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Abstract This paper addresses the question whether one can determine the con-
nectivity of a semi-algebraic set in three dimensions by looking only at two-
dimensional “samples” of the set, where these samples are defined by first-order
queries. The question is answered negatively for two classes of first-order queries:
cartesian-product-free, and positive one-pass.

1 Introduction

Semi-algebraic sets provide a useful model for spatial datasets [7]. First-order
logic over the reals (FO) then provides a basic query language for expressing
queries about such spatial data. The power of FO, however, is too limited. In par-
ticular, testing whether a set in R

n is topologically connected is not expressible in
FO for n � 2 (for n = 1 it is easily expressed).

The obvious reaction to this limitation of FO is to enrich it with an explicit
operator for testing connectivity, as proposed by Giannella and Van Gucht [5] and
by Benedikt et al. [2]. This operator can be applied not just to the dataset itself,
but also to any set derived from the original set by an FO query.

The question now arises whether the connectivity of a set in R
n can be tested

by testing the connectivity of a finite number of sets in R
n−1, constructed from

the original set by FO queries. This question is interesting because it requires to
understand what is essential in a query language with connectivity tests, and what
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is redundant. Indeed, expressivity and hierarchy questions have always received a
lot of attention in database theory and computational model theory [1, 4, 6].

For n = 2, the answer to our question is clearly negative, because connectivity
in R

1 is expressible in FO, and therefore a positive answer would imply that also
connectivity in R

2 would be expressible in FO, which we know is not true. It is
intuitive to conjecture that the answer is negative for all n � 2.

While this conjecture in its generality remains open (and seems very hard to
prove), we have proven it for two fragments of FO. In the first fragment, cartesian
product is disallowed. In the second fragment, negation is disallowed, and the
query must be “one pass” in a sense that can be made precise. Our treatment of
the second fragment is for n = 3 only.

2 Preliminaries

Semi-algebraic sets A semi-algebraic set in R
n is a finite union of sets definable

by conditions of the form f1(x) = · · · = fk(x) = 0, g1(x) > 0, . . . , g�(x) > 0,
with x = (x1, . . . , xn) ∈ R

n , and where f1(x), . . . , fk(x), g1(x), . . . , g�(x) are
multivariate polynomials in the variables x1, . . . , xn with real coefficients.

Semi-algebraic sets form a very robust class; for example, any set definable by
a formula with quantifiers in first-order logic over the reals is semi-algebraic (i.e.,
definable also without quantifiers; this is the Tarski–Seidenberg principle [3]).

Relational algebra To express first-order queries about a set S in R
n , we use not

the formalism of first-order logic, but the equivalent formalism of relational alge-
bra expressions (RAEs). These are inductively defined as follows. The symbol S
is a RAE, of arity n. Any constant semi-algebraic set in R

k , for any k, is a RAE of
arity k. If e1 and e2 are REAs of arities k1 and k2 respectively, then the cartesian
product (e1 × e2) is a RAE of arity k1 + k2, and provided that k1 = k2 = k, the
union (e1 ∪ e2), the intersection (e1 ∩ e2) and the difference (e1 − e2) are RAEs
of arity k. Finally, if e is a RAE of arity k, and i1, . . . , i p ∈ {1, . . . , k}, then the
projection πi1,...,i p (e) is a RAE of arity p.

When applied to a given set A in R
n , a RAE e of arity k evaluates in the

natural way to a set e(A) in R
k . When A is semi-algebraic, e(A) is too, by the

Tarski–Seidenberg principle.

Notation We will use the following notations.

– The topological closure of a set A ⊆ R
n is denoted by cl(A), its interior is

denoted by int(A) and its boundary cl(A) − int(A) is denoted by bd(A).
– The n-dimensional closed unit ball centered around the origin is denoted by �;

the n-dimensional unit sphere centered around the origin by �; and the union
� ∪ {0} by �.

– The set of affine transformations from R
n to R

n (compositions of a scaling and
a translation) is denoted by A.

3 Cartesian-product-free queries

A RAE is called cartesian-product-free if it does not use cartesian product. An
example of such a RAE is

π1,2((S ∩ �1) ∪ (�2 − S)) − π1,3(S ∪ �3)
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where �1, �2 and �3 can be arbitrary semi-algebraic sets in R
3 and S is ternary

(i.e., stands for a set in R
3).

In this section, we prove that the connectivity of a semi-algebraic set in R
3

cannot be determined by sampling it using a finite number of binary cartesian-
product-free RAEs.

Theorem 1 Let S range over sets in R
3. For any finite collection e1, . . . , e� of

binary cartesian-product-free RAEs over S, there exist two semi-algebraic sets A
and B in R

3 such that

1. A is connected;
2. B is disconnected;
3. ei (A) = ei (B) for i = 1, . . . , �.

Toward the proof, we start with the following observation.

Lemma 1 Let �0, �1, . . . , �k be nonempty semi-algebraic sets in R
3, where

�0 is open. Then there exists a partition {I, J } of {1, . . . , k} and an open semi-
algebraic set V ⊆ �0 such that

– V ⊆ �i for i ∈ I , and
– V ∩ � j = ∅ for j ∈ J .

Proof By induction on k. If k = 0, set I = {0}, J = ∅, and V = �0.
If k > 0, consider the set {�0, �1, . . . , �k−1}. Then by the induction hypothe-

sis, there is a partition {I ′, J ′} of {1, . . . , k−1} and an open set V ′ ⊆ �0 satisfying
the condition as stated in the lemma for k − 1. Since V ′ = (V ′ \ �k) ∪ (V ′ ∩ �k),
since dim V ′ = 3, and since dim(A∪B) = max{dim A, dim B} for semi-algebraic
sets A and B, at least one of the following two cases occurs:

1. dim(V ′ \ �k) = 3, in which case we choose V an open subset of V ′ \ �k , and
set I = I ′ and J = J ′ ∪ {k}.

2. dim(V ′ ∩ �k) = 3, in which case we choose V an open subset of V ′ ∩ �k ,
and set I = I ′ ∪ {k} and J = J ′. ��
The following lemma is the crucial element in our proof of the theorem.

Lemma 2 For a given open semi-algebraic set U ⊆ R
3, and any ternary

cartesian-product-free RAE e, there exists an open set V ⊆ U such that e is
equivalent to an expression of one of the four possible forms

�, S, S ∪ �, � − S

on all sets S ⊆ V , where � denotes a constant set in R
3. Moreover, in the last

form, V is included in the interior of �.

Proof Since both the input S to e and the output of e are ternary, and e is cartesian-
product-free, e must be projection-free as well. By rewriting (e1∩e2) as (e2−(e2−
e1)) we can ignore the intersection operator. We now proceed by induction on the
structure of e. The base cases where e is S or e is constant are already in the right
form.

For the cases e = (e1 ∪e2) and e = (e1 −e2), by induction we can find an open
set V1 ⊆ U such that e1 has one of the four possible forms within V1, and we can



46 F. Geerts et al.

Table 1 Proof of Lemma 2, possibilities for e1 ∪ e2

∪ S �2

S S S ∪ �2
�1 S ∪ �1 �1 ∪ �2
S ∪ �1 S ∪ �1 S ∪ (�1 ∪ �2)
�1 − S �1 {�1 ∪ �2, (�1 ∪ �2) − S}
∪ S ∪ �2 �2 − S

S S ∪ �2 �2
�1 S ∪ (�1 ∪ �2) {�1 ∪ �2, (�1 ∪ �2) − S}
S ∪ �1 S ∪ (�1 ∪ �2) S ∪ (�1 ∪ �2)
�1 − S S ∪ (�1 ∪ �2) (�1 ∪ �2) − S

Table 2 Proof of Lemma 2, possibilities for e1 − e2

− S �2

S ∅ {∅, S}
�1 �1 − S �1 − �2
S ∪ �1 {�1, �1 − S} {�1 − �2, (�1 − �2) ∪ S}
�1 − S �1 − S {�1 − �2, (�1 − �2) − S}
− S ∪ �2 �2 − S

S ∅ S
�1 {�1 − �2, (�1 − �2) − S} {�1 − �2, (�1 − �2) ∪ S}
S ∪ �1 {�1 − �2, (�1 − �2) − S} S ∪ (�1 − �2)
�1 − S {�1 − �2, (�1 − �2) − S} {�1 − �2, (�1 − �2) − S}

further find an open set V2 ⊆ V1 such that e2 has one of the four possible forms
within V2. This means that we have to consider 2 × 4 × 4 possibilities (actually
less, as there are symmetries), shown in Tables 1 and 2.

Take, for example, e = (�1 − S) ∪ �2. By applying Lemma 1 to �0 = V2
and �1 = �1, we get a V ⊆ V2 such that either V ⊆ �1 or V ∩ �1 = ∅. In the
latter case, e is equivalent to �1 ∪ �2 within V . In the former case, e is equivalent
to (�1 ∪ �2) − S within V , and we can always shrink V a bit so that it is included
in the interior of �1 ∪ �2, in accordance with the statement of the lemma. In both
cases e is in a desired form. We summarize this in the corresponding entry in
Table 1. All other entries in the tables are proven similarly, or are trivial. ��

We are now ready for the proof of Theorem 1:

Proof A binary cartesian-product-free RAE e over ternary S can be viewed as
an expression built up, using the operators ∪ and −, from binary constant sets
and binary projections of ternary cartesian-product-free RAEs. If πi, j (c) is such a
projection occurring in e, we call c a component of e.

By a series of applications of Lemma 2, we can get all components of all the
given binary expressions e1, . . . , e� in one of the four normal forms mentioned in
the lemma. The first application starts with U = R

3, and every next application
takes as U the V produced by the previous application. Within the V produced by
the final application, all components are in normal form.
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Choose τ ∈ A such that τ(�) ⊂ V , and consider the sets A = τ(�) (which
is connected) and B = τ(�) (which is disconnected). Now any binary projection
πi, j of a component c in normal form yields the same result whether applied to
A or to B. Indeed, if c is of the form �, S, or S ∪ � this is clear; if c is of the
form � − S then we recall that Lemma 2 guarantees that V is fully included in the
interior of �, so πi, j (� − S) = πi, j (�).

We can thus conclude that ei (A) = ei (B) for i = 1, . . . , � as desired. ��
For simplicity of exposition, in this section, we have stated and proved

Theorem 1 in three dimensions only. However, the argument readily generalizes
to prove for any n > 2 that the connectivity of a semi-algebraic set in R

n cannot
be determined by sampling it using a finite number of n −1-ary cartesian-product-
free RAEs.

Theorem Let n > 2, and let S range over sets in R
n. For any finite collection

e1, . . . , e� of n − 1-ary cartesian-product-free RAEs over S, there exist two semi-
algebraic sets A and B in R

n such that

1. A is connected;
2. B is disconnected;
3. ei (A) = ei (B) for i = 1, . . . , �.

4 Positive one-pass queries

A RAE is called positive one-pass if it does not use the difference operator, and
mentions S only once. An example is

π3,5(�1 ∪ (�2 ∩ (S × R
2)))

where S is ternary, and �1 and �2 are arbitrary semi-algebraic sets in R
5. As a

matter of fact, this example is very representative, in view of the following:

Lemma 3 Every binary positive one-pass RAE can be written in the form

πi1,i2(�1 ∪ (�2 ∩ (S × R
k))).

More generally, it can be verified by induction that every p-ary positive one-
pass RAE can be written in the form of the above lemma, with πi1,i2 replaced
by πi1,...,i p .

In this section, we prove that the connectivity of a semi-algebraic set in R
3

cannot be determined by sampling it using a finite number of binary positive one-
pass RAEs.

Theorem 2 Let S range over sets in R
3. For any finite collection e1, . . . , e� of

binary positive one-pass RAEs over S, there exist two semi-algebraic sets A and
B in R

3 such that

1. A is connected;
2. B is disconnected;
3. ei (A) = ei (B) for i = 1, . . . , �.

The following lemma essentially proves the theorem.
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Lemma 4 For a given open semi-algebraic set U ⊆ R
3, any semi-algebraic sets

�1 and �2 in R
3+k , and any i1, i2 ∈ {1, 2, 3, . . . , k + 3}, we can always find an

open set V ⊆ U such that for any τ ∈ A with τ(�) ⊂ V ,

πi1,i2(�1 ∪ (�2 ∩ (τ (�) × R
k))) = πi1,i2(�1 ∪ (�2 ∩ (τ (�) × R

k))).

Assuming this lemma, we can give the proof of Theorem 2:

Proof By a series of applications of Lemma 4, we obtain a V such that for any
τ ∈ A for which τ(�) ⊂ V , we have ei (τ (�)) = ei (τ (�)) for i = 1, . . . , �. Since
every ei is positive (does not use the difference operator), every ei is monotone
with respect to the subset order. Hence, ei (τ (�)) ⊆ ei (τ (�)) ⊆ ei (τ (�)) and
thus ei (τ (�)) = ei (τ (�)). Taking A = τ(�) and B = τ(�) thus proves the
theorem. ��

To prove Lemma 4 we will use the regular cell decomposition of semi-
algebraic sets, whose definition we recall next. A function f : C → R, where
C ⊆ R

n , is called regular if it is continuous and for each i ∈ {1, . . . , n} either
strictly increasing, strictly decreasing, or constant in the i th coordinate. (Which of
these three cases holds may depend on i .) Also, we call f semi-algebraic if its
graph is semi-algebraic.

We define a regular cell by induction on the number of dimensions. Regular
cells in R are singletons {a}, or open intervals (a, b), (−∞, a), or (a, +∞). Now
assume that C ⊆ R

n is a regular cell, and f, g : C → R are regular semi-algebraic
functions on C , with f (x) < g(x) for all x ∈ C . Then the sets {(x, f (x)) | x ∈ C}
and {(x, r) | x ∈ C, f (x) < r < g(x)} are regular cells in R

n+1. In the latter case,
f can be −∞, and g can be ∞.

A regular cell decomposition of R
n is a special kind of partition of R

n into a
finite number of regular cells. This is also defined by induction on n. A regular
decomposition of R is just any finite partition of R in regular cells. For n > 1, a
regular cell decomposition of R

n is a finite partition {S1, . . . ,Sk} of R
n in regular

cells such that {π(S1), . . . , π(Sk)} is a regular cell decomposition of R
n−1. Here,

π : (x1, . . . , xn) �→ (x1, . . . , xn−1) is the natural projection of R
n onto R

n−1.
Let A be a semi-algebraic set in R

n . A regular cell decomposition of R
n is said

to be compatible with A if A is a union of regular cells from this decomposition.

Fact ([8]) For every semi-algebraic set A in R
n there exists a regular cell decom-

position of R
n compatible with A.

Toward the proof of Lemma 4, we start with the following sequence of obser-
vations.

Lemma 5 Let A ⊆ R
3 be a compact semi-algebraic set and let f : A → R

be a regular function. Then minA f = minbd(A) f and maxA f = maxbd(A) f .
If moreover the boundary bd(A) is connected, then f (bd(A)) equals the interval
[minA f, maxA f ].
Proof Since A is closed, bd(A) ⊆ A and thus minA f � minbd(A) f . To show
the reverse inequality, we need to find for any point in A − bd(A) another point
in bd(A) with the same or lower f -value. Take a point (x, y, z) ∈ A − bd(A),
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and shoot a straight ray out of that point in any direction. Since A is bounded,
the ray will intersect bd(A). Let us focus on the two rays orthogonal to the xy
plane. If f is strictly decreasing in z, shoot the ray in increasing z direction to
obtain an intersection point with bd(A) with lower f -value as desired. If f is
strictly increasing, follow the converse direction, and if f is constant, any direction
will do to find a point in bd(A) with the same f -value. The equality maxA f =
maxbd(A) f is proven in the same way.

Now assume bd(A) is connected. Choose xmax ∈ bd(A) with maximal f -
value, and choose xmin ∈ bd(A) with minimal f -value. Since for semi-algebraic
sets, connectivity coincides with path connectivity [3], there is a continuous path
γ : [0, 1] → bd(A) such that γ (0) = xmin and γ (1) = xmax. Since f is continu-
ous, so is the composition f ◦γ . Since [0, 1] is closed and connected, f ◦γ ([0, 1])
must be a closed and connected set in R, and must therefore equal the interval
[minA f, maxA f ]. ��

As a consequence, we have that

Lemma 6 Let W be an open set in R
3 and let f be a regular function of W . Then

for any compact and connected semi-algebraic set A ⊆ W and for i1 ∈ {1, 2, 3},
we have that

πi1,4({(x, f (x)) | x ∈ A}) = πi1,4({(x, f (x)) | x ∈ bd(A)}).
Proof Assume that i1 = 3, the other cases are analogous. We only need to prove
the inclusion

π3,4({(x, f (x)) | x ∈ A}) ⊆ π3,4({(x, f (x)) | x ∈ bd(A)}),
the other direction being trivial. Take an arbitrary element (z0, f (x0, y0, z0)) ∈
π3,4({(x, f (x)) | x ∈ A}). Since {(x, y, z) ∈ A | z = z0} is compact with
connected boundary, we can apply Lemma 5 to obtain (x1, y1, z0) ∈ bd(A) with
f (x1, y1, z0) = f (x0, y0, z0). Hence, (z0, f (x0, y0, z0)) ∈ π3,4({(x, f (x)) | x ∈
bd(A)}) as desired. ��

We also observe the following useful property of regular functions.

Lemma 7 Let W be an open set in R
3 and let f, g be two regular functions on

W . Then there exists a function h(x, t) such that (i) for any t ∈ (0, 1), h(·, t) is
regular on W ; and (ii) for any semi-algebraic set A ⊆ W ,

{(x, u) | x ∈ A ∧ f (x) < u < g(x)} =
⋃

t∈(0,1)

{(x, h(x, t)) | x ∈ A}. (1)

Proof We say that f and g behave in an opposite way if when f is increasing
(decreasing) in the i th coordinate, then g is decreasing (increasing) in the i th
coordinate.

Case 1: Suppose that f and g are not behaving in an opposite way in any of
the coordinates. Then it is easily verified that h(x, y, z, t) = t f (x, y, z) + (1 −
t)g(x, y, z) is a regular function for any t ∈ (0, 1). Moreover, the equality (1)
trivially holds.
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Case 2: Suppose now that f and g behave in an opposite way for some coordi-
nates; let I ⊆ {1, 2, 3} denote the coordinates for which f and g do so. Let i ∈ I
and x = (x, y, z). We denote by x + i the translation of x by a vector i along the
i th coordinate. We define

Mi ( f )(x) = sup
x+i∈W

f (x + i),

and similarly,

mi (g)(x) = inf
x+i∈W

g(x + i).

For each x ∈ W , we have that f (x) � Mi ( f )(x), mi (g)(x) � g(x) and
Mi ( f )(x) � mi (g)(x). Moreover, for each x ∈ W , hi (x), Mi ( f ) and mi (g) be-
have in an opposite way in the coordinates I \{i}, are constant in the i th coordinate
and Mi ( f ) (resp. mi (g)) behaves as f (resp. g) in the other coordinates.

Let I = I \ {i}. We now repeat the above for Mi ( f ), mi (g) and I until I = ∅.
At the end of this process, we have two regular functions M( f ) and m(g) which
do not behave in an opposite way in any coordinate, which are constant in the
coordinates in the original set I , and such that M( f ) and m(g) behave just like f
(or, similarly g) in the other coordinates. Moreover, for each x ∈ W we have that
f (x) � M( f )(x) � m(g)(x) � g(x).

We now define

p(x) = M( f )(x) + 1

2
(m(g)(x) − M( f )(x)),

and apply Case 1 to the pairs f and p, and p and g. Hence, for each pair we
obtain a function hi (x, y, z, t), t ∈ (0, 1), i = 1, 2. Finally, the desired function
is defined as h(x, y, z, t) = h1(x, y, z, 2t) for 0 < t � 1/2 and h(x, y, z, t) =
h2(x, y, z, 2t − 1/2) for 1/2 < t < 1. ��

We are now ready to embark on the proof of Lemma 4:

Proof First note that πi1,i2(�1 ∪ (�2 ∩ (S × R
k))) is equivalent to πi1,i2(�1) ∪

πi1,i2(�2 ∩ (S × R
k)). So we may focus on expressions of the form

πi1,i2(� ∩ (S × R
k)). (2)

We only need to prove the inclusion

πi1,i2(� ∩ (τ (�) × R
k)) ⊆ πi1,i2(� ∩ (τ (�) × R

k)), (3)

the other direction being trivial. The proof consists of several cases depending on
the indices i1, i2.
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Case 1: i1, i2 ∈ {1, 2, 3}
Expression (2) is equivalent to πi1,i2(E), where E is π1,2,3(� ∩ (S × R

k)). Ap-
plying Lemma 1 to �0 = R

3 and �1 = π1,2,3(�), we get an open set V such that
we are in one of the following two cases.

1. V ∩ �1 = ∅.
Within V , expression E , and hence also (2), reduces to the empty set, so the
inclusion (3) to be proven trivially holds within V .

2. V ⊂ �1.
Within V , expression E now reduces to S, so expression (2) reduces to
πi1,i2(S). In particular this holds for both S = τ(�) and S = τ(�), where
τ ∈ A such that τ(�) ⊂ V . Since πi1,i2(τ (�)) = πi1,i2(τ (�)), the inclu-
sion (3) holds within V .

Case 2: i1 ∈ {1, 2, 3}, i2 /∈ {1, 2, 3}
Expression (2) is now equivalent to πi1,4(E), where E now is π1,2,3,i2(� ∩ (S ×
R

k)). Applying Lemma 1 to �0 = R
3 and �1 = π1,2,3(�), we get an open set

V (0) such that we are in one of the following cases.

1. V (0) ∩ �1 = ∅.
Within V (0), expression E , and hence also (2), reduces to the empty set, so the
inclusion (3) holds within V (0).

2. V (0) ⊂ �1.
Within V (0), expression E now reduces to A∩ (S ×R), with A = π1,2,3,i2(�).
Consider a regular cell decomposition of R

4 compatible with A, and write the
projection of this decomposition onto R

3 as {C1, . . . , C�}. Applying Lemma 1
to �

(1)
0 = V (0), and �

(1)
i = Ci ∩ V (0) for i = 1, . . . , �, we get an open

set V (1) ⊂ V (0) contained in a unique cell C j . Due to our regular cell de-
composition, in particular the parts based on C j , within V (1) the expression
E = A ∩ (S × R) can now be written as a union of sets of the form

E1 = {(x, y, z, v) | (x, y, z) ∈ S ∧ v = f (x, y, z)}

or

E2 = {(x, y, z, v) | (x, y, z) ∈ S ∧ f (x, y, z) < v < g(x, y, z)},
where f and g are regular functions.

Assume that i1 = 3 (the cases i1 = 1, 2 are analogous) so that the inclu-
sion (3) to be proven becomes π3,4(E(τ (�))) ⊆ π3,4(E(τ (�))). Since the
projection of a union is the union of the projections, we can restrict attention
to the cases E = E1 and E = E2.
(a) E = E1. Consider Lemma 6 with W = V (1) and f = f (x, y, z) the

regular function in the definition of E1. The result then follows by taking
A = τ(�) where τ ∈ A is such that τ(�) ⊂ W .
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(b) E = E2. Consider Lemma 7 with W = V (1), f = f (x, y, z) and g =
g(x, y, z) the regular functions in the definition of E2. It follows that E2
can be written as the union of (uncountably many) sets of the form E1. We
can treat each of these E1-like sets by applying Lemma 6 with W = V (1)

and f = h(x, y, z, t), t ∈ (0, 1). Here, h(x, y, z, t) is the function stated
in Lemma 7. Since W is independent of t , it is sufficient to choose a single
τ ∈ A such that τ(�) ⊂ W .

Case 3: i1, i2 /∈ {1, 2, 3}
Expression (2) is now equivalent to π4,5(E), where E is π1,2,3,i1,i2(�∩ (S ×R

k)).
Applying, as always, Lemma 1 to �0 = R

3 and �1 = π1,2,3(�), we get an open
set V (0) such that either V (0) ∩ �1 = ∅ or V (0) ⊂ �1.

If V (0) ∩ �1 = ∅, within V (0), expression E , and hence also (2), reduces to
the empty set, so the inclusion (3) holds within V (0).

So we can assume that V (0) ⊂ �1. Within V (0), expression E now reduces
to A ∩ (S × R

2), with A = π1,2,3,i1,i2(�). Consider a regular cell decomposition
of R

5 compatible with A, and write the projection of this decomposition onto R
3

as {C1, . . . , C�}. Applying Lemma 1 to �
(1)
0 = V (0), and �

(1)
i = Ci ∩ V (0) for

i = 1, . . . , �, we get an open set V (1) ⊂ V (0) contained in a unique cell C j . Due
to our regular cell decomposition, in particular the parts based on C j , within V (1)

the expression E = A∩ (S ×R
2) can now be written as a union of sets of the form

E1 = {(x, y, z, u, v) | (x, y, z) ∈ S ∧ u = f (x, y, z) ∧ v = g(x, y, z, u)},
E2 = {(x, y, z, u, v) | (x, y, z) ∈ S ∧ u = f (x, y, z)

∧ g1(x, y, z, u) < v < g2(x, y, z, u)},
E3 = {(x, y, z, u, v) | (x, y, z) ∈ S ∧ f1(x, y, z) < u < f2(x, y, z)

∧ v = g(x, y, z, u)}, or
E4 = {(x, y, z, u, v) | (x, y, z) ∈ S ∧ f1(x, y, z) < u < f2(x, y, z)

∧ g1(x, y, z, u) < v < g2(x, y, z, u)},
where f , f1, f2, g, g1, and g2 are regular functions.

We need to prove π4,5(E(τ (�))) ⊆ π4,5(E(τ (�))). Since the projection of an
union is the union of the projections, we can restrict attention to the cases E = E1,
E = E2, E = E3, and E = E4.

1. E = E1.
(a) If f is constant, with value u0, we observe that for i = 3 (the cases

i = 1, 2 are analogous) πi,4,5(E1) = {(z, u0, v) | (z, v) ∈ πi1,5(E1)}.
From Lemma 6 with W = V (1) and f = g(x, y, z, u0) the regular
function in the definition of E1, we know that for any τ ∈ A such that
τ(�) ⊂ W , πi,5(E1(τ (�))) = πi,5(E1(τ (�))). Hence, we have that
πi,4,5(E1(τ (�))) = πi,4,5(E1(τ (�))) already, so this certainly holds when
projecting even further on the fourth and fifth coordinate.

(b) Now assume that f is not constant in x ; the cases y and z are analogous.
Look at the projection π2,3,4,5(E1):

{(y, z, u, v) | ∃x((x, y, z) ∈ S ∧ u = f (x, y, z) ∧ v = g(x, y, z, u))}.
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This set can be written as

E ′
1 = {(y, z, u, v) | (y, z, u) ∈ h(S) ∧ v = k(y, z, u)},

where h : (x, y, z) �→ (y, z, f (x, y, z)), and

k : (y, z, u) �→ g
(
h−1

x (y, z, u), y, z, u
)
,

where h−1
x is the function defined by h(h−1

x (y, z, u), y, z) = (y, z, u). This
inverse function exists; in fact, because f is regular and non-constant in x ,
h is a homeomorphism within V (1).

Within W (0) = h(V (1)), we can find an open set W (1) ⊂ W (0) such that
k is regular. Since h is a homeomorphism, we also can find an open set
V (2) ⊂ V (1) such that h(V (2)) ⊂ W (1).

Since π4,5(E1) reduces to π3,4(E ′
1), we can apply Lemma 6 with W =

h(V (2)) and f = k(y, z, u). The result then follows by taking τ ∈ A such
that h(τ (�)) ⊂ W .

2. E = E2.
(a) If f is constant, with value u0, then we observe that

E2 = {(x, y, z, v) | (x, y, z) ∈ S

∧g1(x, y, z, u0) < v < g2(x, y, z, u0)} × {u | u = u0}.
Note that for a fixed u0, g1(x, y, z, u0) and g2(x, y, z, u0) are regular
functions. Hence, by applying Lemma 7 with W = V (1) and f =
g1(x, y, z, u0) and g = g2(x, y, z, u0), we know that we can write E2 as
the union of sets of the form E1 × {u | u = u0}. We can treat each of these
E1-like sets by applying Lemma 6 with W = V (1) and f = h(x, y, z, t),
t ∈ (0, 1). Here, h(x, y, z, t) is the function stated in Lemma 7. Since
W is independent of t , it is sufficient to choose a single τ ∈ A such that
τ(�) ⊂ W .

(b) Now assume f is not constant in x ; the cases y and z are analogous. Look
at the projection π2,3,4,5(E2):

{(y, z, u, v) | ∃x((x, y, z) ∈ S ∧ u = f (x, y, z)

∧ g1(x, y, z, u) < v < g2(x, y, z, u)}.

As in Case 3.1(b), we can find V (2) ⊂ V (1) such that π2,3,4,5(E2) can be
written as

E ′
2 = {(y, z, u, v) | (y, z, u) ∈ h(S) ∧ k1(y, z, u) < v < k2(y, z, u)},

where h : (x, y, z) �→ (y, z, f (x, y, z)), and ki (y, z, u), i = 1, 2 are
regular functions on h(V (2)). By applying Lemma 7 with W = h(V (2))
and f = k1(y, z, u) and g = k2(y, z, u), we know that E ′

2 can be written
as the union of sets of the form E1. Since f is not constant, we can then
proceed as in Case 3.1(b) to obtain the desired result.
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3. E = E3
We begin by determining an open set V (2) ⊂ V (1) within which f1 < C < f2
for some constant C , and break up E3 in the following sets:

B1 = {(x, y, z, u, v) | (x, y, z) ∈ S∧ f1(x, y, z) < u < C ∧ v=g(x, y, z, u)}
B2 = {(x, y, z, u, v) | (x, y, z) ∈ S∧C < u < f2(x, y, z) ∧ v=g(x, y, z, u)}
B3 = {(x, y, z, u, v) | (x, y, z) ∈ S∧u = C ∧ v=g(x, y, z, u)}
On B3 we can reason as in Case 3.1(a) for τ ∈ A such that τ(�) ⊂ V (2),
π4,5(B3(τ (�))) ⊆ π4,5(B3(τ (�))).

We show how to treat B1; the treatment of B2 is analogous. Within a certain
open set V to be determined, we are going to break up B1 in a special way in
two overlapping parts of the following form:

B1,1 =
⋃

t∈(0,δ)

{(x, y, z, u, v) | (x, y, z) ∈ S ∧ u = f (x, y, z) + t

∧ v = g(x, y, z, u)}
B1,2 =

⋃

t∈(cV ,C)

{(x, y, z, u, v) | (x, y, z) ∈ S ∧ u = t ∧ v = g(x, y, z, u)}

for certain δ and cV , which we are now going to define.
If f is constant, then δ := 0, and cV is the constant value of f .
So, suppose that f is not constant in x ; the cases y and z are analogous.

Then ht : (x, y, z) �→ (y, z, f (x, y, z) + t) is a homeomorphism for every t .
Let

k : (y, z, u, t) �→ g
(
(ht )

−1
x (y, z, u), y, z, u

)
,

where (ht )
−1
x is the function defined by ht ((ht )

−1
x (y, z, u), y, z) = (y, z, u).

We now want to find a δ such that kt : (y, z, u) �→ k(y, z, u, t) is regular
for every t ∈ (0, δ). Thereto, consider the (semi-algebraic) set

D =
{
(y, z, u, t) | (y, z, u) ∈ h0

(
V (2)

) ∧ 0 < t < 1 ∧ ∂k

∂y
(y, z, u, t) = 0

}

Using a cell decomposition of R
4 compatible with D, we can find an open set

W (0) ⊆ h0(V (2)) and a δ(0) > 0 such that on W (0) × (0, δ(0)) either ∂k
∂y = 0,

i.e., k is constant in y, or ∂k
∂y �= 0, i.e., k is strictly monotone in y. Proceeding

similarly, we can find W (2) ⊆ W (1) ⊆ W (0) and 0 < δ(2) < δ(1) < δ(0) such
that k is either constant or strictly monotone in z on W (1) × (0, δ(1)), and k
is either constant or strictly monotone in u on W (2) × (0, δ(2)). Hence, within
W (2), kt is regular for every t ∈ (0, δ(2)).

Next, choose an open set V (3) ⊂ V (2) and 0 < δ(3) < δ(2) such that
ht (V (3)) ⊂ W (2) for every t ∈ (0, δ(3)). We then restrict V (3) even further
to an open set V (4), and simultaneously choose δ(4) such that the following
conditions are satisfied:

C − sup
V (4)

f > δ(4) > 0

sup
V (4)

f − inf
V (4)

f < min
{
δ(3), δ(4)

}
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It is now clear that, within V := V (4), we have B1 = B1,1 ∪ B1,2 where we
put cV := supV (5) f and δ := min{δ(3), δ(4)}.

It remains to deal with B1,1 and B1,2, but this poses no longer any problems:
B1,1: By construction, k(y, z, u, t) is regular for every t ∈ (0, δ). This implies

that for each t ∈ (0, δ) we can treat the set

{(y, z, u, v) | (y, z, u) ∈ ht (S) ∧ v = k(y, z, u, t)}

as described at the end of Case 3.1(b).
B1,2: Here, for every t , we are back in Case 3.1(a).

4. E = E4. We begin again by determining an open set V (2) ⊂ V (1) within
which f1 < C < f2 for some constant C , and break up E4 in the following
sets:

B1 = {(x, y, z, u, v) | (x, y, z) ∈ S ∧ f1(x, y, z) < u < C
∧ g1(x, y, z, u) < v < g2(x, y, z, u)}

B2 = {(x, y, z, u, v) | (x, y, z) ∈ S ∧ C < u < f2(x, y, z)
∧ g1(x, y, z, u) < v < g2(x, y, z, u)}

B3 = {(x, y, z, u, v) | (x, y, z) ∈ S ∧ u = C
∧ g1(x, y, z, u) < v < g2(x, y, z, u)}

On B3 we can reason as in Case 3.2(a) and for τ ∈ A such that τ(�) ⊂ V (2),
π4,5(B3(τ (�))) ⊆ π4,5(B3(τ (�))).

We show how to treat B1; the treatment of B2 is analogous. By the same
procedure as in Case 4.3 but now working with two functions k1 and k2 (one
for g1 and one for g2), we break up B1 within a certain open set V :

B1,1 =
⋃

t∈(0,δ)

{(x, y, z, u, v) | (x, y, z) ∈ S ∧ u = f (x, y, z) + t

∧ g1(x, y, z, u) < v < g2(x, y, z, u)}
B1,2 =

⋃

t∈(cV ,C)

{(x, y, z, u, v) | (x, y, z) ∈ S ∧ u = t

∧ g1(x, y, z, u) < v < g2(x, y, z, u)}

We finally deal with B1,1 and B1,2 as follows:
B1,1: By construction, (k1)t and (k2)t are regular for every t ∈ (0, δ). Writing

π4,5(B1,1) as

⋃

t∈(0,δ)

π3,4({(y, z, u, v) | [t](y, z, u) ∈ ht (S) ∧ k1(y, z, u, t) < v <

k2(y, z, u, t)})

we can therefore reason analogously as described at the end of Case 3.2(b)
for every t individually.

B1,2: Here, for every t individually, we are straight back in Case 3.2(a).

The proof of Lemma 4 is complete. ��
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5 Concluding remarks

We have treated the positive-one pass queries for three-dimensional datasets only.
Our proof uses only fairly elementary mathematics. By using more heavy machin-
ery, one can probably prove our Theorem 2 in general for n-dimensional datasets
and n−1-ary queries. Conceivably this generalisation can also be performed start-
ing from our own proof, but that will be exceedingly laborious.

Extending our proof technique to larger classes of RAEs is not obvious to us.
When cartesian product is allowed our basic technique of, given a set �, finding
an affine transformation τ such that τ(S) ∩ � is either τ(S) itself or ∅ no longer
works for τ(S) × τ(S). When negation is allowed, the normal form of Lemma 3
becomes much more complex, with consequences for the case analysis.

Ultimately, one can even go further than the problem posed in the Introduction,
and throw in connectivity testing of parameterized queries, which can then even
be nested [2, 5].
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