
Expressing topological connectivity

of spatial databases

Floris Geerts and Bart Kuijpers⋆

University of Limburg (LUC)
Department WNI

B-3590 Diepenbeek, Belgium
{floris.geerts, bart.kuijpers}@luc.ac.be

Abstract. We consider two-dimensional spatial databases defined in
terms of polynomial inequalities and focus on the potential of program-
ming languages for such databases to express queries related to topo-

logical connectivity. It is known that the topological connectivity test is
not first-order expressible. One approach to obtain a language in which
connectivity queries can be expressed would be to extend FO+Poly

with a generalized (or Lindström) quantifier expressing that two points
belong to the same connected component of a given database. For the
expression of topological connectivity, extensions of first-order languages
with recursion have been studied (in analogy with the classical relational
model). Two such languages are spatial Datalog and FO+Poly+While.
Although both languages allow the expression of non-terminating pro-
grams, their (proven for FO+Poly+While and conjectured for spatial
Datalog) computational completeness makes them interesting objects of
study.

Previously, spatial Datalog programs have been studied for more restric-
tive forms of connectivity (e.g., piece-wise linear connectivity) and these
programs were proved to correctly test connectivity on restricted classes
of spatial databases (e.g., linear databases) only.

In this paper, we present a spatial Datalog program that correctly tests
topological connectivity of arbitrary compact (i.e., closed and bounded)
spatial databases. In particular, it is guaranteed to terminate on this
class of databases. This program is based on a first-order description of
a known topological property of spatial databases, namely that locally
they are conical.

We also give a very natural implementation of topological connectivity
in FO+Poly+While, that is based on a first-order implementation of
the curve selection lemma, and that works correctly on arbitrary spatial
databases inputs. Finally, we raise the question whether topological con-
nectivity of arbitrary spatial databases can also be expressed in spatial
Datalog.

⋆ Research done while this author was at the Department of Mathematics and Com-
puter Science of the University of Antwerp (UIA) as post-doctoral research fellow of
the Fund for Scientific Research of Flanders (FWO-Vlaanderen).



1 Introduction

The framework of constraint databases, introduced by Kanellakis, Kuper and
Revesz [10] (an overview of the area of constraint databases can be found in [14]),
provides a rather general model for spatial databases [16]. In this context, a
spatial database, which conceptually can be viewed as an infinite set of points
in the real space, is finitely represented as a union of systems of polynomial
equations and inequalities (in mathematical terminology, such figures are called
semi-algebraic sets [3]). The set of points in the real plane that are situated
between two touching circles together with a segment of a parabola, depicted in
Figure 1, is an example of such a spatial database and it could be represented
by the polynomial constraint formula

(x2 + (y − 1)2 ≤ 1 ∧ 25x2 + (5y − 4)2 > 16) ∨ (y2 − x = 0 ∧ (0 ≤ y ∧ x ≤ 1)).

In this paper, we will restrict our attention to two-dimensional spatial databases,
a class of figures that supports important spatial database applications such as
geographic information systems (GIS).

(0,0)

Fig. 1. An example of a spatial database.

In the past ten years, several languages to query spatial databases have
been proposed and studied. A very natural query language, commonly known
as FO+Poly, is obtained by extending the relational calculus with polynomial
inequalities [16]. The query that returns the topological interior of a database S
is expressed by the FO+Poly-formula

(∃ε > 0)(∀x′)(∀y′)((x − x′)2 + (y − y′)2 < ε2 → S(x′, y′)),

with free variables x and y that represent the co-ordinates of the points in the
result of the query. Although variables in such expressions range over the real
numbers, FO+Poly queries can still be effectively computed [5, 18].



A combination of results by Benedikt, Dong, Libkin and Wong [2] and results
of Grumbach and Su [6] implies that one cannot express in FO+Poly that a
database is topologically connected. The topological connectivity test and the
computation of connected components of databases are decidable queries [8, 17]
and are of great importance in many spatial database applications, however.

One approach to obtain a language in which connectivity queries can be
expressed would be to extend FO+Poly with a generalized (or Lindström)
quantifier expressing that two points belong to the same connected component
of a given database. In analogy with the classical graph connectivity query,
which cannot be expressed in the standard relational calculus but which can
be expressed in languages that typically contain a recursion mechanism (such
as Datalog), we study extensions of FO+Poly with recursion for expressing
topological connectivity, however. Two such languages are spatial Datalog and
FO+Poly+While.

Both languages suffer from the well-known defect that their recursion, that
involves arithmetic over an unbounded domain (namely polynomial inequalities
over the real numbers), is no longer guaranteed to terminate. Therefore, these
languages are not closed. FO+Poly+While is known to be a computationally
complete language for spatial databases [7], however. Spatial Datalog is believed
to be complete too [11, 13]. It is therefore interesting to establish the termination
of particular programs in these languages (even be it by ad hoc arguments) as
it is interesting to do this for programs in computationally complete general-
purpose programming languages.

Spatial Datalog [10, 11, 13] essentially is Datalog augmented with polynomial
inequalities in the bodies of rules. Programs written in spatial Datalog are not
guaranteed to terminate. It is known that useful restrictions on the databases
under consideration or on the syntax of allowed spatial Datalog programs are
unlikely to exist [11]. As a consequence, termination of particular spatial recur-
sive queries has to be established by ad-hoc arguments. On the other hand, if a
spatial Datalog program terminates, a finite representation of its output can be
effectively computed.

A first attempt [11] to express the topological connectivity test in this lan-
guage consisted in computing a relation Path which contains all pairs of points
of the spatial database which can be connected by a straight line segment that
is completely contained in the database and by then computing the transitive
closure of the relation Path and testing whether the result contains all pairs
of points of the input database. In fact, this program tests for piece-wise lin-
ear connectivity, which is a stronger condition than connectivity. The program,
however, cannot be guaranteed to work correctly on non-linear databases [11]: it
experiences both problems with termination and with the correctness of testing
connectivity (as an illustration: the origin of the database of Figure 1 (a) is a
cusp point and cannot be connected to any interior point of the database by
means of a finite number of straight line segments).

In this paper, we follow a different approach that will lead to a correct im-
plementation of topological connectivity queries in spatial Datalog for compact



database inputs. In our approach we make use of the fact that locally around
each of its points a spatial database is conical [3]. Our implementation first de-
termines (in FO+Poly) for each point a radius within which the database is
conical. Then all pairs of points within that radius are added to the relation Path
and, finally we use the recursion of spatial Datalog to compute the transitive
closure of the relation Path.1

We raise the question whether topological connectivity of arbitrary (not nec-
essarily compact) spatial databases can be implemented in spatial Datalog. It
can be implemented in FO+Poly+While, the extension of FO+Poly with a
while-loop. FO+Poly+While is a computationally complete language for spa-
tial databases [7], and therefore the known algorithms to test connectivity (One
of the oldest methods uses homotopy groups computed from a CAD [17]. A
more recent and more efficient method uses Morse functions [9]) can be imple-
mented in this language. Our implementation is a very natural one, however. It
is based on a constructive version of the curve selection lemma of semi-algebraic
sets [3, Theorem 2.5.5]. We show that this curve selection can be performed in
FO+Poly. Also in this implementation the transitive closure of a relation Path
(this time initialized using an iteration) is computed. Once this transitive closure
is computed, a number of connectivity queries, such as “Is the spatial database
connected?”, “Return the connected component of the point p in the database”,
“Are the points p and q in the same connected component of the database?”
can be formulated. Grumbach and Su give examples of other interesting queries
that can be reduced to connectivity [6].

Both of the spatial Datalog and of the FO+Poly+While implementation
we prove they are guaranteed to terminate and to give correct results.

This paper is organized as follows. In the next section we define spatial da-
tabases and the mentioned query languages and recall the property that spatial
databases are locally conical. In Section 3, we will describe our spatial Data-
log and FO+Poly+While implementations. In Section 4, we will prove their
correctness and termination.

2 Preliminaries

In this section, we define spatial databases and three query languages for spatial
databases. Let R denote the set of the real numbers, and R2 the real plane.

2.1 Definitions

Definition 1. A spatial database is a geometrical figure in R2 that can be de-
fined as a Boolean combination (union, intersection and complement) of sets
of the form {(x, y) | p(x, y) > 0}, where p(x, y) is a polynomial with integer
coefficients in the real variables x and y.

1 In fact, for our purposes it would suffice to consider the extension of FO+Poly with
an operator for transitive closure, rather than the full recursive power of spatial
Datalog.



Note that p(x, y) = 0 is used to abbreviate ¬(p(x, y) > 0) ∧ ¬(−p(x, y) > 0).
In this paper, we will use the relational calculus augmented with polynomial

inequalities, FO+Poly for short, as a query language.

Definition 2. A formula in FO+Poly is a first-order logic formula built using
the logical connectives and quantifiers from two kinds of atomic formula: S(x, y)
and p(x1, . . . , xk) > 0, where S is a binary relation name representing the spa-
tial database and p(x1, . . . , xk) is a polynomial in the variables x1, . . . , xk with
integer coefficients.

Variables in such formulas are assumed to range over R. A second query language
we will use is FO+Poly+While.

Definition 3. A program in FO+Poly+While is a finite sequence of state-
ments and while-loops. Each statement has the form R := {(x1, . . . , xk) | ϕ(x1,
. . . , xk)}, where ϕ is an FO+Poly formula that uses the binary relation name S
(of the input database) and previously introduced relation names. Each while-
loop has the form while ϕ do P od, where P is a program and ϕ an FO+Poly

formula that uses the binary relation name S and previously introduced relation
names.

The semantics of a program applied to a spatial databases is the operational,
step by step execution. Over the real numbers it is true that for every computable
constraint query, such as connectivity, there is an equivalent FO+Poly+While

program.
A restricted class of FO+Poly+While programs consists of programs in

spatial Datalog.

Definition 4. Spatial Datalog is Datalog where,

1. The underlying domain is R;
2. The only EDB predicate is S, which is interpreted as the set of points in the

spatial database (or equivalently, as a binary relation);
3. Relations can be infinite;
4. Polynomial inequalities are allowed in rule bodies.

We interpret these programs under the the bottom-up semantics. To conclude
this section, we remark that a well-known argument can be used to show that
FO+Poly can be expressed in (recursion-free) spatial Datalog with stratified
negation [1]. In this paper we also admit stratified negation in our Datalog
program.

2.2 Spatial databases are locally conical

Property 1 ([3], Theorem 9.3.5). For a spatial database A and a point p in the
plane there exists a radius εp such that for each 0 < ε < εp holds that B2(p, ε)∩A
is isotopic to the cone with top p and base S1(p, ε) ∩ A.2

2 With B2(p, ε) we denote the closed disk with center p and radius ε and with S1(p, ε)
its bordering circle. A homeomorphism h : R2 → R2 is continuous bijective function



We remark that a spatial database is also conical towards infinity. In the
next section, we will show that such a radius εp, can be uniformly defined in
FO+Poly.

The database of Figure 1 is locally around the origin isotopic to the cone that
is shown in Figure 2. It is a basic property of semi-algebraic sets that the base
S1(p, ε) ∩ A is the finite union of points and open arc segments on S1(p, ε) [3].
We will refer to the parts of B2(p, ε) ∩ A defined by these open intervals and
points as the sectors of p in A. In the example of Figure 2, we see that the
origin has five sectors: two arc segments of the larger circle, a segment of the
parabolic curve and two areas between the two circles. Sectors are curves or fully
two-dimensional.

(i)(ii)

(iii)
(iv)(v)

(0,0)

Fig. 2. The cone of (0, 0) of the spatial database in Figure 1.

In the next sections, we will use the following property. It can be proven
similarly as was done for closed spatial databases [12].

Property 2. Let A be a spatial database. Then the following holds:

1. Only a finite number of cone types appear in A;

2. A can only have infinitely many points of five cone types (interior points,
points on a smooth border of the interior that (don’t) belong to the database,
points on a curve, points on a curve of the complement);

3. The number of cone types appearing in A is finite and hence the number of
points in A with a cone different from these five is finite.

The points with a cone of the five types mentioned in (2) of Property 2 are
called regular points of the database. Non-regular points are called singular. We
remark that the regularity of a point is expressible in FO+Poly [12].

whose inverse is also continuous. An isotopy of the plane is an orientation-preserving
homeomorphism. Two sets are said to be isotopic if there is an isotopy that maps
one to the other.



3 Connectivity queries in spatial Datalog

In general, a set S of points in the plane is defined to be topologically connected
if it cannot be partitioned by two disjoint open subsets. This second-order defini-
tion seems to be unsuitable for implementation in spatial Datalog. Fortunately,
for spatial databases S, we have the property that S is topologically connected
if and only if S is path connected [3, Section 2.4] (i.e., if and only if any pair
of points of S can be connected by a semi-algebraic curve that is entirely con-
tained in S). In this section, we will show that for compact spatial databases
path connectivity can be implemented in spatial Datalog and that for arbitrary
databases it can be implemented in FO+Poly+While.

3.1 A program in spatial Datalog with stratified negation for

connectivity of compact spatial databases

The spatial Datalog program for testing connectivity that we describe in this
section is given in Figure 3.

Path(x, y, x′, y′) ←− ϕcone(S, x, y, x′, y′)
Obstructed (x, y, x′, y′) ←− ¬S(x̄, ȳ), x̄ = a1t + b1, ȳ = a2t + b2,

0 ≤ t, t ≤ 1, b1 = x, b2 = y,

a1 + b1 = x′, a2 + b2 = y′

Path(x, y, x′, y′) ←− ¬Obstructed (x, y, x′, y′)
Path(x, y, x′, y′) ←− Path(x, y, x′′, y′′), Path(x′′, y′′, x′, y′)

Disconnected ←− S(x, y), S(x′, y′), ¬Path(x, y, x′, y′)
Connected ←− ¬Disconnected .

Fig. 3. A program in spatial Datalog with stratified negation for topological connec-
tivity of compact databases.

The first rule is actually an abbreviation of a spatial Datalog program that
computes an FO+Poly formula ϕcone(S, x, y, x′, y′) that adds to the relation
Path all pairs of points ((x, y), (x′, y′)) ∈ S×S such that (x′, y′) is within distance
ε(x,y) of (x, y), where ε(x,y) is such that S is conical (in the sense of Property 1)
in B2((x, y), ε(x,y)). We will make the description of ϕcone(S, x, y, x′, y′) more
precise below. Then all pairs of points of the spatial database are added in
the relation Path which can be connected by a straight line segment that is
completely contained in the database. Next, the transitive closure of the relation
Path is computed and in the final two rules of the program of Figure 3 it is tested
whether the relation Path contains all pairs of points of the input database.

Variations of the last two rules in the program of Figure 3 can then be used
to formulate several connectivity queries (e.g., the connectivity test or the com-
putation of the connected component of a given point p in the input database).

The description of ϕcone(S, x, y, x′, y′) in FO+Poly will be clear from the
proof of the following theorem.



Theorem 1. There exists an FO+Poly formula that returns for a given spatial
database A and a given point p a radius εp such that the database A is conical
within B2(p, εp) (in the sense of Property 1).

Proof. (Sketch) Let A be a spatial database and p be a point. If p is an in-
terior point of A, this is trivial. Assume that p is not an interior point of
A. We compute within the disk B2(p, 1) the set γA,p in FO+Poly. For each
ε ≤ 1, S1(p, ε) ∩ A is the disjoint union of a finite number of intervals and
points. We then define γA,p ∩ S1(p, ε) to consists of these points and the mid-
points of these intervals. For the database A of Figure 4 (a), γA,p is shown
in (b) of that figure in full lines and γAc,p is shown in dotted lines. These sets
can be defined in FO+Poly using the predicate Betweenp,ε(x

′, y′, x1, y1, x2, y2).
Betweenp,ε(x

′, y′, x1, y1, x2, y2) expresses for points (x′, y′), (x1, y1) and (x2, y2)
on S1(p, ε) that (x′, y′) is equal to (x1, y1) or (x2, y2) or is located between
the clockwise ordered pair of points ((x1, y1), (x2, y2)) of S1(p, ε) (for a detailed
description of the expression of this relation in FO+Poly we refer to [12]).

(a)

p p

(b)

Fig. 4. The 1-environment of a database around p (a) and the construction to determine
an εp-environment (smaller dashed circle) in which the database is conical (b). In (b),
γA,p is given in full lines and γAc,p in dotted lines.

Next, the singular points of γA,p ∪γAc,p can be found in FO+Poly. Let d be
the minimal distance between p and these singular points. Any radius strictly
smaller than d, e.g., εp = d/2, will satisfy the condition of the statement of this
Theorem.

Then B2(p, εp)∩ (γA,p ∪γAc,p) consists of a finite number of non-intersecting
(simple Jordan) curves starting in points S1(p, εp)∩ (γA,p ∪γAc,p) and ending in
p and that for every ε ≤ εp each have a single intersection point with S1(p, ε).
It is easy (but tedious) to show that there is an isotopy that brings B2(p, εp) ∩
(γA,p ∪ γAc,p) to the cone with top p and base S1(p, εp) ∩ (γA,p ∪ γAc,p). This is
the isotopy we are looking for. ⊓⊔



3.2 An FO+Poly+While program for connectivity of arbitrary

spatial databases

For compact spatial databases, all sectors of a boundary point p are all in the
same connected component of the database (because a boundary point is always
part of the database). Therefore all pairs of points in an εp-environment of p,
can be added to the relation Path, even if they are in different sectors of p. For
arbitrary databases, the sectors of a point p ∈ ∂S \ S3 are not necessarily in
the same connected component of the database.4 This means that in general
only pairs of points can be added to the relation Path if they are in the same
sector of a point. We can achieve this by iteratively processing all sectors of the
border points and adding only pairs of points that are in the same sector of a
border point to the relation Path. For this iterative process we use the language
FO+Poly+While. The resulting program is shown in Figure 5.

As in the compact case, we first initialize a relation Path and end with
computing the transitive closure of this relation.

In the initialization part of the program, first all pairs of points which can be
connected by a straight line segment lying entirely in the database, are added
to the relation Path. Then, a 5-airy relation Current is maintained (actually
destroyed) by an iteration that, as we will show, will terminate when the relation
Current will have become empty. During each iteration step the relation Path
is augmented with, for each border point p of the database, all pairs of points
on the midcurve of the sector of p that is being processed during the current
iteration.

The remainder of this section is devoted to the description of the implementa-
tions in FO+Poly of the algorithms INIT, SeRA (sector removal algorithm) and
CSA (curve selection algorithm) of Figure 5. The correctness and termination
of the resulting program will be proved in the next section.

The relation Current will at all times contain tuples (xp, yp, ε, x, y) where
(xp, yp) range over the the border points of the input database A, where ε is a
radius and where (x, y) belong to a set containing the part of the ε-environment
of (xp, yp) that still has to be processed. Initially, INIT (S, xp, yp, εp, x, y) sets
the relation Current to the set of five-tuples

{(xp, yp, εp, x, y) | (xp, yp) ∈ ∂S, εp = 1, (x, y) ∈ B2((xp, yp), εp) ∩ S}.

It is clear that INIT can be defined in FO+Poly.
Next, for all border points p = (xp, yp) of the database, both in SeRA and

CSA the “first sector” of p in the relation Current(xp, yp, εp, x, y) will be deter-
mined. This is implemented as follows. We distinguish between a sector that is
a curve and a fully two-dimensional one. We look at the latter case (the former
is similar).

3 We denote the topological border of S by ∂S.
4 The same is true for the point at infinity, which can be considered as a boundary

point of the database that does not belong to the database. To improve readability,
we only consider bounded inputs in this section.



Path := {(x, y, x′, y′) | S(x, y) ∧ S(x′, y′) ∧ (x, y)(x′, y′) ⊆ S}
Current := INIT (S, xp, yp, ε, x, y)
while Current 6= ∅ do

Current := SeRA(Current(xp, yp, ε, u, v), εnew, x, y)
Path := CSA(Current(xp, yp, ε, u, v), x, y, x′, y′)

od

Y := ∅
while Y 6= Path do

Y := Path ;
Path := Path ∪ {(x, y, x′, y′) | (∃x′′)(∃y′′)(Path(x, y, x′′, y′′)∧

Path(x′′, y′′, x′, y′))}
od.

Fig. 5. An FO+Poly+While program for topological connectivity of arbitrary data-
bases. The notation (x, y)(x′, y′) stands for the line segment between the points (x, y)
and (x′, y′).

We define an order on the circle S1(p, ε) with 0 < ε < εp, by using the
relation Betweenp,ε(x

′, y′, x1, y1, x2, y2), and by taking the point p + (0, ε) as a
starting point (see proof of Theorem 1). For each 0 < ε < εp, the intersection of
the “first fully two-dimensional sector” with S1(p, ε) is defined as the first (using
the just defined order) open interval on this circle. This is clearly dependent on
the radius ε. For the database of Figure 6 (a) this dependency is illustrated in
(b) of that figure. The “first sector” falls apart into four parts (shaded dark),
depending on the radius ε. Furthermore, as in Theorem 1, the first midcurve, i.e.
the midcurve of the “first sector”, within radius εp is computed in FO+Poly

(the thick curve segments in Figure 6 (b)). By our definition of the “first sector”,
this first midcurve needs not to be connected. Hence, we obviously do not want
to add all pairs (q, q′) of points in this set to the relation Path.

We can, however, compute a new (and smaller) εnew
p such that the curve

of midpoints has no longer singular points within B2(p, εnew
p ). In Figure 6 (b),

the small dashed circle around p has radius εnew
p . Within the radius εnew

p the
midcurve is connected and the point p belongs to its closure.

SeRA now updates εp in the relation Current to εnew
p and removes the first

sector from the relation Current . This means that the set of points (x, y) that are
in the relation Current with the point p = (xp, yp) will initially be B2(p, εp)∩A,
then B2(p, εnew

p ) ∩ A minus the first sector of p (after the first iteration), then

B2(p, εnew′

p )∩A minus the first two sectors of p (after the second iteration), etc.

CSA will add to the relation Path, all pairs (q, q′) of midpoints at different
distances ε, ε′ < εnew

p from p (ε can be taken 0, if p belongs to the database) of
the sector that has just been removed by SeRA.



(b)(a)

p p

Fig. 6. The εp-environment of the point p in (a) and the “first sector” of p, the midcurve
of the “first sector” and εnew

p in (b).

4 Correctness and termination of the programs

In this section, we prove the correctness and termination of both programs of
the previous section.

Theorem 2. The spatial Datalog program of the previous section correctly tests
connectivity of compact spatial databases and the FO+Poly+While program
of the previous section correctly tests connectivity of arbitrary spatial databases.
In particular, the spatial Datalog program is guaranteed to terminate on com-
pact input databases and FO+Poly+While program terminates on all input
databases.

Proof. (Sketch) To prove correctness, we first have to verify that for every input
database S our programs are sound (i.e., two points in S are in the same con-
nected component of S if and only if they are in the relation Path). Secondly, we
have to determine the termination of our programs (i.e., we have to show that
the first while-loop in Figure 5 that initializes the relation Path ends after a finite
number of steps and that for both programs the computation of the transitive
closure of the relation Path ends). To prove the latter it is sufficient that we show
that there exists a bound α(S) such that any two points in the same connected
component of S end up in the relation Path after at most α(S) iterations of the
computation of the transitive closure. To improve readability, we only consider
bounded inputs of the FO+Poly+While program in this proof.

Soundness. The if-implication of soundness (cf. supra) is trivial. So, we con-
centrate on the only-if implication. We use Collins’s Cylindrical Algebraic De-
composition (CAD) [5] to establish the only-if direction. This decomposition
returns for a polynomial constraint description of S, a decomposition c(S) of



the plane in a finite number of cells. Each cell is either a point, a 1-dimensional
curve (without endpoints), or a two-dimensional open region. Moreover, every
cell is either part of S or of the complement of S. In order to prove that any two
points in the same connected component of S are in the transitive closure of the
relation Path, it is sufficient to prove this for

1. any two points of S that are in one cell of c(S), in particular,
a. two points of S that are in the same region,
b. two points of S that are on the same curve, and

2. any two points of S that are in adjacent cells of c(S), in particular,
a. a point that is in a region and a point that is on an adjacent curve,
b. a point that is in a region and an adjacent point,
c. a point that is on a curve and an adjacent point.

1.a. In this case the two points p and q are part of a region in the interior of S,
they can be connected by a semi-algebraic curve γ lying entirely in the interior
of S [3]. Since uniformly continuous curves (such as semi-algebraic ones) can be
arbitrarily closely approximated by a piece-wise linear curve with the same end-
points [15], p and q can be connected by a piece-wise linear curve lying entirely
in the interior of S, we are done.
1.b. The curves in the decomposition are either part of the boundary of S or
vertical lines belonging to S. In the latter case, the vertical line itself connects
the two points. For the former case, let p and q be points on a curve γ in the cell
decomposition. We prove for the case of the FO+Poly+While program that p
and q are in the transitive closure of the relation Path. For the spatial Datalog
program the proof is analogous. Let γpq be the curve segment of γ between p
and q. Since all points r on γpq belong to the border of S, the algorithm SeRA
processes the curve γ twice as sectors of r. We cover γpq with disks B2(r, εr),
where εr is the radius constructed by SeRA when processing γ as a sector of r.
Since γpq is a compact curve this covering has a finite sub-covering of, say, m
closed balls. Then, the points p and q are in the relation Path after m iterations
in the computation of the transitive closure.
2.a. A point on a vertical border line of a region can be connected by one single
horizontal line with a point in the adjacent region. Hence, this case reduces to
Case 1.a. If the point is on a non-vertical boundary curve of S, the sector around
that point, intersecting the adjacent region contains a midcurve, connecting the
point to the interior of the adjacent region (in the case of the spatial Datalog
program even more pairs are added). Again this case reduces to Case 1.a.

2.b. In this case there is a midcurve from p in to the two-dimensional sector
intersecting the region cell in c(S). We distinguish between two cases. These two
cases are depicted in Figure 7. In (a) the midcurve intersects the cell, while in
(b) this is not the case. In Case (a), point p is connected by this midcurve to the
cell, hence this case reduces to Case 1.a. For Case (b), we let r be a midpoint of a
curve computed by SeRA belonging to the connected component of the interior
of S that contains q. Hence, after using a similar argument as in Case 1.a, p and
q belong to the transitive closure of the relation Path via a curve that passes



(a) (b)

r

q

r

q

εpp p εp

Fig. 7. The two cases in 2.b.

through r. the vertical line through p adjacent to the region.
2.c. There are various cases to be distinguished here. A vertical curve can be
dealt with as before. A non-vertical curve is either a curve belonging to the
border of S or a curve belonging to the interior of S. The latter case can be
dealt with like in Case 2.b. For the former case, the algorithm SeRA will add p
and a point of the border curve to the relation Path. The desired path to the
border point can be found as in Case 1.b.

Termination. The first while-loop of the program in Figure 5 terminates since
every border point of a spatial database has only a finite number of sectors in
its cone and furthermore this number is bounded (this follows immediately from
Property 2). After a finite number of runs of SeRA, the relation Current will
therefore become empty.

To prove the termination of the computation of the transitive closure of the
relation Path in both programs, we return to Collins’s CAD. From the soundness-
proof it is clear that it is sufficient to show that there exists an upper bound
α(c) on the number of iterations of the transitive closure to connect two points
in a cell c of c(S).

We now show that for each region (i.e., two-dimensional cell) c in the CAD,
there is a transversal γ(c) in the relation Path from the bottom left corner of c
to the upper right corner of c of finite length β(c). Any two points of c can then
be connected by at most α(c) = β(c)+2 iterations of the transitive closure of the
relation Path (namely by vertically connecting to the transversal and following
it). For this we remark that the bottom left corner point of the cell c can be
connected by a finite and fixed number of steps (see proof of soundness) with a
point p in the interior of c. Similarly, the upper right corner point of c can be
connected to some interior point q of c. The points p and q can be connected by
a piece-wise linear curve, consisting of β(c) line segments. This gives the desired
transversal γ(c). For cells c which are vertical line segments or single points
the upper bound is 1. Remark that points on a one-dimensional cell c can also
be connected by a finite number α(c) of line segments. This follows from the
compactness of the curves (see Case 1.b of the soundness proof). ⊓⊔



5 Discussion

It is not clear whether the first while-loop of the FO+Poly+While program of
Figure 5, which initializes the Path relation, can be expressed in spatial Datalog
with stratified negation. More generally, we can wonder about the following.

Question: Can spatial Datalog with stratified negation express all computable
spatial database queries?

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

2. M. Benedikt, G. Dong, L. Libkin, and L. Wong. Relational expressive power of
constraint query languages. Journal of the ACM, 45(1):1–34, 1998.

3. J. Bochnak, M. Coste, and M.-F. Roy. Géométrie Algébrique Réelle. Springer-
Verlag, Berlin, 1987 (also Real Algebraic Geometry. Springer-Verlag, Berlin, 1998).

4. B.F. Caviness and J.R. Johnson (eds.) Quantifier Elimination and Cylindrical

Algebraic Decomposition Springer-Verlag, Wien New York, 1998.
5. G.E. Collins. Quantifier elimination for real closed fields by cylindrical algebraic

decomposition. In H. Brakhage, editor, Automata Theory and Formal Languages,
volume 33 of Lecture Notes in Computer Science, pages 134–183, Berlin, 1975.
Springer-Verlag.

6. S. Grumbach and J. Su. Finitely representable databases. Journal of Computer

and System Sciences, 55(2):273–298, 1997.
7. M. Gyssens, J. Van den Bussche, and D. Van Gucht. Complete geometrical query

languages. in Proceedings of the 16th ACM Symposium on Principles of Database

Systems, pages 62–67, ACM Press, New York, 1997.
8. J. Heintz, T. Reico, and M.-F. Roy. Algorithms in Real Algebraic Geometry and

Applications to Computational Geometry. Discrete and Computational Geometry:

Selected Papers from the DIMACS Special Year, Eds. J.E. Goodman, R. Pollack
and W. Steiger, AMS and ACM, 6:137–164, 1991.

9. J. Heintz, M.-F. Roy, and P. Solernò. Description of the Connected Components
of a Semi-Algebraic Set in Single Exponential Time. Discrete and Computational

Geometry, 11: 121–140, 1994.
10. P.C. Kanellakis, G.M. Kuper, and P.Z. Revesz. Constraint query languages. Jour-

nal of Computer and System Sciences, 51(1):26–52, 1995 (Originally in Proceedings

of the 9th ACM Symposium on Principles of Database Systems, pages 299–313,
ACM Press, New York, 1990).

11. B. Kuijpers, J. Paredaens, M. Smits, and J. Van den Bussche. Termination proper-
ties of spatial Datalog programs. In D. Pedreschi and C. Zaniolo, editors, Proceed-

ings of ”Logic in Databases”, number 1154 in Lecture Notes in Computer Science,
pages 101–116, Berlin, 1996. Springer-Verlag.

12. B. Kuijpers, J. Paredaens, and J. Van den Bussche. Topological elementary equiv-
alence of closed semi-algebraic sets in the real plane. The Journal of Symbolic

Logic, to appear, 1999.
13. B. Kuijpers and M. Smits. On expressing topological connectivity in spatial Data-

log. In V. Gaede, A. Brodsky, O. Gunter, D. Srivastava, V. Vianu, and M. Wallace,



editors, Proceedings of Workshop on Constraint Databases and their Applications,
number 1191 in Lecture Notes in Computer Science, pages 116–133, Berlin, 1997.
Springer-Verlag.

14. G. Kuper, L. Libkin, and J. Paredaens. Constraint databases. Springer-Verlag,
2000.

15. E.E. Moise. Geometric topology in dimensions 2 and 3, volume 47 of Graduate

Texts in Mathematics. Springer, 1977.
16. J. Paredaens, J. Van den Bussche, and D. Van Gucht. Towards a theory of spatial

database queries. In Proceedings of the 13th ACM Symposium on Principles of

Database Systems, pages 279–288, ACM Press, New York, 1994.
17. J.T. Schwartz and M. Sharir. On the piano movers’ problem II. In J.T. Schwartz,

M. Sharir, and J. Hopcroft, editors, Planning, Geometry, and Complexity of Robot

Motion, pages 51–96. Ablex Publishing Corporation, Norwood, New Jersey, 1987.
18. A. Tarski. A Decision Method for Elementary Algebra and Geometry. University

of California Press, Berkeley, 1951.


