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Abstract Extreme multi-label classification problems

occur in different applications such as prediction of tags

or advertisements. We propose a new algorithm that

predicts labels using a linear ensemble of labels from

instance- and feature-based nearest neighbours. In the

feature-based nearest neighbours method, we precom-

pute a matrix containing the similarities between each

feature and label. For the instance-based nearest neigh-

bourhood, we create an algorithm that uses an inverted

index to compute cosine similarity on sparse datasets

efficiently. We extend this baseline with a new top-k

query algorithm that combines term-at-a-time and doc-

ument-at-a-time traversal with tighter pruning based

on a partition of the dataset. On ten real-world datasets,

we find that our method outperforms state-of-the-art

methods such as multi-label k-nearest neighbours, inst-

ance-based logistic regression, binary relevance with sup-

port vector machines and FastXML on different evalu-

ation metrics. We also find that our algorithm is orders

of magnitude faster than these baseline algorithms on

sparse datasets, and requires less than 20 ms per in-

� len.feremans@uantwerpen.be
� boris.cule@uantwerpen.be
� celine.vens@kuleuven.be
� bart.goethals@uantwerpen.be
1 Department of Computer Science, Universiteit Antwerpen,
Belgium
2 Department of Accountancy and Finance, Universiteit
Antwerpen, Belgium
3 Faculty of Medicine, Katholieke Universiteit Leuven,
Belgium
4 ITEC, imec research group at Katholieke Universiteit
Leuven, Belgium
5 Monash University, Melbourne, Australia

A preliminary version of this paper was published as
“Combining instance and feature neighbors for efficient
multi-label classification” at DSAA 2017 [1].

stance to predict labels for extreme datasets without

the need for expensive hardware.

Keywords Extreme multi-label classification · Item-

based collaborative filtering · k-nearest neighbours ·
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1 Introduction

Multi-label classification problems occur in a large va-

riety of domains, such as text categorization, where a

document has multiple categories, scene classification,

where various regions of an image have a label, and

bioinformatics, where we are interested in predicting

numerous functions for a gene. In this work, we con-

sider sparse datasets that occur naturally in these do-

mains, i.e., where features correspond to patterns, such

as term frequency-inverse document scores for word oc-

currences in texts or clusters in images.

Two main strategies exist for solving the multi-label

task. The first strategy is to reduce the multi-label

problem into a combination of single-label problems.

The binary relevance method ignores label dependen-

cies and trains a separate model to predict each label

independently of other labels using one-versus-all sam-

pling [2]. Classifier chains approximate label dependen-

cies, but also require to train a separate model for each

label [3]. If the set of labels L is large, training |L| dif-

ferent models using binary relevance or classifier chains

is not scalable. A second strategy is to adapt existing

single-label classifiers to output multiple labels. Well-

known adaptations of single-label classification tech-

niques have been made to adaBoost, decision trees,

support vector machines, k-nearest neighbour and oth-

ers [4–7].
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Trending challenges in multi-label classification re-

search include methods that account for possible de-

pendencies between labels, deal with label skew (where

most labels are only covered by a few instances), and

consider the computational cost of building a model [8].

Extreme multi-label classification is an active research

topic that considers the computational cost of gener-

ating a model when the number of labels is very high.

Recently several methods have been proposed that try

to address these challenges. These methods reduce the

dimensionality of the label space or build a hierarchi-

cal ensemble of tree-based models, such as FastXml,

where the number of models to train is logarithmic in

the number of labels [9–11]. While these approaches are

accurate and fast at testing time, they require signifi-

cant resources at training time. Moreover, each of these

methods needs to tune many hyperparameters for opti-

mal performance.

Related to multi-label classification is the field of

recommender systems. Here, the task is to rank items a

user might click, often based on past preferences. Two

well-known recommender systems are user-based and

item-based collaborative filtering [12–14]. An advantage

of both approaches is that the results can be explained,

i.e., using “people who liked this item also liked” type of

explanations. Applying these techniques for multi-label

classification is a major goal of this work.

User-based collaborative filtering is a memory-based

learning algorithm where we need to compute the near-

est neighbours. The problem of finding the exact set of

k-nearest neighbours is studied under different names:

all pairs similarity search, top-k set similarity joins, k-

nearest neighbour graph construction and top-k queries

[15–21]. We propose a new algorithm to compute the

exact k-nearest neighbours using pruning. Similar to

search problems in information retrieval, we want to

find a set of instances in our training dataset that is the

most similar to a test instance for which we wish to pre-

dict labels. A key difference with information retrieval is

that our test instances, or queries, typically have many

more non-zero feature values than is usual in search,

which has a severe impact on performance. Therefore,

we adapt research from information retrieval and cre-

ate a new top-k query algorithm. Technically, we com-

bine term-at-a-time and document-at-a-time traversal

using Weak-AND pruning [22]. Different from the pre-

vious work in information retrieval, our primary reason

for first traversing the instances using term-at-a-time,

is based on finding proper constraints such that more

candidate instances get pruned using a tighter upper-

bound [21].

In this work, we make the following contributions.

First, we implement instance-based k-nearest neighbours,

an adaptation of user-based collaborative filtering, for

multi-label classification. Next, we implement the fea-

ture-based k-nearest neighbours method, an adaptation

of item-based collaborative filtering, that computes the

nearest labels for each feature in a column-wise manner.

Finally, we combine both instance- and feature-based

neighbourhood predictions using a linear ensemble. Sec-

ond, we make the k-nearest neighbours search scalable

for sparse datasets with an extremely high number of la-

bels, features and instances. The baseline method uses

an inverted index and organises computation so that

we only perform non-zero similarity term computations,

which we improve with a top-k query algorithm.

We validate the accuracy of our method on 10 real-

world datasets and compare with multi-label classifica-

tion methods such as multi-label k-nearest neighbours,

instance-based logistic regression, binary relevance with

support vector machines as a base learner and FastXml

on different evaluation metrics [7,11,23]. We also com-

pare the pruning ability and runtime performance of

our k-nearest neighbours algorithm with state-of-the-

art top-k query retrieval methods, such as term-at-a-

-time traversal, in-memory document-at-a-time traver-

sal with Weak-AND pruning and Fagin’s threshold al-

gorithm [19, 21, 22]. Compared to the original version

of this paper [1], we improve our algorithms for mak-

ing predictions in different ways and propose a new al-

gorithm to compute the nearest neighbours more effi-

ciently based on top-k queries.

The remainder of this paper is organised as follows.

In Section 2 we define the problem setting. In Section 3

we describe our algorithm for multi-label classification.

In Section 4 we describe our method for finding the k-

nearest neighbours more efficiently. We experimentally
validate our method and compare it with existing state-

of-the-art methods in Section 5 and discuss related and

future work in Section 6. Finally, we conclude in Sec-

tion 7.

2 Problem Setting

Definition 1 (Multi-label Dataset) Let X ∈ RN×M
denote the set of training points and let Y ∈ {0, 1}N×L
denote the set of labels. The training dataset D consists

of N instances D = {(x1,y1), . . . , (xN ,yN)} where

each M -dimensional feature vector xi ∈ RM is asso-

ciated with an L-dimensional label vector yi ∈ {0, 1}L.

We assume that feature values are transformed into real

numbers higher than or equal to zero.

Definition 2 (Cardinality) We define feature cardi-

nality as the average number of non-zero features for
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each instance. Analogously, we define label cardinality

as the average number of labels for each instance, that

is:

fcard(D) =
1

N

N∑
i=1

M∑
j=1

δ(xi,j),

lcard(D) =
1

N

N∑
i=1

L∑
j=1

yi,j ,

where δ(xi,j) is 1 if xi,j > 0 and 0 otherwise and yi,j is

the binary value of label j for instance i.

Definition 3 (Column) We use fj = {x1,j , . . . , xN,j}
∈ RN to denote the column of values for feature j. Like-

wise we use lj = {y1,j , . . . , yN,j} ∈ {0, 1}N to denote

the column of values for label j.

Definition 4 (Density) We define feature and label

density as

fdens(fj) =
|{xi,j | xi ∈ X ∧ xi,j 6= 0}|

N
,

ldens(lj) =
|{yi,j | yi ∈ Y ∧ yi,j 6= 0}|

N
.

For sparse datasets, we observe that feature and label

cardinality are small compared to M and L, and that

there is a skewed distribution where only a few features

(or labels) have a high density, and most features (or

labels) have a density close to 0.

Problem 1 The task for multi-label classification is to

predict a subset of labels for each test instance xq ∈
Xtest for which the set of labels yq is unknown. For-

mally we have to learn a function h : X → {0, 1}L that

optimises a selected evaluation metric.

The function h can be implemented as h(x) = t(f(x))

where f produces a confidence (or probability) score for

each label and t is a threshold function.

3 Linear Combination of Instance- and

Feature-based kNN

Our classification method consists of instance-based k-

nearest neighbours (kNN), feature-based kNN and the

linear combination of both predictions.

3.1 Instance-based kNN

The algorithm begins by searching for the k-nearest

neighbours xi in the training data for each test (or

query) instance xq using cosine similarity.

Definition 5 (Instance-based Cosine Similarity)

The cosine similarity is defined as

simIns(xq, xi) =
xq · xi

‖xq‖2 · ‖xi‖2
= xq · xi,

where we make sure that all instances are normalised

to unit length during preprocessing.

Definition 6 (Instance-based Confidence Score)

To compute the confidence score for instance xq for (a

single) label yj we define the following function:

ŷInsq,j =

∑
xi∈kNN(xq)

yi,j · simIns(xq, xi)
α

∑
xi∈kNN(xq)

simIns(xq, xi)α
.

This function is an adaption of user-based collaborative

filtering, where the similarity in feature values replaces

the similarity between user preferences, and we do not

recommend an item but a label [24]. Also, we apply a

power transformation to the similarities. For example,

if we apply the power α = 2, we give similarities closer

to 1 more weight compared to similarities closer to 0.01.

Vice versa, α = 0.5 has the reverse effect.

Algorithm We retrieve the k-nearest neighbours by

using an inverted index (IID) and compute only non-

zero terms for similarity. CreateIndex is shown in

Algorithm 1. We associate each feature with a set of

(training) instances and their non-zero feature value.

In InstanceKnnSearch, shown in Algorithm 2,

we compute the cosine similarity between xq and all in-

stances incrementally thereby only computing non-zero

terms of each dot product. We first loop over each non-
zero feature xq,j , then fetch all candidates xi that have

a (non-zero) xi,j value from the IID and then incre-

ment the partial dot product xq,j · xi,j . Finally, we use

partial sort, i.e., using heap sort, to maintain the top k

instances with the highest cosine similarity.

We compute the prediction scores for each label us-

ing InstanceKnnPredict, shown in Algorithm 3. We

only compute predictions for labels that are present in

Algorithm 1: CreateIndex(D) Creates an in-

verted index for instance-based kNN baseline
Input: A dataset D
Result: An inverted index (IID) of the dataset

1 IID← empty hash map();
/* For each instance */

2 for xi in X do

/* For each non-zero feature value */

3 for xi,j 6= 0 in xi do

4 IID[j]← IID[j] ∪ 〈xi, xi,j〉;
5 return IID;
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Algorithm 2: InstanceKnnSearch(xq, k, IID)

Finds the k-nearest neighbours for xq in D
Input: A query instance xq, number of neighbours k,

an inverted index IID

Result: k-nearest neighbours and their similarities

1 S ← empty hash map();
/* For each non-zero feature value in xq */

2 for xq,j 6= 0 in xq do

/* For each non-zero feature value xi,j */

3 for 〈xi, xi,j〉 in IID[j] do
/* Compute partial dot product */

4 Sq,i ← Sq,i + xq,j · xi,j ;
5 kNN← heap sort top k(S, k);
6 return kNN;

Algorithm 3: InstanceKnnPredict(xq,kNN,

α) Computes instance-based confidence scores for

labels
Input: A query instance xq, kNN contains the

k-nearest neighbours and their similarities, α
for the power transform

Result: Prediction scores for labels

1 ŷ← empty hash map();
/* For each instance in kNN */

2 for xi in kNN do
/* For each non-zero label j */

3 for yi,j 6= 0 ∈ yi do
/* Compute partial similarity-weighted

confidence score */

4 ŷj ← ŷj + Sαq,i;

5 normalise ŷ with
∑
xi∈kNN S

α
q,i;

6 return ŷ;

any of the k-nearest neighbours. As in InstanceKnn-

Search, we organise the computation so that we only

compute non-zero increments to each label score. Re-

mark that in our implementation, we compute simi-

larities and predictions in parallel. We initialise shared

hash tables statically, so subsequent updates to partial

scores (or similarities) from different threads can occur

in a lock-free manner [25]. This results in performance

gains almost linear with the number of processors.

Complexity For instance-based kNN search the com-

plexity is O(N ×M), but in practice, we observe that

the average runtime is closer to O(ñ × m̃) for sparse

datasets. Here ñ is proportional to the average number

of candidate instances, i.e., instances fetched from the

inverted index, and m̃ is proportional to the feature car-

dinality. We will analyse the runtime of this algorithm

in Section 5. We remark that the expensive neighbour-

hood search is performed once and is independent of

the number of labels L [26].

Hyperparameter Optimalisation An essential ad-

vantage of our method is that for optimising k using

grid search we need to compute the nearest neighbours

only once. First, we search for the nearest neighbours

with a maximal value of kmax . For smaller values of k,

we just take the first k values of the cached kmax -nearest

neighbours. We argue that this makes k a virtual hy-

perparameter, meaning that we optimise it efficiently

on a validation set.

Second-order Instance Variation A possible dis-

advantage of the instance-based kNN method is that

we ignore inter-label dependencies: the prediction for

a given label is obtained independently of the values

of other labels. We propose an extension that uses the

second-order neighbourhood to handle this situation.

For details, we refer to our original paper [1].

3.2 Feature-based kNN

Feature-based kNN is an adaptation of item-based col-

laborative filtering for multi-label classification [14].

Definition 7 (Feature-based Cosine Similarity)

For feature-based predictions, we compute the cosine

similarity between each feature column fi and each label

column lj using,

simFl(fi, lj) =
fi · lj

‖fi‖2 · ‖lj‖2
= fi · lj ,

where we make sure that all feature and label vectors

are normalised to unit length during preprocessing.

Definition 8 (Feature-based Confidence Score)

We compute the confidence score for a test instance xq
and a label yj using:

ŷFlq,j =

∑M
i=1 xq,i · simFl(fi, lj)

β∑M
i=1 xq,i

,

where we apply the power β to the similarities.

We compute the full similarity matrix between all pairs

of feature and label columns at training time. When L

is extremely large, we consider a variation to feature-

based kNN, that only computes a (non-zero) prediction

for labels that occur at least once in the neighbourhood,

i.e.,

yj ∈
⋃

xq,i∈xq∧xq,i 6=0

kNN(fi),

which is more scalable given an extreme number of la-

bels.

Algorithm For feature-based kNN we first compute

a matrix containing the similarities between all fea-

tures and labels in D. We use sparse data structures
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Algorithm 4: CreateSimilMatrix(D) Com-

putes similarities between all features and labels

for feature-based kNN
Input: A dataset D
Result: Similarity matrix S

/* Create inverted index for labels */

1 IID← empty hash map();
/* For each instance */

2 for 〈xi, yi〉 in D do

/* For each non-zero label value */

3 for yi,j 6= 0 in yi do

4 IID[j]← IID[j] ∪ {xi};
/* Compute similarities */

5 S ← 0.0M×L;
/* For each label j get instances from IID */

6 for yj 6= 0 in IID do
7 for xi in IID[j] do

/* For each non-zero feature k */

8 for xi,k 6= 0 in xi do
/* Compute partial dot product */

9 Sj,k ← Sj,k + xi,k · yi,j ;
10 return S;

Algorithm 5: FeatureKnnPredict(xq, S, β)

Computes feature-based confidence scores for la-

bels
Input: A query instance xq, a similarity matrix S, β

for the power transform
Result: Prediction scores for labels

1 ŷ← empty hash map();
/* For each non-zero feature i */

2 for xq,i in xq do
/* For each label j with non-zero similarity

with feature i */

3 for Sj,i 6= 0 ∈ S∗,i do
/* Compute partial confidence score */

4 ŷj ← ŷj + xq,i · Sβj,i;
5 normalise ŷ with

∑
xq,i;

6 return ŷ;

as we assume most values for label column yj and fea-

ture column fk will be 0. We use a technique similar to

InstanceKnnSearch and compute the feature-based

cosine similarity incrementally. The function Create-

SimilMatrix is shown in Algorithm 4. First, we create

an index that associates each of the L labels with a set

of positive instances. After indexing, we fetch positive

instances xi for each label. For each instance xi, we

traverse over each non-zero feature xi,k and compute a

non-zero term of the dot product between label yj and

feature fk.

FeatureKnnPredict is shown in Algorithm 5.

We follow a similar approach as InstanceKnnPredict

to only compute non-zero terms of each confidence score.

We remark that we also experimented with an alterna-

tive confidence score that considers the k nearest fea-

tures for each label, but in preliminary experiments,

this did not increase average results while requiring an

extra hyperparameter.

Complexity Computing the similarity matrix has a

complexity of O( 1
2M × L × N). However, in practice

runtime is closer to O( 1
2M × l̃× ñ) for sparse datasets.

Here l̃ is proportional to the average number of can-

didate labels, that is the number of labels sharing at

least one instance with each feature and ñ is propor-

tional to the average number of non-zero feature values

(or labels) column-wise. We observe that the similarity

matrix can be computed once at training time for all

test instances, while at test time only prediction scores

have to be computed. This makes feature-based kNN

very efficient and is arguably one of the reasons why

item-based collaborative filtering is so popular in real-

world web applications.

3.3 Linear Combination

We introduce a straightforward ensemble method based

on the Linear Combination of the confidence scores of

the Instance- and Feature-based k-nearest neighbours

(Lcif). Combinations of the two techniques have been

studied in collaborative filtering research, but not in

multi-label classification [24,27].

Definition 9 (LCIF Confidence Score) We com-

pute the confidence score for test instance xq for label

yi using

ŷq,i = λ ŷInsq,i + (1− λ) ŷFlq,i,

where λ ∈ [0, 1] is a hyperparameter that is optimised

on a validation sample for each evaluation metric.

For datasets with many labels we compute this score

only for candidate labels, that is, labels i that have a

non-zero score for either ŷInsq,i or ŷFlq,i. The main Lcif

algorithm is shown in Algorithm 6.

3.4 Thresholding

To obtain a set of predicted labels, we apply a single

threshold [3, 28].

Definition 10 (Single Threshold) Given confidence

scores ŷq,j for instance xq and each label yj, we predict

a set of labels using a single threshold t:

h(xq) = {yj | ŷq,j >= t}, ∀yj ∈ L.
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Algorithm 6: Lcif(D, Xtest , k, α, β, λ, t) Pre-

dicts labels based on a linear combination of

instance- and feature-based weighted similarities

Input: A training dataset D, one or more test
instances in Xtest , number of neighbours k,
parameters α and β for the power transform, λ
for the linear combination and t the single
threshold

Result: Predicted labels for each instance in Xtest

/* Train: create index and feature-based

similarity matrix */

1 IID← CreateIndex(D);
2 S ← CreateSimilMatrix(D);

/* Predict: compute kNN and predictions for each

test instance */

3 Ŷ ← ∅;
4 for xq in Xtest do
5 kNNq ← InstanceKnnSearch(xq , k, IID);
6 ŷIns

j ← InstanceKnnPredict(xq ,kNNq , α);

7 ŷFl
q ← FeatureKnnPredict(xq , S, β);

8 ŷLcif
q ← λ ŷIns

q + (1− λ) ŷFl
q ;

9 ŷq ← {ŷq,j | ŷq,j ∈ ŷLcif
q : ŷq,j ≥ t};

10 Ŷ ← Ŷ ∪ ŷq;

11 return Ŷ ;

We determine t automatically by selecting the value

of t that minimises the difference in label cardinality

between the actual and predicted label set. That is,

argmin
t

∣∣∣∣∣∣ 1

N

N∑
i=1

L∑
j=1

δ(ŷi,j > t)− lcard(D)

∣∣∣∣∣∣ ,
where δ(ŷi,j > t) returns 1 if the confidence score is

higher than t and 0 otherwise. Alternatively, we make

use of a label-specific threshold [29, 30]. This allows us

to lower the threshold for minority labels in imbalanced

datasets.

Definition 11 (Label-specific threshold) We pre-

dict a set of labels using a separate threshold tyj for

each label yj:

h(xq) = {yj | ŷq,j >= tyj}, ∀yj ∈ L

We remark that for many multi-label datasets, there is

at least one label for every instance. Therefore, if the

highest-scoring label is below the threshold, we ignore

the threshold value [26].

4 Fast kNN Search

A problem with the instance-based kNN search is that

because of its inherent O(N) complexity to search for

the k-nearest neighbours, it does not scale to extreme

datasets. In the previous section, we created a baseline

algorithm optimised for sparse datasets. In this section,

we improve on this baseline. This is important in inter-

active applications since we must perform the search at

test time and every millisecond is important.

4.1 Indexing

The problem of instance-based kNN is similar to top-k

queries algorithms in information retrieval. A key dif-

ference, however, is that search queries are typically

much shorter, having less than 10 terms. Real-world

search engines often limit search queries to 50 terms.

In our case, each query is a test instance, that con-

sists of many more non-zero dimensions on average. We

will show that existing state-of-the-art top-k query al-

gorithms are less efficient in this setting. Therefore, we

propose a new top-k query algorithm for computing the

exact set of k-nearest neighbours ranked on cosine sim-

ilarity.

Top-k Query Algorithm Our method is an extension

of the work of Fontoura et al. that combines two ways

to traverse the most relevant instances (or documents)

given a certain test instance (or query): Document-at-

a-time (Daat) and Term-at-a-time (Taat) [21]. Using

this framework, Algorithm 2 computes cosine similar-

ity following a Taat strategy, that is, for every non-

zero feature, or term, of a test instance we fetch all

instances, or documents, from the inverted index and

increment the partial similarity of each document with

the non-zero weight in that dimension. In Daat traver-

sal we keep all documents in the inverted index sorted
on document order and traverse through all posting lists

(the inverted index for each term) simultaneously simi-

lar to a merge join. Using this document-per-document

manner, we can compute the complete similarity score

for each document in turn. We propose to first tra-

verse using Taat and next using Daat. We focus on

memory-resident indexes, thereby assuming that mem-

ory in present-day is often large enough to maintain the

complete index [21].

Partitioning We observe that in real-world datasets

feature values in most dimensions have a high standard

deviation. For example, we can encode text documents

using a bag-of-words encoding with term frequency-

inverse document frequency and get a significant dif-

ference in values between terms that frequently occur

in one document but seldom occur in others, and words

that are infrequent in one document and frequent over-

all. This variation is a useful property that we exploit.
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Algorithm 7: CreateIndexPartition(D,m)

Partitions data and builds indexes for both Taat

and Daat traversal
Input: A dataset D, a parameter m that controls the

partition
Result: Index structures for Taat en Daat traversal

1 IID← CreateIndex(D);
/* Compute partition */

2 Itaat ← ∅;
3 for fj in D do

4 {〈x′1, x′1,j〉, . . . , 〈x′m, x′m,j〉} ←
heap sort top k(IID[fj ],m);

5 Itaat ← Itaat ∪ {x′1, . . . , x′m};
6 Idaat ← D \ Itaat ;

/* Create indexes */

7 IIDtaat ← CreateIndex(Itaat );
8 IIDdaat ← CreateIndex(Idaat );
9 sort IIDtaat descending on feature value;

10 sort IIDdaat ascending on document id;
11 Maxdaat ← max feature value for each fj in Idaat ;
12 Φ← {Itaat , Idaat , IIDtaat , IIDdaat ,Maxdaat};
13 return Φ;

Definition 12 (Partition) First, we partition all in-

stances into two disjoint sets:

Itaat = {xi | xi ∈ D ∧ ∃ xi,j ∈ xi : rank(xi,j , fj) ≤ m},

Idaat = D \ Itaat,

where we use rank(xi,j , fj) ≤ m to denote that feature

value xi,j is ranked before place m in the (descending)

ordered posting list of feature j.

The partition strategy has three useful consequences.

Firstly, by using the partitioned and sorted inverted in-

dex, we encounter high feature values first during Taat

traversal and are more likely to find instances with a
high cosine similarity early on. This is important since

we prune instances during Daat if the similarity can-

not be higher than the kth candidate after Taat traver-

sal. Secondly, we use Weak-AND (Wand) for pruning

during Daat traversal [22]. The Wand upper bound

depends on the maximum feature value in each dimen-

sion. Because of the partitioning, we guarantee that this

maximum is smaller than the first m values. Thirdly, by

having two disjoint partitions, additional overhead for

pruning and index creation is minimal.

Algorithm The algorithm CreateIndexPartition

for both Taat and Daat index creation is shown in

Algorithm 7 and consists of two phases. In the first

phase, we create an inverted index for all documents

and compute the partition of all instances. For each

feature or term, we find the instances with the m high-

est feature values and add these instances to Itaat. We

can compute this efficiently using heap sort on the post-

ing list for each term. In the second phase, we make a

complete Taat index by adding all feature values for

all instances in Itaat. Remark that this index also in-

cludes feature values that are not in the top-m. The

rationale for making the index complete is that we can

compute the full similarity for each instance in Itaat
without resorting to less efficient random access oper-

ations. Finally, we add all remaining documents to the

Daat index sorted on document ID. We also maintain

the maximal feature value in each posting list. In our

implementation, we keep the feature values local to the

index as we want to avoid cache misses. We remark that

in practice we set the parameterm to a small value, e.g.,

between 1 and 25 for large datasets and closer to 100

for extreme datasets. Alternatively, m could be defined

relatively as the percentage of all documents in Itaat.

4.2 Fast k-nearest Neighbour Search using Term- and

Document-at-a-time with Weak-And Pruning

Pruning In essence Daat is a merge join over the dif-

ferent posting lists sorted on document ID. We can,

however, skip instances based on an upper bound using

the Weak-And iterator [22].

Definition 13 (Upper Bound Cosine Similarity)

Given a query xq we compute an upper bound on each

cosine similarity term:

UBq,j = max ({xi,j | xi ∈ Idaat}) · xq,j .

For any xi ∈ Idaat it holds that

simIns(xq, xi) ≤
∑

xq,j∈xq

UBq,j .

Therefore, we prune instances without computing the

full similarity if∑
xq,j∈xq∧xi,j 6=0

UBq,j ≤
∑

xq,j∈xq

UBq.j ≤ θ,

where θ is the kth largest similarity of instances already

visited during Taat and the ongoing Daat traversal.

Remark that for most instances xi only a small subset

of the features of xq will also be non-zero in xi.

Algorithm The main algorithm for finding the ex-

act k-nearest neighbours is shown in Algorithm 8. In-

stanceKnnFast consists of two phases. We start by

computing the k nearest neighbours of all instances in

Itaat using Taat by calling InstanceKnnSearch. We

then add these instances to a heap. A heap is more effi-

cient for managing the current instances as we want to

access the current kth maximal similarity efficiently. In
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the second phase, we traverse candidate instances us-

ing Daat (line 3-20) and our extension to Wand prun-

ing. We start by initialising the upper bound for xq by

computing the dot product between every non-zero fea-

ture value xq,j and the precomputed value Maxdaat[j].

Next, we iterate over instances in Idaat that have at

least one feature shared with xq (as determined by

IIDdaat). We start our while loop with the first docu-

ment (offsetsj = 0) in each posting list and order these

instances on ascending ID (line 8-11).

If xk1 is the document with the smallest ID for

any posting list then for any other document xk2 , with

k2 > k1, we know that xk1 has a zero value in that post-

ing list. Therefore, we prune xk1 if UBq,k1 is smaller

than θ. Likewise, we prune xk2 if UBq,k1 + UBq,k2 is

smaller than θ, etc. We increment the upper bound

UBcur in a feature-by-feature manner and prune any

documents that are below this accumulated value (line

12-17). We stop when a pivot document is identified,

meaning the first document that is higher than the up-

per bound. We then compute the full similarity for the

pivot instance and add it to the heap, where it will re-

place a candidate if the similarity is higher (line 19).

Finally, we advance each posting list to the next docu-

ment. If the next document identifier is larger than the

pivot, we do not update the offset. Otherwise, we ad-

Algorithm 8: InstanceKnnFast(xq, k, Φ)

Finds the exact k-nearest neighbours from D
based on two traversal strategies and pruning

Input: A query instance xq, number of neighbours k,
partitioned inverted index structures Φ

Result: k-nearest neighbours
/* (i) Taat traversal */

1 kNNtaat ← InstanceKnnSearch(xq , k, IIDtaat );
2 heap← create heap(kNNtaat );

/* (ii) Daat traversal and pruning with Wand */

3 UBq ← 0.0|xq|;
4 for xq,j 6= 0 in xq do // Computer upper bound

5 UBq,j ← xq,j ·Maxdaat [j];

6 offsets← 0|xq|;
7 while offsets 6= [−1, . . . ,−1] do
8 next ← {} ; // Enumerate next instances

9 for xq,j 6= 0 in xq and offsetsj 6= −1 do

10 next ← next ∪ IIDdaat [j][offsetsj ];

11 next ← sort ascending on document ID;
12 pivot ← ∅ ; // Find the first candidate

13 UBcur ← 0;
14 for 〈xi, xi,j〉 in next do
15 UBcur ← UBcur + UBq,j ;
16 if UBcur >Min heap(heap) then

17 pivot ← xi; break;

18 simq,p ← xq · pivot ; // Compute similarity

19 heap ← push pop(heap, pivot , simq,p);
20 Advance offsets so next instances are after pivot;

21 return heap;

vance the posting list to point to a document with an

identifier after the current pivot. In the worst case, the

pivot document is always the first candidate, and we

advance by one document at a time. In the best case,

however, there are |xq| documents and the pivot doc-

ument is the last document. Then we can advance by

|xq| − 1 documents, thereby pruning these documents

without computing the full similarity.

5 Experiments

We now study the accuracy and efficiency of Lcif and

InstanceKnnFast.

5.1 Experimental Setup

Datasets We have selected five large and five extreme

datasets. Table 1 shows the most important charac-

teristics of each dataset. The datasets are available in

well known multi-label repositories [31–33]. The Medi-

cal dataset consists of nearly 1 000 documents contain-

ing free clinical text, originally collected at a children’s

hospital medical centre’s department of radiology. The

problem is to assign one or more medical diagnoses or

procedures coded using ICD-9-CM based on free clinical

text. The documents are represented using a sparse bag-

of-words encoding. The Corel5k dataset is a scene clas-

sification dataset. Labels represent familiar concepts

such as sea, sky, cat or forest. The images are repre-

sented using 499 binary features. A feature value of 1

indicates that a certain segment in the image belongs

to a certain cluster. The Bibtex dataset represents a

tag assignment problem. The Delicious dataset is sim-

ilar to Bibtex. Wiki10 corresponds to 20 000 Wikipedia

articles. For these three datasets, the labels (or tags)

were assigned using the social tagging sites Bibsonomy

and Del.icio.us. Note that the label cardinality with so-

cial tagging is higher. In the IMDB-F dataset, the task

is to assign one or more of the 28 movie genres, based

on movie summary texts from IMDB. This dataset is

larger, containing more than 100 000 summaries. How-

ever, there are only 28 movie genres, and the total dic-

tionary of terms is limited.

The extreme Eurlex dataset is a collection of docu-

ments about European law and has close to 4 000 cat-

egories. Reuters Corpus Volume I (RCV1 ) is a bench-

mark dataset for text categorisation containing more

than 700 000 labelled news articles made available by

the press agency Reuters. AmazonCat contains over a

million instances of Amazon products with labels and

reviews. We selected the version that has more than

13 000 labels. Finally, WikiLSHTC consists of more than
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Table 1 Characteristics of five large and five extreme multi-label datasets

Dataset Train Test Features Labels lcard fcard Avg. Avg.
N Ntest M L ldens fdens

Medical 333 645 1 449 45 1.2 13.4 0.0277 0.0092
Corel5k 5 000 500 499 374 3.5 8.3 0.0094 0.0166
Bibtex 4 880 2 515 1 836 159 2.4 68.7 0.0151 0.0374
Delicious 12 920 3 185 500 983 19.1 18.3 0.0193 0.0366
IMDB-F 72 551 48 368 1 001 28 2.0 19.4 0.0714 0.0194

Eurlex 15 539 3 809 5 000 3 956 5.3 237.0 0.0013 0.0474
Wiki10 14 147 6 617 101 890 30 940 18.6 669.0 0.0006 0.0065
RCV1 623 847 155 962 46 672 2 456 4.8 74.0 0.0019 0.0016
AmazonCat 1 186 239 306 782 203 873 13 330 5.1 71.1 0.0004 0.0003
WikiLSHTC 1 778 352 587 085 1 617 899 325 056 3.3 42.5 0.0001 0.0001

a million instances and features and 325 000 categories.

The source is Wikipedia. A large number of features

is due to the large corpus size. For this dataset, there

is also a hierarchy between the labels available which

we ignore. The dataset originates from the large-scale

hierarchical text classification challenge [34]. Eurlex,

Wiki10, RCV1, AmazonCat and WikiLSHTC are ex-

treme datasets since they have thousands of labels [33].

We remark that although the extreme datasets contain

more labels and features, they are also extremely sparse

and the cardinality of labels and features remains com-

parable to the large datasets. A key advantage of our

method is that it is optimised for sparse datasets.

State-of-the-art Methods For the large datasets, we

compare the performance of the instance- and feature-

based kNN methods and their linear combination Lcif

with the following state-of-the-art algorithms. Multi-

label k-nearest neighbours (Ml-knn) [7] and instance-

-based logistic regression (Iblr) [23] are two seminal

instance-based multi-label algorithms. Binary relevance

with support vector machines as a binary classifier (Br-

Smo) is one of the best-performing algorithms [2, 35].

For optimising the threshold for the other methods,

we use OneThreshold, which optimises a single thresh-

old on the selected evaluation metric [36]. For the ex-

treme datasets, we compare the results of Lcif with

the published results of FastXml [11], a fast tree-based

method for extreme multi-label classification.

For the state-of-the-art methods, we use the imple-

mentations available in the Mulan library [31]. We im-

plemented Lcif in C++ and made the source code pub-

licly available1. We use 64 threads to compute similar-

ities and predictions in parallel on a test server from

2013, which has two 8-core processors (Intel E5-2690)

and 64 GB RAM. Remark that we cannot use Mulan (or

Meka [32]) for extreme datasets since methods like Br-

Smo employ the binary relevance strategy for training

L binary classifiers, which is not feasible.

1 https://bitbucket.org/len_feremans/lcif

Evaluation Metrics Multi-label evaluation metrics

can be organised in different ways. Example-based eval-

uation metrics are averaged over all instances. Label-

-based evaluation metrics look at the different ratios

between true-positive, false-positive and false-negative

predictions for each label. Label-based micro scores give

each instance the same weight, while macro scores give

each label the same weight, giving equal weight to fre-

quent and infrequent labels. Within the Example-based

category, we make the distinction between metrics based

on the bipartition between relevant and non-relevant la-

bels, metrics based on the ranking of confidence scores,

and metrics based on the individual score for each la-

bel. We report the following example-based multi-label

evaluation metrics:

Definition 14 (Example-based Metrics)

Example-based Accuracy =
1

N

N∑
i=1

|yi ∩ ŷi|
|yi ∪ ŷi|

,

Hamming loss =
1

N

N∑
i=1

1

L
|yi4ŷi|,

where N is the number of test instances, ŷi is the pre-

dicted set of labels and yi4ŷi is the symmetric differ-

ence (or XOR) of actual and predicted labels.

Definition 15 (Label-based Metrics) We define for

each label yk the number of true positives, false nega-

tives, false positives and corresponding metrics as

tp =

N∑
i=1

δ(yk ∈ yi ∧ yk ∈ ŷi),

fn =

N∑
i=1

δ(yk ∈ yi ∧ yk /∈ ŷi),

fp =

N∑
i=1

δ(yk /∈ yi ∧ yk ∈ ŷi),

https://bitbucket.org/len_feremans/lcif
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precision =
tp

tp + fp
, recall =

tp

tp + fn
,

F1 = 2 · precision · recall

precision + recall
.

For label-based evaluation metrics, we report both mi-

cro and macro F1 metrics. Micro F1 is based on the

previous definitions but based on totals of true posi-

tives, false negatives and false positives over all labels

L. For macro F1, we first compute precision and recall

for each label separately and then compute the average.

Definition 16 (Micro and Macro Precision) We

define micro and macro precision (analogous for recall

and F1) as:

precisionmicro =

∑L
j=1 tpj∑L

j=1 tpj +
∑L
j=1 fpj

,

precisionmacro =
1

L

L∑
j=1

tpj
tpj + fpj

.

For the extreme datasets, we omit hamming loss which

was close to 0 given the extreme number of labels and

is a less suitable metric in such settings [37]. Instead,

we report precision@k.

Definition 17 (Precision@k) We compute precision@k

based on the k predictions with the highest confidence

score, defined as:

precision@k =
1

N · k

N∑
i=1

∑
yj∈ yi

δ(rank(yj , ŷi) ≤ k),

where rank(yj , ŷi) returns the rank for label yj in the

list of predictions sorted on descending confidence score.

Hyperparameter Tuning For each method, we have

to optimise several hyperparameters. The parameter k

is often set to a fixed value in other research, or only it-

erated over a small set of possible values (e.g., 5, 10, 15).

However, optimising k can have a significant effect on

reported evaluation metric values. Therefore, we vary k

for Ml-knn and Iblr between 1 and 59 in steps of 2.

For instance-based kNN, we vary k in steps of 50, that

is k ∈ {1, 5, 50, 100, . . . , 350}. We remark that the large

values of k are due to the similarity weighted scores

and common within user-based collaborative filtering.

We vary α en β for the power transform of instance-

and feature-based kNN in {0.5, 1.0, 1.5, 2.0}. For Lcif,

we vary λ between 0.0 and 1.0 in steps of 0.1. Remark

that we re-use the neighbour (and similarity) matrix

and only compute it once for the maximal value of k

speeding up grid search considerably. For optimising

the single threshold t, we perform two passes: first, we

vary t between 0.0 and 1.0 in steps of 0.1 to obtain a

temporary optimum tpass1 , and then we take steps of

0.01 and vary between tpass1 − 0.05 and tpass1 + 0.05

to obtain the final value. For the state-of-the-art meth-

ods, this is implemented by OneThreshold in Mulan.

We use the same procedure for Lcif but minimise the

difference between predicted and actual label cardinal-

ity (see Section 3.4) instead of maximising a selected

evaluation metric. Finally, for the extreme datasets,

we employ feature selection and select the top s fea-

tures using entropy. We search for the optimal value of

s ∈ M × {0.01, 0.1, 0.25, 0.5, 0.75, 0.99, 1.0}. Note that

we do not perform a full grid search, but instead first

find the optimal value of s, assuming default parameters

for other values (i.e., k = 100, λ = 0.5, α = β = 1.0).

Next, we find the optimal value of k assuming α = 1.0

and the value of s previously found, then for α using

the optimal k and s, then for β, λ and finally for t using

the previously computed parameters.

To have a stable estimate for hyperparameters se-

lected using grid search, we perform 10-fold cross-vali-

dation for Lcif on the training set for the large datasets.

After the 10-fold cross-validation search finishes, we se-

lect the average parameter combination that optimises

the selected evaluation metric on the training data. For

Ml-knn and Iblr, we report the optimal hyperparam-

eters optimised directly on the test set, thereby mak-

ing the Oracle assumption for performance reasons. For

Br-Smo, we keep default parameters for the (linear)

kernel function. For the extreme datasets, we skip 10-

fold cross-validation for performance reasons and in-

stead perform grid search on a sample consisting of the

first 10 000 instances (1 000 instances for Eurlex and

Wiki10 ). We report results computed on the publicly

available train-test splits.

5.2 Classification Performance Lcif

Here we discuss accuracy on different evaluation metrics

for large and extreme datasets.

Large Datasets We compare our algorithms based on

a variety of evaluation metrics for multi-label classifica-

tion. This is common practice since different methods

have different biases towards each metric [8]. Table 2

shows the results for each different evaluation metric

on the large datasets for Lcif and the selected state-

of-the-art multi-label classifiers. Results highlighted in

bold perform best on the selected metric and dataset.

Missing values for Iblr for the Delicious and IMDB-F

datasets are due to time-out on our test server.
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If we compare the ranking of all algorithms, we see

that Lcif performs better than Ml-knn, Iblr and

Br-smo for both accuracy, micro F1 and macro F1.

On hamming loss, Br-smo performs best, but the dif-

ference with Lcif is small. We also see that instance-

based kNN ranks second for both accuracy, micro F1

and macro F1 outperforming both Ml-knn and Br-

smo. The feature-based kNN, by itself, does not per-

form great, but is comparable with Ml-knn, while re-

quiring no k-nearest neighbour search at test time. Note

that the current version of feature-based kNN is signif-

icantly better than the preliminary version described

in [1]. Compared to the original version, we now com-

pute the full similarity matrix and not only the top-k

highest similarities and scale similarities using the pa-

rameter β.

Extreme Datasets For extreme multi-label classifi-

cation (Xml) we compare with the published results

of FastXml [11, 33]. Table 3 shows the results on the

extreme datasets. Results of micro or macro F1 are gen-

erally not available for other Xml methods and are

thus provided for information. Lcif performs better

than FastXml on Eurlex, Wiki10 and WikiLSHTC,

Table 2 Comparing accuracy of Lcif with Ml-knn, Iblr and
Br-smo on the large datasets

Ins.
knn

Feat.
knn

Lcif Ml-
knn

Iblr Br-
Smo

Accuracy ↑
Medical 0.563 0.601 0.636 0.421 0.442 0.699

Corel5k 0.163 0.174 0.170 0.147 0.105 0.098
Bibtex 0.347 0.218 0.341 0.208 0.174 0.321
Delicious 0.230 0.122 0.230 0.193 n/a 0.130
IMDB-F 0.250 0.235 0.250 0.244 n/a 0.005
Avg. rank 2.2 3.4 1.8 4.2 5.6 3.8

Micro F1 ↑
Medical 0.622 0.645 0.690 0.505 0.506 0.773
Corel5k 0.266 0.263 0.274 0.245 0.163 0.166
Bibtex 0.426 0.276 0.427 0.315 0.250 0.416
Delicious 0.368 0.214 0.369 0.322 n/a 0.224
IMDB-F 0.341 0.337 0.346 0.358 n/a 0.014
Avg. rank 2.6 4.0 1.4 3.6 5.8 3.6

Macro F1 ↑
Medical 0.339 0.447 0.492 0.245 0.247 0.457
Corel5k 0.315 0.308 0.315 0.326 0.161 0.317
Bibtex 0.321 0.129 0.328 0.170 0.147 0.315
Delicious 0.180 0.067 0.181 0.088 n/a 0.098
IMDB-F 0.090 0.055 0.084 0.056 n/a 0.011
Avg. rank 2.5 4.6 1.7 3.6 5.6 3.0

Hamming loss ↓
Medical 0.025 0.026 0.021 0.024 0.029 0.012

Corel5k 0.014 0.010 0.010 0.022 0.027 0.012
Bibtex 0.017 0.017 0.014 0.020 0.021 0.016
Delicious 0.025 0.030 0.024 0.021 n/a 0.018

IMDB-F 0.094 0.083 0.082 0.101 n/a 0.072
Avg. rank 3.9 3.6 1.9 4.0 6.0 1.6
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Fig. 1 Effect of thresholding on the distribution of actual
versus predicted labels on the imbalanced dataset Corel5k

but not on AmazonCat. We remark that many other

recent, rank-based optimised, Xml methods exist [33].

However, in classification benchmarks, the best results

are reported by ensemble methods that combine many

models, possibly using different algorithms and feature

representations. Comparing a single simple model with

a complex ensemble-based method would not be infor-

mative. We conclude that our method produces excel-

lent results on extreme datasets.

Imbalanced Datasets Lcif improves the accuracy on

minority labels in imbalanced datasets. Firstly, we re-

mark that feature-based cosine similarity is corrected

for label imbalance since we normalise all label vectors

to unit length during preprocessing. As such, weights

for infrequent labels (and features) will be much higher.

In Figure 1 we show the frequency of the top 30 most

frequent labels (and predicted labels) on the Corel5k

dataset where hyperparameters are optimised on the

macro F1 metric during grid search. By using a sin-

gle threshold, our method overestimates majority labels

and underestimates minority labels. However, by using

label-specific thresholds, we get a better match in the

distribution of actual versus predicted labels. Here, we

base the class-specific thresholds on the prior distri-

bution of classes in the training dataset. We report an

average gain of 1.1% on macro F1 on the large datasets.
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Table 3 Comparing accuracy of Lcif with FastXml on the
extreme datasets

Ins.
knn

Feat.
knn

Lcif FastXML

Micro F1 ↑
Eurlex 0.506 0.222 0.517 n/a
Wiki10 0.359 0.274 0.358 n/a

RCV1 0.637 0.450 0.632 n/a

AmazonCat 0.611 0.418 0.625 n/a
WikiLSHTC 0.329 0.144 0.342 n/a

Macro F1 ↑
Eurlex 0.509 0.381 0.512 n/a

Wiki10 0.324 0.261 0.324 n/a
RCV1 0.152 0.071 0.152 n/a

AmazonCat 0.463 0.285 0.463 n/a

WikiLSHTC 0.130 0.130 0.130 n/a

Precision@1 ↑
Eurlex 0.763 0.407 0.776 0.713
Wiki10 0.832 0.722 0.832 0.830
RCV1 0.830 0.762 0.840 n/a

AmazonCat 0.775 0.657 0.811 0.931

WikiLSHTC 0.491 0.258 0.518 0.497

Precision@3 ↑
Eurlex 0.611 0.302 0.622 0.599
Wiki10 0.724 0.531 0.724 0.675
RCV1 0.663 0.615 0.672 n/a

AmazonCat 0.665 0.589 0.698 0.782

WikiLSHTC 0.317 0.178 0.336 0.331

Precision@5 ↑
Eurlex 0.504 0.244 0.514 0.504
Wiki10 0.637 0.469 0.637 0.578
RCV1 0.480 0.449 0.487 n/a
AmazonCat 0.547 0.504 0.577 0.634

WikiLSHTC 0.238 0.141 0.251 0.244

5.3 Runtime Performance InstanceKnnFast

We now compare InstanceKnnFast with the follow-

ing state-of-the-art methods in top-k query retrieval:

Taat without pruning, Fagin’s Threshold Algorithm

(Fagin Ta) and the in-memory variant of Daat with

Weak-AND pruning (M-Wand) [19,21].

Analysis Term-at-a-time First, we analyse the run-

time behaviour of baseline kNN algorithm Instance-

KnnSearch shown in Algorithm 2. This algorithm has

three properties that make it efficient. We will use data-

set characteristics from the extreme dataset WikiLSHTC

for illustration (see Table 1). Firstly, we compute a

sparse dot product between the query instance and each

instance from the training dataset. In this dataset, there

are M ≈ 1.6× 106 features, however on average an in-

stance has only 42 non-zero features, i.e., fcard is 42.

Clearly, computing a million of zero multiplications for

the naive full dot product is wasteful. Using the Taat

traversal strategy, we only compute xq,j · xi,j terms

that have a non-zero value for feature value xi,j . Sec-

ondly, the inverted index causes a form of rudimen-

tary pruning by only considering candidate instances

xi having a non-zero feature in common with the query

instance. We experimented on WikiLSHTC and com-

puted the average number of candidates for 500 ran-

dom test instances. We found that on average, only for

42% of instances the similarity is computed, thereby

pruning about a million of instances from the training

dataset (see Table 4). Thirdly, we also compute confi-

dence scores in a sparse manner, thereby only comput-

ing non-zero terms for the confidence score for candi-

date labels, i.e., labels that occur for at least one neigh-

bour. This is important since on average, each train-

ing instance has only 3 labels, i.e. lcard is 3.3, while

L ≈ 0.3× 106.

Pruning Performance The runtime performance is

dependent on pruning, i.e., the number of candidate

instances for which we compute the cosine similarity.

We compare the average number of candidate instances

for each state-of-the-art method. We set k to 100 and

use the first 1 000 test instances to compute this aver-

age. We remark that InstanceKnnFast is identical

to M-Wand if m = 0, and identical to Instance-

Knn when m is set high (such that Idaat = ∅). For

InstanceKnnFast, we vary the hyperparameter m ∈
{1, 5, 10, 15, 20, 25, 100} (not m = 0) and assume an

Oracle that selects the best parameter.

The results are shown in Table 4 where we report

both the absolute value and relative percentage of the

average number of candidates. For the large datasets,

all features are binary, however, after normalisation to

unit length there is more variation in feature values,

which is beneficial for pruning with our method. On the

large datasets we see this effect, where InstanceKnn-

Fast evaluates fewer candidate instances compared to

other techniques. For example, on the IMDB-F dataset,

we compute cosine similarity for 46% of the training

instances for InstanceKnnSearch, 39% for Fagin

Ta, 28% for M-Wand and only 22% for InstanceKn-

nFast. If we look at the extreme datasets, we find

that M-Wand outperforms both Fagin Ta and In-

stanceKnnFast on the majority of datasets. For small

values of m, the number of instances in Itaat is large,

leading to a higher number of full evaluations. By con-

sidering only instances with a maximum feature value

for low-density features, this could be resolved, but we

will see in the next subsection, where we compare run-

times, that this is less important. Overall we conclude

that InstanceKnnFast for pruning is theoretically al-

ways better than or equal to M-Wand without parti-

tioning and performs better than Fagin Ta and In-

stanceKnnSearch, under the assumptions of sparse

datasets and high-dimensional queries.
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Table 4 Pruning of InstanceKnnFast and state-of-the-art top-k query retrieval methods

Dataset Fagin Ta M-Wand InstanceKnnFast InstanceKnnSearch

Avg number of candidate instances ↓
Medical 197 (59%) 214 (64%) 214 (64%) 224 (67%)
Corel5k 681 (14%) 641 (14%) 455 (10%) 719 (16%)
Bibtex 4 404 (90%) 4 553 (93%) 4 762 (97%) 4 860 (99%)
Delicious 3 412 (26%) 3 120 (24%) 3 115 (24%) 4 141 (32%)
IMDB-F 28 389 (39%) 20 716 (28%) 16 170 (22%) 33 509 (46%)

Eurlex 14 091 (91%) 11 785 (76%) 12 355 (79%) 15 528 (99%)
Wiki10 13 727 (97%) 12 592 (89%) 14 110 (99%) 14 118 (99%)
RCV1 305 002 (48%) 176 038 (28%) 196 453 (31%) 569 297 (91%)
AmazonCat 195 488 (11%) 227 326 (19%) 290 450 (24%) 741 380 (62%)
WikiLSHTC 462 939 (26%) 367 645 (20%) 594 107 (33%) 899 071 (50%)

Table 5 Runtime of InstanceKnnFast and state-of-the-art top-k query retrieval methods

Dataset M- InstanceKnnFast Inst. Knn
Wand m=1 m=20 m=100 m=500 m=1000 Search

Avg time (ms) to retrieving top kNN ↓
Eurlex 17.4 12.8 1.4 1.3 1.4 1.4 1.5
Wiki10 62.4 1.8 1.6 1.5 1.6 1.7 1.7
RCV1 103.7 97.4 43.8 32.6 32.6 33.9 37.5
AmazonCat 215.4 174.1 45.1 37.7 38.7 45.1 45.2
WikiLSHTC 171.1 94.3 35.7 27.7 27.9 27.6 28.6

Runtime Performance We now compare our method

with state-of-the-art-methods and report elapsed wall

time. We do not report results for Fagin Ta since in our

experiments we found that the random access cost and

associated zero computations for computing full cosine

similarity at each iteration caused much worse perfor-

mance than the Taat baseline without pruning. We re-

port the number of milliseconds required for Instance-

KnnSearch, M-Wand and InstanceKnnFast with

m in {1, 20, 100, 500, 1000}. For each dataset, we take

the first 1 000 test instances and report the average time

it takes to retrieve the exact set of 100 nearest neigh-

bours using each algorithm. From the timings (averaged

over 10 runs) we excluded time needed to load the data

and create the inverted indexes since this took less than

1 minute on WikiLSHTC.

The results are shown in Table 5. We omitted the

results for the large datasets since the differences in

milliseconds are too small. First, we remark that there

is no clear one-to-one correspondence between prun-

ing and runtime performance. Because of its simplicity

and sparse optimisations, our current implementation

of the InstanceKnnSearch method is far more effi-

cient than M-Wand. M-Wand has overhead because of

the computation and bookkeeping required for comput-

ing and comparing with the upper bound, such as the

sort on document ID required to find the pivot. Note

that both M-Wand and InstanceKnnFast use the

same code. We see that InstanceKnnFast, when m is

set appropriately large, outperforms both state-of-the-

art methods by a considerable margin on all extreme

datasets. This is especially so for AmazonCat, where it

is 6 times faster than M-Wand and 25% faster than

InstanceKnnSearch. We find that, on the one hand,

when only a few instances in the inverted index match

the current query, the overhead of computing and ver-

ifying the upper bound is probably not justified. On

the other hand, when only low similarity instances re-

main, and there is a high likelihood for pruning, pruning

becomes the faster alternative. We see this in Amazon-

Cat, where for m = 100, 98.6% of instances are in-

dexed for Taat traversal and 1.4% for Daat traver-

sal. However, during Taat only 39% of instances are

pruned (because of the inverted index), while during

Daat more than 99% of instances (in the remaining

sample of about 16.000 instances) are pruned. We con-

clude that InstanceKnnFast finds a natural balance

between fast unpruned Taat traversal and fast Daat

traversal with Wand pruning.

5.4 Runtime Performance Lcif

Large Datasets We now compare the total runtime

required for both training and applying the model of

Lcif and each of the state-of-the-art algorithms for

large datasets. The results are shown in Table 6. For the

large datasets, the difference in wall time is quite large

as Lcif takes seconds or minutes where other meth-

ods take minutes or hours to complete. For Corel5k the

relatively long runtime of 34.3 minutes for Iblr is due
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to learning the optimal weights using logistic regression

for each label: training the optimal weights takes about

10 seconds per label but must be repeated for 374 la-

bels. Due to this reason, Iblr was not able to complete

on Delicious and IMDB-F. Br-Smo does finish for De-

licious and IMDB-F but runs for a full day when Lcif

takes less than 1 minute. Table 6 also shows the run-

time of instance- and feature-based kNN. The runtime

of Lcif is approximately equal to the total runtime of

the two components. We conclude that Lcif is orders

of magnitude faster than Ml-knn, Br-Smo and Iblr.

Extreme Datasets In Table 7 we show the total time

required by Lcif on the extreme datasets. We report

subtotals for running instance-based k-nearest neigh-

bours search, feature-based similarity matrix computa-

tion and feature-based predictions. For Lcif the total

time is the sum of these steps. The remaining time

needed for data loading, indexing, making instance-

based predictions, combining predictions and comput-

ing and applying a single threshold is relatively small.

Additionally, we report time to perform grid search for

tuning hyperparameters. All experiments were run on

a single test server with very moderate hardware spec-

ifications as described previously.

On WikiLSHTC, Lcif took less than 3 hours to fin-

ish on more than 500 000 test instances, including grid

search using a validation set of 10 000 instances. Aver-

aged over the number of test instances this means 22

ms per instance on average, of which the bulk is re-

quired for running the instance-based k-nearest neigh-

bours search. Feature-based kNN predictions require

less than 10 minutes in total and less than 1 ms per

instance on average. In FastXml the authors report

wall times of 1.5 hours on WikiLSHTC for training

only, depending on the hyperparameters [11]. However,

some hyperparameters, such as the parameter that con-

trols the number of iterations have a serious influence

on both runtime and precision, and it is unclear how

to optimise this and the 7 other hyperparameters effi-

ciently. We conclude that our algorithm is very efficient

and does hyperparameter tuning, training and predic-

tions in a few hours on commodity hardware for ex-

treme datasets, taking less than 22 ms per instance to

predict labels.

6 Related Work

We have examined the most important related work

in Section 1 and experimentally compared our method

with existing state-of-the-art methods in Section 5. We

now place our work into the wider context of multi-label

Table 6 Runtime results of Lcif and the state-of-the-art
multi-label classifications methods on the large datasets

Dataset Feat.

knn

Ins.

knn

Lcif Ml-

knn

Iblr Br-

smo

Total train and test time for classifier ↓
Medical 0.1s 0.0s 0.1s 0.5s 1.5s 6.5s
Corel5k 0.0s 0.1s 0.1s 15.5s 34.3m 6.5m
Bibtex 1.9s 0.3s 2.6s 1.7s 8.2m 10.1m
Delicious 0.6s 0.2s 1.3s 3.3m n/a 14.0h
IMDB-F 13.5s 33.8s 49.2s 2.1h n/a 29.4h

Table 7 Runtime results of Lcif on the extreme datasets

Dataset Grid Ins. knn Feat. knn Lcif

search search simil predict total

Total time for classifier ↓
Eurlex 51.4s 4.6s 0.8s 12.7s 24.4s
Wiki10 9.9m 9.8s 26.4s 3.6m 5.1m
RCV1 8.2m 58.9m 6.0s 2.9m 63.0m
AmazonCat 11.6m 136.3m 28.8s 5.7m 145.2m
WikiLSHTC 11.8m 154.8m 31.1s 8.3m 167.9m

classification.

Instance-based Learning Several instance-based learn-

ing methods for multi-label classification have been de-

veloped. Ml-knn was one of the first methods [7]. In

Ml-knn the authors first apply traditional kNN, us-

ing Euclidean distance. Next, they count the number

of times each label occurs in the neighbourhood. Then

they apply the maximum a posteriori principle for each

label independently to determine if a label is relevant

or not. They estimate prior probabilities by computing

kNN for each training instance and then compute these

probabilities for each label. In theory, Ml-knn could

also adopt an inverted index and sparse computation

of similarities, probabilities and predictions. However,

the complexity is worse than that of Lcif, which is

O(N × M) for the kNN search and O(N × N × M)

steps for computing probabilities. The authors experi-

mentally show that Ml-knn outperformed other tech-

niques, such as Rank-Svm on different example-based

evaluation metrics. A possible disadvantage of Ml-knn

is that it does not take label dependencies into account,

which was addressed by subsequent research into depen-

dent multi-label k-nearest neighbours [38].

In combining instance-based learning and logistic

regression for multi-label classification (Iblr) the k-

nearest neighbours are computed using Euclidean dis-

tance [23]. Then the authors use label counts from the

nearest neighbours as a feature vector and apply lo-

gistic regression to learn the optimal hyper-plane for

each label. This approach comes down to stacking and

does account with dependencies between labels since

all label counts are used as input for the logistic re-
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gression. However, applying logistic regression for each

label independently does take considerable resources,

as shown in our experiments, where the implementa-

tion from Mulan was unable to finish on some large

datasets. Both Ml-knn and Iblr are considered state-

of-the-art methods [8].

Spyromitros et al. propose Brknn, where kNN is

combined with the binary relevance method [26]. Like

Brknn, we compute the k-nearest neighbours once,

independently of the number of labels. The authors

also implement two extensions: Brknn-a and Brknn-

b. The Brknn-b variant minimises the label cardinality

between predicted and actual label sets, while Brknn-

a returns the highest-scoring label as relevant, even if

this label is below the threshold since for most bench-

mark multi-label datasets an empty set of labels is rare.

Both ideas are implemented by our method. Compared

to instance-based kNN, Brknn uses a different scoring

function, which is the fraction of labels found in the

k-nearest neighbours. Also, Brknn does not make use

of an inverted index. In future work, it could be inter-

esting to experimentally validate different variations of

instance-based prediction functions.

Wang et al. propose the Enhanced kNN algorithm

(Eknn), that uses a weighted prediction function simi-

lar to instance-based kNN, but based on BM25 similar-

ity and a more elaborate thresholding scheme. Eknn

scored first in the challenge on large scale hierarchi-

cal text classification on example-based accuracy and

F1 [39,40]. However, Eknn has a larger range of hyper-

parameters (both for BM25 and thresholding) to tune

and is only applicable for text categorisation. The im-

plementation of Eknn is based on an inverted index,

similar to InstanceKnnSearch.

Imbalanced Datasets Different authors have studied

how to improve the accuracy of imbalanced datasets.

Smote is an algorithm for synthetic oversampling of

multi-class instances with minority labels [41]. In pre-

liminary experiments, we tried to adopt Smote for

oversampling instances with minority labels together

with downsampling of majority labels to generate bal-

anced datasets. However, this did not significantly im-

prove results on macro F1. Moreover, Smote has addi-

tional parameters for each minority label, making adop-

tion challenging.

Tan proposes Nwknn, a neighbour-weighted kNN

algorithm that achieves a significant performance im-

provement for text categorisation on imbalanced data-

sets [42]. Like Nwknn, our instance-based kNN method

performs distance weighting and a power transform.

Unlike Nwknn, we do not take the size of the member-

ship of labels into account in the instance-based confi-

dence score.

Liu et al. present a hybrid coupled k-nearest neigh-

bour classification algorithm (Hc-knn) for mixed-type

data [43]. They employ feature weighting proportional

to the number of feature-label co-occurrences and in-

versely proportional to the global label frequency. This

is related to feature-based cosine similarity since we

measure the feature-label co-occurrences by comput-

ing the cosine similarity between each feature and label

column-wise and by normalising label vectors to unit

length, we are dividing by the global label frequency

(assuming binary positive data). The instance-based co-

sine similarity is related to the inter-coupled similarity

measure if we employ one-hot-encoding of categorical

features during preprocessing.

There is no related work on instance-based multi-

label classification optimised for imbalanced extreme

datasets. For example, Liu et al. propose an optimi-

sation procedure to learn the correspondence between

each feature value and label, but this has a complex-

ity of O(M3 · L) [43]. Therefore, we propose to adopt

a label-specific threshold to improve results on macro

F1 [30]. However, we acknowledge that given a long tail

of minority labels (e.g. occurring less than 5 times), high

precision and recall remain challenging.

Fast Nearest Neighbours We did not consider com-

bining Taat traversal with pruning [21]. For example,

we could prune entire dimensions using max score prun-

ing. While this technique is useful for pruning more in-

stances, it remains uncertain if this would decrease the

overall wall time for high-dimensional sparse datasets

as is the case with InstanceKnnFast. We also did not

consider approximate kNN strategies used by other au-

thors in extreme multi-label classification [10,44]. Since

our algorithm can compute the exact set of k-nearest

neighbours efficiently on extreme datasets, approxima-

tions are of less interest.

7 Conclusion

Inspired by recent work in recommender systems re-

search, i.e., user-based and item-based collaborative fil-

tering, we propose Lcif, a new algorithm for multi-label

classification. Our predictions are based on the labels

of the nearest neighbours in the training dataset. The

instance-based method finds the top k instances that

are most similar using the features of the current test

instance. The feature-based method gives higher weight

to labels that are the most similar to each feature, where

similarity is defined column-wise over all instances. A

linear combination of the similarity weighted instance-
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and feature-based neighbourhood is computed to make

the final prediction.

We created an efficient algorithm for finding the k-

nearest neighbours using an inverted index and efficient

sparse computation of cosine similarities and predic-

tions. We extend this algorithm and create an even

faster k-nearest neighbours search algorithm, by par-

titioning instances and combining term-at-a-time and

document-at-a-time traversal with a tighter upper bound

for Weak-AND pruning. We validated that this method

can be 25% faster than the baseline method, and up to

6 times faster than existing top-k query retrieval al-

gorithms, assuming high-dimensional sparse datasets.

Lcif requires only seconds to complete on large datasets,

where classic methods take minutes or hours. For ex-

treme datasets, we require less than 20 milliseconds per

instance to predict labels on commodity hardware.

Experiments on ten real-world multi-label datasets

from different domains, i.e., text categorisation, scene

classification and social tagging domain, show that Lcif

outperforms state-of-the-art algorithms such as multi-

label kNN, instance-based logistic regression and binary

relevance with support vector machines on accuracy,

micro F1 and macro F1. Lcif also produces excellent

results on extreme datasets compared to FastXml. Be-

cause of its efficiency at both train and test time, the

possibility to generate explainable results, and excel-

lent evaluation accuracy, Lcif is interesting for any

extreme multi-label application, especially when mak-

ing a trade-off between model/computational complex-

ity and performance improvement. The source code of

Lcif is publicly available and enables end-users to per-

form accurate extreme multi-label classification with-

out the need for expensive clusters.

In future work, we see potential to improve further

extreme multi-label learning algorithms inspired by ad-

vances in the related field of collaborative filtering. We

also see potential to boost the prediction accuracy of

Lcif, for example, by creating ensembles using boosting

or stacking and adopting embedding algorithms, such

as word or sentence embeddings learned using neural

networks [45,46].
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