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Abstract

We study extensions of first-order logic over the
reals with different types of transitive-closure
operators as query languages for constraint
databases that can be described by Boolean com-
binations of polynomial inequalities. We are in
particular interested in deciding the termination
of the evaluation of queries expressible in these
transitive-closure logics. It turns out that ter-
mination is undecidable in general. However, we
show that the termination of the transitive clo-
sure of a continuous function graph in the two-
dimensional plane is decidable, and even express-
ible in first-order logic over the reals. Based on
this result, we identify a particular transitive-
closure logic for which termination of query eval-
uation is decidable and which is more expres-
sive than first-order logic. Furthermore, we can
define a guarded fragment in which exactly the
terminating queries of this language are express-
ible.

1 Introduction

The framework of constraint databases, in-
troduced in 1990 by Kanellakis, Kuper and
Revesz [10] and by now well-studied [13], pro-
vides an elegant and powerful model for ap-
plications that deal with infinite sets of points
in some real space Rn, like for instance spa-
tial databases. In the setting of the constraint
model, these infinite sets are finitely represented
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burg, Dept. WNI, B-3590 Diepenbeek, Belgium, E-mail:
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as a Boolean combination of polynomial equali-
ties and inequalities.

The relational calculus augmented with poly-
nomial constraints, FO for short, is the stan-
dard first-order query language for constraint
databases. Properties of this language are well-
known [13], in particular, an important defi-
ciency of FO is that its expressive power is rather
limited. Therefore, more expressive extensions of
FO have been introduced and studied. One such
class of languages is extensions of FO with vari-
ous transitive-closure operators. Recently, we in-
troduced FO+TC and FO+TCS, two languages
in which an operator is added to FO that al-
lows the computation of the transitive closure
of unparameterized sets in some R2k [9]. In
the latter language also FO-definable stop condi-
tions are allowed to control the evaluation of the
transitive-closure. The fragment of FO+TCS, in
which multiplication is disallowed, was shown to
be computationally complete on databases that
can be defined by linear polynomial constraints.
Later on, Kreutzer has studied a language that
we refer to as FO+KTC [12]. This is an ex-
tension of FO with a transitive-closure operator
that may be applied to parameterized sets. In
FO+KTC, the evaluation of a transitive-closure
expression may be controlled by the termina-
tion of particular paths in its computation rather
than by the termination of the transitive closure
of the complete set. It was shown that the frag-
ment of FO+KTC, that does not use multiplica-
tion, is computationally complete on databases
that can be defined by linear constraints [12].

In all of these transitive-closure languages, we
face the well-know fact that recursion involving
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Figure 1: A function graph (thick) with non-
terminating transitive closure (thin).

arithmetic over an infinite domain, such as the
reals with addition and multiplication in this set-
ting, is not guaranteed to terminate. In this pa-
per, we are interested in termination of query
evaluation in these different languages and in
particular in deciding termination. We show
that the termination of the evaluation of a given
query, expressed in any of these languages, on
a given input database is undecidable as soon
as the transitive closure of 4-ary relations is al-
lowed. In fact, a known undecidable problem in
dynamical systems theory, namely deciding nilpo-
tency of functions from R2 to R2 [2, 3], can
be reduced to our decision problem. When the
transitive-closure operator is restricted to work
on binary relations, the matter is more compli-
cated. We show the undecidability of termina-
tion for FO+TCS restricted to binary relations.
However, both for FO+TC and FO+KTC re-
stricted to binary relations, finding an algorithm
for deciding termination would also solve some
outstanding open problems in dynamical systems
theory. Indeed, a decision procedure for FO+TC
restricted to binary relations would solve the
nilpotency problem for functions from R to R

and a decision procedure for FO+KTC restricted
to binary relations would solve the point-to-fixed-
point problem. Both these problems are already
open for some time [2, 11].

For FO+TC restricted to binary relations, we
have obtained a positive decidability result, how-
ever. A basic problem in this context is decid-
ing whether the transitive closure of a subset of
the two-dimensional plane, viewed as a binary

relation over the reals, terminates. Even if these
subsets are restricted to be the graphs of possibly
discontinuous functions from R to R, this prob-
lem is already puzzling dynamical system theo-
rists for a number of years (it relates to the above
mentioned point-to-fixed-point problem). How-
ever, when we restrict our attention to the transi-
tive closure of continuous function graphs, we can
show that the termination of the transitive clo-
sure of these figures is decidable. As an illustra-
tion of possible inputs for this decision problem,
two continuous function graphs are given in Fig-
ures 1 and 2. The first one has a non-terminating
transitive closure, but the second terminates af-
ter four iterations. Furthermore, we show that
this decision procedure is expressible in FO. In
the course of our proof, we also give a stronger
version of Sharkovskĭı’s theorem [1] from dynam-
ical systems theory for terminating continuous
functions. We also extend another result in this
area, namely, we show that nilpotency of con-
tinuous semi-algebraic functions is decidable and
that this decision procedure is even expressible in
FO. Previously, this result was only stated, with-
out proof, for continuous piecewise affine func-
tions [2].

Based on this decision result, we define a frag-
ment of FO+TC in which the transitive-closure
operator is restricted to work on graphs of con-
tinuous functions from R to R. Termination of
queries in this language is shown to be decid-
able. Furthermore, we define a guarded fragment
of this transitive-closure logic in which only, and
all, terminating queries can be formulated. We
also show that this very restricted form of tran-
sitive closure yields a language that is strictly
more expressive than FO.

This paper is organized as follows. In Sec-
tion 2, we define constraint databases, the
query language FO and several extensions with
transitive-closure operators. In Section 3, we
give general undecidability results. In Section 4,
we give a procedure to decide termination of the
transitive closure of continuous function graphs
in the plane. In Section 5, we study the extension
of FO with a transitive closure operator that is
restricted to work on continuous function graphs.
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Figure 2: A function graph (thick) with termi-
nating transitive closure (thin).

In this section, we also describe a guarded frag-
ment of this language and give expressiveness re-
sults. The paper concludes with some remarks.

2 Definitions and preliminaries

In this section, we define constraint databases
and FO, the standard first-order query language
for constraint databases. We also define existing
extensions of this logic with different transitive-
closure operators.

2.1 Constraint databases and first-

order logic over the reals

Let R denote the set of the real numbers, and
Rn the n-dimensional real space (for n ≥ 1).

Definition 1. An n-dimensional constraint
database is a geometrical figure in Rn that can
be defined as a Boolean combination (union,
intersection and complement) of sets of the
form {(x1, . . . , xn) | p(x1, . . . , xn) > 0}, where
p(x1, . . . , xn) is a polynomial with integer coeffi-
cients in the real variables x1, . . . , xn.

1 ⊓⊔

We remark that in mathematical terminology,
constraint databases are called semi-algebraic
sets. If a constraint database can be described
by linear polynomials only, we refer to it as a
linear constraint database.

1Spatial databases in the constraint model are usually
defined as finite collections of such geometrical figures.
We have chosen the simpler definition of a database as a
single geometrical figure, but all results carry over to the
more general setting.

In this paper, we will use FO, the relational
calculus augmented with polynomial inequalities
as a basic query language.

Definition 2. A formula in FO, over an n-
dimensional input database, is a first-order logic
formula ϕ(y1, . . . , ym, S), built, using the log-
ical connectives and quantification over real
variables, from two kinds of atomic formulas:
S(x1, . . . , xn) and p(x1, . . . , xk) > 0, where S

is a n-ary relation name representing the in-
put database and p(x1, . . . , xk) is a polynomial
with integer coefficients in the real variables
x1, . . . , xk. ⊓⊔

Variables in such formulas are assumed to
range over R. Tarski’s quantifier-elimination
procedure for first-order logic over the reals guar-
antees that FO expressions can be evaluated ef-
fectively on constraint database inputs and their
result is a constraint database (in Rm) that also
can be described by means of polynomial con-
straints over the reals [5, 15].

If ϕ(y1, . . . , ym, S) is a FO formula, a1, . . . , am
are reals, and A is a n-dimensional constraint
database, then we denote by (a1, . . . , am, A) |=
ϕ(y1, . . . , ym, S) that (a1, . . . , am, A) satisfies ϕ.

The fragment of FO in which multiplication is
disallowed is called FOLin.

2.2 Transitive-closure logics

We now define a number of extensions of FO
(and of FOLin) with different types of transitive-
closure operators. Recently, we introduced
and studied the first two extensions, FO+TC
and FO+TCS [8, 9]. The latter extension,
FO+KTC, is due to Kreutzer [12].

Definition 3. A formula in FO+TC is a formula
built in the same way as an FO formula, but with
the following extra formation rule: if ψ(~x, ~y) is a
formula with ~x and ~y k-tuples of real variables,
and ~s, ~t are k-tuples of real variables, then

[TC~x;~y ψ(~x, ~y)](~s,~t) (1)

is also a formula which has as free variables those
in ~s and ~t. ⊓⊔
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Since the only free variables in ψ(~x, ~y) are
those in ~x and ~y, parameters are not allowed in
applications of the TC operator.

The semantics of a subformula of the above
form (1) evaluated on a database A is defined
in the following operational manner: Start com-
puting the following iterative sequence of 2k-
ary relations: X0 := ψ(A) and Xi+1 := Xi ∪
{(~x, ~y) ∈ R2k | (∃~z) (Xi(~x, ~z) ∧X0(~z, ~y))} and
stop as soon as Xi = Xi+1. The semantics of
[TC~x;~y ψ](~s,~t) is then defined as (~s,~t) belonging
to the 2k-ary relation Xi.

Since every step in the above algorithm, in-
cluding the test for Xi = Xi+1, is expressible in
FO, every step is effective and the only reason
why the evaluation may not be effective is that
the computation does not terminate. In that case
the semantics of the formula (1) (and any other
formula in which it occurs as subformula) is un-
defined.

As an example of a FO+TC formula over a
2-dimensional input database, we take

[TCx;y S(x, y)](s, t).

This expression, when applied to a 2-dimensional
figure, returns the transitive closure of this fig-
ure, viewed as a binary relation over R. For il-
lustrations of the evaluation of this formula, we
refer to Figures 1 and 2 in the Introduction.

The language FOLin+TC consists of all
FO+TC formulas that do not use multiplication.

The following language, FO+TCS, is a modi-
fication of FO+TC that incorporates a construc-
tion to specify explicit termination conditions on
transitive closure computations.

Definition 4. A formula in FO+TCS is built in
the same way as in FO but with the following
extra formation rule: if ψ(~x, ~y) is a formula with
~x and ~y k-tuples of real variables; σ is an FO
sentence over the input database and a special
2k-ary relation name X; and ~s, ~t are k-tuples of
real variables, then

[TC~x;~y ψ(~x, ~y) | σ](~s,~t) (2)

is also a formula which has as free variables those
in ~s and ~t. We call σ the stop condition of this
formula. ⊓⊔

The semantics of a subformula of the above
form (2) evaluated on databases A is defined in
the same manner as in the case without stop con-
dition, but now we stop not only in case an i

is found such that Xi = Xi+1, but also when
an i is found such that (A,Xi) |= σ, whichever
case occurs first. As above, we also consider
the restriction FOLin+TCS. It was shown that
FOLin+TCS is computationally complete on lin-
ear constraint databases [9].

Finally, we define FO+KTC. In finite model
theory [7], transitive-closure logics, in general,
allow the use of parameters. Also the language
FO+KTC allows parameters in the transitive
closure.

Definition 5. A formula in FO+KTC is a for-
mula built in the same way as an FO formula,
but with the following extra formation rule: if
ψ(~x, ~y, ~u) is a formula with ~x and ~y k-tuples of
real variables, ~u some further ℓ-tuple of free vari-
ables, and where ~s, ~t are k-tuples of real terms,
then

[TC~x;~y ψ(~x, ~y, ~u)](~s,~t) (3)

is also a formula which has as free variables those
in ~s, ~t and ~u. ⊓⊔

Since the free variables in ψ(~x, ~y, ~u) are those
in ~x, ~y and ~u, here parameters are allowed in
applications of the TC operator. The seman-
tics of a subformula of the form (3), with ~s =
(s1, . . . , sk), evaluated on a database A is de-
fined in the following operational manner: Let
I be the set of indices i for which si is a con-
stant. Then we start computing the following
iterative sequence of 2k-ary relations: X0 :=
ψ(A) ∧

∧

i∈I(si = xi) and Xi+1 := Xi ∪ {(~x, ~y) ∈
R2k | (∃~z) (Xi(~x, ~z) ∧ ψ(~z, ~y))} and stop as soon
as Xi = Xi+1. The semantics of [TC~x;~y ψ](~s,~t)
is then defined as (~s,~t) belonging to the 2k-ary
relation Xi.

We again also consider the fragment
FOLin+KTC of this language. It was shown
that FOLin+KTC is computationally complete
on linear constraint databases [12].

For all of the transitive-closure logics that we
have introduced in this section, we consider frag-
ments in which the transitive-closure operator is
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restricted to work on relations of arity at most
2k and we denote this by adding 2k as a super-
script to the name of the language. For example,
in the language FO+TCS4, the transitive closure
is restricted to binary and 4-ary relations.

3 Undecidability of the termi-

nation of the evaluation of

transitive-closure formulas

The decision problems that we consider in this
section and the next take couples (ϕ,A) as in-
put, where ϕ is an expression in the transitive-
closure logic under consideration and A is an
input database, and the answer to the decision
problem is yes if the computation of the seman-
tics of ϕ on A (as defined for that logic) termi-
nates. We then say, for short, that ϕ terminates
on A.

We give the following general undecidability
result concerning termination. In the proof and
further on, the notion of nilpotency of a function
will be used: a function f : Rn → Rn is called
nilpotent if there exists a natural number k ≥ 1
such that for all ~x ∈ Rn, fk(~x) = (0, . . . , 0).

Theorem 1. It is undecidable whether a given
formula in FO+TC4 terminates on a given input
database.

Proof (sketch). We reduce deciding whether
a piecewise affine function2 f : R2 → R2 is
nilpotent to deciding whether the evaluation of
a formula in FO+TC4 terminates. So, assume
that termination of formulas in FO+TC4 is de-
cidable. For a given piecewise affine function
f : R2 → R2, graph(f), the graph of f , is a
semi-algebraic subset of R4. We give a proce-
dure to decide whether f is nilpotent:

Step 1. Decide whether the FO+TC4-
query [TCx1,x2;y1,y2 S(x1, x2, y1, y2)](s1, s2; t1, t2)
terminates on the input graph(f); if the answer
is no, then return no, else continue with Step 2.

2A function f : R
n
→ R

n is called piecewise affine if
its graph is a linear semi-algebraic set in R

n
×R

n.

Step 2. compute f1(R2), f2(R2), f3(R2), . . . and
return yes if this ends with {(0, 0)}, else return
no.

This algorithm decides correctly whether f is
nilpotent, since for a nilpotent f , the evalua-
tion of the transitive closure of graph(f) will ter-
minate, and the process in Step 2 is therefore
also guaranteed to terminate. Since nilpotency
of piecewise affine functions from R2 to R2 is
known to be undecidable [3], this completes the
proof. ⊓⊔

The following corollary follows from the previ-
ous theorem and the fact that FO+TC4-formulas
are in FO+KTC4.

Corollary 1. It is undecidable whether a given
formula in FO+KTC4 terminates on a given in-
put database. ⊓⊔

For transitive-closure logics with stop-
condition, we even have undecidability for
transitive closure restricted to binary relations.

Theorem 2. It is undecidable whether a given
formula in FO+TCS2 terminates on a given in-
put database.

Proof. We prove this result by reducing the un-
decidability of a variant of Hilbert’s 10th prob-
lem to it.3 This problem is deciding whether a
polynomial p(x1, . . . , x13) in 13 real variables and
with integer coefficients has a solution in the nat-
ural numbers [6].

For any such polynomial p(x1, . . . , x13),
let σp be the FO-expressible stop-
condition: (∃x1) · · · (∃x13)(

∧13
i=1X(−1, xi) ∧

p(x1, . . . , x13) = 0). Since, in consecutive it-
erations of the computation of the transitive
closure of the graph of y = x+ 1, −1 is mapped
to 0, 1, 2, . . ., it is easy to see that p(x1, . . . , x13)
has an integer solution if and only if

[TCx;y (y = x+ 1) | σp](s, t)

terminates. Since the above mentioned Diophan-
tine decision problem is undecidable, this com-
pletes the proof. ⊓⊔

3Because of this proof technique, this proof can be
reused for Corollary 5.
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The results in this section are complete for the
languages FO+TC, FO+TCS and FO+KTC,
apart from the cases FO+TC2 and FO+KTC2.
The former case will be studied in the next
sections. For the latter case, we remark that
an open problem in dynamical systems theory,
namely, the point-to-fixed-point problem reduces
to it. This open problem is the decision prob-
lem that asks whether for a given x0 ∈ R and
a given piecewise affine function f : R → R,
the sequence x0, f(x0), f

2(x0), f
3(x0), . . . reaches

a fixed point. Even for piecewise linear func-
tions with two non-constant pieces this problem
is open [2, 11]. It is clear that this point-to-fixed-
point problem can be expressed in FO+KTC2.
So, we are left with the following unsolved prob-
lem.

Open problem 1. Is it decidable whether a
given formula in FO+KTC2 terminates on a
given input database? ⊓⊔

4 Deciding termination for con-

tinuous function graphs in

the plane

In this section, we study the termination of the
transitive closure of a constant semi-algebraic
subset of the plane4, viewed as a binary rela-
tion over R. In the previous section, we have
shown that deciding nilpotency of functions can
be reduced to deciding termination of the transi-
tive closure of their function graphs. Since decid-
ing nilpotency of (possibly discontinuous) func-
tions from R to R is an outstanding open prob-
lem [2, 3], this technique works only as long as
these function graphs are in R4. We therefore
have another unsolved problem.

Open problem 2. Is it decidable whether a
given formula in FO+TC2 terminates on a given
input database? ⊓⊔

4Let A be a subset of R
2. We say that A has a termi-

nating transitive closure, when the evaluation of the query
[TCx1,x2;y1,y2 S(x1, x2, y1, y2)](s1, s2; t1, t2) terminates on
input A, using the semantics of FO+TC.

There are obviously classes of functions for
which deciding termination of their function
graphs is trivial. An example is the class of the
piecewise constant functions. In this section, we
concentrate on a class that is non-trivial, namely
the class of the continuous semi-algebraic5 func-
tions from R to R. The main purpose of this
section is to prove the following theorem.

Theorem 3. There is a decision procedure that
on input a continuous semi-algebraic function f :
R → R decides whether the transitive closure of
graph(f) terminates. Furthermore, this decision
procedure can be expressed by a formula in FO
(over a binary input database representing the
graph of he input function). ⊓⊔

Before we arrive at the proof of Theorem 3, we
give a series of six technical lemma’s. First, we
introduce some terminology.

Let f : R → R be a continuous function and
let x be a real number. We denote by Orb(x, f)
the set {fk(x) | k ≥ 1} and call it the orbit of
x (with respect to f). A real number x is said
to be a periodic point of f if fd(x) = x for some
natural number d ≥ 1. And we call the smallest
such d the period of x (with respect to f). Let
Per(f) be the set of periodic points in R of f .
If a real number x is not a periodic point of f ,
but if fk(x) is periodic, we call x an eventually
periodic point of f and we call the smallest such
number k the run-up of x (with respect to f).
Finally, we call f terminating if graph(f) has a
terminating transitive closure.

The following lemma holds for arbitrary func-
tions, not only for continuous ones. We also re-
mark that Lemmas 1– 4 hold for arbitrary func-
tions, not only for semi-algebraic ones.

Lemma 1. The function f : R → R is termi-
nating if and only if there exist natural numbers
k and d such that for each x ∈ R, fk(x) is a
periodic point of f of period at most d.

Proof. The “if” direction is straightforward, so
we focus on the “only-if” direction. If f is termi-
nating then there exists an N such that for each

5A function is called semi-algebraic if its graph is semi-
algebraic.
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x ∈ R, the cardinality of Orb(x, f) is smaller
than N . It is easy to see that x is eventually
periodic if and only if Orb(x, f) is finite. It is
clear that for each x ∈ R both the run-up as
the period is bounded by N . This concludes the
proof. ⊓⊔

Lemma 2. Let f : R → R be a continuous
function. If f is terminating, then Per(f) is a
non-empty, closed and connected part of R. In
particular, Per(f) = fk(R) for some k ≥ 1.

Proof. It follows from Lemma 1 that, for a
terminating f , there is a bound d on the periods
of f and a bound k on the run-ups of f .

Denote by Ci the set of fixed points of f i, i.e.,
the set of x ∈ R for which f i(x) = x. As-
sume that x = limk→∞ xk with all xk ∈ Ci.
From the continuity of f it follows that f i(x) =
limk→∞ f i(xk) = limk→∞ xk = x. Hence Ci
is closed and also Per(f) since this set equals
C1 ∪ · · · ∪Cd.

Since all the run-ups are smaller than k, it is
clear that fk(R) ⊆ Per(f). On the other hand,
let x be a periodic point of f with period d′, with
d′ ≤ d. Let y = fa(x) where a is −k mod d′.
Then fk(y) = f (k+a) mod d′(x) = f qd

′

(x) for
some integer q ≥ 1. Since f qd

′

(x) = x, x be-
longs to fk(R) and therefore Per(f) ⊆ fk(R).
Since f is continuous and R is connected, also
fk(R) is connected. ⊓⊔

Lemma 3. Let C be a non-empty, closed and
connected part of R. If f : C → C is a contin-
uous function and if every x ∈ C is periodic for
f , then f or f2 is the identity mapping on C.

Proof. We remark that C can either be R or
of the form [a,+∞), (−∞, b] or [a, b] with a ≤ b.
We will cover all these cases by taking C to be
[a, b], with the understanding that a can be −∞
and/or b can be +∞.

First of all, we observe that f must be a bijec-
tion of C. Indeed, let y ∈ C a periodic point of
period d, then y = fd(y) = f(fd−1(y)) = f(x)
with x = fd−1(y). Hence f is surjective. Next
suppose that f(x) = f(y). This implies that f(x)

and f(y) are in the same orbit of f , say of period
d. Therefore, x = fd−1(f(x)) = fd−1(f(y)) = y

and f is also injective.

By continuity of f we must have that either
f(a) = a and f(b) = b, or f(a) = b and f(b) = a.
To prove the lemma, it suffices to show that
f(a) = a and f(b) = b implies that f is the iden-
tity mapping. Indeed, the second case reduces to
the first when applied to f2.

So, we assume that f(a) = a and f(b) = b.
Suppose that there exists an x0 ∈ C such that
f(x0) 6= x0. By continuity, this means that there
exists an open interval (c, d) containing x0 such
that f(x) 6= x in (c, d). Let (c, d) be maximal
with these properties. From the maximality of
(c, d) it follows that f(c) = c and f(d) = d and
hence f((c, d)) = (c, d) (for the unbounded cases,
c and/or d may be −∞ and +∞, or just one of
them). Moreover, we have that either f(x) > x

for all x ∈ (c, d), or f(x) < x for all x ∈ (c, d).
Take a point y ∈ (c, d), then y, f(y), f2(y), . . . is
a strictly increasing (if f(x) > x) or a strictly de-
creasing (if f(x) < x) sequence of points. Hence,
(c, d) does not contain any periodic points, which
contradicts the premises. Hence, f is the iden-
tity. ⊓⊔

Lemma 4. For a continuous and terminating
f : R → R, Per(f) = {x ∈ R | f2(x) = x}.

Proof. If f is terminating, then, by Lemma 2,
Per(f) is a closed and connected. Therefore,
Lemma 3 can be applied to f restricted to
Per(f). This shows that Per(f) ⊆ {x ∈ R |
f2(x) = x}. The other inclusion follows from
the fact that any x which satisfies f2(x) = x has
period 1 or 2. ⊓⊔

As in the proof of Lemma 2, let Ci denote the
set of fixed points of f i. From the previous lem-
mas it follows that for continuous and terminat-
ing f ,

Per(f) = C1 ∪C2,

and that either C2 \ C1 is empty and C1 is non-
empty or C2 \ C1 is non-empty and C1 is a sin-
gleton with the points of C2 \C1 appearing sym-
metrically around C1.
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Sharkovskĭı’s theorem [1], one of the most fun-
damental result in dynamical system theory, tells
us that for a continuous and terminating f : R →
R only periods 1, 2, 4, . . . , 2d can appear for some
integer value d. We remark that Lemmas 1–
4 hold for arbitrary continuous functions, not
only for functions with a semi-algebraic graph,
and that therefore the previous lemma has the
following corollary which strengthens the previ-
ously mentioned result of Sharkovskĭı’s.

Corollary 2. If f : R → R is continuous and
terminating, then f can only have periodic points
with periods 1 and 2. ⊓⊔

Further on, in the proof of Theorem 3, for func-
tions f for which Per(f) is R, we only have to
investigate Per(f). For other f we have to do
further tests. Hereto, we now describe the con-
struction of a continuous function f̃ from a given
continuous function f .

Let C denote the set Per(f), which, by
Lemma 2 and the above assumption, we can take
to be [a, b], [a,+∞) or (−∞, b].

First, we collapse C to {a} if C is bounded; to
{a} if C is [a,+∞); and to {b} if C is (−∞, b].
Let us first consider the case C = [a, b]. Let
f∈C = {x ∈ R | f(x) ∈ C}, f<C = {x ∈ R |
f(x) < a}, and f>C = {x ∈ R | f(x) > b}.

We define the continuous function f1 on R as
f1(x) :=






























f(x) if x ∈ f<C and x < a

f(x) − (b− a) if x ∈ f>C and x < a

f(x+ (b− a)) if x ∈ f<C and x > a

f(x+ (b− a)) − (b− a) if x ∈ f>C and x > a

a if x ∈ f∈C .

This construction is illustrated in Figure 3.
Let us next consider the case C = [a,+∞).

Here, the function f1 on R is defined as
{

f(x) if x ∈ f<C and x < a

a if x ∈ f∈C and x < a or if x ≥ a.

In the case C = (−∞, b], f1 is defined similarly
to the previous case. Finally, we define

f̃(x) := f1(x+ α) − α,

where α is a or b, depending on the case.
The following lemma is readily verified.

Lemma 5. Let f : R → R be a function. We
have fk(R) = Per(f) if and only if f̃k(R) =
{0}. ⊓⊔

As mentioned in the previous section, in the
area of dynamical systems, a function f̃ is called
nilpotent if f̃k(R) = {0} for some integer k. The
following lemma’s show that this is a decidable
property in our setting. For continuous piecewise
affine functions this result was already stated
(without proof) [3]. So, we extend this result to
continuous semi-algebraic functions and further-
more show that the decision procedure is express-
ible in FO and therefore decidable for continuous
semi-algebraic functions.

Lemma 6. There is an FO sentence that
expresses whether a continuous semi-algebraic
function f : R → R is nilpotent.

Proof (sketch). We describe the algorithm
nilpotent(input f) to decide nilpotency of con-
tinuous semi-algebraic functions f : R → R and
later on argue its correctness.

Algorithm nilpotent(input f):
Step 1. Compute the set {x ∈ R | f2(x) = x}.
If this set differs from {0}, then answer no, else
continue with Step 2.

Step 2. Compute the set B = {r | γBB(r)},
where γBB(r) is the formula that defines positive
real numbers r that satisfy one of the following
three conditions:

1. limx→−∞ f(x) and limx→+∞ f(x) are con-
stants and f((−∞, r]) ⊂ (−r,+r) and
f([r,+∞)) ⊂ (−r,+r);

2. limx→−∞ f(x) = +∞ and limx→+∞ f(x) is
a constant and f([r,+∞)) ⊂ (−r,+r);

3. limx→−∞ f(x) is a constant and
limx→+∞ f(x) = −∞ and f((−∞, r]) ⊂
(−r,+r);

If B is empty, answer no, else compute the
infinum r0 of B and continue with Step 3.
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graph(f1)

a

aba

a

b

graph(f)

Figure 3: Illustration of the construction of f1 (right) from f (left).

Step 3. Let g be the function defined as g(x) :=
f(x) if −r0 < x < r0 and g(x) := f(−r0) if
x ≤ −r0 and g(x) := f(r0) if x ≥ r0. Take r1
larger than r0 and max {|g(x)| | x ∈ R}.

If for g there exists a positive real number ε
such that

1. g is constant 0 on (−ε,+ε), or

2. g is constant 0 on (−ε, 0) and has a right
tangent with strictly negative slope in 0, or

3. g is constant 0 on (0,+ε) and has a left tan-
gent with strictly negative slope in 0,

then continue with Step 4, else answer no.

Step 4. If for all x > 0, g(x) < x and g2(x) < x

and for every x < 0, g(x) > x and g2(x) > x

holds, then answer yes, else answer no.

We now prove the correctness of the algorithm
nilpotent. Clearly, if f has periodic points
other than 0, then f cannot be nilpotent. This
justifies the test in Step 1.

In Step 2, the consistency of the behavior of f
towards −∞ and +∞ with nilpotency is tested.
From the fact that f has a semi-algebraic graph
it follows that the set B, computed in Step 2,
is empty if (1) limx→−∞ f(x) = −∞ or (2)
limx→+∞ f(x) = +∞ or (3) limx→−∞ f(x) =
+∞ and limx→+∞ f(x) = −∞.

In Case (1), there exists a M > 0 such that
f is strictly increasing on (−∞,−M ] and for
all x < −M , we have (1a) f(x) < x < 0 or
(1b) x < f(x) < 0. Because graph(f) is semi-
algebraic such an M exists (this follows from the

Monotonicity Theorem [16]). Because of the test
in Step 1, the case f(x) = x cannot occur any
more. In Case (1a), there exists an infinite orbit
· · · < f2(x) < f(x) < x < 0, hence f is not nilpo-
tent. In Case (1b), there exist arbitrary long or-
bits converging to x, namely from any point in
the sequence · · · < f−2(x) < f−1(x) < x < 0.
Hence f is not nilpotent. For Case (2) a sim-
ilar analysis can be made, again depending on
the graph of f being situated below or above
the diagonal. Also in Case (3), we have this
phenomena, this time depending on the graph
of f2 being situated below or above the diag-
onal. Here, there exists an M > 0 such that
f is strictly decreasing on (−∞,−M ] and on
[M,+∞) and for all x > M , f(x) < 0 < x

and (3a) x < f2(x) or (3b) x > f2(x). Be-
cause of the test in Step 1, there is no third
case. In Case (3a), there exists an infinite orbit
· · · < f3(x) < f(x) < x < f2(x) < f4(x) < · · · ,
hence f is not nilpotent. In Case (3b), there ex-
ist arbitrary long orbits starting from a point in
the sequence · · · < f−3(x) < f−1(x) < 0 < x <

f−2(x) < f−4(x) < · · · . Hence f is not nilpo-
tent. So, if B is empty, then f is nilpotent.

If B is non-empty, on the other hand, then
f((−∞, r0]) ⊂ (−r0, r0) and f([r0,+∞)) ⊂
(−r0, r0), and for the function g, defined in Step
3, this also holds if you replace r0 by r1 and fur-
thermore g([−r1,+r1]) ⊆ [−r1,+r1] holds. By
the choice of r1, it is clear that f is nilpotent if
and only if g is nilpotent.

In Steps 3 and 4, the consistency of the behav-
ior of g in a neighborhood of 0 with nilpotency is
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tested. In the Cases (1), (2) and (3), g2(x) = 0
holds for a small ε-environment of 0. Every dif-
ferent behavior of g in the neighborhood of 0,
leads to infinitely long or arbitrarily long orbits
of g (and hence of f). We omit the details, but
this analysis can be done as in the case of Step
2.

The condition in Step 4, expresses the global
convergence of g [2], which is equivalent to nilpo-
tency of g because g2 maps a neighborhood of 0
to 0 [3].

Finally, we remark that all computations and
tests performed in the algorithm nilpotent, are
expressible by a FO formula over the binary re-
lation representing the graph of the input f . ⊓⊔

Proof of Theorem 3. We describe a decision
procedure terminate that on input a function
f : R → R, decides whether the transitive clo-
sure of graph(f) terminates after a finite number
of iterations.

Algorithm terminate(input f):
Step 1. Compute the sets C1 = {x | f(x) = x}
and C2 = {x | f2(x) = x}. If C2 is an interval
and if C1 is a point with C2 \ C1 symmetrically
around it or if C2 \ C1 is empty, then continue
with Step 2, else answer no.

Step 2. If C2 is R, answer yes, else compute the
function f̃ (as described before Lemma 5) and
apply the algorithm nilpotent in the proof of
Lemma 6 to f̃ and return the answer.

The correctness of this procedure follows from
Lemmas 4, 5 and 6. It should be clear that all
ingredients can be expressed in FO. ⊓⊔

We use the function f1, given in Figure 1 in the
Introduction, and the function f2, given in Fig-
ure 2, to illustrate the decision procedure ter-

minate(input f). For f1, C1 ∪ C2 is {0, 1}, and
therefore f1 doesn’t survive Step 1 and termi-

nate(input f1) immediately returns no. For f2,
C1 ∪ C2 is {0}, and therefore we have f̃2 = f2.
Next, the algorithm nilpotent is called with in-
put f2. For f2, the set B, computed in Step 2 of
the algorithm nilpotent, is non-empty and r0
is 1. So, the function g in Step 3 will be f2 again
and r1 is 1. Since g is identical zero around the

origin, finally the test in Step 4 decides. Here, we
have that for x > 0, g(x) < x and also g2(x) < x

since x − 1
4 < x and x − 1

2 < x. For x < 0, we
have that both g(x) and g2(x) are identical zero
and thus the test succeeds also here. The output
of nilpotent on input f2 and therefore also the
output of terminate on input f2 is yes.

For a continuous and terminating function,
the periods that can appear are 1 and 2 (see
Lemma 3). In dynamical systems theory, find-
ing an upper bound on the length of the run-
ups in terms of some characteristics of the func-
tion, is considered to be, even for piecewise affine
functions, a difficult problem [14]. Take, for
instance, the terminating continuous piecewise
affine function that is constant towards −∞ and
+∞ and that has turning points (0, 1

3 ), (1
3 ,

2
3−ε),

(4
9 ,

4
9), (5

9 ,
5
9), (2

3 ,
1
3), and (1, 2

3), with ε > 0 small.
Here, it seems extremely difficult to find an up-
per bound on the length of the run-ups in terms
of the number of line segments or of their end-
points. The best we can say in this context, is
that from Theorem 3, it follows that also the
maximal run-up can be computed.

Corollary 3. Let f : R → R be a continuous,
terminating semi-algebraic function. The maxi-
mal run-up of a point in R with respect to f is
computable. ⊓⊔

We end this section with a remark concerning
termination of continuous functions that are de-
fined on a connected part I of R. Let f : I → I

be such a function. We define the function f̄ to
be the continuous extension of f to R that is
constant on R \ I. It is readily verified that the
transitive closure of graph(f) terminates if and
only if f̄ is terminating. We therefore have the
following corollary of Theorem 3.

Corollary 4. Let I be a connected part of R.
There is an FO expressible decision procedure
that decides whether the transitive closure of the
graph of a continuous semi-algebraic function
f : I → I terminates. ⊓⊔
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5 Logics with transitive closure

restricted to function graphs

In this section, we study fragments of FO+TC
and FO+TCS where the transitive-closure oper-
ator is restricted to work only on the graphs of
continuous semi-algebraic functions from Rk to
Rk. We will focus in particular on k = 1. These
languages bear some similarity with determinis-
tic transitive-closure logics in finite model the-
ory [7].

If ~x and ~y are k-dimensional real vec-
tors and if ψ(~x, ~y) is an FO+TC-formula
(resp. FO+TCS-formula), let γψ be the FO+TC-
sentence (resp. FO+TCS-sentence) γ1

ψ ∧ γ2
ψ,

where γ1
ψ expresses that ψ(~x, ~y) defines the graph

of a function from Rk to Rk and where γ2
ψ ex-

presses that ψ(~x, ~y) defines a continuous function
graph. We can express γ2

ψ using the classical ε-δ
definition of continuity. Therefore, it should be
clear that γ1

ψ and γ2
ψ can be expressed by formu-

las that make direct calls to ψ(~x, ~y). Thus, the
following property is readily verified.

Property 1. Let ψ(~x, ~y) be an FO+TC-formula
(resp. FO+TCS-formula). The evaluation of
ψ(~x, ~y) on an input database A terminates if and
only if the evaluation of γψ on A terminates. ⊓⊔

Definition 6. We define FO+cTC (resp.
FO+cTCS) to be the fragment of FO+TC
(resp. FO+TCS) in which only TC-
expressions of the form [TC~x;~y ψ(~x, ~y) ∧ γψ](~s,~t)
(resp. [TC~x;~y ψ(~x, ~y)∧γψ | σ](~s,~t)) can occur. ⊓⊔

We again use superscript numbers to denote
restrictions on the arities of the relations of which
transitive closure can be taken.

5.1 Deciding termination of the eval-

uation of FO+cTC2 queries

Since, when ψ(x, y) is y = x+1, γψ is true, from
the proof of Theorem 2 the following negative
result follows.

Corollary 5. It is undecidable whether a given
formula in FO+cTCS2 terminates on a given in-
put database. ⊓⊔

We remark that for this undecidability it is
not needed that the transitive closure of continu-
ous functions on an unbounded domain is allowed
(f(x) = x+ 1 in the proof of Theorem 2). Even
when, for example, only functions from [0, 1] to
[0, 1] are allowed, we have undecidability. We can
see this by modifying the proof of Theorem 2 as
follows. For any polynomial p(x1, . . . , x13), let
σp be the FO-expressible stop-condition:

(∃x1) · · · (∃x13)(

13
∧

i=1

((∃yi)(xiyi = 1 ∧ X(1, yi)) ∨

xi = 0 ∨ xi = 1) ∧ p(x1, . . . , x13) = 0).

Since, in consecutive iterations, the function
f̄ , for f : [0, 1] → [0, 1], with f(x) = x

x+1 ,

maps 1 to 1
2 ,

1
3 ,

1
4 , . . ., it is then easy to see that

p(x1, . . . , x13) having an integer solution is equiv-
alent to

[TCx;y graph(f̄) | σp](s, t)

terminating (remark again that the γgraph(f̄) is
true).

The main result of this section is the following.

Theorem 4. It is decidable whether a given for-
mula in FO+cTC2 terminates on a given input
database. Moreover, this decision procedure is
expressible in FO+cTC2.

Proof (sketch). Given a formula ϕ in FO+cTC2

and an input database A, we can decide whether
the evaluation of ϕ on A terminates by first eval-
uating the deepest FO-formulas on which a TC-
operator works on A and then using Theorem 3
to decide whether the computation of transitive
closure halts on this set. If it does not termi-
nate, we answer no, else we compute the result
and continue recursively to less deep occurrences
of TC-operators in ϕ. We continue this until
the complete formula ϕ is processed. Only if we
reach the end and all intermediate termination
tests returned yes, we output yes.

The expressibility of the decision procedure in
FO can also be proven by induction on the struc-
ture of the formula. ⊓⊔
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5.2 A guarded fragment of FO+cTC2

The fact that termination of FO+cTC2-formulas
is expressible in FO+cTC2, allows us to de-
fine a guarded fragment, FO+cTC2

G , of this lan-
guage. Indeed, if ψ is a formula in FO+cTC2

of the form [TC~x;~y ψ(~x, ~y)](~s,~t), let τψ be the
FO+cTC2-sentence that expresses that this TC-
expression terminates (obviously, τψ also de-
pends on the input database). We can now de-
fine the guarded fragment of FO+cTC2, in which
every TC-expression is accompanied by a termi-
nation guard.

Definition 7. We define FO+cTC2
G to be

the fragment of FO+cTC2 in which only TC-
expressions of the form [TC~x;~y ψ(~x, ~y) ∧ τψ](~s,~t)
are allowed. ⊓⊔

The following property follows from the above
remarks.

Property 2. In the language FO+cTC2
G, ev-

ery query terminates on all possible input
databases. Furthermore, all terminating queries
of FO+cTC2 are expressible in FO+cTC2

G. ⊓⊔

5.3 Expressivity results

Even the least expressive of the transitive-closure
logics is more expressive than first-order logic.

Theorem 5. The language FO+cTC2
G is

more expressive than FO on finite constraint
databases.

Proof. Consider the following query Qint on 1-
dimensional databases S: “Is S a singleton that
contains a natural number?”. The query Qint

is not expressible in FO (if it would be express-
ible, then also the predicate nat(x), expressing
that x is a natural number, would be in FO).
The query Qint is expressible in FO+cTC2

G by
the sentence that says that S is a singleton that
contains 0, 1 or an element r > 1 such that
(∃s)(∃t)([TCx;y ψ(x, y) ∧ γψ ∧ τψ(x,y)∧γψ ](s, t) ∧
s = 1 ∧ t = 0), where ϕ(r, x, y) defines the graph
of the continuous piecewise affine function that

maps x to

y =











0 if x ≤ 1
r
,

x− 1
r

if 1
r
< x < 1,

1 − 1
r

if x ≥ 1,

and where ψ(x, y) is the formula (∃r)(S(r) ∧
ϕ(r, x, y)). Remark that γψ is always true. The
sentence τψ(x,y)∧γψ is true when the database is
a singleton containing a number that is 0, 1, or
larger that 1. The function given by ϕ(r, x, y)
is illustrated in Figure 2 for r = 4. The evalu-
ation of this transitive closure is guaranteed to
end after at most ⌈r⌉ iterations and this sentence
indeed expresses Qint since (1, 0) belongs to the
result of the transitive closure if and only if r > 1
is a natural number. ⊓⊔

6 Concluding remarks

We conclude with a number of remarks. One
of our initial motivations to look at termination
of query evaluation in transitive closure logics
was to study the expressive power of FO+TC
compared to that of FO+TCS. As mentioned
in the Introduction, the latter language is com-
putationally complete on linear databases. It is
not clear whether FO+TC is also complete. In
general, we have no way to separate these lan-
guages. But if we restrict ourselves to their frag-
ments FO+cTC2 and FO+cTCS2, the fact that
for the former termination is decidable, whereas
it is not for the latter, might give the impression
that at least these fragments can be separated.
But this is not the case, since equivalence of for-
mulas in these languages is undecidable. In fact,
the expressions used in the proof of Theorem 2,
are expressible in FO+TC (they don’t even use
an input database).

A last remark concerns the validity of the re-
sults in Section 4 for more general settings. Lem-
mas 1– 5 are also valid for arbitrary real closed
fields R. One could ask whether the same is true
for Lemma 6. However, the proof of the cor-
rectness of the FO-sentence which decides global
convergence in Step 4 [2], relies on the Bolzano-
Weierstrass theorem, which is known not to be
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valid for arbitrary real closed fields [4]. Further-
more, we can even prove that no FO-sentence
exists that decides termination of semi-algebraic
functions f : R → R for arbitrary real closed
fields R.
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