon as possible. However, as more and more data
arrives, the iterative recomputation of the entire model becomes
more and more costly as well, putting a hard upper limit on the
frequency with which model updates can be performed. We see a
fundamental divide here, and such a trade-off is unacceptable for
many present-day applications. A clear need arises for CF models
that can instantaneously process new transactions and incorporate
them into the model in an incremental manner, while avoiding the
periodical re-processing of old data.

In this paper, we present a novel exact algorithm to tackle the
problem of efficient similarity computation for high-dimensional
and fast changing sparse implicit feedback data streams. Such algo-
rithms are at the basis of nearest-neighbour-based CF techniques,
which have recently been shown to attain competitive results with
more advanced state-of-the-art approaches, such as recurrent neu-
ral networks [7]. On top of this, they provide naturally explainable
recommendations [22]. As a consequence, they remain a popu-
lar approach to recommendation. Currently existing alternative
methods for efficient similarity computation often make use of
approximations, sacrificing accuracy for efficiency [6, 12, 21]. Our
algorithm, on the other hand, computes all exact item-item simi-
larities. The algorithm learns incrementally, making it naturally
suitable for real-time CF environments. We exploit the data’s spar-
sity to avoid unnecessary iterative computations and propose the
use of an inverted index to quickly identify affected pairs of items
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when updates arrive. Our approach is presented in a MapReduce-
inspired formulation, demonstrating its scalability.

As the number of users and items in present-day real world sys-
tems quickly scales up to hundreds of thousands and millions, it
often becomes undesirable or unnecessary to keep updated recom-
mendation scores for all catalogued items in the database. Again,
in the case of a news website recommendation engine, scores for
old articles will be irrelevant as only recent items are allowed to
be recommended. Or, in the case of a retail environment: recom-
mending items that are currently out of stock is to be avoided.
Media recommenders that deal with expiring licenses encounter
the same issues. As such, for many different use-cases, the set of
recommendable items at a given time is a much smaller subset of the
full item collection. This imbalance is exploited by our algorithm,
as we compute and maintain recommendation scores only for those
items that are recommendable. We show that incorporating this
natural aspect into our algorithm has dramatic effects on system
throughput.

To summarise, the main contributions of this paper are:
(1) We introduce a novel algorithm, called “Dynamic Index”, for

efficiently computing all pairwise similarities in a collection
of sparse high-dimensional vectors, which are typical for
recommender systems.

(2) Our approach learns incrementally, making it suitable for
real-time environments.

(3) We further exploit non-recommendable items to improve
the computational efficiency of our method.

(4) By presenting our algorithm in a MapReduce-inspired for-
mulation, it is easily parallellised and scalable.

(5) Experimental results on real-world data demonstrate the
efficiency and performance of our methodology.1

2 RELATEDWORK
Nearest-neighbour or similarity join processing is not a new prob-
lem, and has been thoroughly investigated in the last 15 to 20 years.
Most recent trends for speeding up computation tend to either fo-
cus on approximate solutions [12], distributed algorithms [31, 32]
or incremental approaches [25, 30]. The first notable work in the
latter area is the kNNJoin+ algorithm [30], which uses the iDistance
similarity measure [28, 29] and a Sphere-tree index to efficiently
reduce the high-dimensional search to a single dimension. However,
when updating two points i and j, the distance between these two
points still needs to be re-evaluated in the high-dimensional space
before the index can be updated to enable efficient nearest neigh-
bour search. Moreover, this work was aimed at a dimensionality
ranging from 20 to 50 and only 100 000 data points, whereas we
focus on much larger but very sparse datasets consisting of millions
of dimensions, as is typical for recommender systems.

Yang et al. propose a method called HDR-tree for incremen-
tally updating nearest neighbour joins in the context of recom-
mender systems [25], exploiting the distance-preserving properties
of Principal Component Analysis (PCA). Their algorithm focuses
on content-based filtering with a strict window size of recent items
that they consider for recommendations, whereas our algorithm
focuses on collaborative filtering with a much more flexible set
1Code available at: https://github.com/olivierjeunen/dynamicindex

of recommendable items that can change over time. Furthermore,
they require a fixed set of users, which is too restrictive for the
more typical setting we consider. In the context of CF algorithms for
streaming scenarios, multiple online learning approaches for matrix
factorization, learning-to-rank and neural network models have
been presented as well [5, 17, 23, 24]. Several incremental or online
learning algorithms specifically for nearest-neighbour-based CF
models have also been published in recent years. Liu et al. propose
an incremental learning algorithm that includes temporal infor-
mation in their novel similarity measure to tackle concept drift in
users’ preferences over time [10]. The work of Luo et al. focuses on
reducing model storage complexity and increasing rating prediction
accuracy by incrementally learning biases on top of similarities [11].
TencentRec is a framework implementing several well-known rec-
ommendation algorithms in a streaming environment to provide
real-time recommendations [6]. Their variant prunes probable dis-
similar items, leading to an approximate solution instead of an exact
one. Another neighborhood-based approach is proposed by Subbian
et al., where a probabilistic data structure is used to approximate
item-item similarities and provide recommendations in a real-time
manner [21]. Sreepada and Patra present a novel similarity mea-
sure that is incrementally learned more easily than other common
similarity measures, called item tendency [20].

However, most of the above-mentioned methods [10, 11, 20, 21]
rely on explicit-feedback data, which is vastly different than the
implicit-feedback data use-case we tackle with this work in terms
of similarity measure computation as well as general aspects of the
dataset. Moreover, several of these methods [6, 21] use approxima-
tions to speed up computation time, at the cost of similarity- (and as
a consequence recommendation-) accuracy. In this work, we focus
on the task of exact nearest-neighbour and similarity computations
from implicit-feedback data, without the use of any approximations
or need of explicit rating data. In addition, with our approach, non-
relevant items or users are not considered at computation time,
which allows us to work directly on the high-dimensional space, as
we can take maximal advantage of the highly sparse nature of the
data. Finally, as our algorithm only needs a simple inverted index
to efficiently identify affected pairs of items when updates arrive,
we can formulate it in accordance with the MapReduce paradigm,
ensuring scalability through parallel processing [2].

3 BACKGROUND
3.1 Preliminaries
Let U be a set ofm users and I a set of n items. Our work focuses
on transactional data with implicit feedback. More specifically: we
work with a set of user-item pairs (u, i) ∈ U × I denoting that user
u has consumed item i , be it in the form of a product purchase, a
movie streaming, a click on a news article or otherwise. We call
such preference expressions pageviews, and represent them as a
tuple (u, i, tc ), where tc denotes the consumption time. The set of
all pageviews up to, but not including time t is denoted by Pt . We
can represent these pageviews in the form of a sparse user-item
matrix Pt ∈ {0, 1}m×n form unique users and n unique items. We
omit the timestamp t when it is clear from context. Rows in this
matrix are users represented by the items they have consumed, and
vice versa for columns: Pu,i = 1 if and only if user u has consumed

https://github.com/olivierjeunen/dynamicindex
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Algorithm 1 Naive Baseline

Input: A set of pageviews |Pt |.
Output: An inverted index from items to usersK , a matrix of item

similarities S.
1: K ← ∅, S← I
2: for (u, i, tc ) ∈ Pt do
3: K[i] = K[i] ∪ {u}
4: for i ∈ K do
5: for j ∈ K do
6: if i < j then
7: Si, j ←

|K[i]∩K[j] |
√
|K[i] | ·

√
|K[j] |

8: return K, S

item i and Pu,i = 0 otherwise. When we represent an item i by
the i-th column-vector of the matrix Pt , we denote it as ®i . The set
of users that have consumed a specific item i ∈ I is denoted asUi .
Vice versa, the set of items that a certain user u ∈ U has consumed
is denoted as Iu .

Between items i, j ∈ I , similarity is expressed as the well-known
cosine similarity: cos(®i, ®j). The goal at hand is to efficiently and
incrementally compute and store the similarity cos(®i, ®j) for every
such item-pair. In a worst-case scenario, this would incur a memory
overhead of n ·(n−1)2 item similarities that need to be stored. In many
real world datasets, the user-item matrix P is extremely sparse. For
many implicit-feedback datasets, this can lead to sparsity in the
item co-occurence matrix M. We denote the sparsity of any matrix
by the function σ (·). Partially to alleviate spatial complexity issues,
and partially to exploit this inherent sparseness and avoid unnec-
essary iterative computations on zero-values, we propose the use
of sparse data-structures throughout the algorithms presented in
the following sections. Finally, familiarity with item-based nearest
neighbour collaborative filtering approaches is assumed [19].

3.2 Baseline Approaches
The naive approach to computing cosine similarities between pairs
of items occurring in a given set of pageviews Pt is laid out in
Algorithm 1. First, an inverted index from every item i to the set of
users that have seen that item, Ui , is constructed. Subsequently, the
algorithm iterates over said sets of users for every item-pair i, j ∈ I
and computes the sparse dot-product ®i · ®j, which is equivalent to
the intersection of their user-sets |Ui ∩ Uj |. Because of the sym-
metric nature of our similarity measure, only half of the iterations
lead to actual computations (line 6). Note that only the size of the
intersection needs to be computed, and not the set intersection
itself. Efficient algorithms with linear time complexity exist for this
operation over sorted inverted indices. However, the naive baseline
approach explicitly computes all n ·(n−1)2 sparse vector dot-products,
even when a significant amount of them are irrelevant. For many
(sparse) real world datasets, this is extremely inefficient.

An improved baseline, specifically tuned to the setting of sparse
data is presented in Algorithm 2. On top of the original item-to-user
inverted index, we now construct a user-to-item inverted index as
well. As a result, we can deconstruct the sparse vector dot-product,
and iteratively count which item-pairs i, j ∈ I also appear in Iu for
every user u ∈ Ui . As |Ui | ≪ |U | in sparse datasets, this entails
a significant efficiency advantage. Note that this baseline is less

Algorithm 2 Sparse Baseline

Input: A set of pageviews |Pt |.
Output: An inverted index from items to users K , an inverted

index from users to items L, a matrix of item similarities S.
1: K ← ∅, L ← ∅, S← I
2: for (u, i, tc ) ∈ Pt do
3: K[i] = K[i] ∪ {u}
4: L[u] = L[u] ∪ {i}
5: for i ∈ K do
6: for u ∈ K[i] do
7: for j ∈ L[u] do
8: if i < j then
9: Si, j += 1
10: for i, j ∈ S do
11: if Si, j > 0 then
12: Si, j /=

√
|K[i]| ·

√
|K[j]|

13: return K,L, S

memory efficient than the naive baseline, as it needs a second
inverted index to efficiently exploit the sparse nature of the data. In
both baseline algorithms, the square roots of the item-norms

√
|Ui |

can be pre-computed for improved efficiency.

4 METHODOLOGY
4.1 Recommendable Items
Traditionally, recommender systems are seen as functions that pre-
dict some relevance score specific to a user-item pair: fP : U × I →
[0, 1]. Here, the recommender system represented by the function
f is dependent on the user-item matrix P, hence the subscript. In
real-world present-day systems, the number of users and items can
quickly scale up to hundreds of thousands and even millions. It is
clear that the model represented by the function fP becomes much
more complex to compute and will take up much more memory
to store in the case of ever-growing user- and item-sets and the
matrix P. We identify two possible methods to alleviate this issue:
either reduce the size of the training matrix P, or reduce the com-
plexity of fP by putting restrictions on the set of items to compute
recommendation scores for. Although the first option opens up
interesting directions for future research in how datasets can be
optimally summarised with minimal loss of information, we focus
on the latter. We define our model as follows: fP : U × R→ [0, 1],
where R ⊆ I denotes the set of recommendable items. This set can
be highly dynamic, and depends on any number of factors such as
recency, seasonality, stock and much more. Throughout the rest of
this manuscript, Rt will represent the set of recommendable items
at time t . When omitted, all items are considered recommendable
(Rt = I ).

4.2 Incremental Similarity Computation
Papagelis et al. present an incremental user-based CF method, fo-
cused on explicit feedback [15]. This work has later been adapted by
Yang et al. to allow incremental updates of item-based CF methods
relying on explicit feedback [27]. Inspired by their work, our work
focuses on incremental updates with implicit feedback. We split
cosine similarity into three key components and incrementally up-
date these components instead of recomputing the entire similarity
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after every update. Equation 1 shows the formula for computing
the cosine similarity between two item vectors, where ®ik represents
whether user k has consumed item i .

cos(®i, ®j) =
®i · ®j®i 
2

®j 
2

=

m∑
k=1
®ik ®jk√

m∑
k=1
®i 2k

√
m∑
k=1
®j 2k

(1)

In the case of implicit feedback (0’s and 1’s) from transactional
data and the use of sparse data-structures, this formulation can
be rewritten as shown in Equation 2. Here, items i and j are no
longer explicitly represented by vectors in a user-dimensional space,
but rather as sets of users that have consumed these items. These
sets can be easily computed from the aforementioned historical
transaction data, as they are effectively a sparse column-wise rep-
resentation of the binary preference matrix P.

cos(®i, ®j) =
|Ui ∩Uj |√
|Ui | ·

√
|Uj |

(2)

Thus, item similarities can be directly computed when the set-
intersection between their respective user sets and their set sizes
are known. We exploit this formulation to reduce the problem of
incrementally updating item similarities to continuously updating
|Ui |, |Uj | and |Ui ∩Uj | for every pair of items i, j ∈ I . We denote
the vector containing all item-vectors’ l1−norms and the matrix
containing all item-pair intersections at time t as follows:

Nt ∈ N
n : Ni,t = |Ui,t |, and

Mt ∈ N
n×n : Mi, j,t = |Ui,t ∩Uj,t |.

The final formula for computing the similarity between two items
i, j at time t then becomes the following: cos( ®it , ®jt ) =

Mi, j,t√
Ni,t ·
√
Nj,t
.

SinceM is a symmetrical matrix, we can further improve perfor-
mance by using appropriate data structures.

4.3 The Dynamic Index Algorithm
Suppose we have a set of recommendable items Rt at time t . Define
Ut ⊆ U as the set of all users u that have ever seen an item that is
recommendable at time t :

Ut = {u |∃(u, i, s) ∈ Pt ∧ i ∈ Rt }.
Define At ⊆ Pt as the set of all pageviews by users in that set:

At = {(u, i, s) ∈ Pt |u ∈ Ut }.

At now holds all pageviews that are relevant to the intersections
|Ui ∩Uj | where either i or j is a recommendable item. Naturally,
when Rt = I ,At = Pt . Using Algorithm 3, we can compute the co-
occurrence matrix M, and thus all pair-wise similarities, efficiently.
The algorithm dynamically builds two inverted indices for every
user: one for all items recommendable at time t and one for all other
items. The idea of dynamically indexing the data rather than doing
this in a preprocessing step, is adopted from the work of Sarawagi
and Kirpal [18]. This approach enables us to exploit the sparsity
that is inherent to the data as we quickly identify those pairs of
items that are of interest, i.e. (i, j) where (1) either i or j ∈ Rt , and
(2) |Ui ∩ Uj | > 0, while avoiding unnecessary computations on
all other pairs of items. Note that this proposed algorithm is more

Algorithm 3 Dynamic Index
Input: A set of pageviews Pt , a set of recommendable items Rt .
Output: A matrix of item intersections M, a vector of items’

l1−norms N, an inverted index of users to rec. items Lr , an
inverted index of users to non-rec. items Ln .

1: M← 0, N← 0
2: ∀u ∈ U : Lr [u] ← ∅,Ln [u] ← ∅
3: for (u, i, s) ∈ Pt do
4: for j ∈ Lr [u] do
5: Mi, j += 1
6: if i ∈ Rt then
7: for j ∈ Ln [u] do
8: Mi, j += 1
9: Lr [u] = Lr [u] ∪ {i}
10: Ni += 1
11: else
12: Ln [u] = Ln [u] ∪ {i}
13: return M,N,Lr ,Ln
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Figure 1: A visualisation of incremental computation, in
comparisonwith the classical iterative variant. Asmore data
becomes available, iterative models need to be retrained
from scratch, with computation time ti+1. In contrast, on-
line or incremental methods, can update the existing model
after |∆P| new user-item interactions occur, requiring only
∆t time.

space-efficient than the Sparse Baseline shown in Algorithm 2: Pt
is indexed only once instead of twice.

As the inverted indices are dynamically built, the core algorithm
consists of a single for-loop over the set of pageviews. Consequently,
when a set of new user-item interactions ∆P arrives, the model can
be updated by executing lines 3-12 from Algorithm 3 on top of the
already initialised model computed on the data Pt . As |P | grows,
this benefit becomes increasingly important. Figure 1 provides some
visual intuition into this phenomenon.

As we have hinted at before,M is a symmetrical matrix. We avoid
explicitly incrementing Mj,i when incrementing Mi, j since they
will be represented as one number in an efficient implementation.
Additionally, the dynamically constructed inverted indices Lr and
Ln do not need to store the sets of items in an ordered manner,
improving further on runtime efficiency.

From an existing model M = {M,N,Lr ,Ln }, we can com-
pute all recommendable neighbours j of i with their respective
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Algorithm 4Merging two models (reduce)

Input: M, M′, N, N′, Lr , L′r , Ln , L′n .
Output: M, N, Lr , Ln .
1: M += M′

2: N += N′

3: for u ∈ L′r do
4: for i ∈ L′r [u] do
5: for j ∈ Lr [u] do
6: Mi, j += 1
7: for j ∈ Ln [u] do
8: Mi, j += 1
9: for u ∈ L′n do
10: for i ∈ L′n [u] do
11: for j ∈ Lr [u] do
12: Mi, j += 1
13: ∀u ∈ U : Lr [u] = Lr [u] ∪ L′r [u]
14: ∀u ∈ U : Ln [u] = Ln [u] ∪ L′n [u]
15: return M, N, Lr , Ln

cosine similarities as follows: cos(®i, ®j) = |Ui∩Uj |√
|Ui | ·
√
|Uj |
=

Mi, j√
|Ui | ·
√
Nj
.

It should be noted that |Ui | cannot simply be extracted from N,
since we have only computed these item norms from At ⊆ Pt . By
definition, this vector of item norms will be up to date for recom-
mendable items, but it might not be for non-recommendable items.
However, retrieving |Ui | from Pt is only needed when the actual
cosine similarity is important and not just the internal ranking
among neighbours. Since all similarities are divided by the constant
factor

√
|Ui |, it is trivial to see that the internal ordering will not be

impacted by this.

4.4 Parallellisation Procedure
From Algorithm 3, we can see a clear independence between the
contribution of different users to the similarity of an item-pair. As
®i · ®j equals the number of users that have consumed both i and j,
it is easy to see that a pageview (u, i, s) only has to be correlated
with other items j seen by user u. This insight, albeit trivial, al-
lows the computation of Algorithm 3 to be easily and efficiently
parallellised following the MapReduce paradigm [2]: if the sets of
users processed by every map-process are mutually disjoint, the
reduce-process effectively consists of a summation of the different
matrices M and vectors N.

LetM = {M,N,Lr ,Ln } be a model, as obtained through Algo-
rithm 3. Figure 2 visualises the MapReduce-inspired parallellisation
procedure we adopt in this work. With n available cores, Algo-
rithm 3 generates n different models in parallel, as shown in the
top row of Figure 2. As this step is embarrasingly parallel, this is
the so-called Map-procedure. We then go on to recursively merge
models in parallel, until we obtain one final model. This is visualised
in the subsequent rows of Figure 2, and correlates with the Reduce-
procedure. Algorithm 4 presents the process to correctly merge two
modelsM andM ′. After i iterations of parallel reduce-processes
have been completed, n

2(i−1) models remain. Ergo, log2(n) iterations
of parallel reduce steps are required to obtain a single final model.
From Algorithm 4, it is clear to see that most of the complexity
comes from correlating items that a given user has seen in model
M ′ with items the same user has seen inM. When parallellising

…1 2 
n−1 

n

1
 n

2(i−1)
…

 

…



Figure 2: A visualisation of the MapReduce-inspired par-
allellisation procedure adopted in this work. Assuming n
indepedent map-processes, n models {M1, . . . ,Mn } are ob-
tained through Algorithm 3, and subsequently recursively
merged throughAlgorithm 4. After i iterations of the reduce
step, n

2(i−1) models remain. Consequently, log2(n) reduce iter-
ations are required.

the initial similarity computation, we therefore ensure that the data
used for all map-processes and models {M0, . . . ,Mn } consists of
entirely disjoint sets of users: |U ∩U ′ | = ∅. However, for incremen-
tal model updates, this is less straightforward: as the new model
M ′ is trained on newly incoming interactions, we have no way of
ensuring that the intersection between U and U ′ is kept minimal.
As a consequence, the computational complexity of the reduce-step
grows significantly, and with it the overhead of the parallellisation
procedure.

4.5 Incremental Model Updates with Dynamic
Recommendability

At time t + 1, the model needs to be updated for a new set of
recommendable items Rt+1. As the set of recommendable items
changes, the set of users with interactions that are relevant to these
items needs to be re-evaluated as well. We compute Ut+1 analogous
to the previous iteration: Ut+1 = {u |(u, i, tc ) ∈ Pt+1 : i ∈ Rt+1}.
At+1 is initialised as the empty set ∅. Three different possibilities
for every user u in Ut ∪ Ut+1 emerge:

Case u ∈ Ut\Ut+1: The user u was relevant in the previous
iteration, but no longer is. Since their inverted indices Lr [u] and
Ln [u] will not be needed during this iteration, we remove them
out of memory.

Caseu ∈ Ut∩Ut+1: The useru was relevant and still is. As allu’s
interactions up until time t were already incorporated in the model,
we only need to take into account new interactions between time t
and t + 1: At+1 = At+1 ∪ {(u, i, tc ) ∈ Pt+1\Pt |u ∈ Ut+1 ∩ Ut }.

Case u ∈ Ut+1\Ut : The user u was not relevant during the
previous iteration, but has become now. As the model has no record
of any interactions by this user, we need to take into account their
full history: At+1 = At+1 ∪ {(u, i, tc ) ∈ Pt+1 |u ∈ Ut+1\Ut }.

At this point, an updated set of pageviews At+1 to be incorpo-
rated into the model has been computed analogous to Algorithm 3.
However, some precautions still need to be taken with relation
to the recommendability of items over time. For every item i in
Rt ∪ Rt+1, three analogous cases to the ones outlined above occur:

Case i ∈ Rt \Rt+1: The item i was recommendable in the pre-
vious iteration, but no longer is. We drop all entries in the matrix
Mi, j where j < Rt+1. This is important to ensure consistency when
the item i would later become recommendable again, otherwise
increments might not start at 0. Additionally, we move item i from
Lr [u] to Ln [u].
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Case i ∈ Rt ∩ Rt+1: The item i was recommendable and still is,
nothing needs to be done here.

Case i ∈ Rt+1\Rt : The item i was not recommendable during
the previous iteration, but has become recommendable now. Since
item i might have already been included in the index, we should
compute possible intersectionsMi, j that were not included in the
matrix before. This is true for all usersu who have seen item i before
time t : {u |(u, l , tc ) ∈ Pt : l = i}. For every non-recommendable
item j ∈ Ln [u] seen by those users, we incrementMi, j . Afterwards,
item i has to be deleted from Ln [u] and inserted into Lr [u].

If recommendability of items is a monotonically decreasing func-
tion over time, one does not have to worry about these issues:
{(u, l , tc ) ∈ Pt : l = i} will be the empty set for items i ∈ Rt+1\Rt ,
since items that become recommendable are per definition new
in this context. In, for example, a news recommendation setting
this makes perfect sense: older articles should not be considered
for recommendation. In a retail environment, however, this is not
the case: recommendability will often depend on seasonality and
current stock.

5 EXPERIMENTAL RESULTS
Table 1 shows the characteristics of the datasets we used to experi-
mentally validate the efficiency of our proposed approach.Movielens
is the latest well-known Movielens dataset [4], Netflix refers to the
full dataset that was used for the famous Netflix-Prize [1]. For both
movie datasets, we converted explicit ratings to binary implicit
feedback, entirely disregarding the actual ratings. Outbrain is a
dataset containing logs from users and articles they read, published
in a recent Kaggle competition [14]. We use a deduplicated version
of the first 200 million logged user-item events in our experiments:
in the case of recurring user-item pairs, we keep only the earli-
est entry. News is a proprietary real-world dataset consisting of
roughly 96 million user-item pairs originating from article reads on
the website of a large Belgian newspaper. Our algorithm, as well as
the baseline methods, are implemented in C++ and compiled with
all the available optimisation flags. Experiments ran on a single
Intel Xeon processor. We aim to answer three research questions,
respectively covered in the following sections:

(1) Is the proposed Dynamic Index algorithmmore efficient than
the state-of-the-art in computing similarity between pairs
of high-dimensional sparse vectors?

(2) Is the proposed MapReduce-inspired parallellisation proce-
dure effective in reducing the necessary computation time?

(3) What is the impact of restrictions on the set of recommend-
able items on the efficiency of the algorithm?

5.1 Efficiency of Dynamic Index
To validate the efficiency of our proposed algorithm, we report
computation time for the sparse baseline and Dynamic Index, as
shown in Figure 3. Both algorithms run on a single computational
core. The naive baseline presented in Algorithm 1 is not included
in these results, as it is orders of magnitude slower than the Sparse
Baseline or Dynamic Index on every dataset we consider. We do
not consider other algorithms in our comparison, as other proposed
exact approaches in the literature were demonstrated only on dense
datasets, covering a few hundred dimensions at most [25, 28–30].

Table 1: Experimental dataset characteristics. Datasets de-
noted by an asterisk (*) are binarised from explicit-feedback,
to mimick the implicit-feedback setting.

Movielens* Netflix* News Outbrain

|P | 20e6 100e6 96e6 200e6
|U | 138e3 480e3 5e6 113e6
|I | 27e3 18e3 297e3 1e6
|Iu | 144.41 209.25 18.29 1.76
|Ui | 747.84 5654.50 242.51 184.50
σ (P) 99.46% 98.82% 99.99% 99.99%
σ (M) 59.90% 0.22% 99.83% 99.98%
Si, j : Si, j > 0 0.050 0.037 0.027 0.012

Our method, aimed towards sparse datasets, can efficiently han-
dle millions of dimensions. Additionally, to the best knowledge of
the authors, no competing exact methods or implementations are
available at the time of writing.

All datasets were chronologically sorted, and we gradually re-
trained every algorithm with more data, in order to provide a real-
istic view of the benefits of online or incremental computation. We
can see that for all datasets but Movielens, our proposed algorithm
significantly outperforms the sparse baseline. Movielens has the
highest average non-zero similarity between any item-pair, which
might make it more suited to Algorithm 2. However, as our method
learns incrementally, the potential efficiency gains are much more
tangible than merely shown by the area between the two lines in
the plot. The improvement of Dynamic Index is most apparent for
the largest dataset: our algorithm provides a speedup factor larger
than four when all available user-item interactions are considered.
Looking at the average number of pageviews processed by Algo-
rithm 3 per second at every point in the plots in Figure 3, we observe
throughputs ranging from 14 500 |P |s for the Netflix dataset, to more
than 834 000 |P |s for Outbrain. These numbers effectively represent
an upper bound on the number of new incoming pageviews per
second the single-core streaming model could process in real-time,
assuming a constant-rate influx. From Table 1 and the nature of
Algorithm 3, we can deduce interesting observations about the
efficiency of our approach. First, as the throughput is highest for
those datasets with large |I |, it seems this is not an important factor.
This may seem counter-intuitive at first, as more unique items will
lead to more similarities that have to be computed. However, the
sparsity of the co-occurence matrix σ (M) is more significant than
its absolute dimensions, as we effectively leverage this by avoiding
computations on zero-values. The second decisive factor is |Iu |.
As most of the complexity of the algorithm lies in iterating over
inverted indices containing user histories, it should come as no
surprise that shorter lists imply faster iterations.

5.2 Efficiency of Parallellisation Procedure
To validate the efficiency of our proposed parallellisation procedure,
we report runtime results for the same experimental setting as laid
out in Section 5.1, for a varying number of available cores. Results
from this experiment are visualised in Figure 4. We see a clear
benefit from parallellising the computation over multiple cores,
over all datasets. For the Netflix and News datasets, using 8 cores
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Figure 3: Computation time for the sparse baseline (Algorithm 2) and our proposed Dynamic Index algorithm (Algorithm 3)
on the 4 different datasets laid out in Table 1. Both algorithms run on a single core, and all available items in the dataset are
considered recommendable (Rt = I ). We chronologically sorted the available user-item interactions and gradually increased
the size of the training data passed to the algorithm (over the x-axis), in order to provide a realistic view of the benefit of online
or incremental computation.
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Figure 4: Computation time for our proposed algorithm on the 4 different datasets laid out in Table 1, parallellised over a
varying number of computational cores (n ∈ {1, 2, 4, 8}). We chronologically sorted the available user-item interactions and
gradually increased the size of the training data passed to the algorithm (over the x-axis). However, the model is iteratively
retrained as more data becomes available. All items are considered recommendable (Rt = I ).

provides a speedup larger than factor 4 compared to the single-
core variant. The Outbrain dataset, which gains the least from the
parallellisation scheme, was also the dataset on which the highest
throughputs for the single-core algorithm were reported.

As mentioned in Section 4.3, the reduce-step for merging two
models in Algorithm 4 is especially efficient when both models
were generated from logged interactions bymutually disjoint sets of
users. When this condition can not be guaranteed, it becomes signif-
icantly more complex. Therefore, when the batch-size |∆P| is small,
the single-core variant proves to be more efficient at incremental up-
dates than the parallellised version. However, for sufficiently large
|∆P|, the bulk of computation time needed to incrementally update
the existing model will come from dynamically indexing the new
data using Algorithm 3 to generate the new modelMt+1, contrary
to merging the old modelMt withMt+1 using Algorithm 4. In
these cases, the multi-core variant proves itself to be advantageous.
Moreover, in cases where the influx of new data is limited, periodi-
cally retraining the model in parallel or performing the incremental
updates batch-wise might be more cost-efficient than performing
incremental updates in a streaming fashion. Simplistically: if the
entire model can be retrained in 20 minutes and an hour of new
data can be processed in 1 minute, these options are respectively 3
and 60 times more cost-efficient than a 24/7 streaming solution.

5.3 Efficiency of Restricted Recommendability
Up until now, we have assumed no restrictions on the set of recom-
mendable items. However, as we have argued before, we believe that
this will often not hold in real-world applications. Whether based
on recency, seasonality, available stock, business rules or any other
reason, the set of items that actually should not be recommended
can grow to be of significant size.

To demonstrate the effect that a varying set of recommendable
items Rt can have on the Dynamic Index algorithm, we focus on
the news recommendation application. We define δ as the recom-
mendability threshold in this recency-focused setting: when a new
item arrives, it remains recommendable for δ hours. After this pe-
riod has passed, the item is no longer considered newsworthy and
should no longer be recommended. Figure 5 shows runtime (top
plot) and the number of recommendable items (bottom plot) when
the model is retrained iteratively on more data, using the Dynamic
Index algorithm with varying thresholds δ . Note that both y-axes
are logarithmically scaled. We focus on the case where ample data
is available, and show results for the last week in the News dataset,
where the entire model is iteratively retrained on a growing set of
user-item interactions.
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Clear performance gains are observed when comparing the re-
sults from the restricted-recommendability variants to the unre-
stricted algorithm (δ = ∞). First, absolute runtimes are decreased
massively when focusing on a smaller, yet more relevant, set of
items. For δ = 48h, the algorithm computes the exact similarity
for all relevant item-pairs in < 10% of the time needed for δ = ∞.
The number of recommendable items, however, still exceeds 17 000,
leaving plenty of room for personalisation. With δ = 24h, runtime
reduces to < 5%, with more than 8 000 recommendable items. At
δ = 6h, these numbers turn to 1.6% of the original runtime, retain-
ing an average of 2 100 recommendable items. The sinusoid pattern
that emerges in the bottom plot for low values of δ is an artefact
originating from the data: as fewer news articles are published at
night, the number of recent items drops and rises periodically.

Second, looking at the slope of the runtime of the unrestricted
variant compared to that of all restricted variants, we observe that
the latter variants all suffer far less from ever-growing dataset sizes
in terms of reduced efficiency. Last, the model size, number of
recommendable items, and runtime are highly correlated with δ .

A reasonable question to ask might be how the restricted recom-
mendability impacts the accuracy of the generated recommenda-
tions. We did not further explore this due to the following reasons:
(1) When recommendability depends on recency, seasonality or
available stock, these are often hard-imposed business rules. As a
result, restricting recommendability is often not a choice in real–
world settings. Our approach deals with this in a flexible way, and
effectively exploits the imbalance for improved efficiency. (2) In
offline experiments on logged feedback data, a multitude of biases
is consistently present [3, 8, 26]. As users are often presented with
only recent articles on news websites, offline experiments will heav-
ily favour recency-based approaches. On the other hand, presenting
users with irrelevant and old news in an online experiment is also
inappropriate for obvious reasons.

6 CONCLUSION
In this paper, we have motivated and discussed the need for highly
dynamic collaborative filtering algorithms that are incrementally
updateable in near real-time, to keep up with the highly dynamic en-
vironments these algorithms need to perform in. As a step towards
this goal, we proposed a novel parallel approach to incrementally
compute similarity among high-dimensional vectors, specifically
tuned to the inherent sparsity of real-world datasets in a nearest-
neighbour collaborative filtering recommender system setting. Our
algorithm uses simple inverted indices to quickly identify relevant
pairs of items when updates arrive, and as a consequence avoids
further unnecessary computations. Moreover, we have formulated
our method in accordance with the MapReduce paradigm, making
it readily parallellisable and distributable. We have shown that our
approach easily scales up to millions of pageviews, and is able to
process industrial-sized datasets in a matter of minutes on non-
specialised hardware. Attainable processing throughputs vary with
configuration and data, but can easily range from tens of thousands
to millions of pageviews per second. Our approach is highly scalable
and flexible in terms of new users and items arriving over time. We
introduced the concept of item recommendability and how it can be
exploited to avoid wasting unnecessary computation time for the
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Figure 5: Computation time (top) and number of recom-
mendable items (bottom) for varying recommendability
thresholds in the News dataset (n = 8). δ denotes how long a
new item remains recommendable after its first appearance,
mimicking the real-world application of news recommen-
dation where recency is critical. Note that both y-axes are
logarithmically scaled.

right use-cases. In our experiments, we effectively increased system
throughput by a factor of up to 60 when considering a smaller, yet
more relevant set of recommendable items.

As future work, we intend to further experimentally validate the
efficiency of incremental updates to our model with non-monotonic
recommendability constraints. In an attempt to further improve
upon the scalability of CF systems, summarisation algorithms to
compress a transactional dataset with minimal information loss,
specifically in the context of recommender systems, would be an
interesting direction for future research. Furthermore, we intend to
look into other similarity functions to determine whether they can
be decomposed and incrementally computed as well. As Jaccard
Index, Pointwise Mutual Information and Pearson’s correlation
coefficient all depend on the co-occurrence matrixM, we believe
this to be an attainable extension of our work. Throughout this
manuscript, we have focused on item-to-item nearest-neighbour
collaborative filtering as the main application of our work. When
changing the terminology from “users” and “items” to “terms” and
“documents”, we believe that our approach is applicable to more
general information retrieval use-cases as well. Nevertheless, in
these settings, extensions for non-binary data (by including a term-
value pair in the inverted indices instead of just the term) would be
appropriate. Naturally, when these inverted indices keep growing
in size, compression techniques might be convenient to improve
on space efficiency. However, most state-of-the-art compression
techniques do not support incremental updates, and random access
would be imperative [13, 16].

ACKNOWLEDGMENTS
We are very grateful to the anonymous reviewers, and especially to
Harald Steck for useful comments on earlier versions of this work.



Efficient Similarity Computation for Collaborative Filtering RecSys ’19, September 16–20, 2019, Copenhagen, Denmark

REFERENCES
[1] J. Bennett, S. Lanning, et al. 2007. The Netflix prize. In Proc. of the KDD cup and

workshop, Vol. 2007. 35.
[2] J. Dean and S. Ghemawat. 2008. MapReduce: Simplified Data Processing on Large

Clusters. Commun. ACM 51, 1 (Jan. 2008), 107–113.
[3] A. Gruson, P. Chandar, C. Charbuillet, J. McInerney, S. Hansen, D. Tardieu, and

B. Carterette. 2019. Offline Evaluation to Make Decisions About Playlist Recom-
mendation Algorithms. In Proc. of the 12th ACM International Conference on Web
Search and Data Mining (WSDM ’19). ACM, New York, NY, USA, 420–428.

[4] F. M. Harper and J. A. Konstan. 2015. The MovieLens Datasets: History and
Context. ACM Transactions on Interactive Intelligent Systems 5, 4, Article 19
(2015), 19 pages.

[5] X. He, H. Zhang, M. Kan, and T. Chua. 2016. Fast Matrix Factorization for Online
Recommendation with Implicit Feedback. In Proc. of the 39th International ACM
SIGIR Conference on Research and Development in Information Retrieval (SIGIR
’16). ACM, 549–558.

[6] Y. Huang, B. Cui, W. Zhang, J. Jiang, and Y. Xu. 2015. TencentRec: Real-time
Stream Recommendation in Practice. In Proc. of the 2015 ACM SIGMOD Interna-
tional Conference on Management of Data (SIGMOD ’15). ACM, 227–238.

[7] D. Jannach and M. Ludewig. 2017. When Recurrent Neural Networks Meet the
Neighborhood for Session-Based Recommendation. In Proc. of the 11th ACM
Conference on Recommender Systems (RecSys ’17). ACM, 306–310.

[8] O. Jeunen, K. Verstrepen, and B. Goethals. 2018. Fair Offline Evaluation Method-
ologies for Implicit-feedback Recommender Systems with MNAR Data. In Proc. of
the REVEAL 18 Workshop on Offline Evaluation for Recommender Systems (RecSys
’18).

[9] M. Karimi, D. Jannach, and M. Jugovac. 2018. News recommender systems -
Survey and roads ahead. Information Processing & Management 54, 6 (2018), 1203
– 1227.

[10] N. Liu, M. Zhao, E. Xiang, and Q. Yang. 2010. Online Evolutionary Collaborative
Filtering. In Proc. of the 4th ACM Conference on Recommender Systems (RecSys
’10). ACM, 95–102.

[11] X. Luo, Y. Xia, Q. Zhu, and Y. Li. 2013. Boosting the K-Nearest-Neighborhood
based incremental collaborative filtering. Knowledge-Based Systems 53 (2013), 90
– 99.

[12] M. Muja and D. G. Lowe. 2014. Scalable Nearest Neighbor Algorithms for High
Dimensional Data. IEEE Transactions on Pattern Analysis and Machine Intelligence
36, 11 (2014), 2227–2240.

[13] G. Ottaviano and R. Venturini. 2014. Partitioned Elias-Fano Indexes. In Proc.
of the 37th International ACM SIGIR Conference on Research & Development in
Information Retrieval (SIGIR ’14). ACM, 273–282.

[14] Outbrain. 2017. Kaggle Click Prediction Dataset. https://www.kaggle.com/c/
outbrain-click-prediction/data. (2017).

[15] M. Papagelis, I. Rousidis, D. Plexousakis, and E. Theoharopoulos. 2005. Incremen-
tal Collaborative Filtering for Highly-Scalable Recommendation Algorithms. In
Foundations of Intelligent Systems, M. Hacid, N. Murray, Z. Raś, and S. Tsumoto
(Eds.). Springer, 553–561.

[16] G. E. Pibiri, M. Petri, and A. Moffat. 2019. Fast Dictionary-Based Compression
for Inverted Indexes. In Proc. of the 12th ACM International Conference on Web
Search and Data Mining (WSDM ’19). ACM, 6–14.

[17] S. Rendle and L. Schmidt-Thieme. 2008. Online-updating Regularized Kernel
Matrix Factorization Models for Large-scale Recommender Systems. In Proc. of
the 1st ACM Conference on Recommender Systems (RecSys ’08). ACM, 251–258.

[18] S. Sarawagi and A. Kirpal. 2004. Efficient Set Joins on Similarity Predicates. In
Proc. of the 2004 ACM SIGMOD International Conference on Management of Data
(SIGMOD ’04). ACM, New York, NY, USA, 743–754.

[19] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. 2001. Item-based Collaborative Fil-
tering Recommendation Algorithms. In Proc. of the 10th International Conference
on World Wide Web (WWW ’01). ACM, 285–295.

[20] R. S. Sreepada and B. K. Patra. 2018. An Incremental Approach for Collaborative
Filtering in Streaming Scenarios. In Advances in Information Retrieval, G. Pasi,
B. Piwowarski, L. Azzopardi, and A. Hanbury (Eds.). Springer International
Publishing, 632–637.

[21] K. Subbian, C. Aggarwal, and K. Hegde. 2016. Recommendations For Streaming
Data. In Proc. of the 25th ACM International on Conference on Information and
Knowledge Management (CIKM ’16). ACM, 2185–2190.

[22] K. Verstrepen and B. Goethals. 2014. Unifying Nearest Neighbors Collaborative
Filtering. In Proc. of the 8th ACM Conference on Recommender Systems (RecSys
’14). ACM, 177–184.

[23] Q. Wang, H. Yin, Z. Hu, D. Lian, H. Wang, and Z. Huang. 2018. Neural Memory
Streaming Recommender Networks with Adversarial Training. In Proc. of the
24th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD ’18). ACM, 2467–2475.

[24] W. Wang, H. Yin, Z. Huang, Q. Wang, X. Du, and Q. Nguyen. 2018. Streaming
Ranking Based Recommender Systems. In Proc. of the 41st International ACM
SIGIR Conference on Research and Development in Information Retrieval (SIGIR
’18). ACM, 525–534.

[25] C. Yang, X. Yu, and Y. Liu. 2014. Continuous KNN Join Processing for Real-
Time Recommendation. In Proc. of the 14th IEEE International Conference on Data
Mining (ICDM ’14). 640–649.

[26] L. Yang, Y. Cui, Yuan X., C. Wang, S. Belongie, and D. Estrin. 2018. Unbiased
Offline Recommender Evaluation for Missing-not-at-random Implicit Feedback.
In Proc. of the 12th ACM Conference on Recommender Systems (RecSys ’18). ACM,
New York, NY, USA, 279–287.

[27] X. Yang, Z. Zhang, and K. Wang. 2012. Scalable Collaborative Filtering Using
Incremental Update and Local Link Prediction. In Proc. of the 21st ACM Interna-
tional Conference on Information and Knowledge Management (CIKM ’12). ACM,
2371–2374.

[28] C. Yu, B. Cui, S. Wang, and J. Su. 2007. Efficient Index-based KNN Join Processing
for High-dimensional Data. Inf. Softw. Technol. 49, 4 (April 2007), 332–344.

[29] C. Yu, B. Ooi, K. Tan, and H. Jagadish. 2001. Indexing the distance: An efficient
method to knn processing. In Proc. of the 27th International Conference on Very
Large Databases (VLDB ’01). 421–430.

[30] C. Yu, R. Zhang, Y. Huang, and H. Xiong. 2009. High-dimensional kNN joins
with incremental updates. GeoInformatica 14, 1 (2009), 55–82.

[31] R. Zadeh and A. Goel. 2013. Dimension independent similarity computation. The
Journal of Machine Learning Research 14, 1 (2013), 1605–1626.

[32] C. Zhang, F. Li, and J. Jestes. 2012. Efficient Parallel kNN Joins for Large Data in
MapReduce. In Proc. of the 15th International Conference on Extending Database
Technology (EDBT ’12). ACM, 38–49.

https://www.kaggle.com/c/outbrain-click-prediction/data
https://www.kaggle.com/c/outbrain-click-prediction/data

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Preliminaries
	3.2 Baseline Approaches

	4 Methodology
	4.1 Recommendable Items
	4.2 Incremental Similarity Computation
	4.3 The Dynamic Index Algorithm
	4.4 Parallellisation Procedure
	4.5 Incremental Model Updates with Dynamic Recommendability

	5 Experimental Results
	5.1 Efficiency of Dynamic Index
	5.2 Efficiency of Parallellisation Procedure
	5.3 Efficiency of Restricted Recommendability

	6 Conclusion
	Acknowledgments
	References

