
Interactive and Manual Construction of Classification Trees

Stephen Pauwels stephen.pauwels@student.uantwerp.be

University of Antwerp, Antwerpen, Belgium

Sandy Moens sandy.moens@uantwerp.be

University of Antwerp, Antwerpen, Belgium

Bart Goethals bart.goethals@uantwerp.be

University of Antwerp, Antwerpen, Belgium

Keywords: Interactive Classification, Manual Classification, Classification Trees

Abstract

We propose an approach in which a user can
build tree based classification models under
the assistance of a computer. We extend
MIME, an existing framework for pattern dis-
covery and exploration, with several mecha-
nisms and visualisations for aiding a user to
1) construct new trees from scratch and 2)
adapt existing trees, by showing good split-
ting points in the data, showing troublesome
parts in the tree and automating computa-
tions of trees by standard techniques. We il-
lustrate how our system can be used by non-
classification experts to build interesting de-
cision trees. Moreover, we provide a short
experimental evaluation showing how trees
generated using our tool compare to existing
algorithms and their pruning techniques.

1. Introduction

Classification models are an important tool for deci-
sion making in databases. Their goal is to predict
labels for new data instances based on information ex-
tracted from previously labeled instances. One typi-
cally used model is the classification tree, for which an
example is shown in Figure 1. As for other data min-
ing techniques, the construction of classification trees
is 1) an iterative parameter refinement process and
2) requires both input from a computer and a user.
On one hand, a computer can compute models over
large amounts of data, while, on the other hand, a

Appearing in Proceedings of BENELEARN 2014. Copy-
right 2014 by the author(s)/owner(s).

user has prior knowledge and semantic interpretation
about the data. Blumenstock et al. showed that in-
teractivity can be used to synergetically combine the
two (Blumenstock et al., 2006). Moreover, through
interactivity, the results become more understandable
and meaningful (Blumenstock et al., 2006)(Liu & Sal-
vendy, 2007).

The problem with most existing approaches, however,
is that a user only has limited interaction capabili-
ties (Ankerst et al., 1999)(Ware et al., 2001), in the
sense that they only allow to grow a tree and not prune
it down again. In our approach, focusing on tree based
classifiers, the user is the driving force like in Baobab-
View (van den Elzen & van Wijk, 2011). To this end,
she is given a pallet of tools that guide her during the
construction of trees. At each point during the con-
struction, the user is able to choose which splitting
criterion she wants to use. She is thereby guided by
several tools, e.g., the calculation of best splitting at-
tribute, the overal quality of the tree, the distribution
of the classes in a specific node in the tree, and more.

The contributions of our work are as follows:

• We augmented MIME (Goethals et al., 2011), an in-
teractive tool for pattern discovery and exploration,
with a new module for creating and adapting deci-
sion trees (Section 3). We used the same interaction
techniques and information transferral methods that
are widely used in MIME to aid the user during the
construction process.

• We show in Section 4 how non-classification experts
can use our tool for building classification trees. We
show how visual cues can be acted upon by the user
of the system.



Interactive and Manual Construction of Classification Trees

'(- inf- 5.55]' '(5.55- 6.15]' '(6.15- inf)'

sepal length

class= Iris- setosa

'(- inf- 2.45]' '(2.45- 4.75]' '(4.75- inf)'

petallength

class= Iris- setosa class= Iris- versicolor class= Iris- virginica

'(- inf- 0.8]' '(0.8- 1.75]' '(1.75- inf)'

petalwidth

class= Iris- virginica class= Iris- versicolor class= Iris- virginica

Figure 1. Classification tree for Iris-dataset represented in MIME

47 2 0.7966 0.9000

3 3 1.0000 0.6867

21 3 1.0000 0.8067

10 3 0.8333 0.7200

0 3 NaN 0.6667

16 3 0.8889 0.7600

37 3 1.0000 0.9133

sepal length='(-inf-5.55]' class=Iris-setosa

petallength='(-inf-2.45]' sepal length='(5.55-6.15]' class=Iris-setosa

petallength='(2.45-4.75]' sepal length='(5.55-6.15]' class=Iris-versicolor

petallength='(4.75-inf)' sepal length='(5.55-6.15]' class=Iris-virginica

petalwidth='(-inf-0.8]' sepal length='(6.15-inf)' class=Iris-virginica

petalwidth='(0.8-1.75]' sepal length='(6.15-inf)' class=Iris-versicolor

petalwidth='(1.75-inf)' sepal length='(6.15-inf)' class=Iris-virginica

Support Size Itemset Confidence Accuracy

Figure 2. Classification tree represented as a set of rules in MIME

• We show in Section 5 that with our tool, a user can
easily simplify existing computer generated classifi-
cation models.

2. Iterative Interaction in MIME

We use MIME as knowledge representation and knowl-
edge discovery framework (Goethals et al., 2011). Its
main philosophy is that a user is the central part of the
discovery process, as only she can decide what is truly
interesting for her (Geng & Hamilton, 2006). How-
ever, as a user is not able to analyze large amounts of
data on her own, she needs to be aided by multiple
data mining algorithms and tools.

The knowledge presented in MIME is given as a
collection of patterns. Originally, supported pattern
types are association rules, e.g., {sepal length=‘(5.55-

6.15]’, petallength=‘(-inf-2.45]’} → {class=Iris-
setosa} and itemsets, e.g., {sepal length=‘(6.15-inf]’,
petalwidth=‘(-inf-0.8]’}. These pattern types are
easy to understand and use, even by non-expert
users. A user can then easily modify the collection of
patterns by adapting single patterns or even removing
full patterns from the collection. In this work we
augmented MIME with the interactive construction
of classification trees and we added a tree model
view, also node-link diagram (Liu & Salvendy, 2007),
for this purpose. The constructed classification trees
can be transformed easily to a set of association
rules, where a left-hand side is a set of items and
the right-hand side is a single class. An example
classification tree and its corresponding collection of
rules are given in Figures 1 and 2.

Patterns presented in MIME can be scored by different



Interactive and Manual Construction of Classification Trees

{ }
(N
aN
)

cl
as
s=
Ir
is
-s
et
os
a

(1
.5
85
0)

cl
as
s=
Ir
is
-v
er
si
co
lo
r

(1
.5
85
0)

cl
as
s=
Ir
is
-v
ir
gi
ni
ca

(1
.5
85
0)

pe
ta
lw
id
th
='
(-
in
f-
0.
8]
'

(1
.3
78
4)

pe
ta
lw
id
th
='
(0
.8
-1
.7
5]
'

(1
.3
78
4)

pe
ta
lw
id
th
='
(1
.7
5-
in
f)
'

(1
.3
78
4)

pe
ta
ll
en
gt
h=
'(
-i
nf
-2
.4
5]
'

(1
.3
56
5)

pe
ta
ll
en
gt
h=
'(
2.
45
-4
.7
5]
'

(1
.3
56
5)

pe
ta
ll
en
gt
h=
'(
4.
75
-i
nf
)'

(1
.3
56
5)

se
pa
l
le
ng
th
='
(-
in
f-
5.
55
]'

(0
.6
52
3)

se
pa
l
le
ng
th
='
(5
.5
5-
6.
15
]'

(0
.6
52
3)

se
pa
l
le
ng
th
='
(6
.1
5-
in
f)
'

(0
.6
52
3)

se
pa
lw
id
th
='
(3
.3
5-
in
f)
'

(0
.3
76
0)

se
pa
lw
id
th
='
(2
.9
5-
3.
35
]'

(0
.3
76
0)

se
pa
lw
id
th
='
(-
in
f-
2.
95
]'

(0
.3
76
0)

Figure 3. Source Dock containing all attribute-value combinations in the data, sorted by Gain Ratio

Subjective
Interest

Data Mining
Algorithms

Objective
InterestTight

Coupling

Refinement

Pattern
Collection ComputerUSER

Data

Figure 4. Iterative workflow of MIME

objective interestingness measures (Geng & Hamilton,
2006). These measures give an indication of how in-
teresting a pattern potentially is for a user. For in-
stance, a widely used objective measure for associa-
tion rules is confidence and gives the probability of
a rule being valid: if the rule {sepal length=‘(5.55-
6.15]’, petallength=‘(-inf-2.45]’} → {class=Iris-setosa}
has 80% confidence, then in 4 out of 5 times, an iris
flower with sepal length and petal length in the bound-
aries will in fact be of the Iris-setosa family. For item-
sets, a well-known measure is the support. The latter
indicates how many times the itemset effectively oc-
curs in the raw data.

One of the prominent features in MIME is the Best
Pattern Extension (Goethals et al., 2011). This is
based on an active objective measure selected by a
user, e.g., support or confidence. It scores the remain-
ing items as extensions for the selected pattern and
shows them in decreasing order of their score. As such,
the top scoring items are always shown left-most in the
Source Dock (see Figure 3).

The main workflow of MIME is shown in Figure 4. It
shows that MIME is based on an iterative refinement of
a collection of patterns by a user and an assisting com-
puter. The iterative process originates from hidden
knowledge in the data that a user wants to extract. For
instance, consider the Iris dataset (Bache & Lichman,
2013), which provides the main characteristics of flow-

ers in the Iris family. Then, what is interesting for a
retailer selling flowers is not necessarily interesting for
a flower biologist, i.e., the interesting knowledge is sub-
jective to a specific user. Moreover, a person often does
not know in advance what he or she is looking for, but
is interested in patterns that are for instance action-
able (Silberschatz & Tuzhilin, 1995)(Geng & Hamil-
ton, 2006). This makes the discovery of interesting
patterns into an iterative, exploratory process. To
guide a user to interesting patterns, MIME provides
on-the-fly computation of different objective measures
(e.g., support and confidence), proposed patterns (e.g.,
Best Pattern Extension) and multiple data mining al-
gorithms (e.g., Apriori (Agrawal & Srikant, 1994) and
Eclat (Zaki et al., 1997)). A user can use these differ-
ent tools to start building pattern collections. Essen-
tially, this pattern collection represents a knowledge
base for the system as well as for the user. The indi-
vidual patterns and the collection as a whole can then
be scored by objective measures and further refined.
The refinement process stops whenever the user is sat-
isfied with the discovered collection of patterns.

3. Interactive Construction of
Classification Trees

Originally MIME is designed to explore data repre-
sented as itemsets and association rules. With this
work we add support to build classification trees inter-



Interactive and Manual Construction of Classification Trees

attribute name attribute type attribute domain item

class categorical Iris-setosa, Iris-verisicolor, Iris-virginica class=Iris-setosa
class=Iris-versicolor
class=Iris-virginica

petalwidth numerical (-inf – inf) petalwidth=‘(-inf – 0.8]’
petalwidth=‘(0.8 – 1.75]’
petalwidth=‘(1.75 – inf)’

Figure 5. Example conversion of categorical and numerical attributes to items.

actively. We note that such trees are in fact rule-based
classification models. One of the prominent ideas is
that a user should not decide in advance which type
of mining techniques or what type of patterns/models
she is interested in. In fact, constructed trees are
automatically represented as association rules in the
background. This allows MIME to quickly show the
association rules that describe the decision tree. An
example tree for the Iris dataset is given in Figure 1.
The corresponding rule set is shown in Figure 2: this
is a mapping of tree branches to association rules, by
traversing the tree top to bottom and left to right.

Classification trees are constructed from labeled
datasets with numerical or categorical values. In
MIME all attributes with their respective values are
presented as attribute-value combinations. For cat-
egorical attributes the conversion is direct: an at-
tribute with 3 values results in 3 items. Numerical
attributes are discretized when loading the dataset.
To this end, MIME uses implementations made avail-
able by WEKA (Hall et al., 2009), allowing a user to
choose for instance the number of bins in which the
values are grouped. Examples are given in Figure 5.
In the remainder of this work, we use the terms item
and attribute-value combination interchangeably.

The general idea of building a classification tree is
splitting the data into smaller parts, such that, with
high accuracy, a class can be assigned to a sub part of
the data instances. New data instances having simi-
lar characteristics can then be assigned the same class
label. Splitting data instances is achieved by taking
a single attribute and one or more of its value combi-
nations. For instance, in Figure 1 all data instances
are present in the root. Next, a split is made us-
ing ‘sepal length’, such that three mutually exclusive
parts are constructed. New instances having a sepal
length between −∞ and 5.55, are assigned class ‘Iris-
setosa’ when a new classification is made. The remain-
ing parts are further split using some of the remaining
attributes. The final goal is to assign accurate labels
to new data instances. Note that a node represents a

conditional database, consisting of all instances con-
taining all items on the branch to the node.

Several splitting criteria have been proposed in the
literature, mostly based on the underlying class dis-
tributions in the conditional databases. The following
measures are incorporated into our framework:

• Classification Error: Measures the error rate of a
node, using the dominating class in the node when
assigning class labels. The errors is weighted with
respect to the size of the conditional database.

• Class Purity: Measures the total confidence of
dominating classes in the conditional databases.
This measure compares the share of the largest class
to the share of all remaining classes combined.

• Gini Index: Gives the probability that a randomly
chosen instance is classified incorrectly when as-
signed a random class label.

• Gain Ratio: Gives the differences in class entropy
in the original data and the weighted class entropy in
the conditional databases. The entropy is a measure
for chaos in the data: the more classes and the more
equal their share, the higher the entropy.

3.1. Visual Representation

Our tree representation consists of 3 different node
types: an internal node, a leaf node and an empty
node. An internal node (Figure 6(a)) represents an
attribute/split in the data, and the branches are the
different values for the attribute. A leaf node (Figure
6(b)) is a node corresponding to the class with a spe-
cific class value/label. This represents the class that is
assigned to instances in the conditional database. An
empty node (Figure 6(c)) is a node where no attribute
or class value is assigned.

The source dock gives an overview of all available items
(attribute-value combinations) (see Figure 3). Each
one of these items can be used while building a tree.



Interactive and Manual Construction of Classification Trees

'(2.95- 3.35]'

inf- 0.8]' '(0.8- 1.75]' '(1.75- in

petalwidth

(a)

'(2.95- 3.35]'

class= Iris- virginica

(b)

'(2.95- 3.35]'

(c)

Figure 6. Different types of nodes

We note that measures for sorting items in the source
dock, i.e., active measures, apply to the entire at-
tribute. Therefore, all items dealing with the same
attribute have the same value for the active measure.

Our tree representation in MIME inherently represents
actionable knowledge to quickly point users to where
and how the current tree can be enhanced. We im-
plemented one visual cue assisting the growth of trees
and two visual cues assisting the pruning of trees:

• Pie Chart Representation: Empty nodes need
user attention and should be interacted with. We vi-
sualize suchs node as pie-charts reflecting the under-
lying class distribution (see Figure 6(c)). As such,
a user is quickly able to see which class dominates
the conditional database.

• Size of the Conditional Database: To indicate
the relative number of instances that are part of a
split, we set the thickness of edges proportional to
its size (see Figure 1): thick edges indicates many
instances, thin edges indicates fewer instances. The
sizes can help in deciding which branches can be
pruned when trying to reduce the tree complexity.

• Degree of Overfitting: After generating a tree,
some branches may overfit the data, classifying only
1 or 2 instances. To determine if a node X is over-
gitting the data we use

Overfit(X) = num leaves/num instances,

with num leaves the number of leaves that can be
reached from the current node and num instances
the number of classified instances in the node. Using
this formula, we obtain values between 0 and 1, such
that 1 indicates extremely overfitting and low values
indicates not overfitting. We coloured all nodes in a
grayscale, indicating their degree of overfitting.

3.2. Interacting with Trees

The main interaction mechanism employed in MIME is
dragging and dropping of single items. In this work we

use the same machanism to grow and prune generated
trees:

• Inserting Internal Nodes: An empty node is
transformed in an internal node by dragging a single
item from the source dock and dropping it on the
node. Upon dropping the item, a user can choose
to add only this specific attribute-value combination
or to add also all remaining combinations for the at-
tribute. The default method for adding an attribute
to the tree is to add all combinations as children.
That is to be sure the dataset is fully covered by the
classification tree.

• Inserting Leaf Nodes: When dropping a class-
value combination, an empty node is automatically
transformed into a leaf node. A second possibility
for quickly adding a class value is using the context-
menu. Here, the different values of the class at-
tribute are sorted in ascending order with respect
to their distribution in the current node. It is also
possible to ‘Add the Best Value’, which automati-
cally adds the class value dominating the node.

• Removing Nodes: Existing nodes in the current
tree can be removed by dragging the node away.
The original node and its complete subtree are com-
pletely pruned and replaced by an empty node.

Next to drag-and-drop operations, a user can select a
node from the tree, triggering a recomputation of the
current active measure for the remaining items in the
dataset. This allows to show the best attributes for
different splitting measures. A user can then exam-
ine all, or a few, different measures and decide which
attribute-value combinations to select as new criterion
for splitting into conditional databases.

At last, MIME also supports tree generation using
functionality from the WEKA library (Hall et al.,
2009). These tree generators can be used to build ei-
ther an entire tree or, alternatively, to complete an ex-
isting tree starting from a selected node. Trees that are
generated are again completely modifiable by the pre-
viously specified drag-and-drop operations. As such,
a user can quickly try out different generators for spe-
cific portions of the tree and decide which of the trees is
best suited for adaptation. Even more, different parts
of the final tree can be generated using different tree
generation algorithms! As such, a user can combine
the strengths of different classification methods dur-
ing the exploration process. Another advantage of this
idea, is that a user is able to make intelligent decisions
early on in an automated decision tree construction
based on her semantic background of the data. For



Interactive and Manual Construction of Classification Trees

instance, suppose we have data about the age, sex,
height, weight, weight increase and hair length of a
large collection of people, and we want to predict if a
person is pregnant based on these different features.
Then an obvious decision that is prominent is whether
or not a person is female. However, an automated clas-
sification tree builder, may not be able to discover this
feature as a main splitting criteria, while all people
know that only women can become pregnant.

4. Illustrative Scenario

Throughout the following two sections we use the Car
Evaluation dataset from the UCI machine learning
repository (Bache & Lichman, 2013) to give a workflow
example and to conduct preliminary experiments. The
dataset contains evaluations of cars based on technical
and cost related specifications. The dataset consists of
6 attributes with 25 different attribute-value pairs in
1728 transactions.

In this section, we show a typical example of how
to build classification trees using MIME. A user can
build trees either from scratch or starting from a pre-
generated tree, after which all parts of the tree can be
freely adapted. We show how to build classification
trees starting from a generated classification tree.

We first let MIME generate a starting decision tree.
Using the interface we can choose between the Id3,
J48, REPTree and RandomTree algorithms. For this
example we run RandomTree, resulting in a tree con-
taining 422 rules with maximum size of 5. Notice that
this also implies that the tree consists of 422 leaves
and has maximum depth of 5. The classification er-
ror for the entire tree is equal to 0, meaning that each
instance in the test set is classified correctly. Even
though the quality, in terms of classification error, is
good, we want to reduce the size/complexity of the
tree. More specifically we want to reduce the number
of leaf nodes as more compact trees are easier to inter-
pret and comprehend. Moreover having less rules in
the classification tree results in less overfitting of the
data.

Using visual cues from Section 3.1 we find a node
at depth 3 (Figure 7) with class distributions:
class=unacc: 26, class=acc: 10, class=vgood : 0 and
class=good : 0. Although this node only classifies 36
instances it leads to 23 leaf nodes, implying many of
the leaf nodes in fact classify just one instance. This
results in overfitting of parts of the data. Removing
this node by dragging it away, reveals the underlying
class distributions in a pie chart. This shows almost
3 out of 4 intances are classified by class=unacc. Re-

member also that the complete subtree of the node
is removed. Next we drop class=unacc on the empty
node. The tree has been reduced from 23 rules to one
single rule, reducing complexity and increasing inter-
pretability. However, as a consequence, the classifi-
cation error has increased to 0.0058. This is however
still a low error rate. We repeat this process for all
internal nodes of the tree to obtain a tree with lower
complexity and with a reasonable classification error.

As mentioned previously, it is also possible to start
building an empty tree without tree generation. The
process is similar to the scenario we showed and also
uses visual cues in combination with on-the-fly com-
puted information to guide the user in building good
classification trees.

5. Experimental Evaluation

For our experiment we generate a tree using the
tree building algorithms Id3, J48, REPTree and Ran-
domTree. We prune the resulting tree manually and
compare them to the original tree with respect to size
and classification error. We use the same dataset (car
evaluations) as in the previous section. The resulting
trees are shown in Table 1 and 2.

We build 4 trees using the algorithms incorporated in
MIME using WEKA. For the Id3 tree we perform mul-
tiple iterations over the entire tree. First, we remove
all nodes that are coloured black, since these have a
large overfitting factor. For every removed node we
add a leaf-node by choosing the most occurring class
value in the node. In the second iteration, we remove
nodes for which all its children are leaves with the same
class value. This can obviously be simplified by pulling
the class up one level. In the third iteration, we look at
the class distribution of all nodes that only have leaves
as children. If one value occurs more than twice the
amount of all the others, we replace the node by that
value. In the last iteration, we remove all nodes where
one class value occurs at least as much as all the others
together, i.e., in more than 50% of the instances.

For J48 and REPTree we constructed trees by en-
abling inherent pruning mechanisms. Therefore, no
completely black nodes are produced by these meth-
ods. We immediately use the generated trees as a com-
parison for our manually pruned trees.

For the tree generated by the RandomTree algorithm
we use a similar iterative pruning procedure as for Id3.
However, we start in the root of the tree and descend
in a depth-first way. When encountering a black node
we remove it and replace it with a class value. Next,
we also remove redundant leaves.



Interactive and Manual Construction of Classification Trees

small med big

lug_boot

=unacc

vhigh high med low

maint

class=unacc class=unacc

2 4 more

persons

class=unacc class=acc class=acc

2 4 more

persons

class=unacc class=acc class=acc

class=un

Figure 7. Original inner node

Id3 J48
Classif. Error #Leaves Classif. Error #Leaves

0 296 0.0370 131

REPTree RandomTree
Classif. Error #Leaves Classif. Error #Leaves

0.0596 106 0 422

Table 1. Measures of tree generators

Id3 (after 1 iteration) Id3 (after 2 iterations)
Classif. Error #Leaves Classif. Error #Leaves

0.0359 159 0.0359 129

Id3 (after 3 iterations) Id3 (after 4 iterations)
Classif. Error #Leaves Classif. Error #Leaves

0.0544 117 0.1782 18

Random (1 iteration) Random (2 iterations)
Classif. Error #Leaves Classif. Error #Leaves

0.0851 150 0.0851 141

Table 2. Measures of adapted trees

Comparing Table 1 to Table 2 we see that Id3 contains
less leaves than J48 after 2 iterations and also a smaller
error. When comparing to REPTree we see that we
have 23 leaves more, but also an error which is 0.0237
smaller. The result after 3 iterations over Id3 is more
similar to the result of the REPTree algorithm. After
applying the fourth iteration on Id3 we get a larger
difference between the fully automated algorithms and
our own manual pruning method. Our tree now only
has 18 leaves compared to 296 we got from the original
Id3 algorithm. On the downside the classification error
has increased to 0.1782, which is much larger than

the original tree or after the other iterations. In some
cases such an error is not a very big issue. First of
all, the classification error only takes the training data
into account. Secondly, an expert user in the data
domain can sometimes detect overfitting and faulty
instances in the dataset. Moreover, some users know
which decisions are most crucial when classifying new
instances. This can explain why a classification tree
can get a high error for a given training set. While
in practice it may prove to be a decent classification
model.

The experiment for the RandomTree gives less good re-
sults: we obtain a tree with a higher number of leaves
and a larger classification error. The approach of al-
ways removing the nodes starting from the root thus
gives worse results opposed to starting at the leaves
and going up the tree. This is because nodes which in-
dicate that they are overfitting can be non-overfitting
after the removal of some of its children.

We have shown that we have some interesting tools in
MIME which give a user the possibility to prune a tree
by herself, without an algorithm that intervenes.

6. Related Work

Constructing classification trees is often done by a
computer alone. Some approaches try to involve the
user more into this construction process. For the re-
lated work we only focus on the latter.

Ankerst et al.(Ankerst et al., 1999) developed a frame-
work where a user interactively builds classification
trees by creating split intervals. They allow backtrack-



Interactive and Manual Construction of Classification Trees

ing by removing branches that a user dislikes. They
however do not have the possibility of using existing
techniques for building a classification tree, or to com-
plete non-finished branches. Ware et al. (Ware et al.,
2001) adopted a similar approach where trees are build
by drawing splits in the true data. They also only al-
low for user constructed trees. These approaches are
useful to let the user work very closely to the data and
to let her understand the classifier better.

BaobabView is a framework created by Van de Elzen
and Van Wijk (van den Elzen & van Wijk, 2011) that
is very similar to our approach. They use similar cues
(Section 3.1) and split measure computations, to assist
users in growing and pruning trees. They also allow
to complete only specific parts of an incomplete tree.
A difference to our method is that they employ a con-
fusion matrix to indicate the classification error, while
we employ a grayscale immediately in the tree.

Han and Cerone (Han & Cercone, 2001) introduced
parallel segments, a novel data visualization technique
for data instances. They employ a second view that
represents the current decision tree. For the construc-
tion they employ a 5 step interaction model with the
data visualization. The different steps can be trans-
lated to drag-and-drop operation in our framework.

Some other data mining frameworks also allow the con-
struction of classification trees, but in a much more
restricted sense. In WEKA (Hall et al., 2009) a user
has the ability to select multiple decision tree gener-
ators and to select which data attributes should be
used for this purpose. Here, a user does not have the
ability to adopt the resulting classifier to incorporate
background knowledge. The only possible interaction
is the adaptation of input parameters.

KNIME (Berthold et al., 2007) lets a user build trees
by creating a complete workflow choosing which data
attributes to load, what classification tree learner to
use, how many folds to use, etc. The interaction is
limited in the sense that the results can not be adapted
directly, rather the workflow has to be altered for this
purpose. The tool is therefore much less exploratory
and interactive compared to ours.

7. Conclusion and Future Work

Fully automated tree generators often generate very
large, complex tree structures that are not easy to in-
terpret by humans. Therefore, a few interactive classi-
fication tools have been developed. However, the prob-
lem with most of these tools is that they do not give
the user the full degree of freedom that would often be
useful. Most methods only let the user decide which

pieces of the data she wants to split and which need to
be together. Other methods only foresee the ability to
set specific, often difficult to set, parameters and then
let an algorithm run to the end. They do not allow to
make adaptations to the resulting tree easily.

In this work we adapted MIME, which already sup-
ports the exploration of itemsets and association rules,
to provide a fully integrated proces of building a classi-
fication tree. We added the ability to build such trees
fully manually by dragging attribute-value combina-
tions, corresponding to splits in the data, onto empty
nodes in a tree. To this end, a user can make use
of splitting measures to sort remaining attributes in
the data from best to worst splitting criteria. Alter-
natively, she can use different existing tree generators
and completely adapt the resulting tree afterwards. It
is also possible to complete a tree starting from a spe-
cific empty node using these generators.

Our experiments show that the tree generators pro-
duce good trees with few errors, but at the cost of
complexity. By adapting generated trees we can re-
duce the size of a tree intelligently, based on our back-
ground knowledge. Although trees become less accu-
rate, they also become more readable and understand-
able by users. More methods for simplifying generated
classification trees are to come.

In the future, we want to add on-the-fly discretiza-
tion of numerical attributes. We want to give the user
the possibility to change splits of an attribute within
the visualization for different branches, as opposed to
having static splits employed by all branches. A new
means for simplifying generated trees is to add the pos-
sibility to merge two or more splits for one attribute
into one, which then can be merged to binary splits.
Since MIME internally converts the tree to associa-
tion rules we also want to add useful and meaningful
ways to convert any collection rules to a (collection of)
decision trees.

One main goal in MIME wrt this work is to keep all
interactions between rules and trees as simple as possi-
ble, and that a user does not have to choose a specific
pattern type. Ratherm she can instantly switch from
building a collection of rules to building a classifier.

Acknowledgements

The authors would like to thank, in alphabetical or-
der, the co-developers of the original software package:
Tom De Schepper, Yannick Jadoul, Stefaan Kenis and
Timothy Verstraeten.



Interactive and Manual Construction of Classification Trees

References

Agrawal, R., & Srikant, R. (1994). Fast algorithms for
mining association rules in large databases. Proceed-
ings of the 20th International Conference on Very
Large Data Bases (pp. 487–499). Morgan Kaufmann
Publishers Inc.

Ankerst, M., Elsen, C., Ester, M., & Kriegel, H.-P.
(1999). Visual classification: An interactive ap-
proach to decision tree construction. Proc. ACM
SIGKDD (pp. 392–396).

Bache, K., & Lichman, M. (2013). UCI machine learn-
ing repository.

Berthold, M. R., Cebron, N., Dill, F., Gabriel, T. R.,
Kötter, T., Meinl, T., Ohl, P., Sieb, C., Thiel,
K., & Wiswedel, B. (2007). KNIME: The Kon-
stanz Information Miner. Studies in Classification,
Data Analysis, and Knowledge Organization (GfKL
2007). Springer.

Blumenstock, A., Kempe, S., Lanquillon, C., Hipp,
J., & Wirth, R. (2006). Interactivity closes the
gap, lessons learned in an automotive industry ap-
plication. Proceedings of the 2006 workshop on
Data Mining in Business Applications. Philadel-
phia, Pennsylvania, USA: ACM.

Geng, L., & Hamilton, H. J. (2006). Interestingness
measures for data mining: A survey. ACM Comput.
Surv.

Goethals, B., Moens, S., & Vreeken, J. (2011). Mime:
A framework for interactive visual pattern mining.
Proc. ACM SIGKDD (pp. 757–760). ACM.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reute-
mann, P., & Witten, I. H. (2009). The weka data
mining software: An update. SIGKDD Explor.
Newsl., 11, 10–18.

Han, J., & Cercone, N. (2001). Interactive construc-
tion of decision trees. In Advances in knowledge dis-
covery and data mining, Lecture Notes in Computer
Science, 575–580. Springer Berlin Heidelberg.

Liu, Y., & Salvendy, G. (2007). Design and evalu-
ation of visualization support to facilitate decision
trees classification. International Journal of Human-
Computer Studies, 95–110.

Silberschatz, A., & Tuzhilin, A. (1995). On subjective
measures of interestingness in knowledge discovery.
KDD (pp. 275–281).

van den Elzen, S., & van Wijk, J. J. (2011). Baobab-
view: Interactive construction and analysis of deci-
sion trees. Visual Analytics Science and Technology
(VAST), 2011 IEEE Conference on (pp. 151–160).

Ware, M., Frank, E., Holmes, G., Hall, M., & Wit-
ten, I. H. (2001). Interactive machine learning: Let-
ting users build classifiers. International Journal of
Human-Computer Studies, 55, 281 – 292.

Zaki, M. J., Parthasarathy, S., Ogihara, M., & Li, W.
(1997). New algorithms for fast discovery of associ-
ation rules. In 3rd Intl. Conf. on Knowledge Discov-
ery and Data Mining (pp. 283–286). AAAI Press.


