
SIAM J. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 35, No. 6, pp. 1386–1439

LINEARIZATION AND COMPLETENESS RESULTS
FOR TERMINATING TRANSITIVE CLOSURE QUERIES

ON SPATIAL DATABASES∗

FLORIS GEERTS† , BART KUIJPERS† , AND JAN VAN DEN BUSSCHE†

Abstract. We study queries to spatial databases, where spatial data are modeled as semi-
algebraic sets, using the relational calculus with polynomial inequalities as a basic query language.
We work with the extension of the relational calculus with terminating transitive closures. The main
result is that this language can express the linearization of semialgebraic databases. We also show
that the sublanguage with linear inequalities only can express all computable queries on semilinear
databases. As a consequence of these results, we obtain a completeness result for topological queries
on semialgebraic databases.

Key words. constraint databases, real algebraic geometry, transitive closure logics, query
languages

AMS subject classifications. 68P15, 14P10, 57R05, 03B70

DOI. 10.1137/S0097539702410065

1. Introduction. Spatial database systems [1, 8, 12, 24, 25, 42] are concerned
with the representation and manipulation of data that have a geometric or topological
interpretation. Conceptually, spatial databases store geometric figures, which are
possibly infinite sets of points in a real space Rn. The framework of constraint
databases [34], introduced by Kanellakis, Kuper, and Revesz [27], provides an elegant
and powerful model for spatial databases. In the setting of the constraint model,
a geometric figure is finitely represented as a Boolean combination of polynomial
equalities and inequalities over the real numbers. Such figures are known as semi-
algebraic sets. Special cases of figures definable by linear polynomials are known as
semilinear sets [6].

The relational calculus or first-order logic, expanded with polynomial equalities
and inequalities and evaluated over the semialgebraic sets (viewed as relations over
the reals) stored in the database, serves as a basic spatial query language and is de-
noted by FO+Poly. The special case of queries expressed using linear equalities and
inequalities is denoted by FO+Lin. Several authors have argued that the restriction
to linear polynomial constraints provides a sufficiently general framework for spatial
database applications [21, 46, 47]. Indeed, in geographic information systems (GIS),
which form one of the main application areas of spatial databases, linear represen-
tations are used to model spatial objects [34, Chapter 9]. Existing implementations
of the constraint model, for instance, the work on the system DEDALE [19, 20, 21],
are also restricted to linear polynomial constraints. Indeed, for these constraints, the
evaluation of queries expressed in FO+Lin is conceptually easier and can be com-
puted by numerous efficient algorithms for geometric operations on linear figures [38].
The computational complexity of evaluating an FO+Lin query on linear constraint

∗Received by the editors June 22, 2002; accepted for publication (in revised form) November 13,
2005; published electronically April 7, 2006.

http://www.siam.org/journals/sicomp/35-6/41006.html
†Theoretical Computer Science Group, Hasselt University and Transnational University

of Limburg, Agoralaan, Gebouw D, B-3590 Diepenbeek, Belgium (floris.geerts@uhasselt.be,
bart.kuijpers@uhasselt.be, jan.vandenbussche@uhasselt.be). The first author is a postdoctoral re-
searcher of the FWO-Vlaanderen.

1386

LINEARIZATION AND COMPLETENESS FOR TC QUERIES 1387

databases (NC1) is also slightly lower than that of evaluating an FO+Poly query on
polynomial constraint databases (NC) [2, 22, 41].

Since the expressive power of the basic query languages FO+Poly and FO+Lin

is rather limited [34, Chapters 5 and 6], it makes sense to consider more powerful
extensions.

Various extensions with recursion have already been introduced and studied.
Grumbach and Kuper [18] defined syntactic variants of DATALOG with linear con-
straints which capture exactly the queries on linear constraint databases in the plane,
which have PTIME and PSPACE data complexity. Kreutzer [30] defines several re-
cursive languages capturing PTIME and PSPACE on a restricted class of linear con-
straint databases. Termination properties of DATALOG with polynomial constraints
are investigated by Kuijpers et al. [31] and Kuijpers and Smits [33].

In this paper, we study the expressive power of FO+Poly (and FO+Lin) ex-
tended with the transitive closure operator (TC). Transitive closure is a simple form
of recursion and we apply it only in a simple way; specifically, we do not apply TC to
formulas with extra free variables (parameters), as is allowed in the standard definition
of transitive closure logic [11].

In the first part of the paper, we show that when we extend the TC operator
with explicit stop conditions, which we denote by TCS, the language FO+Lin+TCS

is computationally complete on the class of databases definable by linear polynomi-
als with integer coefficients (Z-linear databases). This means that for every partial
computable query Q, there is a formula ϕ such that for every Z-linear database D,
the evaluation of ϕ on D terminates if and only if Q(D) is defined and results in
Q(D). It remains an open problem whether FO+Lin+TC (without explicit stop con-
ditions) is also computationally complete in this sense. We point out that recently,
Kreutzer [29] defined an extension of FO+Lin with a different transitive closure op-
erator and proved completeness on linear constraint databases as well (see the end of
section 3 for more details).

In the second part of the paper, we investigate the expressive power of FO+
Poly+TCS on general polynomial constraint databases. In contrast to the linear
case, we have not been able to establish the computational completeness. Yet, we
will show that the language is complete as far as all Boolean topological queries are
concerned.

In order to prove this result, we show that there is a formula of FO+Poly+TC

(no stop conditions are needed) that expresses linearization: when evaluated on an

arbitrary semialgebraic set A, it results in a semilinear set Â topologically equivalent
(i.e., homeomorphic) to A. Moreover, Â can be assumed to be a Z-linear set.

Our linearization formula always terminates, in the sense that on any input A,
every application of the TC operator in the formula converges after a finite number
of stages. In the case when A is bounded, the linearization formula can be sharpened
to produce a set Â that is arbitrarily close to the input set A.

The components of the linearization formula require a number of new geometric
constructions in FO+Poly. More specifically, we introduce the uniform cone radius
decomposition of semialgebraic sets. Using the result of Geerts [14], we show that
this decomposition can be defined in FO+Poly. Also, we define the regular decom-
position of semialgebraic sets and use the results of Rannou [39] to show that this
decomposition is expressible in FO+Poly.

The linearization algorithm also implies that semialgebraic sets in Rn can be
linearized, a fact which has been known for a long time [7]. The standard constructive
linearization (or triangulation) algorithm for semialgebraic sets, which is attributed

1388 F. GEERTS, B. KUIJPERS, AND J. VAN DEN BUSSCHE

to Hardt [26], can be found in the standard textbook on real algebraic geometry [6,
section 9.2] and in the more recent book on algorithms in real algebraic geometry [3,
Chapter 5].

The difference of the existing linearization algorithm for semialgebraic sets is
that the polynomials appearing in the description of the semialgebraic sets are used
explicitly. This is not possible in our setting because we can only interact with the
semialgebraic set using queries. Because of this, our algorithm is not likely to be as
efficient as the existing algorithm (we did not compute the exact complexity though).
Moreover, our linearization is based on the local conical behavior of semialgebraic
sets, and the inductive construction based on these cones might be of interest in real
algebraic geometry.

Finally, we use the linearization formula in the following two ways to show the
expressibility in FO+Poly+TC of two common queries which are known to be not
expressible in FO+Poly: (1) We show that the connectivity query on polynomial
constraint databases is expressible by an always terminating formula in FO+Poly+
TC; (2) we show that there is a formula in FO+Poly+TC that always has a ter-
minating evaluation and that evaluates on a given bounded semialgebraic set A to a
number that is arbitrarily close to the volume of A.

We remark that some of the above results were already described (in considerably
less detail) for two dimensions [16] and arbitrary dimensions [13].

This paper is organized as follows. Section 2 gives the definition of polynomial
constraint databases and defines the standard first-order query languages. Section 3
extends these languages with a transitive closure operator. Section 4 studies the
computational completeness of these extensions and gives some inexpressibility results
of the first-order query languages. Section 5 provides geometric tools necessary for
the linearization construction. Section 6 presents the construction itself and discusses
applications of linearization (testing connectivity and approximating the volume).

2. Preliminaries. We denote the set of real numbers by R, the set of algebraic
numbers by A, the set of integers by Z, and the set of natural numbers by N.

A semialgebraic set in Rn is a finite union of sets definable by conditions of the
form

f1(�x) = f2(�x) = · · · = fk(�x) = 0, g1(�x) > 0, g2(�x) > 0, . . . , g�(�x) > 0,

where �x = (x1, . . . , xn) ∈ Rn, and where f1(�x), . . . , fk(�x), g1(�x), . . . , g�(�x) are multi-
variate polynomials in the variables x1, . . . , xn with integer coefficients. A Z-linear
(A-linear) set in Rn is a semialgebraic set which can be defined in terms of linear
polynomials with integer (algebraic) coefficients.

A database schema S is a finite set of relation names, each with a given arity. A
polynomial constraint database D over S assigns to each S ∈ S a semialgebraic set SD

in Rk, where k is the arity of S. A Z-linear (A-linear) constraint database assigns
to each S ∈ S a Z-linear (A-linear) set SD in Rk, where k is the arity of S. A k-ary
query over S is a partial function Q that maps each database D over S to a k-ary
relation Q(D) ⊆ Rk.

First-order logic over the vocabulary (+,×, 0, 1, <) expanded with the database
schema S provides a basic query language which we denote by FO+Poly. The
sublanguage of FO+Poly consisting of the formulas that do not use multiplication is
denoted by FO+Lin.

LINEARIZATION AND COMPLETENESS FOR TC QUERIES 1389

Every formula ϕ(x1, . . . , xk) in FO+Poly expresses a k-ary query as follows: Let
D be a database over S; then

ϕ(D) = {(a1, . . . , ak) ∈ Rk | 〈R, D〉 |= ϕ(a1, . . . , ak)}.

Here, by 〈R, D〉 we mean the standard structure of the reals 〈R; +,×, 0, 1, <〉 ex-
panded with the relations (semialgebraic sets) in D.

Example 2.1. Suppose that S contains the binary relation name S. Then the
FO+Poly formula

ϕ(x, y) ≡ ∃ε∀x′∀y′
(
ε > 0 ∧ ((x− x′)2 + (y − y′)2 < ε → S(x′, y′))

)
expresses the query that maps any database D over S to the interior of SD. �

FO+Poly queries can be effectively evaluated as follows. Let ϕ(x1, . . . , xk) be
an FO+Poly formula over schema S, and let D be a database over S. For every
S ∈ S, we represent the set SD by some quantifier-free polynomial constraint formula
ψS(y1, . . . , yk), where k is the arity of S, that defines SD in the sense that SD = {(a1,
. . . , ak) ∈ Rk | R |= ψS(a1, . . . , ak)}. Now replace in ϕ every subformula of the form
S(z1, . . . , zk) with ψS(z1, . . . , zk). Making these replacements for every S ∈ S, we
obtain a polynomial constraint formula which we denote by ϕD and which defines
ϕ(D) in the sense that ϕ(D) = {(a1, . . . , ak) ∈ Rk | R |= ϕD(a1, . . . , ak)}.

Because first-order logic over the reals admits quantifier elimination [43], we can
rewrite ϕD in a quantifier-free form from which we can conclude that ϕ(D) is always a
semialgebraic set. This is called the closure principle. The reals without multiplication
also admit quantifier elimination, so in the same way, if D is semilinear and ϕ is in
FO+Lin, then ϕ(D) is also semilinear. Thus, there is also a closure principle for
FO+Lin provided we work with semilinear databases. For more information on FO+
Poly and FO+Lin queries, we refer the reader to the literature [34].

3. Transitive closure logics. Many interesting spatial database queries are not
expressible in the first-order query languages FO+Poly and FO+Lin, e.g., the query
that asks whether a given set is topologically connected or not. Therefore, it makes
sense to consider extensions of FO+Poly (or FO+Lin) with recursion to obtain more
powerful query languages. We study one of the most simple recursion constructs in
this context, i.e., the transitive closure operator TC.

An immediate observation is that TC cannot be added “just like that” with its
standard mathematical semantics without losing the important closure principle.

Example 3.1. The transitive closure of the semialgebraic set {(x, y) ∈ R2 | y =
2x} equals {(x, y) ∈ R2 | ∃i ∈ N : y = 2ix}, which is not a semialgebraic set. �

Therefore, we look at the TC operator quite naturally as a programming construct
with a purely operational semantics. For example, we will look at the transitive
closure example just mentioned simply as a nonterminating computation. Almost all
programming languages allow for the expression of nonterminating computations, and
it is part of the programmer’s job to avoid writing such programs.

A formula in FO+Poly+TC is a formula built in the same way as an FO+Poly

formula, but with the following extra formation rule: If ψ(�x, �y) is a formula with �x,
�y k-tuples of variables, and �s, �t are k-tuples of terms, then

[TC�x;�y ψ](�s,�t)(3.1)

is also a formula which has as free variables those in �s and �t. Since the only free
variables in ψ(�x, �y) are those in �x and �y, we do not allow parameters in applications

1390 F. GEERTS, B. KUIJPERS, AND J. VAN DEN BUSSCHE

of the TC operator, as are allowed in general transitive closure logic studied in finite
model theory [11]. With parameters, it is not so clear how to preserve the simple and
elegant operational semantics we define next.

The semantics of a subformula of the above form (3.1) evaluated on a database
D is defined in the following operational manner:

1. Evaluate, recursively, ψ(D).
2. Start computing the following iterative sequence of 2k-ary relations:

X0 := ψ(D),

Xi+1 := Xi ∪ {(�x, �y) ∈ R2k | ∃�z (Xi(�x, �z) ∧X0(�z, �y))}.

Stop as soon as an i has been found such that Xi = Xi+1.
3. The semantics of [TC�x;�y ψ](�s,�t) is now defined as the 2k-ary relation Xi.

Since every step in the above algorithm, including the test for Xi = Xi+1, is express-
ible in FO+Poly, every step is effective and the only reason why the evaluation may
not be effective is that the computation does not terminate. In that case the seman-
tics of the formula (3.1) (and any other formula in which it occurs as subformula) is
undefined.

The language FO+Lin+TC consists of all FO+Poly+TC formulas that do not
use multiplication.

Example 3.2. Let S be a relation name of arity n. Consider the following FO+
Poly+TC formula:

connected ≡ ∀�s∀�t
((
S(�s) ∧ S(�t)

)
→ [TC�x;�y lineconn](�s,�t)

)
,

where lineconn(�x, �y) is the formula

∀λ
(
0 ≤ λ ≤ 1 ∧ ∀�t(�t = λ�x + (1 − λ)�y → S(�t))

)
.

In section 6.5, we will prove that the TC-subformula in connected terminates on all
linear constraint databases over S. Note that a pair of points (�p, �q) belongs to the
TC of lineconn(D) (with D semilinear) if and only if �p and �q belong to the same
connected component of SD. Hence, connected effectively expresses connectivity of
semilinear sets. �

We will sometimes want to be able to specify an explicit termination condition on
transitive closure computations. To this end, we introduce the language FO+Poly+
TCS.

Formulas in FO+Poly+TCS are again built in the same way as in FO+Poly

but with the following extra formation rule: If ψ(�x, �y) is a formula with �x, �y k-tuples
of variables; σ is an FO+Poly sentence (formula without free variables) over the
schema S expanded with a special 2k-ary relation name X; and �s, �t are k-tuples of
terms, then

[TC�x;�y ψ | σ](�s,�t)(3.2)

is also a formula which has as free variables those in �s and �t. We call σ the stop
condition of this formula.

The semantics of a subformula of the above form (3.2) evaluated on databases D
is defined in the same manner as in the case without stop condition, but now we stop
not only in case an i is found such that Xi = Xi+1, but also in case an i is found such
that (D,Xi) |= σ, whichever case occurs first.

LINEARIZATION AND COMPLETENESS FOR TC QUERIES 1391

s

4

8

t

8

4

2

s

(1, 8)

ϕ2(D)

11

ϕ1(D)

t t

2

TC TCS

SD

s

. . .

Fig. 3.1. Illustration of the difference between transitive closure without stop condition (left)
and with stop condition (right).

Example 3.3. Let S be a relation name of arity n in S, and consider the FO+
Poly+TCS formula

ϕ1(s, t) ≡ [TCx;y S](s, t)(3.3)

and the formula

ϕ2(s, t) ≡ [TCx;y S | X(1, 8)](s, t).(3.4)

On the database D over S, where SD = {(x, y) ∈ R2 | y = 2x}, the evaluation of
formula (3.3) does not terminate, but formula (3.4) evaluates in three iterations to
{(s, t) ∈ R2 | t = 2s ∨ t = 4s ∨ t = 6s ∨ t = 8s}. An illustration is given in Figure
3.1. �

The language FO+Lin+TCS consists of all FO+Poly+TCS formulas that do
not use multiplication.

An alternative way of controlling the computation of the transitive closure is
provided by Kreutzer [29]. He allows a parametrized transitive closure operator in
which the computation of the transitive closure can be restricted to certain paths
(after specifying certain starting points).

It can be easily seen that any formula in FO+Lin+TC or FO+Poly+TC can
be expressed by an equivalent formula in the corresponding logics of Kreutzer (see
Geerts and Kuijpers [17]). Moreover, the transitive closure logic FO+Lin+KTC

(the “K” stands for “Kreutzer”) is computationally complete on Z-linear constraint
databases [29]. As we will see in the next section, the same completeness result
holds for FO+Lin+TCS. Hence, FO+Lin+KTC and FO+Lin+TCS are equally
expressive on Z-linear constraint databases. Despite this similarity, the way in which
queries are expressed in each language is quite different. Indeed, FO+Lin+KTC has
an “a priori” character because starting points have to be properly selected in order
to obtain terminating formula. In FO+Lin+TCS, termination is forced by the stop
conditions, which are of an “a posteriori” character.

We point out that termination properties of these logics on general polynomial
constraint databases have already been studied [17]. However, a complete comparison
of these logics on polynomial constraint databases is left open.

4. Expressivity results. In this section, we show a general result on the ex-
pressive power of FO+Lin+TCS. More specifically, we prove that FO+Lin+TCS is
computationally complete on Z-linear constraint databases (Theorem 4.4). The proof
consists of three steps. In the first step, we show that any computable function on

1392 F. GEERTS, B. KUIJPERS, AND J. VAN DEN BUSSCHE

the natural numbers can be simulated in FO+Lin+TCS (Lemma 4.1). In the second
step, we show that there exists an encoding of Z-linear constraint databases by finite
sets of rational numbers, and show that both the encoding and the corresponding
decoding are expressible in FO+Lin+TCS (Lemmas 4.2 and 4.3). This implies that
FO+Lin+TCS is computationally complete on Z-linear constraint databases.

For polynomial constraint databases, we show that FO+Poly+TCS is compu-
tationally complete for Boolean topological queries. This follows from the complete-
ness on Z-linear constraint databases and the existence of an FO+Poly+TC query
that, given any polynomial constraint database as input, returns a Z-linear constraint
database which is topologically equivalent to the input. In this section we show that
this “linearization query” is not expressible in FO+Poly. The FO+Poly+TC con-
struction of the linearization query will be presented in section 6 (following prepara-
tions in section 5.1).

4.1. Recursive functions on the natural numbers. We first show that FO+
Lin+TCS is computationally complete on the set of natural numbers N.

Lemma 4.1. For every partial computable function f : Nk → N, there ex-
ists a formula ϕf (y) in FO+Lin+TCS over the schema S = {S}, with S a k-
ary relation, such that for any database D over S with SD = {(n1, . . . , nk)}, we
have that ϕf (D) is defined if and only if f(n1, . . . , nk) is defined, and in this case
ϕf (D) = {f(n1, . . . , nk)}.

Proof. We show this by simulating the run of a nondeterministic p-counter ma-
chine Mf which computes f . Here Mf = (Q, δ, q0, qf), where Q is a finite set of
internal states, q0 ∈ Q is the initial state, and qf ∈ Q is the final (halting) state.
The set δ contains quadruples of the form [q, i, s, q′] ∈ Q × {1, . . . , p} × {Z,P} × Q
or [q, i, d, q′] ∈ Q × {1, . . . , p} × {−,+} × Q. The quadruple [q, i, s, q′] means that
if Mf is in state q and the ith counter is equal to zero (when s = Z) or positive
(when s = P), then change the state into q′. The quadruple [q, i, d, q′] means that
if Mf is in state q, then increase the ith counter by one (when d = +), or decrease
the ith counter by one (when d = −), and change the state into q′. We assume that
Q = {0, 1, . . . ,m− 1,m}, q0 = 0, and qf = m. Moreover, we assume that p � k and
that the initial configuration of Mf when computing f(n1, . . . , nk) has n1, . . . , nk as
the values of the first k counters. When a halting state is reached, we assume that
the first counter contains f(n1, . . . , nk).

We define the first-order formula Ψstep(q, n1, . . . , np, q
′, n′

1, . . . , n
′
p), which de-

scribes a single step in a run of Mf . The formula Ψstep is the disjunction of the
following formulas for [q, i, s, q′] and [q, i, d, q′] in δ:

Ψ[q,i,Z,q′] ≡ Q(q) ∧Q(q′) ∧ n′
i = ni = 0 ∧

∧
j∈{1,... ,i−1,i+1,... ,p}

nj = n′
j ,

Ψ[q,i,P,q′] ≡ Q(q) ∧Q(q′) ∧ n′
i = ni > 0 ∧

∧
j∈{1,... ,i−1,i+1,... ,p}

nj = n′
j ,

Ψ[q,i,+,q′] ≡ Q(q) ∧Q(q′) ∧ n′
i = ni + 1 ∧

∧
j∈{1,... ,i−1,i+1,... ,p}

nj = n′
j ,

Ψ[q,i,−,q′] ≡ Q(q) ∧Q(q′) ∧ n′
i = ni − 1 ∧

∧
j∈{1,... ,i−1,i+1,... ,p}

nj = n′
j .

LINEARIZATION AND COMPLETENESS FOR TC QUERIES 1393

We use the stop condition σ, which checks whether the final state has been reached
starting from the initial state:

σ ≡ ∃y1 · · · ∃yp∃n1 · · · ∃nk

(
S(n1, . . . , nk) ∧X(0, n1, . . . , nk,�0p−k,m, y1, . . . , yp)

)
.

Here, �0� denotes the 	-tuple (0, . . . , 0).
The desired formula ϕf (y) extracts f(n1, . . . , nk) from the first counter (repre-

sented by the variable y) when the stop condition is satisfied:

∃y2 · · · ∃yp∃n1 · · · ∃nk(S(n1, . . . , nk)

∧ [TCq,�n;q′,�n′ Ψstep | σ](0, n1, . . . , nk,�0p−k,m, y, y2, . . . , yp)).

4.2. Finite representation of Z-linear constraint databases.
Lemma 4.2. There exists an encoding of Z-linear constraint databases into finite

relational databases over the rationals, and a corresponding decoding, which are both
expressible in FO+Lin+TCS.

Proof. It was shown by Vandeurzen [46] and Vandeurzen, Gyssens, and Van
Gucht [48] that any Z-linear set in Rn has a finite geometric representation by means
of a finite set over Q consisting of (n + 1)2-ary tuples. Basically, this geometric rep-
resentation contains the projective coordinates1 of a complete triangulation of the
Z-linear set. Moreover, this representation can be expressed in FO+Poly. Van-
deurzen [46] and Vandeurzen, Gyssens, and Van Gucht [48] actually show that this
representation can be expressed in an extension of FO+Lin with some limited amount
of multiplicative power. Also, the corresponding decoding, which computes the Z-
linear constraint database given its finite geometric representation, can be expressed
in this logic.

Hence, the lemma follows if we can show that FO+Lin+TCS can perform this
limited amount of multiplication.

More specifically, we have to be able to express the multiplication of rationals qi
from a finite set S = {q1, . . . , qm} with a real number x, i.e., qix for i = 1, . . . ,m.
First, we express how integers ni and di can be computed in FO+Lin+TCS such
that qi = ni

di
for i = 1, . . . ,m.

We assume that all rational numbers in the set S are positive. The case of all
negative rational numbers is completely analogous. If both positive and negative
rational numbers occur in the set, we separate the positive from the negative and
treat both sets separately.

Consider the following enumeration enum of pairs of natural numbers: enum is
a mapping from N × N to N × N defined by

enum : (i, j) �→
{

(i + 1, j − 1) if j > 0,

(0, i + 1) if j = 0.

For every pair (p, q) ∈ N×N, there clearly exists k ∈ N such that enumk(0, 0) = (p, q).
We shall interpret (p, q) as the rational number p

q in case q �= 0 and as 0 otherwise.
Given a rational number q and two natural numbers n and d, we can test in FO+

Lin+TCS whether q = n
d . This test can be performed as follows. Let frac : R3 → R3

be the mapping defined as

frac : (q, j, v) �→ (q, j − 1, v + q).

1Projective coordinates are used to deal with unbounded databases and the unbounded simplices
in their triangulation.

1394 F. GEERTS, B. KUIJPERS, AND J. VAN DEN BUSSCHE

Then for given q ∈ Q and n, d ∈ N, we have that q = n
d if and only if fracd(q, d, 0) =

(q, 0, n).
To find the numerator and denominator of a rational number q, we will enumerate

all pairs of natural numbers (n, d) = enumk(0, 0), k = 0, 1, . . . and test for each pair
whether fracd(q, d, 0) = (q, 0, n). For this, we combine enum and frac into a partial
mapping tryall : R5 → R5 defined as

(q, i, j, u, v) �→
{

(q, i, j, u′, v′) with (q, u′, v′) = frac(q, u, v) if u � 1,

(q, i′, j′, j′, 0) with (i′, j′) = enum(i, j) if u = 0.

We claim that q = n
d for n, d ∈ N if and only if tryallk(q, 0, 0, 0, 0) = (q, n, d, 0, n).

Indeed, starting from (q, 0, 0, 0, 0) the iterates of tryall behave as follows. Suppose
we are at the kth iterate. If the third coordinate of tryallk(q, 0, 0, 0, 0) is zero, a
new pair of natural numbers is generated (using the enum mapping). Assume that
tryallk+1(q, 0, 0, 0, 0) = (q, i, j, j, 0) and suppose that j > 0 (otherwise we jump to a
new pair of natural numbers immediately). Then, using the frac mapping, we end up
after j more iterations at tryallk+j+1(q, 0, 0, 0, 0) = tryallj(q, i, j, j, 0) = (q, i, j, 0, jq)
(frac reduces the fourth coordinate by one in each iteration). Note that if i = jq,
then we have found a numerator i and denominator j of q. In any case, we move on
to tryallk+j+2(q, 0, 0, 0, 0) = (q, i′, j′, j′, 0), where (i′, j′) is the next pair of natural
numbers, and the above process starts again. In this way, the iterates of tryall visit
every pair of natural numbers starting from (q, 0, 0, 0, 0); between two consecutive
pairs, it is checked whether the first pair is a numerator/denominator pair for q. The
mapping tryall can clearly be expressed by an FO+Lin formula,

ψtryall(q, i, j, u, v, q
′, i′, j′, u′, v′),

expressing that tryall(q, i, j, u, v) = (q′, i′, j′, u′, v′).
Let Ψ(q, i, j, u, v, q′, i′, j′, u′, v′) be the formula

q � 0 ∧ i � 0 ∧ j � 0 ∧ i′ � 0 ∧ j′ � 0 ∧ u � 0 ∧ q = q′

∧ ψtryall(q, i, j, u, v, q
′, i′, j′, u′, v′).

Given a finite set of rational numbers S = {q1, . . . , qm}, we obtain a denominator
and numerator for all these numbers by taking the transitive closure

[TCq,i,j,u,v;q′,i′,j′,u′,v′ Ψ | σ](�s,�t),(4.1)

where �s and �t are 5-tuples of variables, and where

σ ≡ ∀q(S(q) → ∃n∃dX(q, 0, 0, 0, 0, q, n, d, 0, n)).

This condition stops the computation of the transitive closure of Ψ when, for each
rational number q in S, there exists a k such that tryallk(q, 0, 0, 0, 0) = (q, n, d, 0, n),
or in other words, when a pair of natural numbers (n, d) has been encountered such
that q = n

d . If multiple pairs (n, d) represent the same rational number in S, we
select the pair with the smallest value of n. Thus, we obtain for each q ∈ S a unique
denominator and numerator.

We are now ready to show how to express the multiplication of rational numbers
from a finite set S with a real number. By what we just showed, we may assume that

LINEARIZATION AND COMPLETENESS FOR TC QUERIES 1395

the rational numbers are represented as numerator/denominator pairs; i.e., we may
assume that S = {(n1, d1), . . . , (nm, dm)}.

Let max be the largest natural number occurring in S. We first compute any
multiplication of the form rn with r ∈ R and n ∈ {0, 1, . . . ,max}.

For this, we define the following formula natmult(x, y, z, x′, y′, z′):

x = x′ ∧ y′ = y − 1 ∧ z′

= z + x ∧ ∃max(∃n(S(max, n) ∨ S(n,max))

∧ ∀n∀d(S(n, d) → n � max∧d � max) ∧ 0 � y ∧ y � max).

Then the formula

mult(a, b, c) ≡ [TCx,y,z;x′,y′,z′ natmult](a, b, 0, a, 0, c)

holds if and only if ab = c for a ∈ R, b ∈ N and b � max. In this way, we can retrieve
any multiple up to max of any real number.

Finally, we define ratmult(z, y, n, d) ≡ ∃u(mult(z, d, u) ∧ mult(y, n, u)). This
formula holds for (z, y, n, d) if and only if z = yq with z, y ∈ R, and q = n

d with
(n, d) ∈ S.

4.3. Natural number representation.
Lemma 4.3. There exists an encoding of finite relations over the rational numbers

into single natural numbers, and a corresponding decoding, which are both expressible
in FO+Lin+TCS.

Proof. We assume that the relation to be encoded involves positive rational
numbers only. The general case can be dealt with by splitting the relation into “sign-
homogeneous” pieces, dealing with each piece separately and encoding the tuple of
natural numbers obtained for each piece again into a single natural number.

In the proof of Lemma 4.2, we have seen that in FO+Lin+TCS we can go from ra-
tional numbers (out of a finite set) to denominator/numerator pairs and back. Hence,
we can actually assume that the relation to be encoded involves positive natural
numbers only.

We will encode this in two steps. In the first step, we encode a finite relation
over N into a finite subset of N. In the second step, we encode a finite subset of N
into a single natural number. Since queries can be composed, we can treat these two
encoding steps (and their corresponding decoding steps) separately.

Encoding, first step. A finite k-ary relation s over N can be encoded into a finite
subset Enc1(s) of N:

Enc1(s) :=

{
k∏

i=1

pni
i | (n1, . . . , nk) ∈ s

}
.

Here, pi denotes the ith prime number.
Now let S be a k-ary relation name. We will construct an FO+Lin+TC formula

ε1 over {S} such that for any database D where SD is finite and involves natural
numbers only, ε1(D) = Enc1(S

D). For notational simplicity, we give the construction
only for the case k = 2; the general case is analogous.

Consider the following formula ψ(x1, x2, y, x
′
1, x

′
2, y

′):

∃u1∃u2(S(u1, u2) ∧ x1 ≤ u1 ∧ x2 ≤ u2)

∧ ((x1 > 0 ∧ x′
1 = x1 − 1 ∧ x′

2 = x2 ∧ y′ = 2y)

∨ (x1 = 0 ∧ x2 > 0 ∧ x′
1 = x1 ∧ x′

2 = x2 − 1 ∧ y′ = 3y)).

1396 F. GEERTS, B. KUIJPERS, AND J. VAN DEN BUSSCHE

Here, y′ = 2y is an abbreviation for y′ = y + y, and similarly for y′ = 3y; note that 2
and 3 are the first two prime numbers.

We now define the mapping p(x1, x2, y) = (x′
1, x

′
2, y) if and only if ψ(x1, x2, y, x

′
1,

x′
2, y

′). As long as k � x1, we have that pk(x1, x2, y) = (x1 − k, x2, y2
k). As soon as

k > x1, p
k(x1, x2, y) is undefined. If k = x1, we can compute further iterates and have

that pk+�(x1, x2, y) = p�(0, x2 − 	, y2x13�) as long as 	 � x2. Iterates again become
undefined in case 	 > x2. Finally, if 	 = x2 then pk+�(x1, x2, y) = (0, 0, y2x13x2), and
we obtain the encoding for (x1, x2) for y = 1. No further iterates are defined starting
from (0, 0, y′).

We will compute the iterates of p using transitive closure and check for each
(n1, n2) whether there exists a k such that pk(n1, n2, 1) = (0, 0, y). More specifically,
the desired formula ε1(y) is equal to

∃n1∃n2

(
S(n1, n2) ∧ [TCx1,x2,y;x′

1,x
′
2,y

′ ψ](n1, n2, 1, 0, 0, y)
)
.

The discussion above shows that this formula gives the correct answer. The
condition S(u1, u2) ∧ x1 ≤ u1 ∧ x2 ≤ u2 in ψ bounds the values of x1 and x2, and
hence ensures that the transitive closure computation always terminates.

Decoding, first step. Let S be a unary relation name. We will construct an
FO+Lin+TC formula δ1 over {S} such that for any database D where SD equals
Enc1(r) for some r, we have δ1(D) = r. As above, we give the construction only for
the case k = 2.

Consider now the following formula ψ(x1, x2, y, x
′
1, x

′
2, y

′):

x1 ≥ 0 ∧ x2 ≥ 0 ∧ y ≥ 1 ∧ ((x′
1 = x1 + 1 ∧ x′

2 = x2 ∧ y′ = 2y)

∨ (x′
1 = x1 ∧ x′

2 = x2 + 1 ∧ y′ = 3y)) ∧ ∃u(S(u) ∧ y′ ≤ u).

An analysis similar to that for Enc1 shows that when we define q(x1, x2, y) =
(x′

1, x
′
2, y

′) if and only if ψ(x1, x2, y, x
′
1, x

′
2, y

′), the iterates of q satisfy qk(0, 0, 1) =
(n1, n2, u) if and only if u = 2n13n2 .

Then the desired formula δ1(n1, n2) is

∃u(S(u) ∧ [TCx1,x2,y;x′
1,x

′
2,y

′ ψ](0, 0, 1, n1, n2, u)).

The condition ∃u(S(u) ∧ y′ ≤ u) in ψ bounds the value of y′, and hence ensures the
termination of the computation of the transitive closure.

Encoding, second step. A finite ordered subset s = {n1, . . . , n�} of N can be

encoded into a single natural number Enc2(s) :=
∏�

i=1 p
ni
i .

Let S be a unary relation name. We will construct an FO+Lin+TCS formula
ε2 over {S} such that for any database D where SD is a finite subset of N, we have
ε2(D) = {Enc2(S

D)}.
We will use the following auxiliary FO+Lin+TCS formulas; we will explain later

how to get them (except for min and max, which are easy to get).
• Formulas card, min, and max over {S}, with the property that for any D

where SD is finite of cardinality 	, card(D) = {	}; min(D) = {minSD}; and
max(D) = {maxSD}.

• Formulas prime, mult, and nat, over {M}, with M a unary relation name,
with the property that for any D where MD = {m} is a natural number
singleton,

– prime(D) = {pm};
– mult(D) = {(x, y, z) ∈ R3 | xy = z and y ∈ N and y ≤ m}; and
– nat(D) = {0, 1, 2, . . . ,m}.

LINEARIZATION AND COMPLETENESS FOR TC QUERIES 1397

• Formula pow over {M,M2}, with M , M2 unary relation names, with the
property that for any D where MD = {m} and MD

2 = {m2} are natural
number singletons, pow(D) = {(x, y, z) ∈ R3 | xy = z and x ∈ N and x ≤
m and y ∈ N and y ≤ m2}.

Using composition, we also obtain that
• maxprime ≡ prime(card), defining p� where 	 is the cardinality of S;
• nat′ ≡ nat(maxprime), defining {0, 1, 2, . . . , p�}; and
• pow′ ≡ pow(maxprime, max), defining exponentiation of natural numbers ≤ p�

by natural numbers ≤ maxS.
We furthermore construct the following formulas:
• mult′, obtained from mult by replacing each occurrence of a subformula M(u)

with

∃p�∃m(maxprime(p�) ∧ max(m) ∧ pow′(p�,m, u)).

This formula defines multiplication by natural numbers ≤ pmaxS
� .

• isprime(p), which defines {p1, p2, . . . , p�}:

nat′(p) ∧ p > 1 ∧ ¬∃u∃v(nat′(u) ∧ nat′(v) ∧ u > 1 ∧ v > 1 ∧ mult′(u, v, p)).

• succ(x, x′), which specifies the next element after x in S (or max(S)+1) and
is given by the formula

(¬max(x) ∧ S(x′) ∧ x < x′

∧ ¬∃x′′(S(x′′) ∧ x < x′′ < x′)) ∨ (max(x) ∧ x′ = x + 1).

• next(p, p′), which specifies the next prime number greater than p and smaller
than or equal to p� (or p� + 1) and is given by the formula

(¬maxprime(p) ∧ isprime(p′) ∧ p < p′

∧ ¬∃p′′(isprime(p′′) ∧ p < p′′ < p′)) ∨ (maxprime(p) ∧ p′ = p + 1).

We need to compute the product
∏�

i=1 p
ni
i . Consider now the following formula

ψ(x, p, y, x′, p′, y′):

S(x) ∧ succ(x, x′) ∧ next(p, p′) ∧ ∃y′′(pow′(p, x, y′′) ∧ mult′(y, y′′, y′)).

Note that the variables y and y′ are related by y′ = pxy. In order to find the
desired product, we have to compute the transitive closure of ψ and check which y′-
value is in the transitive closure with (n1, 2, 1) and (m+1, p� +1, y′). More explicitly,
the desired formula ε2(n) is

∃n1∃m∃p�(min(n1) ∧ max(m) ∧ maxprime(p�)

∧ [TCx,p,y;x′,p′,y′ ψ](n1, 2, 1,m + 1, p� + 1, n)).

It remains to show how the auxiliary formulas can be constructed. Formula card()
can be written as

∃n1∃m(min(n1) ∧ max(m)

∧ [TCx,c;x′,c′ S(x) ∧ succ(x, x′) ∧ c′ = c + 1](n1, 0,m + 1,)),

where succ(x, x′) is as above.

1398 F. GEERTS, B. KUIJPERS, AND J. VAN DEN BUSSCHE

From the computationally completeness of FO+Lin+TCS (Lemma 4.1), we de-
rive directly the formula prime.

For formula mult, consider the following formula ψ(x, y, u, x′, y′, u′):

x′ = x ∧ y′ = y − 1 ∧ u′ = u + x ∧ 0 < y ∧ ∃m(M(m) ∧ y ≤ m).

Then mult(x, y, z) is [TCx,y,u;x′,y′,u′ ψ](x, y, 0, x, 0, z).
Formula nat(n) can be written as

n = 0 ∨ [TCx;x′ (0 ≤ x ∧ ∃m(M(m) ∧ x < m) ∧ x′ = x + 1)](0, n).

Finally, for formula pow, consider the following formula ψ(x, u, v;x′, u′, v′):

nat(x) ∧ ∃m(M(m) ∧ x < m) ∧ 0 ≤ u ∧ ∃m2(M2(m2) ∧ u < m2) ∧ u′

= u + 1 ∧ mult(v, x, v′).

Then pow(x, y, z) is (y = 0 ∧ z = 1) ∨ [TCx,u,v;x′,u′,v′ ψ](x, 0, 1, x, y, z).
Decoding, second step. Let E be a unary relation name. We will construct an

FO+Lin+TCS formula δ2 over {E} such that for any database D where ED is a
singleton {e} such that e equals Enc2(s) for some s, we have δ2(D) = s.

By Lemma 4.1, we have formulas highprime and highexp over {E} such that
for any D as above, we have highprime(D) = {p�} and highexp(D) = {m}, where
p� is the highest prime factor of e, and m is the highest exponent of a prime number
in the prime factorization of n. Composing the formula pow of above with these two
formulas, we obtain a formula defining exponentiation of natural numbers ≤ p� by
natural numbers ≤ m, which we again denote by pow′. Also, analogously to the way we
constructed the formula isprime above, we obtain a formula defining {p1, p2, . . . , p�},
which we again denote by isprime.

We need a formula divisor that finds all divisors of a natural number. First,
consider the following formula ψ(u, v, u′, v′):

0 ≤ u ∧ ∃e(E(e) ∧ u ≤ e) ∧ v ≥ 1 ∧ v′ = v ∧ u′ = u− v

and let divisor(d) be the formula

∃e(E(e) ∧ [TCu,v;u′,v′ ψ](e, d, 0, d)).

Then, the desired formula δ2(n) is

∃p(isprime(p) ∧ ∃d(pow′(p, n, d) ∧ divisor(d))

∧ ¬∃n′∃d′(pow′(p, n′, d′) ∧ divisor(d′) ∧ n′ > n)).

4.4. Completeness result for Z-linear constraint databases.
Theorem 4.4. For every partially computable query Q on Z-linear constraint

databases, there exists an FO+Lin+TCS formula ϕ such that for each database D,
ϕ(D) is defined if and only if Q(D) is, and in this case ϕ(D) and Q(D) are equal.

Proof. The proof follows directly from the lemmas above, as is illustrated in
the following diagram. Let D be a Z-linear constraint database over a schema

LINEARIZATION AND COMPLETENESS FOR TC QUERIES 1399

S = {S1, . . . , Sk}, and let Q be an arbitrary partially computable query:

D
Q−−−−−−−−→ Q(D)

(Lemma 4.2)

⏐⏐� �⏐⏐(Lemma 4.2)

{S1,fin, . . . , Sk,fin} Sfin

(Lemma 4.3)

⏐⏐� �⏐⏐(Lemma 4.3)

(n1, . . . , nk) ∈ Nk fQ−−−−−−−−→
(Lemma 4.1)

nQ(D) ∈ N

First, each SD
i , i = 1, . . . , k, is encoded in a finite relations Si,fin, which in its turn is

encoded in a natural number ni. In this way, a k-tuple (n1, . . . , nk) is obtained. Since
Q is computable, there exists a partial computable function fQ which implements Q
on these encodings. Let nQ(D) be the result of fQ on input (n1, . . . , nk). This
integer is decoded into a finite relation Sfin which in its turn is decoded into a Z-
linear constraint database D′. This database is then the result of the query Q on the
input database D, i.e., D′ = Q(D).

4.5. Implications for polynomial constraint databases. For polynomial
constraint databases, we cannot prove completeness and have to settle for less. Al-
though finite representations of polynomial constraint databases exist, it is not known
whether a finite encoding can be expressed in FO+Poly+TCS.

Let A be a semialgebraic set in Rn. An algebraic linearization of A is an A-linear
set Â in Rn such that A and Â are topologically equivalent. A rational linearization
of A is a Z-linear set Ârat in Rn such that A and Ârat are topologically equivalent.

For �x ∈ Rn, we define ‖�x‖ =
√

x2
1 + · · · + x2

n. A linearization approximates the
set A also from a metric point of view if the following condition is satisfied: for every
point �p in A, ‖�p − h(�p)‖ < ε for a fixed ε > 0, where h is a homeomorphism of Rn

such that h(A) = Â. If this condition is satisfied for a (rational) linearization, we call
this linearization a (rational) ε-approximation of the set A. We will denote rational

and algebraic ε-approximations, respectively, by Ârat,ε and Âε.
Example 4.1. Consider the planar semialgebraic set A = {(x, y) ∈ R2 | x2 + y2 =

2}. Let ε = 1
2 . In Figure 4.1, we have drawn an algebraic ε-approximation Âε =

{(x, y) ∈ R2 | max{|x|, |y|} =
√

2}, a rational ε-approximation Ârat,ε = {(x, y) ∈ R2 |
max{|x|, |y|} = 1}, and a linearization Â which is not an ε-approximation. �

Algebraic and rational linearizations exist for any semialgebraic set. This is no
longer true for ε-approximations, where the existence is guaranteed only for bounded
semialgebraic sets. Consider, e.g., the semialgebraic set {(x, y) ∈ R2 | y = x2}. It
is easy to see that this parabola cannot be approximated by a finite number of line
segments, and hence has no ε-approximation for any ε > 0.

Let S = {S}, with S an n-ary relation name. We define for any polynomial con-
straint database D over S an algebraic (rational) linearization query Qlin (Qrat−lin)
as a query such that Qrat(D) (Qrat-lin(D)) is an algebraic (rational) linearization
of SD.

Similarly, for any ε > 0 and any polynomial constraint database D over S
such that SD is a bounded semialgebraic set, we define an algebraic (rational) ε-
approximation query Qε (Qrat,ε) as a query such that Qε(D) (Qrat,ε(D)) is an alge-
braic (rational) ε-approximation of SD.

1400 F. GEERTS, B. KUIJPERS, AND J. VAN DEN BUSSCHE

ε

ε

ε ε

√
2 1

ε

Âε Ârat,ε Â

ε

Fig. 4.1. Let A be the circle (grey). Left: an algebraic ε-approximation. Middle: a rational
ε-approximation. Right: an algebraic linearization.

It is an open question whether some algebraic or rational linearization query can
be expressed in FO+Poly. With respect to the ε-approximation query, neither the
algebraic nor the rational version can be expressed in FO+Poly.

Proposition 4.5. Let ε > 0 be a real number. No ε-approximation query is
expressible in FO+Poly.

Proof. Let S = {S}, with S a binary relation name. Let D be a polynomial
constraint database over S. Consider the following FO+Poly formulas over S:

• A formula circle such that for any database D over S, circle(D) is either
the circle through the points of SD, if SD consists of three noncollinear points,
or circle(D) = ∅. This formula is easily seen to be in FO+Poly.

• A formula cornerpoints such that for any database D over S, corner-
points(D) is either the set of points in which SD is not locally a straight
line, in the case when SD is semilinear, or cornerpoints(D) = ∅, otherwise.
By a result of Dumortier et al. [10], it is expressible in FO+Poly whether a
semialgebraic set is semilinear. Hence, cornerpoints is expressible in FO+
Poly.

Assume that the query Qε (and similarly, Qrat,ε) is expressible in FO+Poly. Let
ε-approx be the formula which expresses Qε. Then the formula

ϕ ≡ cornerpoints(ε-approx(circle))

is also in FO+Poly. However, the number of points in ϕ(D), |ϕ(D)| can be made
arbitrarily large by choosing D such that SD consist of three points far enough apart.
This contradicts the dichotomy theorem of Benedikt and Libkin [4], which guarantees
the existence of a polynomial pϕ such that |ϕ(D)| < pϕ(|SD|) = pϕ(3) in the case
when |ϕ(D)| is finite.

In contrast to the negative expressiveness result in Proposition 4.5, we will prove
that all kinds of linearizations are expressible in FO+Poly+TC. Indeed, in section 6
we show that there exists

• an FO+Poly+TC expressible algebraic linearization query (Theorem 6.6);
• an FO+Poly+TC expressible rational linearization query (Theorem 6.9);
• an FO+Poly+TC expressible algebraic ε-approximation query (Theorem 6.7);
• an FO+Poly+TC expressible rational ε-approximation query (Theorem 6.10).

LINEARIZATION AND COMPLETENESS FOR TC QUERIES 1401

We shall denote the FO+Poly+TC formula, which expresses the rational lin-
earization by ratlin. Let Q be a partially computable Boolean topological query.
Since Q is partially computable, it is in particular partially computable on Z-linear
constraint databases, and therefore by Theorem 4.4 is expressible on these databases
by a formula ϕQ in FO+Lin+TCS.

Because Q is topological, Q(D) is true if and only if ϕQ(ratlin(D)) is true.
Hence, we have proven the following theorem.

Theorem 4.6. For every partially computable Boolean topological query Q on
polynomial constraint databases, there exists an FO+Poly+TCS formula ϕ such that
for each database D, ϕ(D) is defined if and only if Q(D) is defined, and in this case
ϕ(D) and Q(D) are equal.

5. Geometrical properties of semialgebraic sets. In this section, we discuss
a number of topological properties of spatial databases that can be expressed in first-
order logic. They are used in the construction of the linearization of polynomial
constraint databases in the next section.

We will use the following notation. Let A ⊆ Rn; the closure of A is denoted by
cl(A), and int(A) indicates the interior of A. We denote cl(A)− int(A) (the boundary
of A) by ∂A.

5.1. The cone radius. Let A be a semialgebraic set in Rn, and let �p be a point
in Rn. We define the cone with base A and top �p as the union of all closed line segments
between �p and points in A. Formally, this is the set {t�b + (1 − t)�p | �b ∈ A, 0 ≤ t ≤ 1}
and we denote this set by Cone(A, �p).

For a point �p ∈ Rn, and ε > 0, we denote the closed ball centered at �p with radius
ε by Bn(�p, ε), and we denote the sphere centered at �p with radius ε by Sn−1(�p, ε).

The local conic structure of semialgebraic sets characterizes the local topology of
semialgebraic sets.

Theorem 5.1 (local conic structure; see Theorem 9.3.6 of [6]). Let A be a
semialgebraic set in Rn and �p be a point of cl(A). Then there is a real number ε > 0
such that intersection Bn(�p, ε)∩A is homeomorphic to the set Cone(Sn−1(�p, ε)∩A, �p),
in the case when �p ∈ A, and homeomorphic to Cone(Sn−1(�p, ε)∩A, �p)−{�p} otherwise.

Before we can state a “box” version of this theorem, we need the following def-
initions. Consider a 2n-tuple B = (a1, b1, . . . , an, bn) ∈ R2n with ai � bi for each i.
One can associate with each such tuple an n-ary relation |B| in Rn:

|B| := {(x1, . . . , xn) ∈ Rn | (a1 � x1 � b1) ∧ · · · ∧ (an � xn � bn)}.

We call B a box in Rn, and |B| is the geometric realization of B. The dimension of a
box is the number of pairs (ai, bi) with ai �= bi. The diameter of a box B, diam(B),
equals (

∑n
i=1(bi−ai)

2)1/2. The center of B is the point ((a1+b1)/2, . . . , (an+bn)/2).
Theorem 5.2 (see [14]). Let A be a semialgebraic set in Rn and �p a point of

cl(A). Then there is a real number ε > 0 such that for any n-dimensional box B in
Rn such that

1. �p ∈ int(|B|), and
2. |B| ⊆ (p1 − ε, p1 + ε) × · · · × (pn − ε, pn + ε),

we have that the intersection A∩|B| is homeomorphic to the set Cone(A∩∂|B|, �p), in
the case when �p ∈ A, and homeomorphic to the set Cone(A∩∂|B|, �p)−{�p} otherwise.

Any positive real number ε as in Theorem 5.2 is called a cone radius of A in �p
(see Figure 5.1).

1402 F. GEERTS, B. KUIJPERS, AND J. VAN DEN BUSSCHE

Cone(A ∩ ∂|B|, �p)

h

A ∩ |B|

�p �p

Fig. 5.1. The local conic structure of semialgebraic sets.

Let S = {S}, with S an n-ary relation name. We define the cone radius query
Qradius as a query which maps any polynomial constraint database D over S to a set
of pairs (�p, r) ∈ Rn × R such that for every �p ∈ cl(SD) there exists at least one pair
(�p, r) ∈ Qradius(D), and for every (�p, r) ∈ Qradius(D), r is a cone radius of SD in �p.

Theorem 5.3 (see [14]). The cone radius query defined above is expressible in
FO+Poly.

The FO+Poly formula over S, constructed in [14] and whose existence is referred
to in Theorem 5.3, will be denoted by radius. The exact properties of this formula
are not important (except for the fact that, for each point �p, it assigns an open
interval (0, r) ⊂ R such that for each r′ ∈ (0, r), r′ is a cone radius) until the proof
of Claim 6.1. There we have to go back to the construction of radius for the cone
radius query as presented in [14].

As observed above, for each point �p,

{r′ | (�p, r′) ∈ radius(D)} = (0, r).

Define r�p to be the cone radius r/2. Moreover, let uniqueradius be the FO+Poly

formula over S such that for each point �p ∈ cl(SD), (�p, r�p) is in uniqueradius(D).
Basically, uniqueradius assigns a unique cone radius to each point.

For a given semialgebraic set A in Rn, we now define the semialgebraic mapping2

γcone,A from cl(A) to R which maps each point �p ∈ cl(A) to the unique cone radius
r�p ∈ R given by uniqueradius(D), where SD = A.

5.2. The uniform cone radius decomposition. Although every point of a
semialgebraic set has a cone radius which is strictly greater than zero (Theorem 5.2),
we are now interested in finding a uniform cone radius for a semialgebraic set. We
define a uniform cone radius of a semialgebraic set A ⊆ Rn as a real number εA > 0
such that εA is a cone radius of A in all points of A. For any X ⊆ A ⊆ Rn, we define
a uniform cone radius of X with respect to A as a real number ε > 0 such that ε is a
cone radius of A in all points of X.

A first observation is that a uniform cone radius of a semialgebraic set does not
always exist.

Example 5.1. Consider the set shown in Figure 5.2. We have drawn the maximal
cone radius around the points �p1, �p2, �p3, �p4, and �p5. It is clear that the closer these
points are to the point �p, the smaller their maximal cone radius is. Because we can
make the maximal cone radius arbitrarily small by taking points very close to �p, we
may conclude that the set shown in this figure has no uniform cone radius. �

2A mapping is called semialgebraic if its graph is a semialgebraic set.

LINEARIZATION AND COMPLETENESS FOR TC QUERIES 1403

�p

�p4

�p1

�p2

�p3
�p5

Fig. 5.2. Example of a semialgebraic set which does not have a uniform cone radius.

Let A be a semialgebraic set in Rn. We define the ε-neighborhood of A as

Aε := {�x ∈ Rn | ∃�y (�y ∈ A ∧ ‖�x− �y‖ < ε)}.

We will frequently use the following notation. Let U0, . . . , Um be pairwise disjoint
semialgebraic subsets of cl(A), which satisfy the condition that for any m-tuple (ε0,
. . . , εm) of positive real numbers, and for i = 0, . . . ,m, the sets

inf

{
γcone,A

(
Ui −

m⋃
j=i+1

U
εj
j

)}
> 0.(5.1)

Note that these sets have a uniform cone radius with respect to A. Hence, we say
that the sets U0, . . . , Um form a uniform cone radius collection of cl(A).

When the sets U0, . . . , Um of a uniform cone radius collection of A form a decom-
position of cl(A), i.e.,

cl(A) = U0 ∪ · · · ∪ Um,

then we call U0, . . . , Um a uniform cone radius decomposition of cl(A).
We now show how to construct such a uniform cone radius decomposition of cl(A).

For any closed subset X ⊆ cl(A), we define

Γnc(X) := {�p ∈ X | γcone,A |X is not continuous in �p}.(5.2)

Let Δ0 := cl(A), and let Δi+1 := cl(Γnc(Δi)) ∩ Δi. We define for k = 0, 1, . . . the
sets

Ck := Δk − Δk+1.(5.3)

By taking f = γcone,A in the following lemma, we obtain that Γnc(X) is semi-
algebraic and dim(Γnc(X)) < dimX.

Lemma 5.4. For each semialgebraic set X in Rn and each semialgebraic function
f : X → R, the set Γ(f) = {�p ∈ X | f(�p) is not continuous in �p} is semialgebraic
and dim(Γ(f)) < dimX.

Proof. The set

Γ(f) = {�p ∈ Rn | (∃ε > 0)(∀δ > 0)∃�q ∈ Rn(�q ∈ X ∩Bn(�p, δ) ∧ |f(�p) − f(�q)| > ε)}

is clearly semialgebraic. This proves the first assertion.

1404 F. GEERTS, B. KUIJPERS, AND J. VAN DEN BUSSCHE

ε0

�p1 �p2

�p3

�p4

ε1

�p5

Fig. 5.3. The points �p1, �p2, �p3, �p4, and �p5 form the part C1 which has ε1 as uniform cone
radius. As can be seen, the set C0 = A− Cε1

1 has a uniform cone radius ε0.

We prove the second assertion by contradiction. Let d = dimX and suppose that
dim(Γ(f)) = d. Then there exists a semialgebraic cell V ⊆ Γ(f) of dimension d. By
the cell decomposition theorem of semialgebraic sets [44, Theorem 2.11] there exists
a semialgebraic cell decomposition of V into a finite number of semialgebraic cells,

V = V1 ∪ · · · ∪ Vk ∪ Vk+1 ∪ · · · ∪ V�,

with dim(Vi) = d for i = 1, . . . , k and dim(Vj) < d for j = k + 1, . . . , 	, such that

f |Vi
is continuous for every i = 1, . . . , 	.(5.4)

Since Vi ⊆ V has dimension d for i = 1, . . . , k, Vi is open in V , and Vi is also open in
X for i = 1, . . . , k. From (5.4) we deduce that each Vi for i = 1, . . . , k is included in
X − Γ(f), which is impossible since V ⊆ Γ(f). Hence, dim(Γ(f)) < d.

An immediate consequence of this lemma is that from i = n + 1 on, the Ci’s are
all empty. Let us denote by m the latest index such that Cm is nonempty. Thus,
m � n.

We now prove that for any tuple (ε0, . . . , εm) of positive real numbers, the sets

Ci −
m⋃

j=i+1

C
εj
j for i = 0, 1, . . . ,m

have a uniform cone radius. Since Cm = Δm is closed, γcone,A(Cm) is also closed and
therefore has a minimum which is strictly positive. Hence, Cm has a uniform cone
radius. For i > 0 there exists an η < min{ε0, . . . , εm} such that

Ci −
m⋃

j=i+1

C
εj
j ⊆ Z := Δi − Δη

i+1.(5.5)

The set Z is closed and the restriction γcone,A | Z is continuous. Hence, γcone,A(Z) is
closed in R and has a minimum which is strictly positive. We may conclude that Z
has a uniform cone radius, and by (5.5), so has Ci −

⋃m
j=i+1 C

εj
j . Thus, C0, . . . , Cm

is a uniform cone radius decomposition of cl(A).
Example 5.2. In Figure 5.3, we have shown the uniform cone radius decomposition

of the set depicted in Figure 5.2. �

LINEARIZATION AND COMPLETENESS FOR TC QUERIES 1405

Let S = {S}, with S an n-ary relation name. We define the n+1 queries Quniform
k

such that for any polynomial constraint database D over S,

Quniform
k (D) := Ck

for k = 0, 1, . . . , n, with C0, . . . , Cn being the uniform cone radius decomposition of
cl(SD).

Because γcone,SD equals uniqueradius(D), and by Theorem 5.3 the formula
uniqueradius is in FO+Poly, the following lemma is immediate.

Lemma 5.5. The queries Qk-uniform, k = 0, 1, . . . , n, are expressible in FO+
Poly.

5.3. The regular decomposition. In this section, we construct a decomposi-
tion of semialgebraic sets such that a certain regularity condition is satisfied on each
part of the decomposition. In order to define this regularity condition, we need to
define the tangent space to a semialgebraic set in a point. The following definitions
are taken from Rannou [39].

Let A be a semialgebraic set in Rn. The secants limit set of A in a point �p ∈ A
is defined as the set

limsec�p A :=
⋂
η>0

cl({λ(�u− �v) ∈ Rn | λ ∈ R and �u,�v ∈ A ∩Bn(�p, η)}).

If limsec�p A is a vector space, then we define the tangent space of A in �p as T�p A :=
�p + limsec�p A. If limsec�p A is not a vector space, then the tangent space of A in �p is
undefined.

Let S = {S}, with S an n-ary relation name. We define the query Qtangent as the
query such that for any polynomial constraint database D over S,

Qtangent(D) := {(�x,�v) ∈ SD × Rn | T�x S
D exists in �x and �v ∈ T�x S

D}.

Lemma 5.6. The query Qtangent is expressible in FO+Poly.
Proof. It is shown by Rannou [39, Lemma 2] that the definition of the secant

limit set of a set in a point can be translated into a first-order formula over the reals.
Since it is straightforward to check in FO+Poly whether a secant limit set is a vector
space (i.e., we need to check whether, for all �s,�t in a secant limit set, the sum �s+�t is
also an element of this secant limit set), the lemma is immediate.

The set A is regular in �p if and only if T�p A exists and there exists a neighborhood
U of �p such that the orthogonal projection of A ∩ U on T�p A is bijective. A set is
regular if it is regular in all of its points.

A finite number of pairwise disjoint regular sets R1, . . . , Rk is called a regular
decomposition of A if A = R1 ∪ · · · ∪Rk.

We now show that every semialgebraic set A has a regular decomposition.
We denote the set of points where A is regular and where the local dimension of

A is k by Regk(A). Note that Regk(A) is either empty or dimRegk(A) = k.
Define inductively for k = n, n− 1, . . . , 0, the sets

Rk := Regk

(
A−

n⋃
j=k+1

Rj

)
.(5.6)

These sets are pairwise disjoint and form a decomposition of A, i.e.,

A = Rn ∪Rn−1 ∪ · · · ∪R0.(5.7)

1406 F. GEERTS, B. KUIJPERS, AND J. VAN DEN BUSSCHE

�p

�s

�q

�r T�r A

T�q A

Fig. 5.4. The snowman A has no tangent space in �p, A has a tangent space in �q and �r but is
not regular in these points, and A is regular in �s.

∪ ∪

R2R3 R0R1

∪

Fig. 5.5. The three-dimensional set A of Figure 5.4 is decomposed into four parts R0, R1, R2,
and R3 according to the construction of the regular decomposition.

Note that n+ 1 parts are really sufficient because, for any semialgebraic set X ⊆ Rn

of dimension d, X −Regd(X) has a strictly lower dimension than X [45].
Moreover, by (5.6) each Rk is regular, and hence we define the regular decompo-

sition of A as the n + 1 sets R0, . . . , Rn.
Example 5.3. In Figure 5.4, we have illustrated the three possible cases: T�p A

does not exist; T�q A and T�r A exist but A is not regular in �q and �r; and finally, A is
regular in �s. In Figure 5.5, we have drawn an example of the regular decomposition
of a three-dimensional set in R3. �

Let S = {S}, with S an n-ary relation name. We define the n+ 1 queries Qreg
k as

the queries such that for every polynomial constraint database D,

Qreg
k (D) := Rk

for k = 0, . . . , n, with R0, . . . , Rn the regular decomposition of SD.
It was proved by Rannou [39, Proposition 2] that checking whether a semi-

algebraic set is regular in a point is first-order expressible. Hence the next lemma
follows.

Lemma 5.7. The queries Qk-reg, k = 0, 1, . . . , n are expressible in FO+Poly.
Regular decompositions of semilinear sets are fully treated by Dumortier et al. [10]

and Vandeurzen [46]. These authors showed that on semilinear databases, the n + 1

LINEARIZATION AND COMPLETENESS FOR TC QUERIES 1407

queries Qk-reg are already expressible in FO+Lin. There is, however, a great difference
between the semilinear and semialgebraic cases. Indeed, in the semialgebraic case,
regularity implies that the set is a C1-smooth algebraic variety, while in the semilinear
case, regularity implies that the set is a C∞-smooth algebraic variety. One could ask
if it is possible to define a regularity condition in first-order logic such that it also
induces C∞-smoothness of semialgebraic sets, but this is impossible [49].

However, we still can generalize the regular decompositions defined above to Ck-
regular decompositions by demanding Ck-smoothness instead of C1-smoothness (reg-
ularity). Using again results from Rannou [39, Proposition 3], we have first-order
expressibility of the corresponding query in this case too.

An interesting question is which extensions of FO+Poly can express C∞-regular
decompositions. A useful observation in this context might be that for every semi-
algebraic set, there exists a natural number K such that for all k > K, a Ck-regular
decomposition is already a C∞-regular decomposition. Unfortunately, it is not known
how to find K for a given semialgebraic set [40] and we might have to compute Ck-
regular decompositions for increasing values of k until two consecutive decompositions
are identical. This indicates that recursion is needed for the computation of C∞-
regular decompositions. We leave open whether the recursion in FO+Poly+TC or
FO+Poly+TCS is sufficient for this purpose.

5.4. Transversality. In computational geometry [9], a convenient assumption is
the hypothesis of “general position,” which dispenses with the detailed consideration
of special cases. In the description of our linearization algorithm in section 6, we
would like to assume this hypothesis. However, we need to make precise what we will
mean by general position and see if this hypothesis may indeed be assumed.

Let A and B be two regular semialgebraic sets in Rn. From differential topol-
ogy [23], we recall that A and B are said to intersect transversally at �p ∈ A ∩ B
if 3

T�p A + T�p B = Rn.(5.8)

The sets A and B are in general position if they intersect transversally in every point
of A ∩B. We denote this by A � B. This is illustrated in Figure 5.6 and Figure 5.7,
where some examples of transversal and nontransversal intersections in R2 and R3

are depicted.
Let A = {A1, . . . , An} and B = {B1, . . . , Bm} be finite sets of regular semi-

algebraic sets in Rn such that Ai ∩ Aj = ∅ and Bi ∩ Bj = ∅ for i �= j. We say
that A and B are in general position if Ai and Bj are in general position for every
i = 1, . . . , n and every j = 1, . . . ,m. We denote this by A � B.

Let S = {S1, S2}, with S1 and S2 two n-ary relation names. We define the
Boolean query Q� such that for every polynomial constraint database D over S,

Q�(D) = true if and only if SD
1 and SD

2 are regular and SD
1 � SD

2 .

Condition (5.8) can be readily expressed in FO+Poly, and by Lemma 5.7, regularity
is expressible in FO+Poly. Hence Lemma 5.8 follows.

Lemma 5.8. The Boolean query Q� is expressible in FO+Poly.
Given two arbitrary regular semialgebraic sets A and B in Rn not in general

position, we can ask how to force them to be in general position. The following

3Let U and V be two subspaces of a vector space X; then the sum U +V is the set of all vectors
�u + �v, where �u ∈ U and �v ∈ V . Besides, U + V is a subspace of X.

1408 F. GEERTS, B. KUIJPERS, AND J. VAN DEN BUSSCHE

transversal nontransversal

Fig. 5.6. Curves in R2.

not transversal

not transversal

transversal

transversal

Fig. 5.7. Curves and surfaces in R3.

theorem answers this question. A translation of a set X ⊆ Rn is a set of the form
X + τ := {�x + τ ∈ Rn | �x ∈ X}, where τ ∈ Rn.

Theorem 5.9. Let A and B two regular semialgebraic sets in Rn. For almost
all τ ∈ Rn, we have that A + τ and B are in general position.

Proof. This theorem is a direct consequence of the transversality theorem of
differential topology. A proof of the transversality theorem given by Guillemin and
Pollack [23] for C∞-smooth varieties in Rn literally remains valid in this case, except
that the C1-version of Sard’s theorem given by Wilkie [50] needs to be used instead
of the standard C∞-smooth version.

Here, “almost all” means that the set of translation vectors τ for which A+τ and
B are not in general position has measure zero.4 Since a set of measure zero cannot
contain an open set in Rn, the set of translation vectors τ for which A+τ and B are
in general position is dense in Rn.

Moreover, Theorem 5.9 can be easily generalized as follows.
Corollary 5.10. Let A = {A1, . . . , An} and B = {B1, . . . , Bm} be sets of

regular semialgebraic sets in Rn such that Ai ∩Aj = ∅ (Bi ∩Bj = ∅) for i �= j. Then
for almost all τ ∈ Rn, A + τ � B.

We mention three useful properties of sets in general position. Let A and B be
as above; then if A � B, there exists an ε > 0 such that A + τ � B for any τ ∈ Rn

of norm less than ε. Therefore, one says that transversality is a stable property. A
second useful property is that the intersection of two regular sets in general position is
again regular. A third property is that the tangent space in a point of the intersection
of two sets in general position is the intersection of the tangent spaces of these sets
in this point [23].

4A set in Rn has measure zero if it can be covered by a countable number of n-dimensional boxes
with arbitrary small volume.

LINEARIZATION AND COMPLETENESS FOR TC QUERIES 1409

|D|

H1

H2

H3

H4

|D|

|B2| |B3|

|B6||B5|

|B9||B8|

|B1|

|B4|

|B7|

V4V3V2V1

Fig. 5.8. A two-dimensional example of the construction of a box collection for two boxes in
the R2.

5.5. Box collections. We need one more ingredient before we can start explain-
ing the linearization algorithm: box collections.

We define an n-dimensional box collection B in Rn as a finite set of n-dimensional
boxes satisfying an intersection condition. Let B1 and B2 be two arbitrary boxes in
B. Then, if |B1| and |B2| intersect, the intersection is included in their boundaries
∂|B1| and ∂|B2|. By the geometric realization |B| of B, we mean the union of the
geometric realizations of all boxes in B. If X ⊆ Rn is a semialgebraic set and B an
n-dimensional box collection in Rn, then B ∩ X is the set of all boxes B ∈ B such
that B ∩X �= ∅.

Let D be a set of n-dimensional boxes, which does not necessarily satisfy the
above intersection condition. In the following, we show how in FO+Poly to split the
boxes in D into smaller boxes such that the collection of these smaller boxes is a box
collection. We call this the box collection of D and denote it by D. By construction,
the geometric realization of each box in D is the union of the geometric realizations
of certain boxes of D.

We first give an example of the construction and then present the general con-
struction more formally.

Example 5.4. Fix the dimension n = 2 and consider the set D consisting
of two boxes (0, 2, 0, 3) and (1, 3, 1, 4). The geometric realization |D| of D is de-
picted in Figure 5.8. In this figure, two sets of lines, HD,x = {H1, H2, H3, H4} and
HD,y = {V1, V2, V3, V4}, are drawn. Denote the intersection

⋃
HD,x∩

⋃
HD,y by I. In

this example, I consists of 16 points {�p1, . . . , �p16}. From these points, we construct
the set P which contains the 9 two-dimensional boxes denoted by Bi, i = 1, . . . , 9.
The geometric realizations of these boxes are shown in the figure. As can be seen,
these boxes intersect only at their boundaries, and hence form a two-dimensional box
collection. Finally, we define the box collection D of D as the boxes included in |D|,
i.e., D = {B1, B2, B4, B6, B6, B8, B9}. �

In general, we define n unions of (n− 1)-dimensional hyperplanes,

HD,i := {(x1, . . . , xn) ∈ Rn | ∃(a1, b1, . . . , an, bn) ∈ D ∧ (xi = ai ∨ xi = bi)},

for i = 1, . . . , n. Let I ⊆ Rn be the set of points HD,1 ∩ · · · ∩ HD,n.
It is easily shown that I is a finite set of points. Indeed, a proof by induction

shows that dim(HD,1 ∩ · · · ∩ HD,k) = n − k for any k = 1, . . . , n. In particular,
dim(I) = n− n = 0, or in other words, I is a finite set.

Next, we construct an n-dimensional box collection, which we denote by P,
such that the geometric realization of each box in D is the union of the geometric

1410 F. GEERTS, B. KUIJPERS, AND J. VAN DEN BUSSCHE

23

1

1 2 3

4 5 6

7 8 9

10 11 12

13

14

15

16

17

18

19

20

21

22

24

Fig. 5.9. The set |D|− |D|2 (left). The one-dimensional box collection Px ∪Py, where the line
segment Li is labeled with the number i (center). The set |D|0 (right).

realizations of boxes in P. More specifically,

P :=

{
(a1, b1, . . . , an, bn) ∈ R2n | ∃�p1∃�q1 · · · ∃�pn∃�qn ∈ I

n∧
i=1

(ai = (�pi)i ∧ bi = (�qi)i ∧ ai < bi)

∧
(
∀�r ∈ I

n∧
i=1

¬(ai < (�r)i < bi)

)}
.

Finally, we define D as those n-dimensional boxes B in P such that |B| is included
in the geometric realization of any of the boxes in B. By construction, D is a box
collection, and the geometric realization of any box in D is the union of the geometric
realizations of certain boxes in D. The construction of D for a given D can be
expressed in FO+Poly, as is clear from the above expressions for HD,i and P.

Let S = {S}, with S a 2n-ary relation name. We define the box collection query
Qbc such that for any polynomial constraint database D over S representing a set of
n-dimensional boxes in Rn,

Qbc(D) = D,

where D is the box collection of D. From the constructions above, the following result
is immediate.

Lemma 5.11. The query Qbc is expressible in FO+Poly.
When applied to the union of two box collections D and D′, we will denote the

box collection Qbc(D ∪D′) by D �D′.
We next define a useful decomposition of box collections. We again give first an

example.
Example 5.5 (see Figure 5.8 and Figure 5.9). Let us continue the previous exam-

ple. Let |D|2 be the set in R2 defined by
⋃

i∈{1,2,4,5,6,8,9} int(|Bi|). Consider the set

|D|−|D|2 and define Px to be the set of horizontal line segments Li, with i = 1, . . . , 12,
and let Py be the set of vertical line segments Li, with i = 13, . . . , 24. The line seg-
ments Li can easily be defined from the points in I and from a one-dimensional box
collection. We define D1 to be the box collection consisting of boxes in Px∪Py, which
are contained in |D|. Next, define |D|1 to be the set

⋃
i∈{1,... ,24}−{3,10,22,15} int(|Li|).

Here, when taking the interior, we regard each |Li| as a space on itself, so the result
is an open line segment without the endpoints (as opposed to the empty set, where
we would regard each |Li| as a set in R2). Now, |D| − |D|2 − |D|1 is a subset of I,
which we denote by |D|0. Hence, we have obtained a decomposition of |D|. �

LINEARIZATION AND COMPLETENESS FOR TC QUERIES 1411

This decomposition is important for two reasons. First, the geometric realization
of each box of D is the disjoint union of the interiors of the geometric realizations of
certain boxes in D2, D1, and D0. Second, the interiors of boxes in D are open subsets
of Reg2(|D|), the interiors of boxes in D1 are open subsets of Reg1(|D| − |D|2), and
finally, |D|0 equals Reg0(|D| − |D|2 − |D|1).

In general, the construction of this decomposition goes as follows. For k =
0, 1, . . . , n and any combination of k different elements i1, . . . , ik in {1, . . . , n}, we
define the following set of (n− k)-dimensional boxes in Rn:

P{i1,... ,ik} :=

{
(a1, b1, . . . , an, bn) ∈ R2n | ∃�p1∃�q1 · · · ∃�pn∃�qn ∈ I(5.9)

∧
i∈{1,... ,n}

(ai = (�pi)i ∧ bi = (�qi)i) ∧ ∀�r ∈ I

n∧
i=1

¬(ai < (�r)i < bi)

∧
∧

i∈{1,... ,n}−{i1,... ,ik}
ai < bi ∧

∧
i∈{i1,... ,ik}

ai = bi

}
.

Note that P{1,... ,n} = I and P∅ = P. It is clear that these sets are expressible in FO+
Poly. We also define for k = 0, 1, . . . , n and any combination of k different elements
i1, . . . , ik in {1, . . . , n} the following (n− k)-dimensional box collection in Rn:

D{i1,... ,ik} :=

{
(a1, b1, . . . , an, bn) ∈ P{i1,... ,ik} | ∃(a′1, b

′
1, . . . , a

′
n, b

′
n) ∈ D

∧
n∧

i=1

(a′i � ai ∧ bi � b′i)

}
.

We then define

Dn−k :=
⋃

{i1,... ,ik}
D{i1,... ,ik}.

Finally, for k = 0, 1, . . . , n, we define |D|n−k as the union of the interiors of the
geometric realizations of boxes in Dn−k. Here, when taking the interior, we regard
each geometric realization of a box as a space on itself, so the result is an open box.
By construction, we have the following properties:

1.

|D| = |D|n ∪ · · · ∪ |D|0;(5.10)

2. each geometric realization of a box in D is the union of the geometric real-
izations of boxes in |D|k for k = 0, 1, . . . , n; and

3. the interiors of the geometric realizations of boxes in Dk are open subsets of
Regk(|D| − |D|n − · · · − |D|k+1).

Let S = {S}, with S a 2n-ary relation name. We define the n + 1 queries
Qk-box such that for any polynomial constraint database D over S representing a box
collection D,

Qk-box(D) = Di

for k = 0, 1, . . . , n with Di the i-dimensional box collection in Rn defined above. The
following trivially holds.

Lemma 5.12. The queries Qk-box, k = 0, 1, . . . , n, are expressible in FO+Poly.

1412 F. GEERTS, B. KUIJPERS, AND J. VAN DEN BUSSCHE

x
1

1

y

Fig. 5.10. The δ-cover of a semiopen annulus for δ = 1.

5.6. Expressing the box covering query. Let δ > 0 be a real number. We
define the n-dimensional standard grid of size δ, called the δ-grid, as the n-dimensional
box collection δ-grid consisting of all boxes of the form (k1δ, (k1 + 1)δ, . . . , knδ, (kn +
1)δ), where k1, . . . , kn ∈ Z. We define the box covering of size δ of a semialgebraic set
A, denoted by δ-cover(A), as those boxes in the δ-grid that intersect the closure of A
(see Figure 5.10). Let S = {S}, with S an n-ary relation name. For each δ > 0 we
define the box covering query Qδ-cover such that for every constraint database D over S,

Qδ-cover(D) := δ-cover(SD).

Proposition 5.13. Let δ > 0. The query Qδ-cover is not expressible in FO+
Poly.

Proof. Let S = {S}, with S a binary relation name. We consider the following
FO+Poly formula over S: a formula circle such that for any database D over
S, either circle(D) is the circle through the points of SD, if SD consists of three
noncollinear points, or circle(D) = SD.

Assume that the query Qδ-cover is expressible in FO+Poly. Let δ-cover be the
formula which expresses Qδ-cover. Then the formula

ϕ ≡ δ-cover(circle)

is also expressible in FO+Poly. However, the number of 4-tuples in ϕ(D) can be
made arbitrarily large by choosing D to be a database over S such that SD consists
of three points far enough apart. This contradicts the dichotomy theorem of Benedikt
and Libkin [4], which guarantees the existence of a polynomial pϕ such that |ϕ(D)| <
pϕ(|SD|) = pϕ(3) in the case when |ϕ(D)| is finite.

However, in FO+Poly+TC we can express the box covering query as follows.
Proposition 5.14. For each δ > 0, the query Qδ-cover is expressible in FO+

Poly+TC when restricted to bounded input databases.
Proof. Let S = {S}, with S an n-ary relation name. We define the bounding box

query Qbb as the query such that for every polynomial constraint database D, such
that SD is bounded, Qbb(D) := {M}, with M a real number such that cl(SD) ⊆
[−M,M]n. This query is clearly FO+Poly expressible by a formula over S which we
denote by boundingbox(x). Let

grid(u) ≡ [TCx;x′ ∃M(boundingbox(M) ∧ x � 0

∧ x′ = x + δ ∧ x′ � M)](0, u) ∨ u = 0.

LINEARIZATION AND COMPLETENESS FOR TC QUERIES 1413

Let

δ-cover(u1, v1, . . . , un, vn) ≡
n∧

i=1

(vi = ui + δ ∧ grid(ui))

∧ ∃�x
(

cl(S)(�x) ∧
n∧

i=1

ui < xi < vi

)
.

Then Qδ-cover(D) = δ-cover(D) for any database D over S such that SD is
bounded.

6. Linearization and approximation of semialgebraic sets. In this section,
we give a construction of both an algebraic linearization and an ε-approximation of
semialgebraic sets which are implementable in FO+Poly+TC. This implementation
is based on the construction of a box collection satisfying some special properties.

More specifically, it is shown in section 6.1 how to construct such a box collection
R for a semialgebraic set A. In section 6.2 we derive a box collection U from R
and take a closer look at A on the boundaries of U . We show that we can apply the
construction in section 6.1 again for A on the lower-dimensional box collections on the
boundaries of U . This inductive process is the basis of the algorithm Linearize in
section 6.3 which builds an algebraic linearization and an ε-approximation of bounded
semi-algebraic sets. In the same section, we prove the correctness of the algorithm
Linearize and show that the algorithm can be expressed by a query in FO+Poly+
TC.

We also show how to extend this algorithm such that it also builds algebraic
linearizations of possibly unbounded semialgebraic sets. Finally, in section 6.4 we
show that after some minor changes, the algorithm Linearize can be used to build
a rational linearization and an ε-approximation of semialgebraic sets.

6.1. Construction of a special box collection. Let B be an n-dimensional
box collection in Rn, and let X = {X1, . . . , Xk} be a finite set of pairwise disjoint
semialgebraic sets in Rn. We now define when B and X are in general position. We
decompose |B| and X into a finite number of regular sets and then define “being in
general position” in terms of these decompositions as follows.

In (5.10), we defined a decomposition of a box collection into regular sets. Applied
to |B|, this results in the decomposition |B|n, . . . , |B|0, where |B|i is a union of interiors
of i-dimensional boxes in Rn.

For each Xi, let Ri0, . . . , Rini be a regular decomposition of Xi. We say that B
and X are in general position if and only if {|B|n, . . . , |B|0} and {R1,0, . . . , R1,n1 , . . . ,
Rk,0, . . . , Rk,nk

} are in general position.
We now describe the construction of an n-dimensional special box collection (the

properties of this box collection will become clear later on). The construction takes
as input

• a bounded semialgebraic set A in Rn;
• a uniform cone radius collection U0, . . . , Um of cl(A) (as defined in sec-

tion 5.2); and
• a fixed n-dimensional box collection F in Rn, which is in general position

with {U0, . . . , Um}.
The result of the construction will be

• a set of box collections R = {R0, . . . ,Rm} and
• a positive real number δ

1414 F. GEERTS, B. KUIJPERS, AND J. VAN DEN BUSSCHE

BR
0 (τ)

R0 + τ

R1 + τ

U1

U0

(R0 �R1) + τ

Fig. 6.1. Illustration of the construction of the box collection BR
0 (τ) for R = {R0,R1} and

U = U0 ∪U1 as explained in Example 6.1. The picture shows R+ τ (right), the intermediate result
(R0 �R1) + τ (middle), and the end result BR

0 (τ) (right).

satisfying some properties. Before we can state these properties, we need to define for
k = m, . . . , 0 and τ ∈ Rn the box collections

BR
k (τ) := (((Rk � · · · � Rm) + τ � F) ∩ Uk)

\ {B′ ∈ ((Rk � · · · � Rm) + τ � F) ∩ Uk | |B′| ⊆ |BR
k+1(τ) ∪ · · · ∪ BR

m(τ)|}.

In the following, we will write BR
i for BR

i (0) and let U = U0∪· · ·∪Um. The definition
of BR

k (τ) basically tells how to fit together all the box collections in R and specifies
which boxes should be disregarded. We illustrate the definition of BR

k by the following
example.

Example 6.1. Assume we have a box collection R = {R0,R1} covering U =
U0 ∪U1. In Figure 6.1 (left) we have depicted R0 and R1 with solid and dotted lines,
respectively. Moreover, the set U1 consists of the dotted curve, while U0 is shown as a
thick solid line. In this example, we assume that no fixed box collection F is present.

Then by definition, BR
1 (τ) = (R1 + τ)∩U1. This box collection (in this example

consisting of a single box only) corresponds to the large shaded box in Figure 6.1
(middle). For the construction of BR

0 (τ), we first compute the box collection (R0 �
R1) + τ , which consists of all the boxes shown in Figure 6.1 (middle). Solid-lined
boxes intersect U0; dotted-lined boxes do not. In order to obtain BR

0 (τ), all dotted-
lined boxes are removed as well as those solid-lined boxes, which are included in
BR

1 (τ) (the shaded area). The resulting box collection BR
0 (τ) is shown in Figure 6.1

(right). �
We now continue with the statement of the desired properties of the box collection

R and real number δ. They must satisfy the properties
(i) cl(U)δ ⊆ int(|BR

0 ∪ · · · ∪ BR
m|);

(ii) for all i = 0, . . . ,m and for all τ ∈ Rn of norm less than δ, (Ri+τ)�F � Ui;
and

(iii) for all i = 0, . . . ,m and for all τ ∈ Rn of norm less than δ, and for each
n-dimensional box B ∈ BR

i (τ), there exists a point �p ∈ int(|B| ∩ Ui) such
that γcone,A(�p) > diam(B).

Construction algorithm. The construction of the box collection is done inductively
on the number of parts m in the uniform cone radius collection {U0, . . . , Um}.

For the base case, when the uniform cone radius collection is empty, we define

LINEARIZATION AND COMPLETENESS FOR TC QUERIES 1415

R−1 = ∅ and take δ = ∞. Properties (i), (ii), and (iii) are then trivially satisfied.
Suppose now that U is nonempty and consists of m parts. By the induction hy-

pothesis, there exist n-dimensional box collections R′ = {R′
1, . . . ,R′

m} and a positive
real number δ′ such that

(i)′ cl(U \ U0)
δ′ ⊆ int(|BR′

1 ∪ · · · ∪ BR′

m |);
(ii)′ for all i = 1, . . . ,m and for all τ ∈ Rn of norm less than δ′, (R′

i+τ)�F � Ui;
and

(iii)′ for all i = 1, . . . ,m and for all τ ∈ Rn of norm less than δ′, and for each
n-dimensional box B ∈ BR′

i (τ), there exists a point �p ∈ int(|B| ∩ Ui) such
that γcone,A(�p) > diam(B).

The construction consists of two steps:
Step 1. Cover the part of U0 which may become uncovered by translations of the

box collection R′ + τ , for ‖τ‖ < δ′, with a box covering of a certain size. This size
is determined by the uniform cone radius of the part of U0 possibly uncovered by the
translates of R′.

Step 2. Some of the boxes in the above box covering might be in a degenerate
position and in this way prevent the box collection from satisfying the required prop-
erties. This can be easily resolved, however, by translating all boxes with a small
translation vector τ . Lemma 6.3 shows that it is possible to bring all boxes into
general position; Lemma 6.4 shows that translating the boxes indeed results in a box
collection with the desired properties.

We describe the two steps now in more detail. An example of the construction
can be seen in Figure 6.2 and is described in the following example.

Example 6.2. We consider the case that no fixed box collection F is present. Let
{A0, A1} be the uniform cone radius decomposition of cl(A) (see Figure 6.2(a)). The
set A1 consists of the horizontal circle and point �p in Figure 6.2(a). The set A0 is
equal to the remainder cl(A) \A1.

1. Base case (not shown in Figure 6.2): U = ∅, U0 = ∅. By definition, R−1 =
{∅}, δ = ∞.

2. Case m = 1, U = A1, U0 = A1.
Covering U0 : Since in Step 1 nothing is yet constructed, we have that V = U0,
W = ∅, and ζ = ∞. Hence, R′′ = εV

4
√

3
-cover(V). This box covering is

depicted by the dashed boxes in Figure 6.2(a). By definition, δ′′ = min{ δ′

3 =
∞, η, ζ = ∞} = η, where η is such that cl(V)η ⊆ int(|R′′|).
Translating R′′ : As can be seen in Figures 6.2(a), (b), the point �p lies on a
side of one of the boxes at the bottom. In other words, �p is not in general
position with the box collection. A simple small translation, however, resolves
this situation and brings �p into general position with the box collection (see
Figure 6.2(b)) while keeping the other points U0 in general position as well.
The resulting box collection is denoted by R.

From R we get BR
0 , as shown in Figure 6.2(c), by removing, in this case,

a single box which no longer intersect U0.
3. Case m = 2, U = A0 ∪ A1, U0 = A0, R′′

1 = R, and δ′ = δ (obtained in
Step 2).
Covering U0 : We focus on a region around the box B in R′′

1 containing �p
(See Figure 6.2(d)). For expository reasons, the position of U with respect
to B is slightly simplified.

We have depicted the set V (dark shaded area) of points in U0, which might
be outside |B| when B is slightly translated, and show the remaining set W

1416 F. GEERTS, B. KUIJPERS, AND J. VAN DEN BUSSCHE

(a)

εV
4
√
n

V

(c)

(b)

�p

R′′

R′′ + τ

�p�p

R′′

�p

BR
0

τ

(d)

(f)

(e)

U0 ∩ |B|

�pW

V

|B|

�p

|B|
�p

R′′
0

BR
0

Fig. 6.2. Construction of the special box collection R.

(light shaded area) as well. The new box collection R′′
0 will be εV

4
√

3
-cover(V).

In order to not overload the figure, we have depicted the box collection from
a sideways point of view (See Figure 6.2(e)). Let R′′ = {R′′

0 ,R′′
1}.

The constraint δ′′ on the norm of translation vectors is given by δ′′ =
min{ δ′

3 , η, ζ}. It takes into account the distance between W and the bound-
ary of the boxes constructed in Step 2 (ζ), the distance between V and the
boundary of boxes in R′′

0 (η), and the constraint given in Step 2 (δ′).
Translating R′′ : If necessary, slightly translate R′′ to bring it in general
position such that it satisfies the desired properties. This results in the final
box collection R.

LINEARIZATION AND COMPLETENESS FOR TC QUERIES 1417

We also show part of BR
0 (See Figure 6.2(f)). We refer to Example 6.1 for

a discussion of its construction. The collection BR
1 is equal to BR

0 constructed
in Step 2. �

We now continue with the general description of the construction.
First step: Covering U0. We will define a set R′′

0 and define R′′
i = R′

i for i =

1, . . . ,m such that for R′′ = {R′′
0 , . . . ,R′′

m}, cl(U)δ
′′ ⊆ int(|BR′′

0 (τ) ∪ · · · ∪ BR′′

m (τ)|)
for some δ′′ > 0.

All points of U0 that can become uncovered by varying the vector τ in |BR′

1 (τ)∪
· · · ∪ BR′

m (τ)| with ‖τ‖ < δ′

3 are included in the set

V := U0 − (|BR′

1 ∪ · · · ∪ BR′

m | − (∂|BR′

1 ∪ · · · ∪ BR′

m |) δ′
3).

By (i)′, the minimal distance from any point in U \U0 to the boundary ∂(|BR′

1 ∪ · · · ∪
BR′

m |) is greater than or equal to δ′. This implies that

cl(U \ U0)
δ′
3 ⊆ |BR′

1 ∪ · · · ∪ BR′

m | − (∂|BR′

1 ∪ · · · ∪ BR′

m |) δ′
3 ,

and hence, because U0, . . . , Um is a uniform cone radius collection, there exists a
uniform cone radius, εV , of A for the set V . Let R′′

0 be εV
4
√
n
-cover(V). Note that

diam(B) =
εV
2

(6.1)

for any box B ∈ R′′
0 . The reason why we take this specific box covering is that the

box collection, which we are constructing, must satisfy property (iii).
We now show that there exists a positive real number δ′′ such that (i) holds for

R′′ = {R′′
0 , . . . ,R′′

m} and δ′′.
We partition U0 ∪ · · · ∪ Um into three parts: U \ U0, V , and

W := U0 ∩ (|BR′′

0 ∪ · · · ∪ BR′′

m | − (∂|BR′′

0 ∪ · · · ∪ BR′′

m |) δ′
3).

By (i)′,

cl(U \ U0)
δ′
3 ⊆ int(|BR′

1 ∪ · · · ∪ BR′

m |) ⊆ int(|BR′′

0 ∪ · · · ∪ BR′′

m |).(6.2)

We shall need the following lemma, which is readily verified.
Lemma 6.1. Let X and Y be two sets in Rn. If X is bounded, then cl(X) ⊆

int(Y) implies that there exists a positive real number ε such that cl(X)ε ⊆ int(Y).
By the definition of a box covering, cl(V) ⊆ int(|BR′′

0 |) ⊆ int(|BR′′

0 ∪ · · · ∪ BR′′

m |).
Since A is bounded, V is also bounded. By Lemma 6.1, there exists a positive real
number η such that

cl(V)η ⊂ int(|BR′′

0 ∪ · · · ∪ BR′′

m |).(6.3)

We now prove that Lemma 6.1 can also be used for W .
Lemma 6.2. cl(W) ⊆ int(|BR′

1 ∪ · · · ∪ BR′

m |).
Proof of Lemma 6.2. Suppose that there exists a point �p ∈ cl(W) such that

�p �∈ int(|BR′

1 ∪ · · · ∪ BR′

m |). Let (�pm) for m > 0 be a sequence of points in W such
that ‖�p− �pm‖ < 1/m. By the definition of W , for all points in �r ∈ ∂|BR′

1 ∪ · · · ∪BR′

m |,
‖�r − �pm‖ � δ′

3 for every m.

Now, every line segment {λ�pm+(1−λ)�p | 0 � λ � 1}, intersects ∂|BR′

1 ∪· · ·∪BR′

m |
in a point �rm. However, since ‖�pm − �p‖ < 1/m, also ‖�pm − �rm‖ < 1/m. Thus, we

obtain a contradiction for m large enough such that 1
m < δ′

3 .
Hence, by Lemma 6.1 and Lemma 6.2 there exists a positive real number ζ such

that

W ζ ⊆ int(|BR′

1 ∪ · · · ∪ BR′

m |) ⊆ int(|BR′′

0 ∪ · · · ∪ BR′′

m |).(6.4)

1418 F. GEERTS, B. KUIJPERS, AND J. VAN DEN BUSSCHE

From the inclusions (6.2), (6.3), and (6.4), it follows that property (i) is satisfied for

R′′ and δ′′, with δ′′ = min{ δ′

3 , η, ζ}.
Second step: translating R′′. The box collections in R′′ already satisfy property

(i) for δ′′. However, properties (ii) and (iii) are not necessarily satisfied. This can
be seen in Figure 6.2 (a), (b). We now show that a little translation of the box
collection is all that is needed so that all properties are satisfied by the translated box
collections.

Lemma 6.3. For each i = 0, . . . ,m, there exists a translation τ ∈ Rn of norm
‖τ‖ < δ′′ such that

(R′′
i + τ) � F � Ui.

Proof of Lemma 6.3. Consider the decomposition of |(R′′
i + τ) � F| into the sets

|(R′′
i + τ) � F|j for i = 0, . . . ,m and for j = 0, . . . , n. Recall from section 5.5 that

|(R′′
i +τ)�F|j is the union of the geometric realizations of boxes in ((R′′

0 +τ)�F)j .
We need to prove that there exists a translation τ ∈ Rn, ‖τ‖ < δ′′, such that

for each i = 0, . . . ,m, for each r ∈ {0, . . . , ni}, for each j ∈ {0, . . . , n}, and for each
B ∈ ((R′′

i + τ) � F)j , we have that

|B| � Ri,r.(6.5)

Let T denote the set of all possible translations: T := {τ ∈ Rn | ‖τ‖ < δ′′}. Note
that case i > 0 of (6.5) holds for any τ ∈ T by induction. Hence, we can focus on
the case i = 0. Take an arbitrary B as in (6.5), take r arbitrary in {0, . . . , n}, and
consider a point �x ∈ |B| ∩R0,r. We are going to impose several conditions on T such
that if τ ∈ T and τ satisfies these conditions, then (6.5) holds for τ . By definition
of the union operator �, there exists a neighborhood W of �x such that one of the
following three cases holds:

1. |B| ∩W = |B′| ∩W for some B′ ∈ Fp for some p. Note that

T�x |B| = T�x(|B| ∩W) = T�x(|B′| ∩W) = T�x |B′|.(6.6)

Given that F � U0, |B′| and R0,r are transversal in �x for all τ ∈ T . By (6.6),
we may conclude that |B| and R0,r are transversal in �x for all τ ∈ T .

2. |B| ∩W = |B′′| ∩W for some B′′ ∈ (R′′
0 + τ)q for some q. Note that

T�x |B| = T�x(|B| ∩W) = T�x(|B′′| ∩W) = T�x |B′′|.(6.7)

Suppose that

(R′′
0 + τ) � U0.(T1)

Then, |B′′| � U0 and hence, |B′′| and R0,r are transversal in �x for all τ ∈ T
such that condition (T1) is satisfied. By (6.7), we may conclude that |B| and
R0,r are transversal in �x for all τ ∈ T such that condition (T1) is satisfied.

3. |B| ∩ W = |B′| ∩ |B′′| ∩ W for some B′ ∈ Fp for some p, and for some
B′′ ∈ (R′′

0 + τ)q for some q. Suppose that

(R′′
0 + τ) � F .(T2)

Because the intersection of regular sets in general position is regular, the
tangent space T�x(|B′| ∩ |B′′|) exists. Note that

T�x |B| = T�x(|B| ∩W) = T�x(|B′| ∩ |B′′| ∩W) = T�x(|B′| ∩ |B′′|).(6.8)

LINEARIZATION AND COMPLETENESS FOR TC QUERIES 1419

Furthermore, suppose that

|B′′| � (|B′| ∩R0,r).(T3)

When two regular sets intersect transversally in a point, the tangent space
of the intersection in this point is the intersection of the tangent spaces of
the regular sets in this point [23]. Hence, by (T2) and given that F � U0,
we have that T�x |B′| ∩ T�x |B′′| = T�x(|B′| ∩ |B′′|) and T�x |B′| ∩ T�x(R0,r) =
T�x(|B′|∩R0,r). Moreover, T�x(|B′|∩R0,r) ⊆ T�x(R0,r). By (T3) we have that
T�x(|B′| ∩ |B′′|) + T�x(|B′| ∩R0,r) = T�x |B′|. Hence,

T�x |B| + T�x(R0,r) = T�x(|B′| ∩ |B′′|) + T�x(R0,r)

= T�x(|B′| ∩ |B′′|) + T�x(|B′| ∩R0,r) + T�x(R0,r)

= T�x(|B′|) + T�x(R0,r)

= Rn.

Hence, we may conclude that |B| and R0,r are transversal in �x for all τ ∈ T
such that conditions (T2) and (T3) are satisfied.

We may conclude that |(R′′
0 + τ) � F| � U0 if τ ∈ T and if τ is such that, for

each box B ∈ ((R′′
0 + τ) � F)j for j = 0, . . . , n, either no extra condition holds, the

condition (T1) holds, or both conditions (T2) and (T3) hold. Hence, we obtain a
finite number of conditions on the translations in T . By Corollary 5.10, the set of
translations τ ∈ T for which a single transversality condition, like (T1), (T2), or (T3),
is not satisfied, has measure zero. Since a finite union of sets of measure zero also has
measure zero, this implies that for almost all translations in T , all conditions can be
satisfied simultaneously. This concludes the proof of the lemma.

Let τ 0 be a translation, as specified in Lemma 6.3. We now define for i =
0, . . . ,m, Ri = R′′

i + τ 0 and consider R = {R0, . . . ,Rm} and δ′′′ < δ′′ − ‖τ 0‖.
Lemma 6.4. There exists a δ > 0 such that R0, . . . ,Rm and δ satisfy properties

(i), (ii), and (iii).
Proof of Lemma 6.4. We first prove that there exists a δ > 0 such that property

(ii) is satisfied. Indeed, the proof of Lemma 6.3 shows that for i = 0, . . . ,m, (R′′
i +τ)�

F � Ui holds for any τ which satisfies a finite number of transversality conditions.
Recall from section 5.4 that transversality is a stable property. Hence, if τ is a
translation vector satisfying these transversality conditions, then there exists an ε > 0
such that any τ ′ ∈ Rn, for which ‖τ ′ − τ‖ < ε, also satisfies these transversality
conditions.

Since Ri = R′′
i + τ 0, and τ 0 is such that Lemma 6.3 holds, there exists a ε > 0

such that for τ ∈ Rn, ‖τ‖ < ε,

(Ri + τ) � F � Ui

for i = 0, . . . ,m. Hence, property (ii) is satisfied for R0, . . . ,Rm and δ = min{δ′′′, ε}.
We now prove that R0, . . . ,Rm and δ also satisfy property (i). We will need the

following properties which can be readily verified. Let X and Y be semialgebraic sets
in Rn. Then

(1) Xε ⊆ Y ⇒ X ⊆ Y + τ for any τ ∈ Rn such that ‖τ‖ < ε, and
(2) (Xε1)ε2 = Xε1+ε2 .
We already know cl(U)δ

′′ ⊆ int(|BR′′

0 ∪ · · · ∪ BR′′

m |). Let ε = δ′′ −‖τ 0‖− δ. Since
δ < δ′′ − ‖τ 0‖, we have ε > 0, and by property (2),

cl(U)δ
′′

= (cl(U)δ)‖τ0‖+(δ′′−‖τ0‖−δ) ⊆ int(|BR′′

0 ∪ · · · ∪ BR′′

m |).

1420 F. GEERTS, B. KUIJPERS, AND J. VAN DEN BUSSCHE

By property (1), we have that

cl(U)δ ⊆ int(|BR′′

0 ∪ · · · ∪ BR′′

m |) + τ ∀τ : ‖τ‖ < ‖τ 0‖ + ε.

In particular, cl(U)δ ⊆ int(|BR′′

0 ∪· · ·∪BR′′

m |)+τ 0 = int(|BR
0 ∪· · ·∪BR

m|), and property
(i) is satisfied for R and δ.

We now prove that property (iii) is satisfied. Let B ∈ BR
i (τ) for any τ ∈ Rn,

‖τ‖ < δ. We distinguish between the following two cases:
1. i > 0. Since BR

i (τ) ⊆ BR′

i (τ 0 + τ) and ‖τ − τ 0‖ < δ′, we have by induction
that there exists a �p ∈ int(|B|) ∩ Ui such that γcone,A(�p) > diam(B).

2. i = 0. Since |B|∩U0 �= ∅, we need to prove that there exists a �p ∈ int(|B|)∩U0

such that γcone,A(�p) > diam(B).
Thus, let �x ∈ |B| ∩ U0. If �x ∈ int(|B|), we are done. If �x ∈ ∂|B|, then

�x ∈ |B′| ∩ U0 for some |B′| ∈ (((R0 � · · · � Rm) + τ) � F)p and some p. Let
D = (x1 − ε, x1 + ε, . . . , xn − ε, xn + ε) be an n-dimensional box centered
around �x, with ε ∈ R. For ε sufficiently small, |B′| ∩ int(|D|) has the form

(x1 − ε, x1 − ε) × · · · × (xp − ε, xp + ε) × {xp+1} × · · · × {xn},

or a permutation of this form, which is handled analogously. Hence, int(|B|)∩
int(|D|) has the form

(x1 − ε, x1 − ε)× · · · × (xp − ε, xp + ε)× (xp+1, xp+1 + ε)× · · · × (xn, xn + ε),

or a permutation of this form, which is handled analogously, or even a variant
of this form, where some of the n − p intervals (xi, xi + ε) are replaced by
(xi − ε, xi), which again is handled analogously.

By property (ii),

T�x |B′| + T�x U0 = Rn.(6.9)

Now, any �v ∈ T�x |B′| is of the form �v = (v1, . . . , vp, xp+1, . . . , xn); hence,
by (6.9) there exists a tangent vector �w ∈ T�x U0 such that xp+1 < wp+1, . . . ,
xn < wn. By definition of the tangent space, if ‖�w−�x‖ is small enough, there
exists a point �q in U0 arbitrarily close to �w. This point �q is also arbitrarily
close to �x and also has n− p last coordinates, which are strictly greater than
the n−p last coordinates of �x. Hence, �q is in int(|B|)∩ int(|D|), and we have
found a point in int(|B|) ∩ U0.

We now show that for any �p ∈ int(|B|) ∩ U0, γcone,A(�p) > diam(B).
Indeed, any box in BR

0 (τ) is included in a box in R′′
0 + τ 0 + τ . By (6.1),

R′′
0 consists of boxes which have a diameter that is strictly smaller than the

uniform cone radius of int(|B|) ∩ U0. Hence, γcone,A(�p) > diam(B) for any
point �p ∈ int(|B|) ∩ U0.

As a result, property (iii) is satisfied for R and δ.
This concludes the construction of the box collection R and δ > 0.

6.2. A first glance at the linearization algorithm. In this section we de-
scribe how the special box collection R, constructed in the previous section, helps us
in achieving our goal of linearizing a semialgebraic set A ⊆ Rn.

First, using the box collection R, we define

U = BR
0 ∪ · · · ∪ BR

n .(6.10)

LINEARIZATION AND COMPLETENESS FOR TC QUERIES 1421

∂|B| ∩ {z = a}

Â

A

a

Construction

Linearize

Cone

x

y

πzz

y

x |B|

U{z}

U(z),a

A(z),a

�p

�p

Fig. 6.3. Illustration of the linearization Â inside |B|. The top side of ∂|B| is shown together
with that part of U(z) and A lying on it. The top side has z-coordinate a (top left). The two-
dimensional projected sets U(z),a and A(z),a are shown (top right). The linearization algorithm is
called inductively on these lower-dimensional sets (bottom right). The three-dimensional lineariza-
tion consists of building a cone with top �p and base the previously constructed linearization on the
boundary of B (bottom left).

Recall that BR
i stands for BR

i (0). Since each BR
i is a box collection and int(|BR

i |) ∩
int(|BR

j |) = ∅ for any i �= j, U is a box collection too. It is clear that U inherits some
of the properties of R. Indeed, by property (i) of R, we know that U is a box covering
of cl(A) and, by property (iii) of R, we know that for each box B ∈ U there exists a
point �p ∈ int(|B|) ∩A such that γcone,A(�p) > diam(B).

The linearization algorithm, which will be described in more detail in section 6.3,
works inductively on the boundaries of the boxes in U . For each box B ∈ U , the
linearization algorithm replaces |B| ∩ A with a semilinear set in two steps. In the

induction step, it replaces the intersection ∂|B| ∩ A with a semilinear set ̂∂|B| ∩A
on ∂|B|, which is homeomorphic to ∂|B| ∩ A. Then, for each box B ∈ U , it replaces
|B| ∩A with the semilinear set

Cone(̂∂|B| ∩A, �p),

where �p ∈ int(|B|)∩A such that γcone,A(�p) > diam(B). It is shown in Lemma 6.5 that
in this way we end up with a linearization of A. An illustration of the linearization
algorithm is given in Figure 6.3.

In order to construct the linearization ̂∂|B| ∩A on ∂|B| of boxes B ∈ U , we will
need to construct again a box collection R, but this time on the boundaries of the
boxes in U .

We will decompose the boundaries of the boxes in U according to the direction
of their supporting hyperplanes and according to the coordinate value of the fixed
coordinate of these hyperplanes.

1422 F. GEERTS, B. KUIJPERS, AND J. VAN DEN BUSSCHE

These coordinates can be computed as

Coord(U{i}) = {a ∈ R | ∃a1,∃b1, . . . ,∃ai−1,∃bi−1,∃ai+1,∃bi+1, . . . ,∃an,∃bn
(a1, b1, . . . , ai−1, bi−1, a, a, ai+1, bi+1, . . . , an, bn) ∈ U{i}}

for i = 1, . . . , n and where U{i} are the n-dimensional box collections defined in (5.9).
Recall that U{i} contains all n-dimensional boxes on the boundaries of boxes in U ,
whose ith coordinates are all equal.

For each a ∈ Coord(U{i}), we will need all the points in cl(A) with the ith
coordinated fixed to a, i.e.,

cl(A)(i),a := {(x1, . . . , xi−1, xi+1, . . . , xn) ∈ Rn−1 |
(x1, . . . , xi−1, a, xi+1, . . . , xn) ∈ cl(A)}

for i = 1, . . . , n.
Similarly, we define the (n− 1)-dimensional box collections

U(i),a := {(a1, b1, . . . , bi−1, ai+1, . . . , an, bn) ∈ R2(n−1) |
(a1, b1, . . . , bi−1, a, a, ai+1, . . . , an, bn) ∈ U{i}}

for i = 1, . . . , n.
Since cl(A) = C0 ∪ · · · ∪ Cm, and Cm = Rm,n ∪ · · · ∪Rm,0, we have that

cl(A)(i),a = (C0)(i),a ∪ · · · ∪ (Cm)(i),a,

(Cj)(i),a = (Rj,n)(i),a ∪ · · · ∪ (Rj,0)(i),a.

For each i = 0, . . . , n and each a ∈ Coord(U{i}), we now show that we can con-
struct an (n−1)-dimensional box collection R, as described in section 6.1, for cl(A)(i),a
in the role of cl(A), (C0)(i),a, . . . , (Cm)(i),a in the role of, respectively, U0, . . . , Um,
and U(i),a in the role of F .

However, for the construction to be successful, we need to verify that we start
with valid input data. In other words, we need to show that (C0)(i),a is a uniform
cone radius with a regular decomposition given by (Rj,n)(i),a and that F (which is
U(i),a) is in general position with (C0)(i),a for the regular decomposition (Rj,n)(i),a.

Claim 6.1. The sets (C0)(i),a, . . . , (Cm)(i),a form a uniform cone radius decom-
position of cl(A)(i),a.

Proof. By definition, the sets (C0)(i),a, . . . , (Cm)(i),a form a decomposition of
cl(A)(i),a, so we need only show that each of the sets (C0)(i),a, . . . , (Cm)(i),a form a
uniform cone radius collection.

We will need the following property, which is readily verified. Let X and Y be
semialgebraic sets in Rn. Then

(1) if Y is closed and bounded, then for all ε′ there exists an ε such that Xε∩Y ⊆
(X ∩ Y)ε

′
.

Let H(i),a = {�x ∈ Rn | xi = a}, and let πi : Rn → Rn−1 be defined by
πi(x1, . . . , xn) = (x1, . . . , xi−1, xi+1, . . . , xn). Let j ∈ {0, . . . ,m}, and let ε′0, . . . , ε

′
m

be positive real numbers. We have that

(Cj)(i),a\
m⋃

k=j+1

((Ck)(i),a)
ε′k = πi

(
(Cj ∩H(i),a)\

m⋃
k=j+1

(Ck ∩H(i),a)
ε′k

)
.

LINEARIZATION AND COMPLETENESS FOR TC QUERIES 1423

By property (1), there exist ε0 > 0, . . . , εm > 0 such that

(Cj ∩H(i),a) \
m⋃

k=j+1

(Ck ∩H(i),a)
ε′k ⊆ (Ck ∩H(i),a) \

m⋃
k=j+1

(Cεk
k ∩H(i),a)(6.11)

=

(
Cj \

m⋃
k=j+1

Cεk
k

)
∩H(i),a.

Moreover, we have that cl(A) = C0 ∪ · · · ∪ Cm and, since C0, . . . , Cm is a uniform
cone radius collection, from the inclusion (6.11), it follows that

0 < inf

{
γcone,A

((
Cj \

m⋃
k=j+1

Cεk
k

)
∩H(i),a

)}

� inf

{
γcone,A

(
(Cj ∩H(i),a) \

m⋃
k=j+1

(Ck ∩H(i),a)
ε′k

)}
.

We will next show that the following inequality holds:

inf

{
γcone,A

(
(Cj ∩H(i),a) \

m⋃
k=j+1

(Ck ∩H(i),a)
ε′k

)}

� inf

{
γcone,A∩H(i),a

(
(Cj ∩H(i),a) \

m⋃
k=j+1

(Ck ∩H(i),a)
ε′k

)}

= inf

{
γcone,πi(A∩H(i),a)

(
πi

(
(Cj ∩H(i),a) \

m⋃
k=j+1

(Ck ∩H(i),a)
ε′k

))}
.

Hence,

0 < inf

{
γcone,A(i),a

(
(Cj)(i),a \

m⋃
k=j+1

((Ck)(i),a)
ε′k

)}
,

which proves that (C0)(i),a, . . . , (Cm)(i),a is a uniform cone radius collection.
We still need to prove that for each �x ∈ Cj ∩H(i),a,

γcone,A(�x) � γcone,A∩H(i),a
(�x).

The proof is illustrated in Figure 6.4. The main ingredient is the construction of
the cone radius, as described in the proof of Theorem 2 in [14]. As explained in the
paragraph immediately following Theorem 5.3, the radius query produces for each
point �x an interval (0, r) of cone radii, where r is the minimal distance between �x and
each �s ∈ S ⊆ Rn, where S contains those points �s which have a tangent space that
is orthogonal to �x − �s or parallel to one of the axes-parallel hyperplanes. Here, the
tangent spaces are taken with respect to a Whitney-decomposition Z of A, which is
compatible with the union of all axes-parallel hyperplanes (including Hi,a) through
�x. An example of such a Whitney-decomposition is given in Figure 6.4 (top right).
Also in this figure, we have depicted the set S. The (maximal) cone radius of A in
(a, b) is illustrated by the dashed circle centered around (a, b).

Recall that we defined

γcone,A(�x) =
1

2
r =

1

2
min
�s∈S

d(�x,�s),

1424 F. GEERTS, B. KUIJPERS, AND J. VAN DEN BUSSCHE

a a

Whitney-decomposition of A′

(a, b) (a, b)

Whitney-decomposition of A

A′ = πx(A ∩ {y = a}

A

Fig. 6.4. Semialgebraic set A locally around (a, b) (top left). Whitney-decomposition Z of A
compatible with axes-parallel hyperplanes through (a, b) (top right). Intersection A′ of A with hor-
izontal hyperplane through (a, b) and projected on the x-axis (bottom left). Whitney-decomposition
Z′ of A′ (bottom right). The isolated points (top and bottom right) denote the critical points, i.e.,
points (c, d) with a horizontal or vertical tangent space, or a tangent space perpendicular to the
vector (c, d) − (a, b). Note that these tangent spaces are relative to the Whitney-decomposition.
Moreover, by construction the set S of critical points for A around (a, b) shown as the isolated
points (top right) includes the set S′ of critical points of A′ around a (bottom right). Consequently,
γcone,A(a, b) � γcone,A′ (a).

where d denotes the ordinary distance function.
In the same way,

γcone,A∩H(i),a
(�x) =

1

2
min
�s∈S′

d(�x,�s),

where S ′ contains those points �s which have a tangent space that is orthogonal to
�x−�s or parallel to one of the axes-parallel hyperplanes. Here, the tangent spaces are
taken with respect to a Whitney-decomposition Z ′ of A∩H(i),a. An example of such
a Whitney-decomposition is given in Figure 6.4 (bottom right). Also in this figure we
have depicted S ′. The (maximal) cone radius is illustrated by the interval bounded
by the two dashed line segments centered around a.

Due to the requirement that Z is compatible with the axes-parallel hyperplanes
through �x, the Whitney-decomposition Z ′ of A∩H(i),a is equal to those strata Z ∈ Z
such that Z ⊆ H(i),a. In other words, S ′ ⊆ S, and hence,

γcone,A(�x) =
1

2
min
�s∈S

d(�x,�s) � 1

2
min
�s∈S′

d(�x,�s) = γcone,A∩H(i),a
(�x),

as desired.
Claim 6.2. The sets (Rj,0)(i),a, . . . , (Rj,nj)(i),a form a regular decomposition of

(Cj)(i),a.
Proof. By definition, the sets (Rj,n)(i),a, . . . , (Rj,0)(i),a form a decomposition of

(Cj)(i),a, so we need only show that each of the sets (Rj,k)(i),a, for k = 0, . . . , n, is
regular. Let H(i),a = {�x ∈ Rn | xi = a}, and let πi : Rn → Rn−1 be defined by
πi(x1, . . . , xn) = (x1, . . . , xi−1, xi+1, . . . , xn).

It is sufficient to show that Rj,k and H(i),a are in general position. Indeed, by the
observation at the end of section 5.4, the intersection of two regular sets in general

LINEARIZATION AND COMPLETENESS FOR TC QUERIES 1425

position is again regular. Hence, Rj,k ∩H(i),a is regular. Thus, (Rj,k)(i),a = πi(Rj,k ∩
H(i),a) is the image by the C1-diffeomorphism πi of a regular set, and hence is regular
itself.

We still need to show that Rj,k � H(i),a. By property (ii) of the constructed box
collection U , we know that Rj,k � U , and hence Rj,k � |U|�. Let �x ∈ Rj,k ∩ H(i),a

and B ∈ (U)� such that �x ∈ B ⊂ H(i),a. Note that such a B always exists because
a ∈ Coord(U(i)) and U covers A. Hence, Rj,k � |B| or, in other words, T�x Rj,k +
T�x |B| = Rn. Since |B| ⊂ H(i),a, we have that T�x |B| ⊆ T�x H(i),a, and hence also
T�x Rj,k + T�x H(i),a = Rn.

Claim 6.3. The box collections U(i),a are in general position with (C0)(i),a, . . . ,
(Cm)(i),a.

Proof. We need to prove that {|U(i),a|0, . . . , |U(i),a|n} � {(Rj,k)(i),a | j = 0, . . . ,m,
k = 0, . . . , n}. Let H(i),a = {�x ∈ Rn | xi = a}, and let πi : Rn → Rn−1 be defined
by πi(x1, . . . , xn) = (x1, . . . , xi−1, xi+1, . . . , xn).

We have that |U(i),a|� = πi(|U|� ∩ H(i),a). Thus, B′ ∈ (U(i),a)
� if and only if

|B′| = πi(|B|) with B ∈ (U)� and |B| ⊆ H(i),a.
As already observed in the proof of Claim 6.2, Rj,k ∩ |U|� is a regular set. Hence,

for �x ∈ Rj,k∩|U|� the tangent space T�x(Rj,k∩|U|�) exists. Moreover, T�x(Rj,k∩|U|�) =
T�x(Rj,k ∩ |B|) for some B ∈ (U)� and |B| ⊆ H(i),a.

Let |B′| = πi(|B|). We need to prove that

T�x(i),a
|B′| + T�x(i),a

((Rj,k)(i),a) = Rn−1.(6.12)

We have that

T�x(i),a
|B′| = dπi(Tx |B|) and(6.13)

T�x(i),a
((Rj,k)(i),a) = dπi(T�x(Rj,k ∩ |B|)),(6.14)

where dπi is the differential of πi [23].
Moreover, because of property (ii) of the box collection U and the remark at the

end of section 5.4 on the intersection of tangent spaces, we have

T�x |B| + T�x(Rj,k) = Rn and(6.15)

T�x(Rj,k ∩ |B|) = T�x Rj,k ∩ T�x |B|.(6.16)

Now, let (v1, . . . , vi−1, vi+1, . . . , vn) ∈ Rn−1 and let �v = (v1, . . . , vi−1, 0, vi+1,

. . . , vn) ∈ Rn. By (6.15) there exists �b ∈ T�x |B| and �r ∈ T�x(Rj,k) such that �v = �b+�r.
Moreover, we may take bi = 0 since vectors in T�x |B| have no component in the ith
coordinate. Hence ri has to be zero too. By (6.16), we have �r ∈ T�x(Rj,k ∩ |B|).
Let �b′ = dπi(�b) and �r′ = dπi(�r). Then by (6.13), �b′ ∈ T�x(i),a

|B′|, and by (6.14),

�r′ ∈ T�x(i),a
((Rj,k)(i),a). By construction, (v1, . . . , vi−1, vi+1, . . . , vn) = �b′+�r′, proving

(6.12).

6.3. Putting everything together: The linearization algorithm. The al-
gorithm that constructs an A-linear set, which is homeomorphic to a given semi-
algebraic set, works inductively on the dimension of the surrounding space in which
the semialgebraic set is embedded.

6.3.1. The bounded case. The algorithm consists of two parts. The first
part is a preprocessing step, which takes as input a bounded semialgebraic set A in
Rn and returns the regular decomposition of each part of the uniform cone radius
decomposition of A.

1426 F. GEERTS, B. KUIJPERS, AND J. VAN DEN BUSSCHE

Subroutine: Preprocess

Input: A semialgebraic set A in Rn.
Output: A uniform cone radius decomposition C0, . . . , Ck of A and for each

Ci a regular decomposition Ri,0, . . . , Ri,i of Ci.
Method:

1. Compute the uniform cone radius decomposition of A:

A = C0 ∪ · · · ∪ Ck.

2. Compute the regular decomposition of Ci, for i = 0, . . . , k:

Ci = Ri,0 ∪ · · · ∪Ri,i.

Subroutine: Linearize-In-n-Dimensions

Input: ({Ci}, {Ri,r},F) with C0, . . . , Ck a uniform cone radius collection,
{Ri,r} a regular decomposition of Ci, and F an n-dimensional box
collection in Rn which is in general position with C0, . . . , Ck.

Output: An A-linear set Ĉ in Rn which is homeomorphic to C = C0 ∪ · · · ∪
Ck.

Method:
• If n > 1, do the following:

1. Compute the box collection U constructed in section 6.2.
2. Compute a (3n+1)-ary relation P consisting of pairs (B, �pB , b),

where B is an n-dimensional box in U , �pB ∈ Rn, and b ∈ {0, 1}
such that:
(a) �pB ∈ cl(C) ∩ int(B) and is uniquely selected for each B;
(b) γcone,C(�pB) > diam(B); and
(c) b = 0 in case �pB ∈ cl(C) \ C and b = 1 in case �pB ∈ C.

3. Compute all U(i),a with a ∈ Coord(U{i}) and i ∈ {1, . . . , n}.
4. Compute all (Cj)(i),a ⊂ Rn−1 with a ∈ Coord(U{i}) and i ∈

{1, . . . , n}.
5. Compute all (Ri,r)(i),a ⊂ Rn−1 with a ∈ Coord(U{i}) and i ∈

{1, . . . , n}.
6. For all input triples ({(Cj)(i),a}, {(Ri,r)(i),a},U(i),a) with a ∈

Coord(U{i}) and i ∈ {1, . . . , n}, apply linearize-in-(n − 1)-
dimensions and embed the result in the corresponding hyper-
plane in Rn, i.e., apply (x1, . . . , xn−1) �→ (x1, . . . , a, . . . , xn−1)
where a appears in the ith position.

7. Initialize Ĉ to the union of the results of the calls to linearize-

in-(n− 1)-dimensions of step 6.
• If n = 1, then do the following:

1. Initialize Ĉ to C0 ∪ · · · ∪ Ck.
• Output

Ĉ := Ĉ ∪ {Cone(Ĉ ∩ ∂B, �pB) | (B, �pB , b) ∈ P and b = 1}
∪ {Cone(Ĉ ∩ ∂B, �pB) \ {�pB} | (B, �pB , b) ∈ P and b = 0}.

LINEARIZATION AND COMPLETENESS FOR TC QUERIES 1427

Algorithm: Linearize

Input: A bounded semialgebraic set A in Rn.

Output: An A-linear set Â in Rn which is homeomorphic to A.
Method:

1. Call Linearize-In-n-Dimensions(Preprocess(A), ∅).

Before we prove the correctness of the Linearize algorithm, we want to point out
the importance of the general position assumption made in the input of the algorithm.
First of all, it allows us to treat all boxes in U in the same way. More specifically,
for every box B we are assured of having a point �pB ∈ int(|B|) as described in step
2 of the algorithm (see Lemma 6.4). The existence of these points is essential for
the linearization, as is clear from the last step in the algorithm. Second, the general
position assumption ensures that the lower-dimensional sets defined in steps 3–5 are
nice and are again in general position (see the three claims in section 6.2). This implies
that we can apply Linearize on the lower-dimensional sets, which is a key feature
for the algorithm.

Lemma 6.5. For any semialgebraic set A in Rn, the set Â = Linearize(A) is
indeed a linearization of A.

Proof. The linearity of Â is immediate, so we focus on the existence of a homeo-
morphism h : Rn → Rn, which maps A to Â.

The existence proof (which is also a constructive proof) is an inductive proof.
Before we can state the induction hypothesis, we need to define some box collections
in Rn.

We define U[n] to be the n-dimensional box collection U in Rn constructed in step
1 when Linearize-In-n-Dimensions is called.

Let k < n. With each call of Linearize-In-k-Dimensions during the lineariza-
tion of A we associate the pair (in−k, ai−k) ∈ {1, . . . , n} × R such that an−k is the
value in Coord(U{in−k}) used in step 6. Note that U is the box collection constructed
in step 1 during the preceding call of Linearize-In-(k + 1)-Dimensions.

This sequence of pairs gives us a unique identifier for the box collection con-
structed in step 1 during each call of the algorithm. More specifically, we denote by
U(i1,a1),... ,(in−k,an−k) the box collection U constructed in step 1 of the call Linearize-

In-k-Dimensions corresponding to (in−k, an−k), which was called within Linearize-

In-(k + 1)-Dimensions corresponding to (in−k−1, an−k−1), and so forth until
Linearize-In-(n − 1)-Dimensions is called with (i1, a1) within the initial call
Linearize-In-n-Dimensions. If k = 1, then no box collection U is constructed,
since step 1 is skipped in the algorithm. However, for the purpose of this proof,
we define U(i1,a1),... ,(in−1,an−1) to be U{in−1},an−1

, where U is the box collection con-
structed in step 1 of the preceding call to Linearize-In-2-Dimensions corresponding
to (in−2, an−2), and so forth.

At the same time, the sequence of pairs (ij , aj) tells us how to correctly embed
U(i1,a1),... ,(in−k,an−k) into Rn. Indeed, the embedding simply maps �x ∈ Rk to the
vector �x′ ∈ Rn obtained by putting aj at position ij and filling up the k open
slots with the values (in this order) x1, . . . , xk. We will denote this embedding by
ρ(i1,a1),... ,(in−k,an−k).

We now define the k-dimensional box collection U[k] in Rn as

U[k] = ∪(i1,a1),... ,(in−k,an−k)ρ(i1,a1),... ,(in−k,an−k)(U(i1,a1),... ,(in−k,an−k)).

1428 F. GEERTS, B. KUIJPERS, AND J. VAN DEN BUSSCHE

Let U[�k] be the union of all boxes in U[k], . . . ,U[1]. We shall construct homeo-
morphisms hk : |U[�k]| → |U[�k]|, such that

• hk(A ∩ |U[�k]|) = Â ∩ |U[�k]|, and
• for all boxes B in U[k], . . . ,U[1], hk||B| : |B| → |B| is a homeomorphism.

We shall construct the homeomorphisms hk by induction on k.
For the base case, k = 1, the linearization algorithm keeps A intact (see the

case n = 1 in the description of the Linearize-In-n-Dimensions algorithm). Hence,

U[1] ∩ Â = U[1] ∩ A and we let hk be the identity mapping on U[1]. Both conditions
are trivially satisfied for h1.

Suppose we have constructed a homeomorphism hk−1 : |U[�k−1]| → |U[�k−1]| such
that

• hk−1(A ∩ |U[�k−1]|) = Â ∩ |U[�k−1]|, and
• for all boxes B in U[k], . . . ,U[1], hk−1||B| : |B| → |B| is a homeomorphism.

Let B′ ∈ U[k]; then we will define hk||B′| : |B′| → |B′| as the composition of two
homeomorphisms f and g. Let us first describe the homeomorphism g. By definition,
|B′| = ρ(i1,a1),... ,(in−k,an−k)(|B|) with B ∈ U(i1,a1),... ,(in−k,an−k).

Let P be the relation computed in step 2 after U(i1,a1),... ,(in−k,an−k) was computed.
By the definition of the relation P and by Theorem 5.2, there exists a homeomorphism
g||B| : |B| → |B| such that g|∂|B| is the identity, and either

1. g||B|(|B| ∩A) = Cone(A ∩ ∂|B|, �pB) in case (B, �pB , 1) ∈ P, or
2. g||B|(|B| ∩A) = Cone(A ∩ ∂|B|, �pB) \ {�pB} in case (B, �pB , 0) ∈ P.

Since the second case is completely analogous to the first case, we assume that the
first case holds for g. This concludes the description of the homeomorphism g.

Before we explain the construction of the second homeomorphism f , we show how
to partition |B| using the boundary of boxes |Bt| parametrized by t ∈ [0, 1]. Suppose
that |B| = [a1, b1] × · · · × [an, bn], and suppose �pB = (c1, . . . , cn) with ai < ci < bi
for i = 1, . . . , n. Then the following sets for 0 � t � 1 partition |B| such that
|B| = ∪t∈[0,1]∂|Bt|:

|Bt| := [ta1 + (1 − t)c1, tb1 + (1 − t)c1] × · · ·
× [tan + (1 − t)cn, tbn + (1 − t)cn] 0 � t � 1.

Let �x ∈ |B|. To start with the construction of f(�x) for �x ∈ |B|, we define the
unique t0 such that �x ∈ ∂|Bt0 |. Then, let L be the halfline from �pB to �x and define

�y = L ∩ ∂|B|.

Next, let L′ is the halfline from �pB to hk−1(�y). Note that hk−1(�y) still lies on the
boundary ∂|B|. Finally, define f ||B| : |B| → |B| in �x as

f ||B|(�x) = ∂|Bt0 | ∩ L′.

The construction of f is illustrated in Figure 6.5. It can easily be verified that
f ||B| is a homeomorphism from |B| to |B| such that

f ||B|(Cone(A ∩ ∂|B|, �pB)) = Cone(hk−1(A ∩ ∂|B|), �pB).(6.17)

Finally, we define hk||B′| : |B′| → |B′| using the composition of the two homeo-
morphisms f ||B| and g||B|, i.e.,

hk||B′| = ρ(i1,a1),... ,(in−k,an−k) ◦ f ||B| ◦ g||B| ◦ πi1,... ,in−k
.

LINEARIZATION AND COMPLETENESS FOR TC QUERIES 1429

f(�x)

∂|Bt0 |

∂|B|

�pB

L′

L

�x
�y

hk−1(�y)

Fig. 6.5. Construction of the homeomorphism f : |B| → |B|. The figure shows the construction
of f(�x) for a point �x ∈ |B|.

We now define hk : |U[�k]| → |U[�k]| as

hk :=
⋃

B∈U[k]

hk||B|

and show that it has the desired properties. First, we prove that hk is a homeomor-
phism. By the gluing Lemma [35, Lemma 3.8], it is sufficient to show that for any
two boxes B and B′ in U[k], we have that

hk||B|∪|B′| = hk||B| ∪ hk||B′| : |B| ∪ |B′| → |B| ∪ |B′|.

For this to hold, it is sufficient to show that for any k-dimensional box B′ ∈ U[k] in
Rn,

(hk||B|)||B′| = (hk||B′|)||B|.(6.18)

This holds indeed. If |B| ∩ |B′| = ∅, then we are done. Suppose that �x ∈ |B| ∩ |B′|.
Then by the definition of a box collection, �x ∈ ∂|B| ∩ ∂|B′|. Now, for every box
B′′ ∈ U[k], we have hk|∂|B′′|(�x) = f |∂|B′′|(�x) = hk−1(�x). Hence,

(hk||B|)||B′|(�x) = hk|∂|B|∩∂|B′|(�x)

= hk−1(�x)

= hk|∂|B′|∩∂|B|(�x)

= (hk||B′|)||B|(�x).

Hence, hk : |U[�k]| → |U[�k]| is a homeomorphism.
Second, we show that for all boxes B in U[k], . . . ,U[1], hk−1||B| : |B| → |B| is a

homeomorphism. By construction, this holds for any box B ∈ U[k]. For boxes B′ in
U[i] for i < k, it is sufficient to observe that such boxes B′ lie on the boundary of a
box B in U[k], and on these boundaries hk coincides with hk−1 for which the desired
property holds by induction.

Finally, we still need to verify that hk(A∩ |U[�k]|) = Â∩ |U[�k]|. It is sufficient to

show that hk(A∩|B|) = Â∩|B| for any B ∈ U[k]. By (6.17), the induction hypothesis,

1430 F. GEERTS, B. KUIJPERS, AND J. VAN DEN BUSSCHE

and the definition of Â in the algorithm linearize-in-n-dimensions, we have

hk(A ∩ |B|) = Cone(hk−1(A ∩ ∂|B|), �pB)

= Cone(Â ∩ ∂|B|, �pB)

= Â ∩ |B|.

Since |U| is closed, a standard result from topology [36] implies that the final
homeomorphism hn can be extended to a homeomorphism h : Rn → Rn.

We are now ready to state the main result of this section.
Theorem 6.6. For each n, there exists an FO+Poly+TC formula linearize

over the schema S = {S}, with S an n-ary relation name such that for any polynomial
constraint database D over S, linearize(D) is an algebraic linearization of SD if
SD is bounded.

Proof. The desired FO+Poly+TC formula linearize expresses the algorithm
Linearize described above. From Lemma 5.5 and Lemma 5.7, it follows that the
algorithm Preprocess is FO+Poly-expressible.

Concerning the algorithm Linearize-In-n-Dimensions, we have that in step
1, the box collection U is computed. In the construction of this box collection in
section 6.1, we need to compute the following:

• The computation of a uniform cone radius. This is FO+Poly-expressible by
Theorem 5.3.

• The computation of a finite number of box coverings, i.e., the εV
4
√
n
-cover(V)

coverings of section 6.1. This is FO+Poly+TC-expressible by Proposi-
tion 5.14.

• A candidate τ ∈ Rn as specified in Lemma 6.3 needs to be found. Since
this is essentially checking a finite number of transversality conditions, this
is FO+Poly-expressible by Lemma 5.8.

Hence, we may conclude that the computation of U is in FO+Poly+TC. In step 2,
the relation P is constructed. Given the box collection U , we know by property (iii)
of this collection that in each B ∈ U there exists a point �p ∈ int(|B|)∩cl(C) such that
γcone,C(�p) > diam(B). The set of points in int(|B|) with this property is FO+Poly-
expressible by Theorem 5.3. Hence, we can also select in FO+Poly for each B ∈ U
a unique representant among these points. This will be �pB . Hence, we may conclude
that the computation of the relation P is FO+Poly-expressible. In steps 3, 4, and 5,
we need to compute Coord(U{i}), U(i),a, (Cj)(i),a, and (Ri,r)(i),a. By definition these
are all FO+Poly-expressible. In step 6 we call the algorithm n times. We have to be
careful of how the inductive step is translated in FO+Poly+TC. A straightforward
translation would result in a parametrized call of the transitive closure operators in
the computation of the box coverings in step 1. Observe, however, that the set of
parameters Coord(U(i)) for i = {1, . . . , n} can be computed inside the transitive clo-
sure operator and that these parameters can then be passed on outside the transitive
closure operator by simply annotating the vectors inside the transitive closure with
these parameters. Indeed, suppose that we want to compute the transitive closure
of a parametrized set X ∈ Rn+m, where the last m coordinates are the parameters.
Suppose that the set of parameters is FO+Poly+TC-definable from the database by
a formula ϕ. We now define Y = [TC�x,�a;�y,�bX ∧ �a = �b ∧ ϕ(�a)]. We can then uniquely
identify the result of this transitive closure computation for each parameter value by
asking for all (�x,�a) ∈ Y , for which ϕ(�a) holds. By adapting the box covering formula
constructed in Proposition 5.14, we can compute the box coverings for the parameter

LINEARIZATION AND COMPLETENESS FOR TC QUERIES 1431

(0, 0, 1) (0, 0, 1)
σρ

(0, 0, 0)

Fig. 6.6. A semialgebraic set (shaded area) is mapped onto the sphere S2(�0, 1), flipped vertically,
and projected back onto the sphere S2(�0, 1). This brings the point at infinity �p∞ to the origin �0.

set Coord(U(i)) in parallel and keep them apart afterwards. In this way, we do not need
parametrized transitive closure, and hence step 6 is expressible in FO+Poly+TC.

In step 7 a simple union is performed (which is trivially in FO+Poly), and finally,
the cones are constructed, which is also clearly expressible in FO+Poly.

Since the recursion depth is bounded by the dimension, we can write the complete
execution of the algorithm as a single FO+Poly+TC formula.

If the linearization obtained in Theorem 6.6 also needs to be a good approximation
from a metrical point of view, we can easily adapt the algorithms such that the
approximation lies arbitrarily close to the original polynomial constraint database.
Indeed, we can simply bound the diameter of the boxes used in the construction by a
specified ε-value. We will see some applications of these ε-approximations in the next
section.

Theorem 6.7. For each n there exists an FO+Poly+TC query ε-approx over
the schema S = {S} with S an n-ary relation name such that for any polynomial
constraint database D over S such that SD is bounded, the set ε-approx(D) is an
algebraic ε-approximation of SD.

Proof. The proof follows at once from the fact that the homeomorphism h con-
structed in the proof of Theorem 6.6 maps A ∩ |B| to Â ∩ |B| for each box B ∈ U .
Thus, if �p ∈ A∩|B| then also h(�p) ∈ |B|. Because diam(B) < ε, the distance between

�p and h(�p) is smaller than ε, so in this case Â will be an ε-approximation of A.

6.3.2. The general case. Let A be an unbounded semialgebraic set in Rn.
We reduce the construction of an algebraic linearization of A to the construction for
bounded semialgebraic sets as follows.

First, we need to define the cone radius of A in the point at infinity �p∞. Con-
sider the embedding i : Rn → Rn+1 : (x1, . . . , xn) �→ (x1, . . . , xn, 0). Let ρ :
Rn+1 → Rn+1 be the reflection defined by (x1, . . . , xn+1) �→ (x1, . . . , xn,−xn+1).
Let Rn ∪ {�p∞} be the one-point compactification of Rn [35]. Finally, consider the
stereographic projection σ : Sn((0, . . . , 0), 1) → i(Rn) ∪ {�p∞} defined by σ(x1, . . . ,

xn+1) = (x1,... ,xn)
1−xn+1

and σ(0, . . . , 0, 1) = �p∞.

We define a cone radius of A at �p∞ as a cone radius of the semialgebraic set

i−1(σ(ρ(σ−1(i(A) ∪ {�p∞}))))

in the origin of Rn. Figure 6.6 illustrates the above transformation process. The local
conic structure of semialgebraic sets implies that there exists an m > 0 such that
{�x ∈ Rn | ‖�x‖ � m} ∩ A is topologically equivalent to {λ�x ∈ Rn | �x ∈ ∂([−m,m] ×
· · · × [−m,m]) ∩A ∧ λ � 1}.

1432 F. GEERTS, B. KUIJPERS, AND J. VAN DEN BUSSCHE

We now present the unbounded version of the algorithm Linearize.

Algorithm Linearize
′

Input: A semialgebraic set A in Rn Rn.
Output: An A-linear set Â in Rn which is homeomorphic to A.
Method:

1. Compute a cone radius m of A in �p∞. Let M = [−m,m] × · · · ×
[−m,m].

2. Call Linearize(A ∩M).
3. Output

Â := ̂(A ∩M) ∪ {λ�x ∈ Rn | �x ∈ A ∩ ∂M ∧ λ � 1}.

We obtain the following generalization of Theorem 6.6.
Theorem 6.8. For each n there exists an FO+Poly+TC formula linearize

over the schema S = {S}, with S an n-ary relation name such that for any polynomial
constraint database D over S, linearize(D) is an algebraic linearization of SD.

6.4. Rational linearizations. We now refine the previous theorems to rational
linearization.

Theorem 6.9. For each n, there exists an FO+Poly+TC query ratlin over
the schema S = {S}, with S n-ary, such that for any polynomial constraint database
D over S such that SD is bounded, ratlin(D) is a rational linearization of SD.

Proof. We can obtain this result easily by modifying the construction of the
special box collection in section 6.1 in the following way. When the box covering V
of size εV√

n
is computed in this construction, we compute a rational number that is

smaller than εV√
n

and take this as the size of the box covering V to be computed. By

similar techniques as those in section 4, it is easy to show that there exists an FO+
Poly+TC query, which returns a rational number smaller than the input number.
In this way, all boxes in R ⊂ Q2n. A second adaptation is that the relation P is
replaced by the following relation

P ′ = {(B,�cB , b) ∈ U × Qn × {0, 1} | ∃�pB(B, �pB , b) ∈ P},

where �cB denote the center of the box B.
In this way the algorithm Linearize-In-n-Dimensions will select points with

rational coordinates.
We also have a rational equivalent of Theorem 6.7.
Theorem 6.10. For each n there exists an FO+Poly+TC query ε-ratlin over

the schema S = {S}, with S an n-ary relation name, such that for any polynomial
constraint database D over S such that SD is bounded, the set ε-ratlin(D) is a
rational ε-approximation of SD.

6.5. The connectivity query. Although we know already that the connectivity
query, which asks whether a polynomial constraint database is connected, is express-
ible in FO+Poly+TCS, we show in this section that the connectivity query is already
expressible in FO+Poly+TC. Let A be a semialgebraic set in Rn. For semialgebraic
sets, expressing the connectivity query is the same as expressing whether any two
points can be connected by a path lying entirely in A [6, Proposition 2.5.13]. One

LINEARIZATION AND COMPLETENESS FOR TC QUERIES 1433

can even choose the paths to be semialgebraic, in case of a semialgebraic set, and
semilinear, in case of a semilinear set [44, Chapter 6, Proposition 3.2].

We now show that this query can be expressed in FO+Poly+TC using the
formula linearize given in Theorem 6.8.

Let S = {S}, with S an n-ary relation name. Consider the FO+Poly+TC for-
mula lineconn(�r,�s) over S such that for any database D over S, (�p, �q) ∈ lineconn(D)
if and only if

∀λ(0 � λ � 1), λ�p + (1 − λ)�q ∈ linearize(D).

Define now the FO+Poly+TC sentence connected, which tests for any database D
over S whether

∀�p ∈ linearize(D),∀�q ∈ linearize(D), (�p, �q) ∈ [TC�x;�ylineconn(D)].

Proposition 6.11. Let S = {S} with S an n-ary relation name. The FO+
Poly+TC formula connected always terminates and expresses the connectivity query.

Proof. Since linearize(D) is topologically equivalent to SD, SD is connected if
and only if linearize(D) is. Since linearize(D) is semilinear, two points �p and �q
belong to the same connected component of linearize(D) if and only if there exists
a piecewise linear path from �p to �q lying entirely in linearize(D). The formula
connected expresses that all points of linearize(D) belong to the same connected
component, i.e., that linearize(D) is connected.

To conclude that the evaluation of the transitive closure in the formula connected

ends in finitely many steps, we need to show that there exists an upper bound on
the number of line segments in linearize(D), which is needed to connect any two
points in the same connected component of linearize(D). Now, any semilinear set
can be decomposed into a finite number of convex sets [44]. The finiteness of this
decomposition yields the desired bound.

Since FO+Poly+TC is included in stratified DATALOG with polynomial con-
straints, Proposition 6.11 solves the question [15, 31, 33] of whether stratified DAT-
ALOG with polynomial constraints can express the connectivity query.

6.6. Volume approximation. In this section, we shall use the box covering
and the ε-approximation to approximate the volume of semialgebraic sets with an
FO+Poly+TC formula. We restrict our attention to bounded semialgebraic sets
and require that the evaluation of this FO+Poly+TC formula is effective for all
bounded semialgebraic inputs.

Let S = {S}, with S an n-ary relation name. Let D be a polynomial constraint
database over S.

The volume of a database D is defined as the Lebesgue-measure of the semi-
algebraic set SD ⊆ Rn and is denoted by Vol(D).

Since we want an FO+Poly+TC formula whose evaluation is effective on all da-
tabases, it is impossible to define the exact volume of polynomial constraint databases
in FO+Poly+TC. Indeed, consider the database consisting of the unit disk D in R2.
The volume of D equals π. Since π is not algebraic, this value cannot be the output
of an effective FO+Poly+TC query.

Hence, as suggested by Koiran [28] and Benedikt and Libkin [5], we consider for
each ε > 0 an ε-volume approximation query Vol

ε, such that for any polynomial
constraint database D over S, such that if v ∈ Vol

ε(D), then

|v − Vol(SD)| < ε.

1434 F. GEERTS, B. KUIJPERS, AND J. VAN DEN BUSSCHE

A

L

Fig. 6.7. A semialgebraic set A with κ(A) = 12.

It is known that volume approximation is not expressible in FO+Poly [5]. We
show that it is expressible in FO+Poly+TC.

We will use the following result.
Theorem 6.12 (see [28]). Let A be a semialgebraic set in Rn, and let δ-cover(A)

be its box covering of size δ. Then

|Vol(A) − Vol(δ-cover(A))| < 1

δ
(diam(A))n+1κ(A)n,(6.19)

where κ(A) is the maximal number of connected components of the intersection of
A with any axis-parallel line L (see Figure 6.7), and where diam(A) is the diameter
of A.5

Theorem 6.13. For each ε > 0, there exists an ε-volume approximation query
in FO+Poly+TC.

Proof. We first show that the number κ of Theorem 6.12 is expressible in
FO+Poly+TC. Thereto, first we define n sets Ki which contain (2n − 1)-tuples
(a1, . . . , ai−1, ai+1, . . . , an, �p), where aj ∈ R for j = 1, . . . , i − 1, i + 1, . . . , n, and
where �p is either an isolated point on the intersection of A with {�x |

∧
j �=i xj = aj},

or in the middle of an interval in this intersection. Using similar techniques as in
section 4, we compute for each (a1, . . . , ai−1, ai+1, . . . , an) the number of points �p
such that (a1, . . . , ai−1, ai+1, . . . , an, �p) ∈ Ki. We then obtain n sets K ′

i consisting of
n-tuples (a1, . . . , ai−1, ai+1, . . . , an, N) with N ∈ N, and we define Mi to be the max-
imum of all those N which are in K ′

i for some (a1, . . . , ai−1, ai+1, . . . , an). Finally,
κ = max{M1, . . . ,Mn}.

Let δ = 1
ε (diam(SD))nκ(SD)n + 1. By Proposition 5.14, the box covering of

SD of size δ is expressible in FO+Poly+TC. By Theorem 6.12, Vol(δ-cover(SD))
approximates the volume of SD within an ε-error margin.

Recall that δ-cover(SD) is represented as a 2n-ary relation. Each 2n-tuple corre-
sponds to an n-dimensional box of size δ (see section 5.5). Let nrofboxes(y) be the
formula

[TC�b,x;�b′,x′lexicographic(�b,�b
′) ∧ x′ = x + 1](�bmin, 1,�bmax, y),

where lexicographic(�b,�b′) is an FO+Poly formula expressing that �b is less than �b′

with respect to the lexicographical ordering on tuples in Rn, and where �bmin,�bmax ∈
δ-cover(SD) is the minimum (respectively, maximum) n-tuple in δ-cover(SD) with
respect to the lexicographical ordering. Finally, let N ∈ R such that nrofboxes(N)
holds. Then we define Vol

ε(v) to be the FO+Poly+TC formula which expresses
that v = Nδn.

5For X ⊆ Rn bounded, the diameter of X is defined as the supremum of {‖�x− �y‖ | �x, �y ∈ X}.

LINEARIZATION AND COMPLETENESS FOR TC QUERIES 1435

Since the δ-approximation of A is included in the box covering δ-cover(A), a better
volume approximation can be obtained by using the volume of the δ-approximation
instead of the volume of δ-cover(A). By the next theorem, this also gives an FO+
Poly+TC expressible ε-approximation query.

It is known that taking the volume of a semilinear set does not take us out of the
semialgebraic setting and that the volume of a semilinear set can be expressed in the
aggregate language FO+Poly+Sum [5].

Theorem 6.14. Let S = {S}, with S an n-ary relation name. There exists an
FO+Poly+TC formula volume over S such that volume(SD) is the volume of SD

for any linear constraint database D over S.
Proof. If dim(SD) < n, then we define volume(x) ≡ x = 0. Suppose that

dim(SD) = n. Since Vol(SD) = Vol(cl(int(SD))), we actually may assume that SD

is closed and consists entirely of n-dimensional pieces.
It is well known that SD is a finite union of convex sets c1, . . . , cr of a partition

of Rn induced by a finite number of (n−1)-dimensional hyperplanes H1, . . . , Hs [48].
Vandeurzen, Gyssens, and Van Gucht [48] show that there exists an FO+Poly

formula hyperplanes(v1, . . . , vn, d) such that hyperplanes(D) consists of s tuples
(�v1, d1), . . . , (�vs, ds) such that Hi = {�x ∈ Rn | �vi�x = di}. Moreover, there exists an
FO+Poly formula points such that points(D) is equal to the extremal points of
the convex sets c1, . . . , cs. Recall that the extremal points of a convex set are those
points which cannot be written as a linear combination of two other points of the
convex set [51].

We now want to retrieve the extremal points of the convex sets c1, . . . , cr. In
order to do so, we shall first select a unique point in the interior of each convex
set. With each of these points we then associate all special points which are in the
corresponding convex set. These will then be the extremal points.

We thus define an FO+Poly+TC formula unique over S such that unique(D)
consists of points �p1, . . . , �ps such that �pi ∈ int(ci) for i = 1, . . . , s. The formula
unique makes use of the following formulas over S:

• A formula over S which computes the barycenter of any n-dimensional sim-
plex obtained as the convex hull of an (n+1)-tuple of points in specialpoints

(D), i.e.,

barycenter(�x) ≡ ∃�y1 · · · ∃�yn+1

(
n∧

i=1

points(�yi)

∧ xi =
1

n + 1
((�y1)i + · · · + (�yn+1)i)

)
.

• A formula interiors over S which computes the interiors of the sets c1, . . . , cs,
i.e.,

interiors(�x) ≡ S(�x) ∧ ¬(∃�v ∃ d(hyperplanes(�v, d) ∧ �v · �x = d)).

• A formula over S which checks whether two barycenters are in the same
convex set ci for some i, i.e.,

samecell(�x, �y) ≡ barycenter(�x) ∧ barycenter(�y)

∧ ∀λ(0 � λ � 1) → interiors(λ�x + (1 − λ)�y).

1436 F. GEERTS, B. KUIJPERS, AND J. VAN DEN BUSSCHE

We then define the formula unique(�x) as

∀�zsamecell(�x, �z) → lexicographic(�x, �z),

where lexicographic(�x, �z) is an FO+Poly formula expressing that �x is less than or
equal to �z with respect to the lexicographical ordering on tuples in Rn.

Define the formula

extremal(�x, �y) ≡ points(�x) ∧ unique(�y)

∧ ∀λ(0 < λ � 1) → interiors(λ�y + (1 − λ)�x).

We can now identify each convex set c1, . . . , cr, so we may focus on a single
convex set. We now show that, given the extremal points of a convex set c in Rn, a
decomposition of c in a finite number of n-simplices can be constructed in FO+Poly.
The n-simplices will be represented by n + 1 independent points.

We first identify the hyperplanes which have an (n− 1)-dimensional intersection
with the boundary of the convex set c. Let �e1, . . . , �ek be the extremal points of c. Let
onboundary be the FO+Poly formula which selects the tuples in hyperplanes(D)
with this property. Next, let sameface be an FO+Poly formula such that face(�e,�v, d)
if and only if �e is an extremal point of c, (�v, d) ∈ onboundary(�e1, . . . , �ek), and
�e ∈ {�x ∈ Rn | �v · �x = d}. In this way, we can group the extremal points of c
such that each group corresponds to a single face of the convex cell c.

For each face of c, we now project the extremal points corresponding to this face
to Rn−1 such that they are the extremal points of a convex set in Rn−1. Thus,
if face(�x1, �v, d,�e1, . . . , �ek) ∧ · · · ∧ face(�x�, �v, d,�e1, . . . , �ek), then we obtain extremal
points of a convex set in Rn−1 as follows: Let i ∈ {1, . . . , n} be such that {�x ∈ Rn |
xi = 0} is not perpendicular to {�x ∈ Rn | �v · · · �x = d} (this can be easily expressed
in FO+Poly). Then consider the projection πi : Rn → Rn−1 defined as πi(x1, . . . ,
xn) �→ (x1, . . . , xi−1, xi+1, . . . , xn) and apply this map on �x1, . . . , �x�.

Algorithm Triangulate-In-n-Dimensions

Input: The extremal points �e1, . . . , �ek of a convex set c in Rn.
Output: A finite number of n-simplices forming a decomposition of c.
Method:

1. Compute the pairs (�v, d) ∈ onboundary(�e1, . . . , �ek).
2. For each (�v, d) ∈ onboundary(�e1, . . . , �ek) do the following:

(a) Compute face(�x,�v, d,�e1, . . . , �ek).
(b) Find an i as described above and call Triangulate-In-(n− 1)-

Dimensions(πi(face(�v, d,�e1, . . . , �ek))).
3. Select a point �pn+1 in the interior of c.
4. Output the (n + 1)-tuples (�p1, . . . , �pn, �pn+1), where (�p1, . . . , �pn) is

an n-tuple in the result of the calls of Triangulate-In-(n − 1)-
Dimensions in step 2(b).

We now define the FO+Poly formula simplexdecomp over S such that simplex-
decomp(D) is a decomposition into n-simplices of SD for any polynomial constraint
database D over {S}. Let triang be a formula which expresses the algorithm
Triangulate-In-n-Dimensions. Then

simplexdecomp(�x1, . . . , �xn+1) ≡ ∃�y(unique(�y)
∧ triang(extremal)(�x1, . . . , �xn+1, �y)).

LINEARIZATION AND COMPLETENESS FOR TC QUERIES 1437

Let (�p1, . . . , �pn+1) be an n-simplex points. Let �ri = �pi − �p1 for i = 2, . . . , n + 1,
and let G be the n × n matrix whose rows contain the coordinates of the vectors �rj
for 1 � j � n. Then by the Gram determinant formula [37], the volume of (�p1, . . . ,
�pn+1) is equal to

|det(GGt)| 12
n!

,

where Gt is the transpose of G. Hence, the volumes of the simplices are expressible
by an FO+Poly formula, which we will denote by volsimplex.

Finally, define

Ψ(y) ≡ [TCx,s;x′,s′s = ∃�p1, . . . ,∃�pn+1,∃�q1, . . . ,∃�qn+1

volsimplex(�p1, . . . , �pn+1) ∧ s′ = volsimplex(�q1, . . . , �qn+1)

∧ successor(�q1, . . . , �qn+1, �p1, . . . , �pn+1)

∧ simplexdecomp(�p1, . . . , �pn+1) ∧ simplexdecomp(�q1, . . . , �qn+1)

∧ x′ = x + s](0, v1, y, v�),

where successor is a successor relation defined on the n-simplices in the decompo-
sition into simplices simplexdecomp(D), and where v1 and v� are, respectively, the
volume of the first and last simplex according to this successor relation. The total
volume of SD is then given by

volume(v) ≡ ∃yΨ(y) ∧ v = y + v�,

with v� as above.

Acknowledgments. We would like to thank the referees for their comments
which contributed significantly towards the readability of the paper.

REFERENCES

[1] D. Abel and B. C. Ooi, eds., Advances in Spatial Databases—3rd Symposium (SSD’93),
Lecture Notes in Comput. Sci. 692, Springer-Verlag, Berlin, New York, 1993.

[2] S. Basu, R. Pollack, and M.-F. Roy, On the combinatorial and algebraic complexity of
quantifier elimination, J. ACM, 43 (1996), pp. 1002–1046.

[3] S. Basu, R. Pollack, and M.-F. Roy, Algorithms in Real Algebraic Geometry, Algorithms
Comput. Math. 10, Springer-Verlag, Berlin, New York, 2003.

[4] M. Benedikt and L. Libkin, Safe constraint queries, SIAM J. Comput., 29 (2000), pp. 1652–
1682.

[5] M. Benedikt and L. Libkin, Aggregate operators in constraint query languages, J. Comput.
System Sci., 64 (2002), pp. 626–654.

[6] J. Bochnak, M. Coste, and M.-F. Roy, Real Algebraic Geometry, Ergeb. Math. Grenzgeb.
(3) 36, Springer-Verlag, Berlin, 1998.

[7] H. Brakhage, Topologische Eigenschaften algebraischer Gebilde über einem beliebigen reell-
abgeschlossenen Konstantenkörper, Dissertation, Universität Heidelberg, Heidelberg, Ger-
many, 1954.

[8] A. P. Buchmann, O. Günther, T. R. Smith, and Y.-F. Wang, eds., Design and Implemen-
tation of Large Spatial Databases—First Symposium (SSD’89), Lecture Notes in Comput.
Sci. 409, Springer-Verlag, Berlin, New York, 1989.

[9] M. de Berg, M. Van Kreveld, M. Overmars, and O. Schwarkopf, Computational Geom-
etry, Springer-Verlag, Berlin, New York, 1997.

[10] F. Dumortier, M. Gyssens, L. Vandeurzen, and D. Van Gucht, On the decidability of
semilinearity for semialgebraic sets and its implications for spatial databases, J. Comput.
System Sci., 58 (1999), pp. 535–571.

1438 F. GEERTS, B. KUIJPERS, AND J. VAN DEN BUSSCHE

[11] H. D. Ebbinghaus and J. Flum, Finite Model Theory, Springer-Verlag, Berlin, 1995.
[12] M. J. Egenhofer and J. R. Herring, eds., Advances in Spatial Databases—4th Symposium

(SSD’95), Lecture Notes in Comput. Sci. 951, Springer-Verlag, Berlin, New York, 1995.
[13] F. Geerts, Linear approximation of semi-algebraic spatial databases using transitive closure

logic, in arbitrary dimension, in Proceedings of the 8th International Workshop on Data-
bases and Programming Languages, Lecture Notes in Comput. Sci., Springer-Verlag, 2002,
pp.

[14] F. Geerts, Expressing the box cone radius in the relational calculus with real polynomial
constraints, Discrete Comput. Geom., 30 (2003), pp. 607–622.

[15] F. Geerts and B. Kuijpers, Expressing topological connectivity of spatial databases, in
Research Issues in Structured and Semistructured Database Programming. Proceedings of
the 7th International Workshop on Database Programming Languages, Lecture Notes in
Comput. Sci. 1949, Springer-Verlag, Berlin, New York, 1999, pp. 224–238.

[16] F. Geerts and B. Kuijpers, Linear approximation of planar spatial databases using transitive-
closure logic, in Proceedings of the 19th ACM Symposium on Principles of Database
Systems, ACM, New York, 2000, pp. 126–135.

[17] F. Geerts and B. Kuijpers, On the decidability of termination of query evaluation in
transitive-closure logics for polynomial constraint databases, Theoret. Comput. Sci., 336
(2005), pp. 125–151.

[18] S. Grumbach and G. Kuper, Tractable recursion over geometric data, in Proceedings of
the 3rd Conference on Principles and Practice of Constraint Programming, G. Smolka, ed.,
Lecture Notes in Comput. Sci. 1330, Springer-Verlag, Berlin, New York, 1997, pp. 450–462.

[19] S. Grumbach, P. Rigaux, M. Scholl, and L. Segoufin, DEDALE, a spatial constraint
database, in Proceedings of Database Programming Languages (DBPL ’97), S. Cluet and
R. Hull, eds., Lecture Notes in Comput. Sci. 1369, Springer-Verlag, Berlin, New York, 1998,
pp. 38–59.

[20] S. Grumbach, P. Rigaux, and L. Segoufin, The DEDALE system for complex spatial queries,
in Proceedings of the ACM International Conference on Management of Data (SIGMOD
’98), L. M. Haas and A. Tiwary, eds., ACM, New York, 1998, pp. 213–224.

[21] S. Grumbach and J. Su, Towards practical constraint databases, in Proceedings of the 15th
ACM Symposium on Principles of Database Systems (PODS ’96), ACM, New York, 1996,
pp. 28–39.

[22] S. Grumbach and J. Su, Queries with arithmetical constraints, Theoret. Comput. Sci., 173
(1997), pp. 151–181.

[23] V. Guillemin and A. Pollack, Differential Topology, Prentice-Hall, Englewood Cliffs, NJ,
1974.

[24] O. Gunther and H.-J. Schek, eds., Advances in Spatial Databases—2nd Symposium
(SSD’91), Lecture Notes in Comput. Sci. 525, Springer-Verlag, Berlin, New York, 1991.

[25] R. H. Güting, ed., Advances in Spatial Databases—6th Symposium (SSD’99), Lecture Notes
in Comput. Sci. 1651, Springer-Verlag, Berlin, New York, 1999.

[26] R. Hardt, Triangulation of subanalytic sets and proper light subanalytic maps, Invent. Math.,
38 (1976/77), pp. 207–217.

[27] P. C. Kanellakis, G. M. Kuper, and P. Z. Revesz, Constraint query languages, J. Comput.
System Sci., 51 (1995), pp. 26–52.

[28] P. Koiran, Approximating the volume of definable sets, in Proceedings of the 36th IEEE
Symposium on Foundations of Computer Science (FOCS), IEEE, Los Alamitos, CA, 1995,
pp. 134–141.

[29] S. Kreutzer, Operational semantics for fixed-point logics on constraint databases, in Proceed-
ings of the 8th International Conference on Logic for Programming, Artificial Intelligence,
and Reasoning, R. Nieuwenhuis and A. Voronkov, eds., Lecture Notes in Comput. Sci.
2250, Springer, Berlin, 2002, pp. 470–484.

[30] S. Kreutzer, Query languages for constraint databases: First-order logic, fixed-points, and
convex hulls, in Proceedings of the 9th International Conference on Database Theory,
J. Van den Bussche and V. Vianu, eds., Lecture Notes in Comput. Sci. 1973, Springer-
Verlag, Berlin, New York, 2001, pp. 248–262.

[31] B. Kuijpers, J. Paredaens, M. Smits, and J. Van den Bussche, Termination properties of
spatial datalog, in Logic in Databases (LID ’96), D. Pedreschi and C. Zaniolo, eds., Lecture
Notes in Comput. Sci. 1154, Springer-Verlag, Berlin, New York, 1996, pp. 101–116.

[32] B. Kuijpers, J. Paredaens, and J. Van den Bussche, Topological elementary equivalence of
closed semi-algebraic sets in the real plane, J. Symbolic Logic, 65 (2000), pp. 1530–1555.

LINEARIZATION AND COMPLETENESS FOR TC QUERIES 1439

[33] B. Kuijpers and M. Smits, On expressing topological connectivity in spatial datalog, in
Proceedings of the 2nd Workshop on Constraint Databases and Applications, V. Gaede,
A. Brodsky, O. Gunter, D. Srivastava, V. Vianu, and M. Wallace, eds., Lecture Notes in
Comput. Sci. 1191, Springer-Verlag, Berlin, New York, 1997, pp. 116–133.

[34] G. M. Kuper, J. Paredaens, and L. Libkin, eds., Constraint Databases, Springer-Verlag,
Berlin, New York, 2000.

[35] J. M. Lee, Introduction to Topological Manifolds, Graduate Texts in Math. 202, Springer-
Verlag, New York, 2000.

[36] E. E. Moise, Geometrical Topology in Dimensions 2 and 3, Springer-Verlag, Berlin, New York,
1977.

[37] J. O’Rourke, Computational Geometry in C, Cambridge University Press, Cambridge, UK,
1998.

[38] F. P. Preparata and M. I. Shamos, Computational Geometry—An Introduction, Springer-
Verlag, Berlin, New York, 1985.

[39] E. Rannou, The complexity of stratification computation, Discrete Comput. Geom., 19 (1998),
pp. 47–79.

[40] E. Rannou, Personal communication, 2000.
[41] J. Renegar, On the computational complexity and geometry of the first-order theory of the

reals, J. Symbolic Comput., 13 (1992), pp. 255–352.
[42] M. Scholl and A. Voisard, eds., Advances in Spatial Databases—5th Symposium (SSD’97),

Lecture Notes in Comput. Sci. 1262, Springer-Verlag, Berlin, New York, 1997.
[43] A. Tarski, A Decision Method for Elementary Algebra and Geometry, 2nd ed., University of

California Press, Berkeley and Los Angeles, 1951.
[44] L. van den Dries, Tame Topology and O-minimal Structures, Cambridge University Press,

Cambridge, UK, 1998.
[45] L. van den Dries and C. Miller, Geometric categories and O-minimal structures, Duke

Math. J., 82 (1996), pp. 497–540.
[46] L. Vandeurzen, Logic-Based Query Languages for the Linear Constraint Database Model,

Ph.D. thesis, Limburgs Universitair Centrum (LUC), Diepenbeek, Belgium, 1999.
[47] L. Vandeurzen, M. Gyssens, and D. Van Gucht, On the desirability and limitations of

linear spatial query languages, in Advances in Spatial Databases—4th Symposium (SSD
’95), M. J. Egenhofer and J. R. Herring, eds., Lecture Notes in Comput. Sci. 951, Springer-
Verlag, Berlin, New York, 1995, pp. 14–28.

[48] L. Vandeurzen, M. Gyssens, and D. Van Gucht, An expressive language for linear spatial
database queries, in Proceedings of the 17th ACM Symposium on Principles of Database
Systems (PODS ’98), ACM, New York, 1998, pp. 109–118.

[49] A. J. Wilkie, On defining C∞, J. Symbolic Logic, 59 (1994), p. 344.
[50] A. J. Wilkie, A theorem of the complement and some new o-minimal structures, Selecta

Math. (N. S.), 5 (1999), pp. 397–421.
[51] G. M. Ziegler, Lectures on Polytopes, Graduate Texts in Math. 152, Springer-Verlag, Berlin,

New York, 1998.

