
iMONDRIAN: A Visual Tool to Annotate and Query
Scientific Databases

Floris Geerts1,3, Anastasios Kementsietsidis1, and Diego Milano2

1 School of Informatics, University of Edinburgh, UK
{fgeerts, akements}@inf.ed.ac.uk

2 Universitá di Roma “La Sapienza”, Italy
diego.milano@dis-uniroma1.it

3 Hasselt University, Belgium

Abstract. We demonstrate iMONDRIAN, a component of the MONDRIAN an-
notation management system. Distinguishing features of MONDRIAN are (i) the
ability to annotate sets of values (ii) the annotation-aware query algebra. On top
of that, iMONDRIAN offers an intuitive visual interface to annotate and query
scientific databases.

In this demonstration, we consider Gene Ontology (GO), a publicly available
biological database. Using this database we show (i) the creation of annotations
through the visual interface (ii) the ability to visually build complex, annotation-
aware, queries (iii) the basic functionality for tracking annotation provenance.
Our demonstration also provides a cheat window which shows the system inter-
nals and how visual queries are translated to annotation-aware algebra queries.

1 Introduction

Modern science relies increasingly on the use of database systems to store huge
collections of scientific data. These data are generated from laboratory processes or
are copied from other scientific databases. To make sense of these data and decide un-
der which circumstances they can be used, scientists need to know their lineage, i.e.,
the conditions under which the data were generated, the accuracy of the processes that
produced them, or how trust-worthy is the source from which the data were copied.
These metadata are often stored in scientific databases in the form of annotations. In
spite of their importance, existing data formats and schemas are not designed to manage
the increasing variety of annotations. Moreover, DBMS’s often lack support for storing
and querying annotations.

Our work in the MONDRIAN1 annotation management system [1] is motivated
by the pressing needs of biologists, some of which are highlighted by the following
example. Consider the relation in Figure 1 which lists triples of identifiers belonging to
three distinct biological databases. Each triple associates the identifier gid of a gene (in
the gene database) with the identifier pid of the protein (in the protein database) that

1 Piet Mondrian: Dutch painter whose paintings mainly consist of color blocks.

Y. Ioannidis et al. (Eds.): EDBT 2006, LNCS 3896, pp. 1168–1171, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

iMONDRIAN: A Visual Tool to Annotate and Query Scientific Databases 1169

the gene produces, where the sequence of the protein is identified by sid (in the protein
sequence database). Such relations are widely used in the biological domain and offer a
quick way to cross-reference and establish associations between independent biological
sources [2, 3].

Given such a relation, a biologist often wants to annotate each triple with any evi-
dence that exist and verify its validity. Such evidence might include a reference to an
article that mentions that the indicated gene produces the specified protein, or the name
of a curator who verified this association. In the figure, we show possible annotations
in the form of blocks and block labels. Blocks are used to indicate the set of values
for which an annotation exists, while block labels are used to indicate the annotations
themselves. In the figure, the annotations indicate the names of curators who verified
that a particular association holds. So, in the first tuple, a block indicates Mary’s belief
that the gene with GDB id 120231 produces protein with id P21359. Notice that parts
of a triple can be verified by different curators (e.g. see the first tuple), while other parts
are yet to be verified (e.g. see the third tuple).

For annotations to be useful, the biologist must be able to query them. For example,
she might want tuples that are annotated by either John or Mary. Or, she might want
to find which are annotated, and by whom. Often, the lack of annotations is also of
interest. For example, a biologist might want the gene-protein (gid, pid) pairs that are
not annotated, so as to investigate the validity of these yet unverified pairs.

To the best of our knowledge, MONDRIAN is the first system to support the anno-
tation of sets of values, thus allowing for complex annotations such as the ones shown
in the figure. Previous works only allowed for annotations to be attached to a partic-
ular value of a specific attribute (e.g., see [4]). Single-value annotations are insuffi-
cient since they fail to capture the complex relationships of values, relationships which
span across attribute boundaries. Another distinguishing feature of MONDRIAN is the
ability to query annotations and values alike. MONDRIAN offers an annotation-aware
query algebra which we have shown to be both complete (it can express all possible
queries over the class of annotated databases) and minimal (all the algebra operators
are primitive) [1]. The expressiveness of our algebra goes well beyond the query capa-
bilities of similar systems like, for example, DBNotes [5]. The algebra is simple and
intuitive and is able to express all the queries mentioned earlier, and many more (see [1]
for the full syntax and examples). For example, query q1 below retrieves all the tuples
that are annotated by either John or Mary, while query q2 only retrieves tuples that have
a gene-protein sequence (gid, sid) annotated pair.

q1 = ΣMary ∪ ΣPeter q2 = ΠL
gid,sid

In spite of being simple (and very easy to learn by those familiar with relational alge-
bra), we don’t expect that biologists would want to learn yet another query algebra. In-
stead, it seems natural to offer a visual tool through which a biologists can both annotate
data and query them. The objective of this demonstration is to present iMONDRIAN, a
tool that offers the above capabilities. Once more, the simplicity of the algebra is to our
favor since it facilitates the direct translation of visual queries to algebra queries.

1170 F. Geerts, A. Kementsietsidis, and D. Milano

2 The iMONDRIAN Demonstration

The demonstration of iMONDRIAN shows how the tool can be used by biologists,
throught the lifecycle of annotations, starting from their insertion, to their querying and
ending with their deletion. The demonstration uses data and annotations from Gene
Ontology (GO) [6], a publicly available biological database.

2.1 System Architecture

The MONDRIAN architecture, shown in Figure 2. MONDRIAN is built in java and is
running on top of MySQL. The iMondrian component is the front-end through which
a user interacts with the system. A visually expressed query is translated to a query
written in the MONDRIAN query algebra and this is subsequently translated to SQL
and is executed over the underlying RDBMS. One advantage of MONDRIAN queries
is that they are storage-model independent [1]. That is, MONDRIAN queries are at
a level of abstraction that is independent of the chosen representation of annotations.
Unlike the executed SQL queries, a change in this representation does not require the
reformulation of our queries.

120232 P35240A45770

JohnJohn, Mary

120231 P21359I78852

John Mary

pid gid sid

120234 P08138A25218Peter

120233 P01138A01399

Mary

Fig. 1. An annotated relation

iMONDRIAN

Biologist

Mondrian
Query Engine MySQL

Visual query

Mondrian
query algebra

SQL

pid gid sid pid gid sid ann

Result

I78852 120231 P21359
A45770 120232 P35240
A01399 120233 P01138

1 1 0 John
0 1 1 Mary
1 1 1 Peter

Fig. 2. The MONDRIAN Architecture

2.2 Demonstrated Functionality

Figures 3 and 4 show the iMONDRIAN interface. For ease of presentation, annotations
are represented as colors. Thus, sets of values with the same annotation are colored
the same. The same color can appear in a tuple over distinct attributes sets and thus
colors do not suffice to tell which attributes are annotated as a set. Therefore, when a
user selects an attribute value in a tuple, all the other attributes with which this value is
annotated are highlighted. Furthermore, a value can participate in more than one blocks
and thus it can have multiple colors. Such values are shown in grey, with a black border,
and when a user clicks on them she sees all its colors in a popup window (see Figure 3).

During the demo, we show how users can insert new tuples and annotations. An
annotation can be inserted by selecting a set of values and attaching a color to them.
This color can be either one that is used already in some tuple or a brand new color
(annotation).

The user can query both values and annotations in isolation or in unison. For ex-
ample, to query annotations, the user can select a color from a value and ask for all
the tuples that have the same color (annotation). For example, a visual query v1 might

iMONDRIAN: A Visual Tool to Annotate and Query Scientific Databases 1171

Fig. 3. The iMONDRIAN interface Fig. 4. The result of a visual query

ask for all the annotations with a red or green color. Or, the user can select a number
of attribute columns (by clicking check boxes next to each attribute name) and pose
a visual query v2 that returns all the tuples with annotations that involves all of these
columns. Each visual query results in a new window containing the query result. The
user can pose queries in the result window of a previous query, thus allowing for build-
ing of comlex queries. Figure 4 shows the result of applying visual queries v1 and v2
to the relation of Figure 3. The composed query, written in the MONDRIAN query
algebra, is available from the cheat window. This is useful if a user wants to execute
periodically the same query. Then, she doesn’t have to go through the same steps in
the iMONDRIAN interface. She only needs to copy the algebra query from the cheat
window and send it directly to the MONDRIAN query engine.

The demo also illustrates how MONDRIAN supports alternative annotation seman-
tics [1]. For example, we discuss annotation (non-)inheritance a property that, given
an annotation over a set of values, it determines whether, or not, any subset of these
values also inherits the annotation. Finally, the demo illustrates some basic provenance
functionality, which allows to trace back the origin of annotations.

References

1. Geerts, F., Kementsietsidis, A., Milano, D.: MONDRIAN: Annotating and querying databases
through colors and blocks. In: ICDE. (2006) (To appear).

2. Kementsietsidis, A., Arenas, M., Miller, R.J.: Data Mapping in Peer-to-Peer Systems: Seman-
tics and Algorithmic Issues. In: ACM SIGMOD. (2003) 325–336

3. Tan, W.C.: Research Problems in Data Provenance. IEEE Data Engineering Bulletin 27 (2004)
45–52

4. Bhagwat, D., Chiticariu, L., Tan, W.C., Vijayvargiya, G.: An Annotation Management System
for Relational Databases. In: VLDB. (2004) 900–911

5. Chiticariu, L., Tan, W.C., Vijayvargiya, G.: Dbnotes: a post-it system for relational databases
based on provenance. In: ACM SIGMOD. (2005) 942–944

6. Consortium, T.G.O.: The gene ontology (go) database and informatics resource. Nucl. Acids
Res 32 (2004) 258–261

	Introduction
	The iMONDRIAN Demonstration
	System Architecture
	Demonstrated Functionality

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

