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Abstract

The formalism of constraint databases, in which possibly infinite data sets are described by Boolean
combinations of polynomial inequality and equality constraints, has its main application area in spatial
databases. The standard query language for polynomial constraint databases is first-order logic over
the reals. Because of the limited expressive power of this logic with respect to queries that are important
in spatial data base applications, various extensions have been introduced. We study extensions of
first-order logic with different types of transitive-closure operators and we are in particular interested
in deciding the termination of the evaluation of queries expressible in these transitive-closure logics.
It turns out that termination is undecidable in general. However, we show that the termination of the
transitive closure of a continuous function graph in the two-dimensional plane, viewed as a binary
relation over the reals, is decidable, and even expressible in first-order logic over the reals. Based on
this result, we identify a particular transitive-closure logic for which termination of query evaluation
is decidable and which is more expressive than first-order logic over the reals. Furthermore, we can
define a guarded fragment in which exactly the terminating queries of this language are expressible.
© 2004 Elsevier B.V. All rights reserved.

Keywords: Data base theory; Constraint databases; Query languages; Query evaluation; Dynamical systems
theory; Fixed points

! A preliminary version of this work was presented at the 9th International Conference on Data base Theory,
Siena, Italy, January 2003.

∗ Corresponding author.
E-mail addresses: floris.geerts@luc.ac.be (F. Geerts), bart.kuijpers@luc.ac.be (B. Kuijpers).

1 Part of this work was done while the author was at the Basic Research Unit, Helsinki Institute for Information
Technology, Finland.

0304-3975/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2004.10.034

http://www.elsevier.com/locate/tcs
mailto:floris.geerts@luc.ac.be
mailto:bart.kuijpers@luc.ac.be


126 F. Geerts, B. Kuijpers / Theoretical Computer Science 336 (2005) 125–151

Fig. 1. An example of a constraint data base in R2.

1. Introduction and summary

The framework of constraint databases, introduced in 1990 by Kanellakis et al. [13] and
by now well-studied [21,26], provides an elegant and powerful model for applications that
deal with infinite sets of points in some real space Rn, for instance spatial databases. In
the setting of the constraint model, these infinite sets are finitely represented as Boolean
combinations of polynomial equalities and inequalities over the reals. A wide range of geo-
metric figures can be modeled in this way. The smiling face, shown in Fig. 1, is an example
of a two-dimensional set that can be described as {(x, y) ∈ R2 | x2/25 + y2/16!1 ∧
x2 + 4x + y2 − 2y" − 4 ∧ x2 − 4x + y2 − 2y" − 4 ∧ (x2 + y2 − 2y %= 8 ∨ y > −1)}.
An example in a higher dimension is the spatial data base consisting of the set of points on
the northern hemisphere together with the points on the equator of the unit sphere in the
three-dimensional spaceR3. It can be represented by the formula x2 +y2 +z2 = 1 ∧ z"0.

The relational calculus augmented with polynomial constraints, or first-order logic over
the reals augmented with predicates to address the data base, denoted FO for short, is the
standard first-order query language for constraint databases. The FO -sentence (∃r)(∀x)(∀y)

(∀z)(S(x, y, z) → x2 + y2 + z2 < r2) expresses that the three-dimensional spatial rela-
tion S is bounded. Although variables in such expressions range over the real numbers,
queries expressed in this calculus can still be effectively computed, and we have the closure
property that says that an FO -query, when evaluated on a constraint data base yields again
databases in the constraint model. These properties are direct consequences of a quantifier-
elimination procedure for the first-order theory of real closed fields that was first given by
Tarski [27].

Although many interesting properties can be expressed in FO, its most important defi-
ciency is that its expressive power is rather limited. For instance, several practically relevant
topological properties of spatial data, such as connectivity and reachability, are not express-
ible in FO [19] and various people have proposed and studied extensions of FO with tractable
recursion mechanisms to obtain more expressive languages. For example, datalog versions
with constraints have been proposed [12,18,20] (for an overview see [21, Chapter 7]); a
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programming language extending FO with assignments and a while-loop has been shown
to be a computationally complete language for constraint databases [21, Chapter 2]; and
extensions of FO with topological predicates have been proposed and studied [2,11]. In
analogy with the classical graph connectivity query, which cannot be expressed in the stan-
dard relational calculus but which can be expressed in the relational calculus augmented
with a transitive-closure operator, also extensions of FO with various transitive-closure
operators have been proposed. These extensions are more expressive, in particular, they
allow the expression of connectivity and reachability queries and some are even compu-
tationally complete [10,12,15–17]. Recently, the present authors introduced FO+TC and
FO+TCS, two languages in which an operator is added to FO that allows the computation
of the transitive closure of unparameterized sets in someR2k [10]. In the latter language also
FO-definable stop conditions are allowed to control the evaluation of the transitive-closure.
Later on, Kreutzer has studied the language that we refer to as FO + KTC [16], which is an
extension of FO with a transitive-closure operator that may be applied to parameterized sets
and in which the computation of the transitive closure can be restricted to certain paths (after
specifying certain starting points). The fragments of FO+TCS and FO + KTC, that does
not use multiplication, are shown to be computationally complete on databases definable
by linear constraints [10,16].

In all of these transitive-closure languages, we face the well-known fact that recursion
involving arithmetic over an infinite domain, such as the reals with addition and multi-
plication in this setting, is not guaranteed to terminate. In this paper, we are interested in
termination of query evaluation in these different transitive-closure logics and in particular
in deciding termination. We show that the termination of the evaluation of a given query,
expressed in any of these languages, on a given input data base is undecidable as soon as
the transitive closure of 4-ary relations is allowed. In fact, a known undecidable problem in
dynamical systems theory, namely deciding nilpotency of functions from R2 to R2 [3,4],
can be reduced to our decision problem. When the transitive-closure operator is restricted
to work on binary relations, the matter is more complicated. We show the undecidability
of termination for FO+TCS restricted to binary relations. However, both for FO+TC and
FO + KTC restricted to binary relations, finding an algorithm for deciding termination is
related to some outstanding open problems in dynamical systems theory. Indeed, a decision
procedure for FO + KTC restricted to binary relations would solve the point-to-fixed-point
problem. If we can show that testing termination of the evaluation of expressions restricted
to binary relations in FO+TC is decidable, we also have decidability of nilpotency for
functions from R to R. Both these decision problems from dynamical systems theory are
already open for some time [3,14].

For FO+TC restricted to binary relations, we have obtained a positive decidability
result, however. A basic problem in this context is deciding whether the transitive closure
of a fixed subset of the two-dimensional plane, viewed as a binary relation over the reals,
terminates. Even if these subsets are restricted to be the graphs of possibly discontinuous
functions from R to R, this problem is already puzzling dynamical system theorists for a
number of years (it relates to the above-mentioned point-to-fixed-point problem). However,
when we restrict our attention to the transitive closure of continuous function graphs, we
can show that the termination of the transitive closure of these figures is decidable. As an
illustration of possible inputs for this decision problem, two continuous function graphs
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Fig. 2. A function graph (thick) with non-terminating transitive closure (thin).
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Fig. 3. A function graph (thick) with terminating transitive closure (thin).

are given in Figs. 2 and 3. The one in Fig. 2 has a non-terminating transitive closure, but
the one in Fig. 3 terminates after four iterations. Furthermore, we show that this decision
procedure is expressible in FO. In the course of our proof, we also give a stronger version
of Sharkovskiı̆’s theorem [1] from dynamical systems theory for terminating continuous
functions. We also extend another result in this area, namely, we show that nilpotency of
continuous semi-algebraic functions is decidable and that this decision procedure is even
expressible in FO. Previously, this result was only stated, without proof, for continuous
piecewise affine functions [4].

Based on this decision result, we define a fragment of FO+TC in which the transitive-
closure operator is restricted to work on graphs of continuous functions from R to R.
Termination of queries in this language is shown to be decidable. Furthermore, we define a
guarded fragment of this transitive-closure logic in which only, and all, terminating queries
can be formulated. We also show that this very restricted form of transitive closure yields a
language that is strictly more expressive than FO.

This paper is organized as follows. In Section 2, we define constraint databases, the query
language FO and several extensions with transitive-closure operators. In Section 3, we give
general undecidability results. In Section 4, we give a procedure to decide termination of
the transitive closure of continuous function graphs in the plane. In Section 5, we study the
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extension of FO with a transitive closure operator that is restricted to work on continuous
function graphs. In this section, we also describe a guarded fragment of this language and
give expressiveness results. The paper concludes with some remarks on generalizations to
arbitrary real closed fields.

2. Definitions and preliminaries

In this section, we define constraint databases and their standard first-order query lan-
guage FO. We also define existing extensions of this logic with different transitive-closure
operators: FO+TC, FO+TCS and FO + KTC.

2.1. Constraint databases and first-order logic over the reals

LetR denote the set of the real numbers, andRn the n-dimensional real space (for n"1).

Definition 1. An n-dimensional constraint data base is a geometrical figure in Rn that can
be defined as a Boolean combination (union, intersection and complement) of sets of the
form {(x1, . . . , xn) ∈ Rn | p(x1, . . . , xn) > 0}, where p(x1, . . . , xn) is a polynomial with
integer coefficients in the real variables x1, . . . , xn.

Spatial databases in the constraint model are usually defined as finite collections of such
geometrical figures (see [21, Chapter 2]). We have chosen the simpler definition of a data
base as a single geometrical figure, but all results carry over to the more general setting.

We remark that in mathematical terminology, constraint databases are called semi-
algebraic sets [5]. If a constraint data base can be described by linear polynomials only, we
refer to it as a linear constraint data base.

Example 1. The constraint model allows to describe a wide range of geometrical figures.
In the Introduction some examples were given. Fig. 4 shows another example of a constraint
data base in R2 which can be defined by the formula (x = 0 ∧ 0!y!2) ∨ (−1!x!1 ∧
y = 2) ∨ ((x − 5

2 )2 + (y − 1)2 = 1 ∧ x! 5
2 ).

We observe that p(x1, . . . , xn) = 0 is equivalent to ¬(p(x1, . . . , xn) > 0)

∧ ¬(−p(x1, . . . , xn) > 0), so polynomial equations can be used as well as polynomial
inequalities.

In this paper, we will use FO, the relational calculus augmented with polynomial inequal-
ities as a basic query language.

Definition 2. A formula in FO, over an n-dimensional input data base, is a first-order logic
formula, !(y1, . . . , ym, S), built, using the logical connectives and quantification over real
variables, from two kinds of atomic formulas, namely S(x1, . . . , xn) and p(x1, . . . , xk) > 0,
where S is a n-ary relation name representing the input data base and p(x1, . . . , xk) is a
polynomial with integer coefficients in the real variables x1, . . . , xk .
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Fig. 4. An example of a constraint data base in R2.

In the expression !(y1, . . . , ym, S), y1, . . . , ym denote the free variables. Variables in
such formulas are assumed to range over R. Tarski’s quantifier-elimination procedure for
first-order logic over the reals guarantees that FO expressions can be evaluated effectively
on constraint data base inputs and their result is a constraint data base (in Rm) that also can
be described by means of polynomial constraints over the reals [6,27].

If !(y1, . . . , ym, S) is an FO formula, a1, . . . , am are reals, and A is an n-dimensional
constraint data base, then we denote by (a1, . . . , am, A)#!(y1, . . . , ym, S) that (a1, . . . , am,

A) satisfies !. We denote by !(A) the set {(a1, . . . , am) ∈ Rm | (a1, . . . , am, A)#!(y1,
. . . , ym, S)}.

The fragment of FO in which multiplication is disallowed is called FOLin. This fragment
is closed on the class of linear constraint databases [21].

Example 2. The FO formula S(x, y) ∧ (∀")(" > 0 ⇒ (∃v)(∃w)(¬S(v, w) ∧ (x − v)2 +
(y −w)2 < ")) has x and y as free variables. For a 2-dimensional constraint data base S, it
expresses the set of points with coordinates (x, y) that belong to the intersection of S and
its topological border.

The sentence (∃r)(∀x)(∀y)(S(x, y, z) → x2 + y2 + z2 !r2) expresses that a given
3-dimensional constraint data base S is bounded.

2.2. Transitive-closure logics

We now define a number of extensions of FO (and of FOLin) with different types of
transitive-closure operators. Recently, the present authors introduced and studied the first
two extensions, FO+TC and FO+TCS [9,10]. The latter extension, FO + KTC, is due to
Kreutzer [16].

Definition 3. A formula in FO+TC is a formula built in the same way as an FO formula,
but with the following extra formation rule: if #(+x, +y) is a formula with +x and +y k-tuples
of real variables, and with all free variables of # among +x and +y and if +s, +t are k-tuples of



F. Geerts, B. Kuijpers / Theoretical Computer Science 336 (2005) 125–151 131

real variables, then

[TC+x;+y #(+x, +y)](+s, +t) (1)

is also a formula which has as free variables those in +s and +t .

The semantics of a subformula of the above form (1) evaluated on a data base A is defined
in the following operational manner: start computing the following iterative sequence of 2k-
ary relations: X0 := #(A) and Xi+1 := Xi ∪ {(+x, +y) ∈ R2k | (∃+z) (Xi(+x, +z) ∧ X0(+z, +y))}
and stop as soon as Xi = Xi+1. The semantics of [TC+x;+y #(+x, +y)](+s, +t) is then defined as
(+s, +t) belonging to the 2k-ary relation Xi .

Since every step in the above algorithm, including the test for Xi = Xi+1, is expressible
in FO, every step is effective and the only reason why the evaluation may not be effective is
that the computation does not terminate. In that case the semantics of the formula (1) (and
any other formula in which it occurs as subformula) is undefined.

In general, the semantics of a formula ! in FO+TC is evaluated in the standard bottom-
up fashion. The result of the evaluation of subformulas is passed on to formulas that are
higher up in the parsing tree of !. Also for the languages FO+TCS and FO + KTC, that
we discuss below, this bottom-up evaluation method is used.

Example 3. As an example of an FO+TC formula over a 2-dimensional input data base
S, we take

[TCx;y S(x, y)](s, t).

This expression, when applied to a 2-dimensional figure, returns the transitive closure of
this figure, viewed as a binary relation over R.

For illustrations of the evaluation of this formula, we return to the examples in Figs. 2
and 3 in the Introduction. When applied to the graph of the function shown in Fig. 2 (thick
lines), we get a non-terminating evaluation. Indeed, in each iteration, line segments of the
line y = 1 and of a line y = 2nx for ever larger n"1 are added. But on input the graph of
the function shown in Fig. 3 (thick lines), it terminates after four iterations (since X5 = X4)
and returns the depicted figure (thick plus thin lines).

The language FOLin+TC consists of all FO+TC formulas that do not use multiplication.
The following language, FO+TCS, is a modification of FO+TC that incorporates a

construction to specify explicit termination conditions on transitive closure computations.

Definition 4. A formula in FO+TCS is built in the same way as an FO formula, but with
the following extra formation rule: if #(+x, +y) is a formula with +x and +y k-tuples of real
variables; $ is an FO sentence over the input data base and a special 2k-ary relation name
X; and +s, +t are k-tuples of real variables, then

[TC+x;+y #(+x, +y) | $](+s, +t) (2)

is also a formula which has as free variables those in +s and +t . We call $ the stop condition
of this formula.
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The semantics of a subformula of the above form (2) evaluated on databases A is defined
in the same manner as in the case without stop condition, but now we stop not only in case
an i is found such that Xi = Xi+1, but also when an i is found such that (A, Xi+1)#$,
whichever case occurs first. As above, we also consider the restriction FOLin+TCS. It was
shown that FOLin+TCS is computationally complete, in the sense of Turing-complete on the
polynomial constraint representation of databases (see [21, Chapter 2]) on linear constraint
databases [10].

Example 4. As an example of an FO+TCS formula over a 2-dimensional input data base
S, we take

[TCx;y S(x, y) | (∃x)(∃y)(X(x, y) ∧ y = 1 ∧ 10x!1)](s, t).

When applied to the graph of the function shown in Fig. 2, we see that X3 satisfies the
sentence in the stop condition since for instance ( 1

16 , 1) belongs to it. The evaluation has
become terminating (as opposed to the expression without stop condition in Example 3).
On input the graph of the function shown in Fig. 3, this expression still terminates after four
iterations (since X5 = X4, not because the stop condition is satisfied) and returns the same
result as in the case without stop condition.

Finally, we define FO + KTC. In finite model theory [8], transitive-closure logics, in
general, allow the use of parameters. Also the language FO+KTC allows parameters in the
transitive closure. Moreover, the computation of the transitive closure can be restricted to
certain paths, after specifying certain starting points.

Definition 5. A formula in FO+KTC is a formula built in the same way as an FO formula,
but with the following extra formation rule: if #(+x, +y, +u) is a formula with +x and +y k-tuples
of real variables, +u some further !-tuple of free variables, and where +s, +t are k-tuples of real
terms, then

[TC+x;+y #(+x, +y, +u)](+s, +t) (3)

is also a formula which has as free variables those in +s, +t and +u.

Since the free variables in #(+x, +y, +u) are those in +x, +y and +u, here parameters are allowed
in applications of the TC-operator. The semantics of a subformula of the form (3), with
+s = (s1, . . . , sk), evaluated on a data base A is defined in the following operational manner:
let I be the set of indices i for which si is a constant. Then, we start computing the following
iterative sequence of (2k + !)-ary relations: X0 := #(A) ∧ ∧

i∈I (si = xi) and Xi+1 :=
Xi ∪ {(+x, +y, +u) ∈ R2k+! | (∃+z)

(
Xi(+x, +z, +u) ∧ #(+z, +y, +u)

)
} and stop as soon as Xi =

Xi+1. The semantics of [TC+x;+y #(+x, +y, +u)](+s, +t) is then defined as (+s, +t, +u) belonging to the
(2k + !)-ary relation Xi .

We again also consider the fragment FOLin + KTC of this language. It was shown that
FOLin + KTC is computationally complete on linear constraint databases [16].
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Example 5. As an example of an FO+KTC formula over a 2-dimensional input data base
S, we take

[TCx;y S(x, y)]( 1
4 , t).

When applied to the graph A of the function, shown in Fig. 2, we see that X0 = A∩{(x, y) |
x = 1

4 } and this set is just {( 1
4 , 1

2 )}. Next, X1 is computed to be {( 1
4 , 1

2 ), ( 1
4 , 1)}. In subsequent

iterations, no further tuples are added (i.e., X2 = X1). This example shows that in FO+KTC,
the evaluation can be restricted to the computation of certain paths in the transitive closure
and this gives control over the termination.

We next make the following remark.

Proposition 1. All FO+TC formulas are expressible in FO + KTC.

Proof. It is clear that it suffices to show that FO+TC-expressions of the form [TC+x;+y #(+x, +y)]
(+s, +t) are expressible in FO+KTC. It is readily verified that this formula is equivalently
expressed by (∃+v)([TC+x;+y #(+x, +y)](+v, +t)∧ +v = +s), where +v is a vector of previously unused
variables. $

For all of the transitive-closure logics that we have introduced in this section, we consider
fragments in which the transitive-closure operator is restricted to work on relations of arity
at most 2k and we denote this by adding 2k as a superscript to the name of the language.
For example, in the language FO+TCS4, the transitive closure is restricted to binary and
4-ary relations.

3. Undecidability of the termination of the evaluation of transitive-closure
formulas

The decision problems that we consider in this section and the next take couples (!, A)

as input, where ! is an expression in the transitive-closure logic under consideration and A

is an input data base, and the answer to the decision problem is yes if the computation of
the semantics of ! on A (as defined for that logic) terminates. We then say, for short, that
! terminates on A.

Now, we give a general undecidability result concerning termination. In its proof and
further on, the notion of nilpotency of a function will be used: a function f : Rn → Rn

is called nilpotent if there exists a natural number k"1 such that for all +x ∈ Rn, f k(+x) =
(0, . . . , 0).

In the proof of the following theorem and further on, we also use the notion of a piecewise
affine function. A function f : Rn → Rn is called piecewise affine if its graph is a linear
semi-algebraic subset of Rn × Rn.

Theorem 1. It is undecidable whether a given formula in FO+TC4 terminates on a given
input data base.
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Proof.We reduce deciding whether a piecewise affine function f : R2 → R2 is nilpotent
to deciding whether the evaluation of a formula in FO+TC4 terminates. For the sake of
contradiction, assume that termination of formulas in FO+TC4 is decidable. For a given
piecewise affine function f : R2 → R2, graph(f ), the graph of f , is a semi-algebraic
subset of R4. We give a (hypothetical) procedure to decide whether f is nilpotent:

Algorithm NILPOTENT(input f ):
Step 1: Decide (using the decision procedure that exists by assumption) whether the

FO+TC4-query

[TCx1,x2;y1,y2 S(x1, x2, y1, y2)](s1, s2, t1, t2)

terminates on the input graph(f ); if the answer is no, then return no, else continue with
Step 2.

Step 2: Compute f 1(R2), f 2(R2), f 3(R2), . . . and return yes if this ends with {(0, 0)},
else return no.

This algorithm decides correctly whether f is nilpotent. Indeed, suppose that the function
f is nilpotent. Then there exists a natural number k such that for all (x, y) inR2, f k(x, y) =
(0, 0). Therefore, the evaluation of the transitive closure of graph(f ) will terminate after
at most 2k iterations. Therefore, for nilpotent f , also the process in Step 2 is guaranteed to
terminate, and the correct answer is produced. Also for functions f that are not nilpotent,
it is clear that in both cases (output in Step 1 or in Step 2) the correct answer is returned.

Since nilpotency of piecewise affine functions fromR2 toR2 is known to be undecidable
[4], this completes the proof. $

The following corollary follows immediately from the previous theorem and the fact that
FO+TC4-formulas are in FO+KTC4 (as shown in Proposition 1).

Corollary 1. It is undecidable whether a given formula in FO+KTC4 terminates on a
given input data base.

For transitive-closure logics with stop-condition, we even have undecidability for tran-
sitive closure restricted to binary relations.

Theorem 2. It is undecidable whether a given formula in FO+TCS2 terminates on a given
input data base.

Proof. We prove this result by reducing the undecidability of a variant of Hilbert’s 10th
problem to this decision problem. This variant of Hilbert’s 10th problem is deciding whether
a polynomial p(x1, . . . , x13) in 13 real variables and with integer coefficients has a solu-
tion in the natural numbers [7,23]. For any such polynomial p(x1, . . . , x13), let $p be the
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FO-expressible stop-condition:

(∃x1) · · · (∃x13)

( 13∧

i=1
X(−1, xi) ∧ p(x1, . . . , x13) = 0

)
.

Since, in consecutive iterations of the computation of the transitive closure of the graph of
y = x + 1, −1 is mapped to 0, 1, 2, . . ., it is easy to see that p(x1, . . . , x13) has an integer
solution if and only if [TCx;y y = x + 1 | $p](s, t) terminates. Since the above mentioned
Diophantine decision problem is undecidable [7,23], this completes the proof. $

The results, given in this section, are complete for the languages FO+TC, FO+TCS
and FO + KTC, apart from the cases FO+TC2 and FO+KTC2. The former case will be
studied in the next sections. For the latter case, we remark that an open problem in dynamical
systems theory, namely, the point-to-fixed-point problem reduces to it. This open problem is
the decision problem that asks whether for a given algebraic number x0 and a given piecewise
affine function f : R → R, the sequence x0, f (x0), f

2(x0), f
3(x0), . . ., reaches a fixed

point. Even for piecewise linear functions with two non-constant pieces this problem is open
[3,14]. It is clear that this point-to-fixed-point problem can be expressed in FO+KTC2. So,
we are left with the following unsolved problem.

Open problem 1. Is it decidable whether a given formula in FO+KTC2 terminates on a
given input data base?

4. Deciding termination for continuous function graphs in the plane

In this section, we study the termination of the transitive closure of a fixed semi-algebraic
subset of the plane, viewed as a binary relation over R. We say that a subset A of R2 has
a terminating transitive closure, if the query expressed by [TCx;y S(x, y)](s, t) terminates
on input A using the semantics of FO+TC. In the previous section, we have shown that
deciding nilpotency of functions can be reduced to deciding termination of the transitive
closure of their function graphs. However, since it is not known whether nilpotency of
(possibly discontinuous) functions fromR toR is undecidable, we cannot use this reduction
to obtain the undecidability in case of binary function graphs. We therefore have another
unsolved problem:

Open problem 2. Is it decidable whether a given formula in FO+TC2 terminates on a
given input data base?

Here, we study the termination of the transitive closure of fixed semi-algebraic function 2

graphs in the plane. Function graphs are easier to deal with than arbitrary sets in R2. They
have the nice property that they have a terminating transitive closure if and only if this
transitive closure is also semi-algebraic. For arbitrary sets in R2 this is not true. Take, for
example, the filled triangle with corner points (0, 0), ( 1

4 , 1) and ( 1
2 , 1) in the plane. This set

2 A function is called semi-algebraic if its graph is semi-algebraic.
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has a non-terminating transitive closure. But its transitive closure, which is reached after a
countably infinite number of steps, is the filled semi-algebraic triangle with corner points
(0, 0), (0, 1) and ( 1

2 , 1). The mentioned property of function-graphs is the following.

Proposition 2. Let f : R→ R be a semi-algebraic function. The graph of f has a terminat-
ing transitive closure if and only if the transitive closure 3 of the graph of f is semi-algebraic.

Proof. The only-if direction is trivial, so we focus on the if-direction. So, assume that
TC(f ), the transitive closure of the graph of f , is semi-algebraic. The transitive closure of
graph(f ) is the set

⋃

k "1
{(x, f k(x)) | x ∈ R}.

Indeed, it is easily verified that the latter set contains graph(f ) and is transitively closed
and therefore contains TC(f ). The other inclusion is trivial.

By the Uniform Bounds Theorem 4 [24] there exists an integer NTC(f ) such that for each
x ∈ R, the cardinality of ∪k "1{f k(x)} is less than NTC(f ). Hence, the evaluation of the
query expressed by [TCx;y S(x, y)](s, t) will terminate, on input graph(f ), after at most
NTC(f ) stages. $

There are obviously classes of functions for which deciding termination of their function
graphs is trivial. An example is the class of the piecewise constant functions. In this section,
we concentrate on a class that is non-trivial, namely the class of the continuous semi-
algebraic functions from R to R. The main purpose of this section is to prove the following
theorem.

Theorem 3. There is a decision procedure that on input a continuous semi-algebraic func-
tion f : R → R decides whether the transitive closure of graph(f ) terminates. Further-
more, this decision procedure can be expressed by a formula in FO (over a 2-dimensional
data base that represents the graph of the input function).

Before we arrive at the proof of Theorem 3, we give a series of six technical lemma’s.
First, we introduce some terminology.

Let f : R → R be a continuous function and let x be a real number. We call the set
{f k(x) | k"0} the orbit of x (with respect to f ). A real number x is said to be a periodic
point of f if f d(x) = x for some natural number d "1. And we call the smallest such d

the period of x (with respect to f ). Let Per(f ) be the set of periodic points of f . If a real
number x is not a periodic point of f , but if f k(x) is periodic for some natural number
k"1, we call x an eventually periodic point of f and we call the smallest such number k the

3 Here, we mean transitive closure in the mathematical sense, i.e., the smallest transitively closed subset of R2

that contains the graph of f .
4 The Uniform Bounds (or Uniform Finiteness [28]) theorem, applied to R2, states that if A ⊆ R2 is a semi-

algebraic set, then there exists an integer NA such that for each x ∈ R, the set {y ∈ R | A(x, y)} is composed of
fewer than NA intervals and isolated points.
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run-up of x (with respect to f ). Finally, we call f terminating if graph(f ) has a terminating
transitive closure.

We remark that Lemmas 1–4 hold for arbitrary functions, not only for semi-algebraic
ones.

Lemma 1. The function f : R → R is terminating if and only if there exist natural
numbers k and d such that for each x ∈ R, f k(x) is a periodic point of f of period at
most d.

Proof. For the if-direction, if there exist natural numbers k and d such that for each x ∈ R,
f k(x) is a periodic point of f of period at most d, then clearly each path in the transitive
closure of graph(f ) is of length at most k + d.

For the only-if direction, if the computation of the transitive closure of graph(f ) termi-
nates after n iterations, then for each x ∈ R, f n(x) is a periodic point of f of period at
most n. $

Lemma 2. Let f : R → R be a continuous function. If f is terminating, then Per(f ) is a
non-empty, closed and connected part ofR. In particular, Per(f ) = f k(R) for some k"1.

Proof. It follows from Lemma 1 that, for a terminating f , there is a bound d on the periods
with respect to f and a bound k on the run-ups with respect to f .

Denote by Ci the set of fixed points of f i , i.e., the set of x ∈ R for which f i(x) = x.
We first show that Per(f ) is closed. Since, Per(f ) equals C1 ∪ · · · ∪ Cd , it suffices to
show that each Ci is closed. Hereto, let x be a point in the closure of Ci and consider a
sequence (xk)k "1 in Ci converging to x. From the continuity of f it follows that f i(x) =
limk→∞ f i(xk) = limk→∞ xk = x. Hence x is in Ci . This implies that Ci is closed.

Now, we show that Per(f ) = f k(R) for some k"1. The non-emptyness of Per(f )

follows immediately from this. It also implies the connectedness of Per(f ). Indeed, since
f is continuous and R is connected, also f k(R) is connected.

Since all the run-ups are smaller than k, it is clear that f k(R) ⊆ Per(f ). On the
other hand, let x be a periodic point of f with period d ′, with d ′!d. Let y = f a(x)

where a is −k mod d ′. Then f k(y) = f k+a(x) = f qd ′
(x) for some integer q "1,

since (k + a) mod d ′ = 0. Since f qd ′
(x) = x, x belongs to f k(R) and therefore

Per(f ) ⊆ f k(R). $

Lemma 3. Let C be a non-empty, closed and connected part of R. If f : C → C is a
continuous function and if every x ∈ C is a periodic point of f, then f or f 2 is the identity
mapping on C.

Proof. We remark that C can either be the complete line R or be of the form [a, +∞),
(−∞, b] or [a, b] with a!b. We will cover all these cases by taking C to be [a, b], with
the understanding that a can be −∞ and/or b can be +∞.

First of all, we observe that f must be a bijection of C. Indeed, let y ∈ C a periodic
point of period d , then y = f d(y) = f (f d−1(y)) = f (x) with x = f d−1(y). Hence f
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is surjective. Next suppose that f (x) = f (y). This implies that f (x) and f (y) are in the
same orbit of f , say of period d . Therefore, x = f d−1(f (x)) = f d−1(f (y)) = y and f is
also injective.

Since a continuous bijection is either strictly increasing or decreasing, we must have that
either f (a) = a and f (b) = b, or f (a) = b and f (b) = a. To prove the lemma, it suffices
to show that f (a) = a and f (b) = b implies that f is the identity mapping. Indeed, the
second case reduces to the first when applied to f 2.

So, we assume that f (a) = a and f (b) = b. Suppose that there exists an x0 ∈ C such that
f (x0) %= x0. By continuity, this means that there exists an open interval (c, d) containing
x0 such that f (x) %= x in (c, d). Let (c, d) be maximal with these properties. From the
maximality of (c, d) it follows that f (c) = c and f (d) = d and hence f ((c, d)) = (c, d)

(for the unbounded cases, c and/or d may be −∞ and +∞, or just one of them). Moreover,
we have that either f (x) > x for all x ∈ (c, d), or f (x) < x for all x ∈ (c, d). Take a
point y ∈ (c, d), then y, f (y), f 2(y), . . . is a strictly increasing (if f (x) > x) or a strictly
decreasing (if f (x) < x) sequence of points. Hence, (c, d) does not contain any periodic
points, which contradicts the premises. Hence, f is the identity mapping on C. $

Lemma 4. For a continuous and terminating f : R→ R, Per(f ) = {x ∈ R | f 2(x) = x}.

Proof. If f is terminating, then, by Lemma 2, Per(f ) is a closed and connected. Therefore,
Lemma 3 can be applied to f restricted to Per(f ). This shows that Per(f ) ⊆ {x ∈ R |
f 2(x) = x}. The other inclusion follows from the fact that any x which satisfies f 2(x) = x

has period 1 or 2. $

Denote by Ci , as in the proof of Lemma 2, the set of fixed points of f i , i.e., the set of
x ∈ R for which f i(x) = x. From the previous lemmas it follows that for continuous and
terminating f ,

Per(f ) = C1 ∪ C2,

and that either C2 \ C1 is empty and C1 is non-empty or C2 \ C1 is non-empty and C1 is a
singleton with the points of C2 \ C1 appearing around C1 (remark that C1 ⊆ C2).

Sharkovskiı̆’s theorem [1] from 1964, one of the most fundamental result in dynamical
system theory, tells us that for a continuous and terminating f : R → R only periods
1, 2, 4, . . . , 2d can appear for some integer value d. The previous lemma has the following
corollary which strengthens the result of Sharkovskiı̆’s for terminating functions.

Corollary 2. If f : R → R is continuous and terminating, then f can only have periodic
points with periods 1 and 2.

Further on, in the proof of Theorem 3, we distinguish between functions f for which
C1 ∪ C2 is R, and other functions. For the former case, no further tests are needed. For the
latter case, however, if C = C1 ∪ C2 is closed and connected, we construct a continuous
function f̃ from the given continuous function f , and further investigate f̃ .

Let C = C1 ∪C2 be closed and connected and different from R. Hence, C is of the form
[a, b], [a, +∞) or (−∞, b].
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Fig. 5. Illustration of the construction of f̄ (right) from f (left).

First, we collapse C to {a} if C is bounded or of the form [a, +∞); and to {b} if C is of the
form (−∞, b]. Let us first consider the case C = [a, b]. Let f∈C = {x ∈ R | f (x) ∈ C},
f<C = {x ∈ R | f (x) < a}, and f>C = {x ∈ R | f (x) > b}.

We define the continuous function f̄ on R as f̄ (x) :=





f (x) if x ∈ f<C and x < a,

f (x) − (b − a) if x ∈ f>C and x < a,

f (x + (b − a)) if x + (b − a) ∈ f<C and x > a,

f (x + (b − a)) − (b − a) if x + (b − a) ∈ f>C and x > a,

a if x ∈ f∈C .

This construction is illustrated in Fig. 5.
Let us next consider the case C = [a, +∞). First, remark that here f is the identity on

[a, +∞), i.e., C2 \ C1 is empty. Here, the function f̄ on R is defined as
{

f (x) if x ∈ f<C and x < a,

a if x < a and x ∈ f∈C or if x"a.

In the case C = (−∞, b], f̄ is defined as
{

f (x) if x ∈ f>C and b < x,

b if b < x and x ∈ f∈C or x!b.

Remark that here f is the identity on (−∞, b], i.e., C2 \ C1 is also empty in this case.
Finally, we define

f̃ (x) := f̄ (x + c) − c,

where c is a or b, depending on the case.
The following lemma describes the relation between f and f̃ . Although, when looking

at the graphics this result is intuitively clear, its proof is somehow tedious.
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Lemma 5. Let f : R → R be a function with non-empty, closed and connected C1 ∪ C2
that is not R and such that f (C1 ∪ C2) = C1 ∪ C2. Then f k(R) = C1 ∪ C2 if and only if
f̃ k(R) = {0}.

Proof. Let f be as in the statement of the lemma. Abbreviate C1 ∪ C2 by C. Let c denote
a or b, depending on the case, as in the above definition of f̃ .

From f̃ (x) := f̄ (x+c)−c it is easy to show that for k"1 we have f̃ k(x) := f̄ k(x+c)−c,
for example, by straightforward induction on k. From this observation, it immediately
follows that f̃ k(R) = {0} if and only if f̄ k(R) = {c}.

It therefore suffices to show that f k(R) = C if and only if f̄ k(R) = {c}. We first do this
for the easier cases where C is unbounded and next prove this equivalence for a bounded
interval C.

Let C be [a, +∞) and thus c = a. Here, we show, by induction on k"1, that for all
x ∈ R that

f̄ k(x) = min{a, f k(x)}.

For k = 1, this follows from the definition of f̄ . Assume, it holds for k. Because f̄ k+1(x) =
f̄ (f̄ k(x)), we know that f̄ k+1(x)!a. So, if f̄ k+1(x) is strictly smaller than a we have to
show that it equals f k+1(x). Indeed, from f̄ (f̄ k(x)) < a it follows that f (f̄ k(x)) < a and
therefore also f k(x) < a (here we use that f ([a, +∞)) = [a, +∞)). By the induction hy-
pothesis, therefore f̄ k(x) = f k(x) and f̄ k+1(x) = f̄ (f̄ k(x)) = f̄ (f k(x)) = f (f k(x)) =
f k+1(x). From f̄ k(x) = min{a, f k(x)}, it follows that for all x ∈ R, f k(x)"a if and only
if for all x ∈ R, f̄ k(x) = a. This proves this case.

In the case where C is (−∞, b], we show in a similar way that for k"1 and for all x ∈ R
that f̄ k(x) = max{b, f k(x)}, and this proves this case.

Finally, we have the case where C is a bounded interval [a, b]. Here we have c = a. To
facilitate the notation, we introduce two functions from R to R: % and &. We define %(x) as






x if x < a,

a if a!x!b, and
x − (b − a) if x > b,

and &(x) as

{
x if x!a,

x + (b − a) if x > a.

Intuitively, we could say that % maps the domain of f to that of f̄ and & does the inverse.
Indeed, the composed function & ◦ % is the identity on (−∞, a] ∪ (b, +∞) and constant a

on the interval (a, b].
It is easily verified that f̄ k = (% ◦ f ◦ &)k, for k"1. Finally, we define the function g to

be & ◦ % ◦ f . This function is constant a where f maps numbers in [a, b] and is equal to f

on all other numbers. From the above it follows that f̄ k = % ◦ f ◦ gk−1 ◦ &.
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Claim. For all k"1 and all x ∈ R, gk(x) = a if f k(x) ∈ [a, b] and gk(x) = f k(x) if
f k(x) /∈ [a, b].

Proof of the claim.We proceed by induction on k"1. For k = 1, the claim follows from
the definition of g. Assume that the claim holds for k. For k + 1 there are two cases.
Firstly, assume that f k+1(x) ∈ [a, b]. We have to show that gk+1(x) = a. There are two
subcases. If f k(x) ∈ [a, b], then gk(x) = a by the induction hypothesis and therefore
gk+1(x) = a. If f k(x) /∈ [a, b], then gk(x) %= a by the induction hypothesis and therefore
gk+1(x) = g(gk(x)) = g(f k(x)) = a since f (f k(x)) ∈ [a, b]. Secondly, assume that
f k+1(x) /∈ [a, b]. Then f j (x) /∈ [a, b] for all j , 1!j !k + 1, since f ([a, b]) = [a, b].
Therefore, gk(x) = f k(x). So, f k+1(x) = f (f k(x)) = g(f k(x)) = g(gk(x)) = gk+1(x).
The second equality holds since f k(x) /∈ [a, b]. This concludes the proof of the claim. $

We are now ready to show that f k(R) = [a, b] if and only if f̄ k(R) = {a}.
For the if-direction, we assume that f̄ k(R) = {a}. Suppose that there exists an x0 ∈ R

such that f k(x0) /∈ [a, b]. We claim that f̄ k(%(x0)) %= a, contradicting the assumption.
Indeed, assume that f̄ k(%(x0)) = a. Since f̄ k(%(x0)) = (%◦(f ◦&◦%)k−1◦f ◦&◦%)(x0) =
(%◦ (f ◦&◦%)k)(x0), we get that (f ◦&◦%)k(x0) ∈ [a, b]. From this follows that f k(x0) ∈
[a, b], contradicting the assumption made about x0. To prove the latter implication, assume
that f k(x0) /∈ [a, b]. Then f j (x0) /∈ [a, b] for all j with 0!j !k. From this, and the
definition of & ◦ %, it follows that (f ◦ & ◦ %)j (x0) = f j (x0) for all j with 0!j !k. This
concludes the proof of the if-direction.

For the only-if direction, assume that for all x ∈ R, f k(x) ∈ [a, b]. Assume that there
exists an x0 ∈ R such that f̄ k(x0) %= a. Using an above made remark, we therefore
have that (% ◦ f ◦ gk−1 ◦ &)(x0) %= a and therefore also (f ◦ gk−1 ◦ &)(x0) /∈ [a, b].
So, (gk−1 ◦ &)(x0) /∈ f∈[a,b] and therefore certainly (gk−1 ◦ &)(x0) %= a. Because of the
above proven claim we have that therefore gk−1(&(x0)) = f k−1(&(x0)). Hence, f̄ k(x0) =
(%◦f ◦gk−1 ◦&)(x0) = (%◦f ◦f k−1 ◦&)(x0) = (%◦f k ◦&)(x0). Since this latter value is
not equal to a, we have that f k(&(x0)) /∈ [a, b]. We conclude that there exists a number y0,
namely y0 = &(x0), such that f k(y0) /∈ [a, b]. This contradicts the above made assumption
and concludes the proof. $

As mentioned in the previous section, in the area of dynamical systems, a function f̃ is
called nilpotent if f̃ k(R) = {0} for some integer k. The following lemmas show that this is
a decidable property in our setting. For continuous piecewise affine functions this result was
already stated (without proof) [4]. So, we extend this result to continuous semi-algebraic
functions and furthermore show that the decision procedure is expressible in FO.

Lemma 6. There is an FO sentence that expresses whether a continuous semi-algebraic
function f : R→ R is nilpotent.

Proof. We describe the algorithm NILPOTENT(inputf ) to decide nilpotency of continuous
semi-algebraic functions f : R→ R and later on argue its correctness.
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Algorithm NILPOTENT(input f ):
Step 1: Compute the set {x ∈ R | f 2(x) = x}. If this set differs from {0}, then answer

no, else continue with Step 2.
Step 2: Compute the set B = {r | 'BB(r)}, where 'BB(r) is the formula that defines

positive real numbers r that satisfy one of the following three conditions:
(1) limx→−∞ f (x) and limx→+∞ f (x) are constants and f ((−∞, r]) ⊂ (−r, +r) and

f ([r, +∞)) ⊂ (−r, +r);
(2) limx→−∞ f (x) = +∞ and limx→+∞ f (x) is a constant and f ([r, +∞)) ⊂ (−r, +r);
(3) limx→−∞ f (x) is a constant and limx→+∞ f (x) = −∞ and f ((−∞, r]) ⊂ (−r, +r);

If B is empty, answer no, else compute the infimum r0 of B and continue with Step 3.
Step 3: Let g be the function defined as g(x) := f (x) if −r0 < x < r0 and g(x) :=

f (−r0) if x! − r0 and g(x) := f (r0) if x"r0.
If for g there exists a positive real number " such that

(1) g is constant 0 on (−", +"), or
(2) g is constant 0 on (0, +") and has a left tangent with strictly negative slope in 0, or
(3) g is constant 0 on (−", 0) and has a right tangent with strictly negative slope in 0,
then continue with Step 4, else answer no.

Step 4: If for all x > 0, g(x) < x and g2(x) < x and for every x < 0, g(x) > x and
g2(x) > x holds, then answer yes, else answer no.

We now prove the correctness of the algorithm NILPOTENT. Clearly, if f has periodic
points other than 0, then f cannot be nilpotent. Furthermore, for a nilpotent f , f (0) must
be 0. From Sharkovskiı̆’s theorem [1], it follows that if f has periodic points of some period
d (d > 1), then f also has periodic points of period 2. Therefore, the test in Step 1, makes
sure that 0 is the only periodic point of f .

In Step 2, the consistency of nilpotency with the behavior of f towards −∞ and +∞ is
tested. We first remark that if the limit conditions in either of the three cases are satisfied,
also values of r satisfying the inclusion conditions are guaranteed to exist. This follows from
the fact that f is semi-algebraic. We show this for Case 2. The other cases are similar. So,
assume limx→−∞ f (x) = +∞ and limx→+∞ f (x) = c with c a constant. We have to show
that there exists an r such that f ([r, +∞)) ⊂ (−r, +r). Consider the set {x ∈ R | f (x) <

c + 1}. This is a semi-algebraic subset of R that is not bounded towards +∞. Therefore
there exists a number d such that [d, +∞) is completely in {x ∈ R | f (x) < c + 1}. It is
clear that r = max{c + 1, d} satisfies f ([r, +∞)) ⊂ (−r, +r).

From the fact that f has a semi-algebraic graph it follows that the set B, computed
in Step 2, is empty if (1) limx→−∞ f (x) = −∞ or (2) limx→+∞ f (x) = +∞ or (3)
limx→−∞ f (x) = +∞ and limx→+∞ f (x) = −∞.

In Case (1), for all x < 0 we have (1a) f (x) < x < 0 or (1b) x < f (x) < 0. Indeed,
because of the test in Step 1, the case f (x) = x cannot occur any more outside the origin.
In Case (1a), there exists an infinite orbit · · · < f 2(x) < f (x) < x < 0, hence f is not
nilpotent. In Case (1b), there exist arbitrary long orbits converging to x, namely from any
point in the sequence · · · < f −2(x) < f −1(x) < x < 0. Hence f is not nilpotent.

For Case (2), a similar analysis can be made, again depending on the graph of f being
situated below or above the diagonal.
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Also in Case (3), we have this phenomena, this time depending on the graph of f 2 being
situated below or above the diagonal. Here, for all x > 0, we have (3a) x < f 2(x) or (3b)
x > f 2(x). Because of the test in Step 1, there is no third case. In Case (3a), there exists
an infinite orbit because x < f 2(x) < f 4(x) < · · ·, hence f is not nilpotent. In Case (3b),
there exist arbitrary long orbits starting from any point in the sequence 0 < x < f −2(x) <

f −4(x) < · · ·. Hence f is not nilpotent.
Hence, if B is empty, then f is not nilpotent.
If B is non-empty, on the other hand, then f ((−∞, r0]) ⊂ (−r0, r0) and/or f ([r0, +∞))

⊂ (−r0, r0) (depending on which case occurred in Step 2). For the function g, defined in
Step 3, this also holds if you replace r0 by some r1, with r1 larger than r0 and max {|g(x)|
| x ∈ R}. Furthermore g([−r1, +r1]) ⊆ [−r1, +r1] holds for such r1. By the choice of r1, it
follows that f is nilpotent if and only if g is nilpotent. The only-if direction is immediately
clear. For the if-direction, we observe that f or f 2 (again depending on the case that occurred
in Step 2) maps numbers outside [−r1, +r1] into [−r1, +r1], and (the behaviour of) f and
g are the same within [−r1, +r1].

In Steps 3 and 4, the consistency of the behavior of g in a neighborhood of 0 with
nilpotency is tested. In the cases (1)–(3), g2(x) = 0 holds for a small "-environment of 0.
Every different behavior of g in the neighborhood of 0, leads to infinitely long or arbitrarily
long orbits of g (and hence of f ). Since this analysis is completely analogous to the one
made in Step 2, we omit the details.

The condition in Step 4, expresses what is known as the global convergence of g [3],
which is equivalent to nilpotency of g because g2 maps a neighborhood of 0 to 0 [4]. That
g2 maps a neighborhood of 0 to 0 follows from Step 3.

Finally, we remark that all computations and tests performed in the algorithm NILPOTENT,
are expressible by a FO formula over the binary relation representing the graph of the input
f . Limits, for instance, can be implemented in FO using the classical "-( definition. $

We are now ready for the proof of Theorem 3.

Proof of Theorem 3.We describe a decision procedure TERMINATE(input f ) that on input
a function f : R→ R, decides whether the transitive closure of graph(f ) terminates after
a finite number of iterations.

Algorithm TERMINATE(input f ):
Step 1: Compute the sets C1 = {x | f (x) = x} and C2 = {x | f 2(x) = x}. If C2 is a

closed and connected part of R and if C1 is a point with C2 \ C1 around it or if C2 \ C1 is
empty, then continue with Step 2, else answer no.

Step 2: If C2 is R, answer yes, else compute the function f̃ (as described before
Lemma 5) and apply the algorithm NILPOTENT in the proof of Lemma 6 to f̃ and return the
answer.

The correctness of this procedure follows from Lemmas 4–6. From the remark at the end
of the proof of Lemma 6 and the construction of C1, C2 and f̃ , it is clear that all ingredients
can be expressed in FO. $
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Example 6. We use the function f1, given in Fig. 2 in the Introduction, and the function
f2, given in Fig. 3, to illustrate the decision procedure TERMINATE(input f ).

For f1, C1 ∪ C2 is {0, 1}, and therefore f1 does not survive Step 1 and TERMINATE
(input f1) immediately returns no.

For f2, C1 ∪C2 is {0}, and therefore we have f̃2 = f2. Next, the algorithm NILPOTENT is
called with input f2. For f2, the set B, computed in Step 2 of the algorithm NILPOTENT, is
non-empty and r0 is 2. So, the function g in Step 3 will be f2 again and r1 is strictly larger
than 2. Since g is identical zero around the origin, finally the test in Step 4 decides. Here,
we have that for x > 0, g(x) < x and also g2(x) < x since x − 1

4 < x and x − 1
2 < x. For

x < 0, we have that both g(x) and g2(x) are identical zero and thus the test succeeds also
here. The output of NILPOTENT on input f2 and therefore also the output of TERMINATE on
input f2 is yes.

For a continuous and terminating function, the periods that can appear are 1 and 2 (see
Lemma 3). In dynamical systems theory, finding an upper bound on the length of the run-
ups in terms of some characteristics of the function, is considered to be, even for piecewise
affine functions, a difficult problem [22,25]. Take, for instance, the terminating continuous
piecewise affine function that is constant towards −∞ and +∞ and that has turning points
(0, 1

3 ), ( 1
3 , 2

3 − "), ( 4
9 , 4

9 ), ( 5
9 , 5

9 ), ( 2
3 , 1

3 ), and (1, 2
3 ), with " > 0 small. Here, it seems

extremely difficult to find an upper bound on the length of the run-ups in terms of the
number of line segments or of their endpoints. The best we can say is that also the maximal
run-up can be computed.

Corollary 3. Let f : R → R be a continuous, terminating semi-algebraic function. The
maximal run-up of a point in R with respect to f can be computed.

We end this section with a remark concerning termination of continuous functions that
are defined on a connected part I of R. Let f : I → I be such a function. We define the
function f̄ to be the continuous extension of f to R that is constant on R \ I . It is readily
verified that the transitive closure of graph(f ) terminates if and only if f̄ is terminating.
We therefore have the following corollary of Theorem 3.

Corollary 4. Let I be a connected part ofR. There is an FO expressible decision procedure
that decides whether the transitive closure of the graph of a continuous semi-algebraic
function f : I → I terminates.

5. Logics with transitive closure restricted to function graphs

In this section, we study fragments of FO+TC and FO+TCS where the transitive-closure
operator is restricted to work only on the graphs of continuous semi-algebraic functions
from Rk to Rk . These languages bear some similarity with deterministic transitive-closure
logics in finite model theory [8].

If +x and +y are k-dimensional real vectors and if #(+x, +y) is an FO+TC-formula (respec-
tively FO+TCS-formula), let '# be the FO+TC-sentence (respectively, FO+TCS-sentence)



F. Geerts, B. Kuijpers / Theoretical Computer Science 336 (2005) 125–151 145

'1
# ∧ '2

#, where '1
# expresses that #(+x, +y) defines the graph of a function from Rk to Rk

and where '2
# expresses that #(+x, +y) defines a continuous function graph. We can express

'2
# using the classical "-( definition of continuity.

More specifically, '1
# can be written as

(∀+x)(∃+y)#(+x, +y) ∧ (∀+x)(∀+y)(∀+z)(#(+x, +y) ∧ #(+x, +z) ⇒ +y = +z)

and '2
# can be written as

(∀+x1)(∀" > 0)(∃( > 0)(∀+x2)(‖+x1 − +x2‖ < ( ⇒
(∀+y1)(∀+y2)(#(+x1, +y1) ∧ #(+x2, +y2) ⇒ ‖+y1 − +y2‖ < ")).

Proposition 3. Let #(+x, +y) be an FO+TC-formula (respectively, an FO+TCS-formula).
The evaluation of #(+x, +y) on an input data base A terminates if and only if the evaluation
of '# on A terminates.

Proof. It should be clear that the above expressions for '1
# and '2

# make direct calls to
#(+x, +y) and no new calls to a TC-formula are introduced. Using the bottom-up evaluation
method described in Section 2.2, it is clear that evaluation of both '1

# and '2
# terminates on

A if and only the evaluation of # terminates on A. $

Definition 6. We define FO+cTC (respectively, FO+cTCS) to be the fragment of FO+TC
(respectively, FO+TCS) in which only TC-expressions of the form [TC+x;+y #(+x, +y) ∧ '#]
(+s, +t) (respectively, [TC+x;+y #(+x, +y) ∧ '# | $](+s, +t)) are allowed to occur.

We again use superscript numbers to denote restrictions on the arities of the relations of
which transitive closure can be taken.

5.1. Deciding termination of the evaluation of FO+cTC2 queries

Since, when #(x, y) is y = x + 1, '# is true, from the proof of Theorem 2 the following
negative result follows.

Corollary 5. It is undecidable whether a given formula in FO+cTCS2 terminates on a
given input data base.

We remark that for this undecidability it is not needed that the transitive closure of
continuous functions on an unbounded domain is allowed (f (x) = x + 1 in the proof of
Theorem 2). Even when, for example, only functions from [0, 1] to [0, 1] are allowed, we
have undecidability. We can see this by modifying the proof of Theorem 2 as follows. For
any polynomial p(x1, . . . , x13), let $p be the FO-expressible stop-condition:

(∃x1) · · · (∃x13)(
13∧

i=1
((∃yi)(xiyi = 1 ∧ X(1, yi))

∨ xi = 0 ∨ xi = 1) ∧ p(x1, . . . , x13) = 0).
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Since, in consecutive iterations, the continuous extension f̄ of f : [0, 1] → [0, 1] : x 5→
x

x+1 , maps 1 to 1
2 , 1

3 , 1
4 , . . ., it is then easy to see that p(x1, . . . , x13) having an integer

solution is equivalent to

[TCx;y #(x, y) | $p](s, t)
terminating, where #(x, y) defines graph(f̄ ). Remark again that the 'graph(f̄ ) is true.

The main result of this section is the following.

Theorem 4. It is decidable whether a given formula in FO+cTC2 terminates on a given
input data base. Moreover, this decision procedure is expressible in FO+cTC2.

Proof. Given a formula ! in FO+cTC2 and an input data base A, we can decide whether
the evaluation of ! on A terminates by first evaluating the deepest FO-formulas on which
a TC-operator works on A and then using Theorem 3 to decide whether the computation of
transitive closure halts on this set. If it does not terminate, we answer no, else we compute the
result and continue recursively to less deep occurrences of TC-operators in !. We continue
this until the complete formula ! is processed. Only if we reach the end and all intermediate
termination tests returned yes, we output yes.

The expressibility of the decision procedure in FO+cTC2 can straightforwardly be proven
by induction on the structure of the formula. $

5.2. A guarded fragment of FO+cTC2

The fact that termination of FO+cTC2-formulas is expressible in FO+cTC2, allows
us to define a guarded fragment, FO+cTC2

G, of this language. Indeed, if # is a formula in
FO+cTC2 of the form [TC+x;+y #(+x, +y)](+s, +t), let )# be the FO+cTC2-sentence that expresses
that this TC-expression terminates (obviously, )# also depends on the input data base).
We can now define the guarded fragment of FO+cTC2, in which every TC-expression is
accompanied by a termination guard.

Definition 7. We define FO+cTC2
G to be the fragment of FO+cTC2 in which only TC-

expressions of the form [TC+x;+y #(+x, +y) ∧ )#](+s, +t) are allowed.

The following property follows from the above remarks.

Proposition 4. In the language FO+cTC2
G, every query terminates on all possible input

databases. Furthermore, all terminating queries of FO+cTC2 are expressible in FO+cTC2
G.

Proof. Since, for each expression ! in FO+cTC2
G, every subformula of ! that is a TC-

expression includes a termination guard, these subexpressions are guaranteed to terminate
on all inputs. Therefore, the evaluation of ! is guaranteed to terminate on every input.

For the second part of this proposition, let ! be a formula in FO+cTC2 that is terminating
on all inputs. By adding termination guards in !, starting at TC-subformulas that appear
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deepest and continuing outwards, we obtain a formula !̄ in FO+cTC2
G that equivalently

expresses the query expressed by !. $

5.3. Expressiveness results

Even the least expressive of the discussed transitive-closure logics is still more expressive
than first-order logic.

Theorem 5. The language FO+cTC2
G is more expressive than FO on finite constraint

databases.

Proof. Consider the following query Qint on 1-dimensional databases S: “Is S a singleton
that contains a natural number?”. The query Qint is not expressible in FO (if it would be
expressible, then also the predicate nat(x), expressing that x is a natural number, would be
in FO). The query Qint is expressible in FO+cTC2

G by the sentence that says that S is a
singleton that contains 0, 1 or an element r > 1 such that (∃s)(∃t)([TCx;y #(x, y) ∧ '# ∧
)#(x,y)∧'#

](s, t) ∧ s = 1 ∧ t = 1
r ), where #(x, y) is the formula (∃r)(S(r) ∧ !(r, x, y)).

Here, !(r, x, y) defines the graph of the continuous piecewise affine function that maps
x to

y =






0 if x! 1
r ,

x − 1
r if 1

r < x < 1,
1 − 1

r if x"1.

Remark that '# is always true. The sentence )#(x,y)∧'#
is true when the data base is a

singleton containing a number larger than one. The function given by !(r, x, y) is illustrated
in Fig. 3 for r = 4. The evaluation of this transitive closure is guaranteed to end after at
most 6r7 iterations and this sentence indeed expresses Qint since (1, 1

r ) belongs to the result
of the transitive closure if and only if r > 1 is a natural number. $

We remark that the fact that we can express in FO+cTC2
G that a 1-dimensional sin-

gleton databases S contains a natural number does not imply that we can define the nat-
ural numbers in FO+cTC2

G. This follows immediately from the guaranteed termination
of FO+cTC2

G-expressible queries. On input a constraint data base the evaluation of a
FO+cTC2

G-expression is guaranteed to terminate and to return an output that can be de-
scribed by means of polynomial constraints, i.e., that is semi-algebraic. The set of natural
numbers is non-semi-algebraic subset of R and can therefore not be defined in FO+cTC2

G.
Looking at the formula in the above proof that expresses that a 1-dimensional singleton
databases S contains a natural number, we see that the therein used TC-expression works
on the formula #(x, y), which is (∃r)(S(r) ∧ !(r, x, y)). We see that the number r of
which naturalness is expressed is bound by a quantifier in the formula #(x, y). Therefore,
if we would want to define the natural numbers by modifying the formula in the proof this
would lead to applying the transitive-closure operator to a formula #′(x, y, r) with an extra
parameter. This would lead us outside FO+cTC and inside FO + KTC.
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y1

y3

y4

y2 x1

1
y

Fig. 6. The graph of the function f (x, y1, . . . , y4) in the (x, y)-plane.

6. Concluding remarks

We conclude with a number of remarks. One of our initial motivations to look at termi-
nation of query evaluation in transitive closure logics was to study the expressive power of
FO+TC compared to that of FO+TCS. As mentioned in the Introduction and Section 2, the
latter language is computationally complete on linear constraint databases. It is not clear
whether FO+TC is also complete. In general, we have no way to separate these languages.
But if we restrict ourselves to their fragments FO+cTC2 and FO+cTCS2, the fact that for
the former termination is decidable, whereas it is not for the latter, might give the impression
that at least these fragments can be separated. But this is not the case, since equivalence
of formulas in these languages is undecidable. In fact, the expressions used in the proof of
Theorem 2, are expressible in FO+TC (they do not even use an input data base).

A last remark concerns the validity of the results in Section 4 for more general settings.
Lemmas 1–5 are also valid for arbitrary real closed fields R. One could ask whether the
same is true for Lemma 6. However, the proof of the correctness of the FO-sentence which
decides global convergence in Step 4 [3], relies on the Bolzano–Weierstrass theorem, which
is known not to be valid for arbitrary real closed fields [5]. Furthermore, we can even prove
the following.

Theorem 6. Termination of continuous semi-algebraic functions f : R → R for arbitrary
real closed fields R is not expressible in FO.

Proof. Let FR be the family of continuous piecewise affine functions from R to R param-
eterized by [0, 1]4 ⊂ R4 and defined by

FR : R × [0, 1]4 → R : (x, +y) 5→ f (x, +y),

where +y = (y1, . . . , y4) and f is the continuous piecewise affine function that is constant
outside [0, 1] and that in the unit interval connects (0, y1) with (y2, y3) and (y2, y3) with
(1, y4) (see Fig. 6).

For each k > 0, it is clear that there exists an FO-formula !k(+y) which expresses that
the evaluation of the transitive closure of graph(FR(+y)) terminates after k iterations.
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y

10 x

y1 = y3 = 0

y2 = 1
k + 2

y4 = k + 1
k + 2

1

Fig. 7. The graph of the function f
(
x, 0, 1

k+2 , 0, k+1
k+2

)
.

We prove the proposition by contradiction. Suppose that there exists an FO-sentence
# which expresses the termination of the transitive closure of function graphs for semi-
algebraic functions on an arbitrary real closed fieldR.This implies that there also exists a FO-
formula #(+y) which expresses that the evaluation of the transitive closure of graph(FR(+y))

is terminating.
Let #rcf be an FO-sentence expressing the axioms of real closed fields. Then, for each

k > 0, the formula

(∃+y)(#(+y) ∧ ¬!1(+y) ∧ · · · ∧ ¬!k(+y)) ∧ #rcf

is satisfied when we consider R = R and we take y1 = 0, y2 = 1/(k + 2), y3 = 0, and
y4 = (k + 1)/(k + 2) as parameters. Indeed, the evaluation of the transitive closure of the
graph of f (x, 0, 1/(k + 2), 0, (k + 1)/(k + 2)) is terminating but only after k + 1 iterations
(see Fig. 7).

Hence, by the compactness theorem, the countable set of formulas {#rcf ,#(+y), ¬!1(+y),

¬!2(+y), . . .} is consistent. Hence, there exists a real closed field R̃ and a +y ∈ R̃4 such
that #(+y) expresses that the evaluation of the transitive transitive closure of graph(FR̃(+y))

terminates, or equivalently, that f+y : R̃ → R̃ : x 5→ f (x, +y) is terminating. However, there
exists no k such that f (x, +y) terminates after k iterations. This is clearly a contradiction.
Hence, the assumption that ! expresses the termination of functions f : R → R for
arbitrary real closed fields R must be false. $
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