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ABSTRACT
We consider spatial databases in the plane that can be de-
fined by polynomial constraint formulas. Motivated by ap-
plications in geographic information systems, we investi-
gate linear approximations of spatial databases and study
in which language they can be expressed effectively. Specif-
ically, we show that they cannot be expressed in the stan-
dard first-order query language for polynomial constraint
databases but that an extension of this first-order language
with transitive closure suffices to express the approximation
query in an effective manner. Furthermore, we introduce an
extension of transitive-closure logic and show that this logic
is complete for the computable queries on linear spatial da-
tabases. This result together with our first result implies
that this extension of transitive-closure logic can express all
computable topological queries on arbitrary spatial databa-
ses in the plane.

Categories and Subject Descriptors
H.2.3 [Database Management]: Languages—Query Lan-
guages

General Terms
Languages, Theory

1. INTRODUCTION
Spatial database systems [1, 6, 9, 17, 18, 27] are concerned
with the representation and manipulation of data that have
a geometrical or topological interpretation. Conceptually,
spatial databases are possibly infinite sets of points in a real
space Rn. The framework of constraint databases, intro-
duced in 1990 by Kanellakis, Kuper and Revesz [19] and
[24], provides an elegant and powerful model for spatial da-
tabases. In the setting of the constraint model, a spatial
database is finitely represented as a Boolean combination
of polynomial equalities and inequalities. The head of the
left arrow depicted in Figure 1 is an example of a spatial
database in the plane that can be described by the formula

(10x)2 + (y − 9)2 ≥ 100 ∧ (10x)2 + (y + 9)2 ≥ 100 ∧ −1 ≤
x ≤ 0 ∧ −9 ≤ 10y ≤ 9.

Several authors have argued that the restriction to linear
polynomial constraints provides a sufficiently general frame-
work for spatial database applications [15, 29, 30]. Indeed,
in geographic information systems (GIS), which is one of the
main application areas for spatial databases, linear approxi-
mations are used to model spatial objects (for an overview of
this field since the early 90’s we refer to [1, 6, 9, 17, 18, 27]).
There are also more pragmatic reasons for the restriction to
linear approximations. Existing implementations of the con-
straint model (see the work on the system DEDALE [12, 13,
15]), are also restricted to linear polynomial constraints, not
only because there is a conceptually easier way to evaluate
queries expressed in the standard first-order query language
for these constraint databases and because there is a slight
gain in data complexity (NC1 while it is NC for arbitrary
polynomial constraints [16]), but mainly because of the ex-
istence of numerous efficient algorithms for geometrical op-
erations on linear figures [26].

Linear approximation of general spatial databases is there-
fore a natural spatial database query that is relevant to spa-
tial database practice (an example of an approximation is
given in Figure 1). We show that the approximation query
cannot be expressed in FO + Poly, the standard first-order
query language of polynomial constraint databases, how-
ever. We therefore turn to the more expressive language
FO + Poly + TC, namely the extension of FO + Poly

with transitive closure. We show that in this language,
for a given bounded spatial database in the plane, a lin-
ear spatial database can be defined that, from a topological
point of view, is homeomorphic to the given database and,
from a metric point of view, approximates the given spatial
database within a specified ε-error margin. For an arbitrary
given spatial database, an homeomorphic linear database
can be defined in FO + Poly + TC. In general, unbounded
spatial databases cannot be approximated linearly.

The language FO + Poly + TC shares with most program-
ming languages the disadvantage that the evaluations of its
formulas are not guaranteed to terminate. However, if the
evaluation of an FO + Poly + TC formula on a constraint
database input terminates, it evaluates to an output within
the constraint model. More specifically, we show that the
evaluation of our approximation query terminates and that
it works correctly. In the course of proving these results, we



Figure 1: A spatial database and an ε-approximation

also show that the tangent line in a point to a curve in a
spatial database can be expressed in FO+Poly and that as
a consequence, for instance, cusp points and corner points
of curves can be identified in FO + Poly.

It should be noted that it is not obvious (in fact, this prob-
lem is open) that the approximation query, or any other
computable query for that matter, is expressible in FO +
Poly + TC. However, if the transitive closure operation
is extended with a stop condition, we denote this language
with FO + Poly + TC

Σ, then it is not difficult to see that
FO + Poly + TC

Σ is computationally complete on finite
spatial databases (with rational coordinates). Using recent
results by Vandeurzen et al. on the encoding of linear spatial
databases by means of finite spatial databases [3, 8, 31] (this
encoding and the corresponding decoding are expressible in
FO + Poly), we show that FO + Poly + TC

Σ is also com-
putationally complete on linear spatial databases (that can
be described by linear polynomials with integer or rational
coefficients).

We also show that FO + Poly + TC allows for the expres-
sion of aggregation operators, such as the area of regions and
the length of curves, on linear spatial databases (that may
even be described by linear polynomials with algebraic coef-
ficients). Benedikt and Libkin [4] have already shown that
these aggregate operators are not first-order definable, but
that they can be expressed in suitable extensions of FO +
Poly.

We will also show a refinement of our approximation re-
sult, to the effect that the resulting approximation can be
guaranteed to be definable by means of linear polynomials
with integer coefficients. This refinement implies that FO+
Poly + TC

Σ is computationally complete on arbitrary pla-
nar spatial databases for what concerns the Boolean topo-
logical queries. For a number of spatial database applica-
tions exact metric information is not important and only
topological properties of the spatial data are relevant. In
such applications, only topological queries are of interest.
This class of queries has received ample attention in the
constraint database literature (for an overview we refer to
Chapter 10 in [24] and references therein [23]).

As an example, we examine the topological connectivity
query and show that the connectivity test for arbitrary spa-
tial databases is expressible in FO + Poly + TC.

The question remains open whether or not FO+Poly+TC

is complete for all computable queries on arbitrary planar
spatial databases in the polynomial constraint model.

This paper is organized as follows. In Section 2, we define
spatial databases and the languages FO + Poly and FO +
Poly+TC

Σ. We also review some topological properties of
spatial databases. In Section 3, the expression of the linear
approximation of a spatial database is given and proven to
work correctly. Also results concerning the expression of
tangent lines in FO + Poly and of aggregation operators
for linear databases in FO + Poly + TC are discussed in
this section. Finally, Section 4 contains all the completeness
results.

2. PRELIMINARIES AND DEFINITIONS
In this section, we define spatial databases and the standard
first-order query language for spatial databases. We also
define two extensions of this query language with transitive
closure. Finally, we review some basic properties concerning
the local topological behavior of spatial databases.

2.1 The constraint model for spatial databases
Let R denote the set of the real numbers, and R2 the real
plane.

Definition 1. A spatial relation is a geometrical figure in
R2 that can be defined as a Boolean combination (union,
intersection and complement) of sets of the form {(x, y) |
p(x, y) > 0}, where p(x, y) is a polynomial with integer co-
efficients in the real variables x and y. A spatial database is
a finite sequence of spatial relations.
A Z-linear (resp. A-linear) spatial relation is a spatial re-
lation that can be defined in terms of linear polynomials
with integer (resp. algebraic) coefficients. A Z-linear (resp.
A-linear) spatial database is a finite sequence of Z-linear
(resp. A-linear) spatial relations.

We remark that in mathematical terminology, spatial rela-
tions are called semi-algebraic sets. Linear spatial relations
are also referred to as semilinear sets. Every Z-linear rela-
tion is also A-linear, but the converse isn’t true, e.g., the
A-linear relation {(x, y) ∈ R2 | y =

√
2} is not Z-linear.

Note that p(x, y) = 0 is used to abbreviate ¬(p(x, y) >
0) ∧ ¬(−p(x, y) > 0).



In this paper, we will use FO+Poly, the relational calculus
augmented with polynomial inequalities as standard spatial
query language.

Definition 2. A formula in FO + Poly is a first-order
logic formula ϕ(x1, . . . , xn, S1, . . . , Sm) built, using the log-
ical connectives and quantifiers, from two kinds of atomic
formulas: Sℓ(x, y) and p(x1, . . . , xk) > 0, where each Sℓ, for
1 ≤ ℓ ≤ m, is a binary relation name representing a spatial
relation from the input database and p(x1, . . . , xk) is a poly-
nomial in the variables x1, . . . , xk with integer coefficients.

Variables in such formulas are assumed to range over R.
Tarski’s quantifier-elimination property for first-order logic
over the reals guarantees that FO + Poly formulas can be
evaluated effectively on spatial database inputs and their
result is a spatial relation (in Rn) that also can be described
by means of polynomial constraints over the reals [7, 28].

If ϕ(x1, . . . , xn, S1, . . . , Sm) is an FO + Poly formula, a1,
. . . , an are reals, and (A1, . . . , Am) is a spatial database, we
denote by (a1, . . . , an, A1, . . . , Am) |= ϕ(x1, . . . , xn, S1, . . . ,
Sm) that (a1, . . . , an, A1, . . . , Am) satisfies ϕ.

2.2 Transitive closure logic
A second language that we will use is FO + Poly + TC, an
extension of FO + Poly with recursion.

Definition 3. A formula in FO +Poly +TC is a formula
built in the same way as an FO + Poly formula, with the
following extra formation rule: if ψ(x1, . . . , xk, y1, . . . , yk,
S1, . . . , Sm) is a formula, ~s and ~t are k dimensional vectors
of variables, then

[TC~x,~yψ(~x, ~y, S1, . . . , Sm)] (~s,~t),

is also a formula whose free variables are ~s and ~t. It is
assumed that ~x and ~y are pairwise distinct.

We must evaluate FO +Poly + TC formulas on spatial da-
tabases in an effective way. Moreover, in analogy with FO+
Poly formulas, we want as output a polynomial constraint
description of the result of the evaluation.

For the first-order subformulas of FO + Poly + TC, this
is done as for FO + Poly: the description of the database
relations are plugged in to the formula, and quantifier elim-
ination is employed.

For a formula of the form [TCψ](~s,~t), we produce constraint
descriptions of the successive stages TCiRψ in the computa-
tion of the transitive closure, as follows. The binary (vector)
relation Rψ is defined, given a database D = (A1, . . . , Am),

as {(~a,~b) | (~a,~b,D) |= ψ(~x, ~y, S1, . . . , Sm)}. We put the first
stage TC1Rψ := Rψ, and for i > 1, the stage TCiRψ equals
TCi−1Rψ ∪ {(~x, ~y) | (∃~z)((~x, ~z) ∈ TCi−1Rψ ∧ (~z, ~y) ∈ Rψ)}.
For each i, we can effectively check, whether

TCiRψ = TCi−1Rψ.

If we find such an i, we can output a constraint description
of TCiRψ (or TCi−1Rψ for that matter) as the result. If

we never find such an i, the computation does not end and
the result is undefined. Finally, we check whether the pair
of vectors (~s,~t) is in the result.

An example when no i exists is the following. Consider the
relation R = {(x, y) ∈ R2 | y = 2x}. At stage i, we have
the relation TCiR = {(x, y) ∈ R2 | (∃j)(0 ≤ j ≤ i and y =
2jx)}.

We now extend the language FO + Poly + TC with a stop
condition.

Definition 4. The language FO+Poly+TC
Σ is defined as

FO+Poly+TC, except that instead of the transitive closure
formation rule, we now have a the following formation rule.
If ψ(x1, . . . , xk, y1, . . . , yk, S1, . . . , Sm) is a formula, ~s and ~t
are k dimensional vectors of variables, then

[TC~x,~yψ(~x, ~y, S1, . . . , Sm) |T σ(S1, . . . , Sm, T )] (~s,~t),

is also a formula with free variables ~s and ~t, and where T
denotes a new binary relation name representing a stage
in the computation of the transitive closure of Rψ. The
stop condition σ is a formula with may use T (~x, ~y) as extra
atomic formula. It is assumed that ~x and ~y are pairwise
distinct.

The evaluation of an FO+Poly+TC
Σ formula is as follows.

For the first-order subformulas of FO + Poly + TC
Σ, this

is done as for FO + Poly.

For a formula of the form [TCψ |T σ](~s,~t), we again produce
constraint descriptions of the successive stages TCΣ

i Rψ in
the computation of the transitive closure, as follows. The
binary (vector) relation Rψ is defined as before, and we put
the first stage TCΣ

1 := Rψ. Then for i > 1, stage TCΣ
i Rψ

equals TCΣ
i−1Rψ ∪{(~x, ~y) | (∃~z)((~x, ~z) ∈ TCΣ

i−1Rψ ∧ (~z, ~y) ∈
Rψ)}.

The difference with the evaluation of an FO + Poly + TC

formula is that for each i we check (again, this can be done
in an effective way) whether

TCΣ
i Rψ = TCΣ

i−1Rψ,

or, whether

(D,TCΣ
i ) |= σ(S1, . . . , Sm, T ).

If we find such an i, we can output a constraint description
of TCiRψ as the result. If we never find such an i, the com-
putation does not end and the result is undefined. Finally,
we check whether the pair of vectors (~s,~t) is in the result.

Remark that FO + Poly + TC is included in FO + Poly +
TC

Σ. Indeed, when σ := false we obtain the definition
of FO + Poly + TC. It is an open problem whether the
inclusion is strict.

2.3 Spatial relations are locally conical
In this section, we discuss a fundamental topological prop-
erty of spatial databases. First, we introduce the metric and
topological terminology needed in the remainder of the pa-
per. The Euclidean distance between two points p, q ∈ R2



will be denoted by d(p, q). If p is a point of R2 and ε > 0
a real number, we denote by B2(p, ε) the closed disk with
center p and radius ε and by S1(p, ε) its boundary. A home-
omorphism h : R2 → R2 is a continuous bijective function
whose inverse is also continuous. An isotopy of the plane is
a homeomorphism of the plane that is isotopic to the iden-
tity. Two homeomorphisms f and g are isotopic if there is
a continuous function F : R2 × [0, 1] → R2 such that for
each t ∈ [0, 1], the function Ft : R2 → R2 : p 7→ F (p, t) is
a homeomorphism and F0 is f and F1 is g. Two sets are
said to be isotopic if there is an isotopy that maps one to
the other. Finally, if A is a spatial relation, we denote its
topological border by ∂A, its topological closure by A and
its interior by A◦.

By a cone with top p = (xp, yp) and base B ⊆ R2, we
mean the set {λ · (xp, yp) + (1 − λ) · (x′, y′) | 0 ≤ λ ≤
1 and (x′, y′) ∈ B}. Spatial relations have the following
fundamental topological property.

Property 1. [5, Theorem 9.3.5] For a spatial relation A
and a point p in the plane there exists a radius εA,p such
that for each 0 < ε < εA,p, B

2(p, ε) ∩ A is isotopic to the
cone with top p and base S1(p, ε) ∩A.

We call such a radius εA,p, a cone radius of p in A. If A is
clear from the context, we just call it a cone radius of p and
denote it by εp. We remark that a spatial relation is also
conical towards infinity (or around the point ∞), i.e., there
exists a radius ε∞ such that the spatial relation is conical
outside the disk B2((0, 0), ε∞). The authors have shown the
following expressiveness property.

Property 2. [11] For a given spatial relation A and point
p, there exists an FO + Poly formula which defines a cone
radius εp. For a given spatial relation A, there exists an
FO + Poly formula which defines a radius ε∞.

More concretely, the value defined by this FO + Poly for-
mula is one third of the maximal value such a cone radius
can take (and three times the minimal value for the point
∞).

The bases of the cones are finite unions of points and open
arc segments on the circles S1(p, εp). Moreover, it can be
shown that only a finite number of points p in the plane
have a cone with base different from the following six types:
two points on the circle, a closed arc segment on the circle
(i.e. the union of an open arc segment and two points) and
the circle itself for p belonging to the spatial relation A, and
the complements (on the circle) of these three types, for p
belonging to the complement of A. The points which have a
cone of one of these six types, are called regular points of A.
Non-regular points are called singular. It is known that a
spatial relation has only a finite number of singular points.
We also remark that the regularity/singularity of a point is
expressible in FO + Poly [21].

Since Property 2 is only proven for planar spatial databases
and the construction of the approximation in the next sec-
tion heavily depends on this result, our results are restricted

to planar spatial databases. It is not clear if this Property
also holds for spatial databases in higher dimensions.

3. LINEAR APPROXIMATION OF PLANAR
SPATIAL DATABASES

First, we define the concept of an ε-approximation of a spa-
tial relation, i.e., a linear spatial database that, from a topo-
logical point of view, is isotopic to a given spatial relation
and, from a metric point of view, approximates it within an
ε-error margin.

Definition 5. Let A be a spatial relation, (A1, . . . , Am) a
spatial database and ε > 0 a real number.

We call an A-linear spatial database (B1, . . . , Bm) an (al-
gebraic) ε-approximation of (A1, . . . , Am) if there exists an
isotopy h of the plane such that h(Ai) = Bi and if for ev-
ery point p ∈ ∂Ai there exists a point q ∈ ∂Bi such that
d(p, q) ≤ min {ε, εAi,p} (where εAi,p is the cone radius of p
in Ai), for every 1 ≤ i ≤ m. We call an A-linear spatial re-
lation B an (algebraic) ε-approximation of A if the database
(B) is an ε-approximation of (A). If an ε-approximation of a
spatial database or a spatial relation is furthermore Z-linear,
we call it a rational ε-approximation.

As we will show, ε-approximations always exists for bounded
spatial relations and databases. This is no longer true for
unbounded spatial relations. Consider e.g., the unbounded
spatial relation {(x, y) ∈ R2 | y = x2}. It is easy to see that
this parabola cannot be approximated by a finite number
of line segments, and hence has no ε-approximation for any
ε > 0.

We first show that approximation cannot be expressed in
FO + Poly.

Proposition 3.1. Let ε > 0 be a real number. A query
that returns an ε-approximation of a spatial relation is not
expressible in FO + Poly.

Proof. Let R be a binary relation over the reals. Let
ϕ be the query on R that returns the corner points of an
ε-approximation of the circle through the points of R if R
consists of three non-collinear points and that returns R
itself in any other case. Clearly, the construction of a circle
through three points is expressible in FO+Poly. The same
holds for the selection of the corner points of a linear spatial
relation (see also Lemma 3.3 of the next section). Hence, if
we assume that an ε-approximation can be defined in FO +
Poly, then ϕ is also expressible in FO + Poly. However,
the number of corner points, |ϕ(R)|, can be made arbitrarily
large by choosing R to consist of three points far enough
apart points. This contradicts the Dichotomy Theorem [3],
which guarantees the existence of a polynomial pϕ such that
|ϕ(R)| < pϕ(|R|) on any finite relation R.

3.1 Effective algebraic approximations
We now show that an ε-approximation can be expressed in
classical FO + Poly + TC (i.e., FO + Poly + TC without



the use of stop conditions). In the course of doing so we will
also show that the tangent line in a point to a semi-algebraic
curve can be expressed in FO + Poly (if it exists). More
specifically, let A be a spatial relation and p be a point on
a curve of ∂A. It is a well-known fact of algebraic geometry
that the left and right tangent half-line in p always exist [2].
The following property shows how these half-lines can be
defined in FO + Poly. For a proof sketch we refer to the
Appendix.

Lemma 3.2. Let A be a spatial relation and p = (xp, yp)
be a point of ∂A whose cone is based on two points. There
exists a formula ϕtangent(S, x, y, u, v) in FO+Poly such that
(A, xp, yp, a, b) |= ϕtangent(S, x, y, u, v) if and only if the line
a(x− xp) + b(y − yp) = 0 is the left or right tangent line to
∂A in p.

Proof. Let A be a spatial relation and p = (xp, yp)
be a point of ∂A as in the statement of the lemma. The
desired formula ϕtangent can be written as a disjunctionW4

i=1
ϕitangent, where, (A,xp, yp, a, b) |= ϕitangent(S, x, y, u, v)

if and only if the line a(x−xp)+b(y−yp) = 0 is the tangent
line in p to A, in the ith quadrant of the plane in p.

Since all formulas ϕitangent are similar, we only describe the
case of the first quadrant of p. The cone of p is based on
two points, hence, locally in the first quadrant, each of the
two branches of ∂A in p is defined by a single polynomial
equation P1(x, y) = 0, resp. P2(x, y) = 0.

We further assume that locally only the branch of ∂A, de-
fined by P1(x, y) = 0 lies in the first quadrant of p (if the
two branches are located in the first quadrant, a further case
analysis is required). In the first quadrant, the right par-
tial derivative limx↓xp

∂P1

∂x
(xp, yp) = a, and the left partial

derivative limy↓yp

∂P1

∂y
(xp, yp) = b exist, and (a, b) 6= (0, 0).

Assume that a 6= 0 and b 6= 0 (the wanted formula will be
a disjunction of three disjuncts, where each disjunct cor-
responds to either a 6= 0 ∧ b 6= 0, a = 0 ∧ b 6= 0, or,
a 6= 0 ∧ b = 0). The Implicit Function Theorem guaran-
tees the existence of two differentiable functions g(x) and
f(y) such that locally, in the first quadrant, P1(x, g(x)) = 0,
and P1(f(y), y) = 0. This implies that

dg

dx
(xp) = −a

b
and

df

dy
(yp) = − b

a
.

We express this by an FO + Poly formula ϕ1
tangent, which

expresses the existence of a number δ > 0 such that for each
x′, y′ with xp < x′ < xp + δ and yp < y′ < yp + δ,

|p1 − q1| < ε(x′ − xp),
|p2 − q2| < ε(y′ − yp),

where p1 and p2 are the intersection points of the line a(x−
xp) + b(y − yp) = 0 with the lines x = x′ and y = y′ respec-
tively, and q1 = |g(x′) − yp| and q2 = |f(y′) − xp| are the
intersection points of ∂A with the lines x = x′ and y = y′

respectively. Hence, ϕ1
tangent defines the coefficients of the

tangent half-line in p to ∂A in the first quadrant. Note that,
since all multiples of λ · (a, b) satisfy the formula ϕ1

tangent,
we select the one such that λ · (a+ b) = 1.

x′

y′

(xp, yp)

P1(x, y) = 0

a(x − xp) + b(y − yp) = 0

q1

p1

p2

p2

Figure 2: Illustration of the definition of the tangent

line

The formula ϕtangent(S, x, y, u, v) defines the tangent lines
to a curve in a point. Basically, there are three possible
configurations of the left and right tangent line.

• First, they can be collinear and oriented in opposite direc-
tions; in this case there exists a unique tangent line to ∂A
in p.
• Second, they can be collinear and oriented in the same
direction; in this case p is a cusp point of ∂A.
• Third, the left and right tangent line can form a constant
angle in p. In this case two different algebraic curves of ∂A
meet in p, and we call p a corner point of ∂A or A.

Lemma 3.3. Let A be a spatial relation. The cusp points,
the corner points and the points with a certain fixed tangent
line to ∂A can be defined in FO + Poly.

Before turning to the main result of this section, we remark
that cusp and corner points of a spatial relation are finite in
number [2].

Theorem 3.4. Given ε > 0 and a spatial database (A1,
. . . , Am) in which each Ai is bounded, there exists an FO +
Poly + TC formula which defines an algebraic ε-approxim-
ation of A1, . . . , Am.

Proof. We first discuss the case m = 1 in considerable
detail and next sketch the case m > 1.
• m = 1: Let A be a bounded spatial relation, and ε >
0 a real number. The wanted formula performs two main
operations: first, locally within ε-environments it rectifies A
around its singular points, its cusp points, its corner points
and points on a non-linear curve with a vertical tangent
line to ∂A; secondly, outside these ε-environments (where
A behaves smoothly) it computes an ε-approximation. As
we will show, the first operation can be performed in FO +
Poly, whereas the second needs the additional power of the
transitive closure.

For the first operation, we determine in FO + Poly the sin-
gular points of A (using Property 2), the cusp points, the



corner points and the points on a non-linear curve with a ver-
tical tangent line to ∂A (using Lemma 3.3). For such points
p, we compute the minimum of ε and the cone radius εp of p
(given by Property 2). Next, we replace B2(p,min {ε, εp})∩
A by the cone with top p and base S1(p,min {ε, εp}) ∩ A.
This locally rectifies A around these points within an ε-error
margin. Let the union of the interiors of all the above balls

B2(p,min {ε, εp}) be called B, and denote A \ B by bA.

The part of ∂A in bA is a finite union of simple algebraic
curve segments, which we denote by γ. The set γ no longer
has singular points, cusp points or corner points (except for
the endpoints). It can also no longer contain closed curves
(i.e., curves homeomorphic to the unit circle), since such
closed curves contain at least two points with a vertical tan-
gent line. We further remark that, apart from the endpoints,
each point of γ has a unique tangent line to γ. Consider the
function E : γ → R+ : p 7→ εA,p, where εA,p is the cone
radius of p in A given by Property 2. The mapping E is a
continuous semi-algebraic function and therefore maps the
compact set γ onto a compact subset E(γ) of R+. The set
E(γ) is therefore closed and bounded in R+ and as a conse-
quence has a minimum element ε0. Let ε∗0 be the minimum
of the input value ε and ε0. Remark that ε∗0 can be defined
in FO + Poly.

We now construct in FO+Poly+TC linear ε-approximations
of the curves in γ, by walking with steps of length ε∗0 along
these curves. For this we define in FO + Poly the binary
point relation Step as {(p, q) ∈ γ × γ | d(p, q) = ε∗0}. Let
∂γ denote the set of endpoints of the curves in γ. Next, we
define the set

{p ∈ γ | (∃q) ∈ ∂γ and (p, q) ∈ TC(Step)}.

This set is finite and will be the set of corner points of the ε-

approximation of bA. Note that no stop condition is needed,
because the transitive closure of the relation Step termi-
nates. We define the neighbors of a corner point p, as those
corner points q, such that no other corner point r satisfies
d(p, r) < d(p, q) and d(q, r) < d(p, q). It is clear that a cor-
ner point p has always two neighbors, except when p ∈ ∂γ,
in which case it has only one.

Now let (a, b) be the coefficients of the tangent line to A
in p, as defined by ϕtangent of Lemma 3.2. The coefficients
of the line perpendicular to the tangent line in p to A (call
this line ℓ) are then given by the pair (−b, a). Let q be
a neighbor on γ of p, let H be the half plane contain-
ing q and bounded by ℓ. We now replace the intersection
B2(p, d(p, q)) ∩ A ∩H by the cone with top p and base the

intersection S1(p, d(p, q)) ∩ A ∩ H . Let bAε be the union

of the semi-algebraic sets constructed from bA by perform-
ing the above procedure for each corner point, and of the
semi-algebraic set B, which is previously defined. We will

now show that the semi-algebraic set bAε is indeed an ε-
approximation of the given spatial relation A.

It is clear that bAε is an A-linear spatial relation. Indeed,
since γ consists of a finite number of compact curve seg-
ments, there exists a bound on the lengths of these curve
segments [2, Propsition 4.6.10]. As a consequence, the num-
ber of steps needed to step over a curve in γ, starting from

p ∈ ∂γ and arriving closer than ε to the other endpoint
q ∈ ∂γ, is also bounded. This means that only a finite
number of stages in the computation of the transitive clo-
sure are needed to find the corner points of γ. These corner
points, together with the singular points, cusp points, points
on a non-linear curve with vertical tangent line are finite.
Moreover, locally around these finitely many points linear
constructions are done. This gives rise to a linear spatial
relation.

It is also clear from the construction of the spatial relation
bAε that the set bAε satisfies the distance condition in Defini-
tion 5.

Finally, the set bAε is isotopic to A. Lemma 1 guarantees
locally the existence of isotopies, mapping the database A
locally to the cones, which are the building blocks in the con-

struction of bAε. Using standard techniques from topology in
R2, it can be shown that these isotopies can be merged into

a single isotopy h of the plane, such that h(A) = bAε [25].

Hence, bAε is an ε-approximation of A.
• m > 1: If the spatial database contains more than one
relation, we can follow a similar strategy, except that the
interactions between the different input relations have to
be taken into account. First, for an input database (A1,
. . . , Am), we compute 2m spatial relations (in FO + Poly),
namely, every set

Aα1

1 ∩Aα2

2 ∩ · · · ∩Aαm
m ,

where Aαi
i can be Ai or Aci , the complement of Ai. Then we

start, as in the case m = 1, by determining in each of these
2m sets the “significant points” (i.e., the singular points,
cusp points, corner points and points on a non-linear curve
with a vertical tangent line). For each such point p, we
determine its cone radius with respect to the sets where p is
significant and let εp be equal to the minimum of the thus
obtained values. In each of the 2m sets we uniformly do a
local rectification in B2(p,min {ε, εp}). Then, as in the case
m = 1, what remains to be approximated is located inD, the
complement in the plane of the union of the above mentioned
balls. In each of the 2m sets, the part lying in D consists
of a finite union of simple algebraic curve segments. For
each of the 2m sets a minimal step value ε∗0,i is determined
(see the case m = 1). We take ε∗0,i to be 1 for sets with no
curves. Then we let ε∗0 be equal to the minimum of {ε∗0,1,
. . . , ε∗0,2m}. Then the curves are approximated uniformly (in
all the sets in which they appear) using this value ε∗0 (again,
as in the case of m = 1 by an FO + Poly + TC formula).
Since all approximations are done uniformly, all topological
relations between the different sets are respected and the
approximations of the individual sets Ai are obtained as
the union of the appropriate sets among the 2m computed
approximations.

The following property is a direct consequence of the con-
struction in the proof of the previous Theorem 3.4.

Corollary 3.5. Given an A-linear spatial database, the
ε-approximation, defined by the FO + Poly + TC construc-
tion of Theorem 3.4, is the spatial database itself.



Theorem 3.6. There is an FO + Poly + TC formula
that defines, on a given ε > 0 and a given spatial database
(A1, . . . , Am), an A-linear spatial database (B1, . . . , Bm) for
which there is an isotopy h of the plane such that h(Ai) =
Bi, for 1 ≤ i ≤ m.

Proof. (Sketch) We only sketch the proof for m = 1. By
Property 2, there exists an FO+Poly formula that defines a
value εA,∞ such that the spatial relation A is conical towards
∞ outside the disk B2((0, 0), εA,∞). Outside this disk an iso-
topic rectification of A can be defined in FO+Poly. Inside
this disk, a linear database isotopic to B2((0, 0), εA,∞) ∩ A
can be defined in FO + Poly + TC, using Theorem 3.4.
Since the two isotopies above coincide on S1((0, 0), εA,∞),
they form the desired isotopy of the plane.

3.2 Aggregation
If A is a bounded A-linear spatial relation, we denote by
Area(A) the area of A◦, and by Length(A) the total length
of the curves in ∂A.

Proposition 3.7. There exist FO+Poly+TC formulas
that compute for a given bounded A-linear spatial relation
A, the values Area(A) and Length(A).

Proof. (Sketch) Given a linear spatial relation A that
is fully two-dimensional, the set B of its corner points and
singular points can be determined in FO + Poly. From B
a triangular covering of the plane can be computed, namely
by first considering the set of all lines L between two points
of B, and second by constructing the set of triangles T =
{(p1, p2, p3) | pi = L ∩ M, for i = 1, 2, 3 andwith L,M ∈
L}. Next, consider the set of all triangles of T belonging
to A and select only those triangles which do not contain
any other triangle. This construction is in FO + Poly, and
these triangles clearly define a triangulation of A. Moreover,
the area of each triangle in this triangulation of A can also
be determined in FO + Poly. This results in a finite bag
C of real numbers. The sum of the values in C can be
computed in FO + Poly + TC. We show this for the case
where C = {c1 < . . . < cn} is a set (for bags the argument
is similar but more elaborate). Define the binary relation
D = {((x, ci), (x + ci, ci+1)) | x ∈ R and 1 ≤ i < n}. Then
y+ cn is the sum of the elements in C, where y is such that
((0, c1), (y, cn)) belongs to the transitive closure of D. A
similar argument can be used for Length(A).

3.3 Rational approximations
We now refine the previous two theorems to rational ε-
approximations. We need the following technical lemma
concerning the rational approximation of real numbers.

Lemma 3.8. There exists an FO + Poly + TC
Σ formula

that computes, for a given ε > 0 and a given finite set A of
real numbers, a rational ε-approximation of A.

Proof. First we compute the minimal natural number
N , such that εN > 1. This can be done in FO + Poly +
TC

Σ as follows. Let ψ1(x, y) = 0 ≤ x ∧ y = x + 1 and

σ1(ε, T1) = (∃x)((0, x) ∈ T1 ∧ (ε(x− 1) ≤ 1 < εx)). Hence,
the natural number N is defined by the formula Ψ1(x, ε) =
maxx[TCψ1 |T1

σ1](0, x). Let A = A− ∪A+, with Aτ = {x |
sign(x) = τ ∧ x ∈ A}, with τ ∈ {−,+}. From the definition
of N it follows that every element of A lies within distance ε
to a multiple of 1/N . Suppose thatm1 andm2 are the small-
est natural numbers such that A ⊆ [p, q], with p = −m1/N
and q = m2/N . We then construct the sets I+ = [0, m2]∩N,
and I− = [0, m1]∩N. We focus on the set I+, the set I− be-
ing analogous. Let xmax = max{x | x ∈ A+}. Let ψ2 = ψ1,
and σ2(ε, T2) = (∃x)(∃N)((0, x) ∈ T2 ∧ |Nxmax − x| ≤
Nε ∧ Ψ1(N, ε)). Then the set I+ is defined by the for-
mula Ψ+

2 (n,A, ε) = [TCψ2 |T2
σ2](0, n). (The set I− is de-

fined by Ψ−
2 .) Denote the union I− ∪ I+ with I , and let

x ∈ A. The set I is then defined by Ψ2 = Ψ−
2 ∨ Ψ+

2 . We
define the ε-approximation of x as either x itself, in case
that x is a multiple of 1/N , or as the unique multiple of
1/N which is ε close to x, otherwise. We express the first
case as ϕ1(x,A, ε) = (x ∈ A)∧ (Ψ2(x,A, ε)), and the second
case as ϕ2(x,A, ε) = (x ∈ A) ∧ ¬(Ψ2(x,A, ε)). A ratio-

nal ε-approximation bAε is then defined by {â | (â, A, ε) |=
Ψ3(x,A, ε)}, with Ψ3(x̂, A, ε) = (∃x)((ϕ1(x,A, ε)∧ x̂ = x)∨
(ϕ2(x,A, ε) ∧Nx̂ ∈ I ∧ |x̂− xN | ≤ εN)).

Theorem 3.9. Rational ε-approximations of spatial da-
tabases are expressible in FO + Poly + TC

Σ.

Proof. (Sketch)
• m = 1: By Theorem 3.4, an A-linear ε/2-approximation
bAε/2 of A can be defined in FO +Poly +TC. The singular

points and corner points of bAε/2 can be determined by an
FO+Poly formula. The x and y coordinates of the singular

and corner points of bAε/2 form two finite sets of real alge-
braic numbers, which can be approximated by Lemma 3.8
by a rational ε/4-approximation. With these approximated
singular points and corner points a Z-linear relation can be

built that approximates bAε/2 with an ε/2-error margin and
therefore satisfies the restrictions of the statement of this
theorem.
• m > 1: Here, we proceed as in the case m = 1 and
determine in the 2m A-linear approximations, provided by
Theorem 3.4, the singular points and corner points and ap-
proximate these by rational numbers uniformly in all of the
2m sets. We follow the same construction as in the case
m = 1.

Analogously, we get the following result.

Theorem 3.10. There is an FO + Poly + TC
Σ formula

that defines, on a given spatial database (A1, . . . , Am), a Z-
linear spatial database (B1, . . . , Bm) for which there is an
isotopy h of the plane such that h(Ai) = Bi, for 1 ≤ i ≤ m.

4. EXPRESSIVENESS RESULTS
In the previous section, we have proven that a specific query,
namely the ε-approximation, is expressible in FO + Poly +
TC. In this section, we show a general result on the ex-
pressiveness of FO + Poly + TC

Σ. Specifically, we prove
that FO + Poly + TC

Σ is computationally complete on Z-
linear spatial databases, and computationally complete for



the Boolean topological queries on arbitrary databases. We
prove this in several steps. First, we show that any Tur-
ing computable function on N is expressible by an FO +
Poly + TC

Σ formula. Secondly, we prove that there exists
an FO+Poly+TC

Σ definable encoding of a Z-linear spatial
database by a natural number. The corresponding decod-
ing is also in FO + Poly. This implies the completeness of
FO + Poly + TC

Σ on Z-linear spatial databases. Finally,
the latter completeness result, together with the existence
of an FO + Poly + TC

Σ-definable Z-linear set (namely the
one provided by Theorem 3.10) , which is isotopic to a given
arbitrary spatial database, shows that FO + Poly + TC

Σ

can express all the computable Boolean topological queries
on arbitrary spatial databases.

4.1 Recursive functions on the naturals
We now show that FO + Poly + TC

Σ is computationally
complete on the set of natural numbers N.

Lemma 4.1. For every µ-recursive function f : Nk → N

there exists an FO+Poly+TC
Σ formula ϕf (y) over a single

k-ary relation S, such that on any singleton input relation
S = {(n1, . . . , nk)}, we have (S, y) |= ϕf iff y = f(n1, . . . ,
nk).

Proof. Since the functions zero(x) := 0, proji(x1, . . . ,
xk, y) := xi, the successor relation succ(x, y), and the com-
position of µ-recursive functions, are straightforwardly ex-
pressible in FO + Poly + TC

Σ, we focus on the formula of
primitive recursion and the µ-operator on µ-recursive func-
tions on N.

Let f(x1, . . . , xk, 0) = g(x1, . . . , xk) and f(x1, . . . , xk, i +
1) = h(x1, . . . , xk, f(x1, . . . , xk, i), i), with g and h µ-recurs-
ive functions. We denote the vector (x1, . . . , xk) with ~x. We
consider as singleton input relation {(~x, i)}, with all xi and
i natural numbers.

Let ψ1(u, v) := (0 ≤ u) ∧ (v = u + 1), and σ1(i, T ) :=
(∃j)(0, j) ∈ T ∧ j = i. The interval [0, i] ∩N is then defined
by {x | [TCψ1 |T σ1](0, x)}. Next, define ψ2(j, y

′, k, y) :=
((j ∈ [0, i] ∩ N) ∧ (j < i) ∧ (k = j + 1) ∧ ϕh(~x, y

′, j, y))
and σ2 := false. The µ-recursive function f can now be
expressed in FO + Poly + TC

Σ as follows.

ϕf (~x, i, y) := (i = 0 ∧ ϕg(~x, y))∨
(∃y′)

`
ϕg(~x, y

′) ∧ [TCΣψ2 |T σ2]((0, y
′), (i, y))

´
,

where ϕg and ϕh are FO + Poly + TC
Σ formulas for the

functions g and h.

The µ-operator on a µ-recursive function g, denoted by
f(~x) := µyg, is either defined as the smallest y such that
g(~x, y) = 0 and for each z < y, g(~x, z) is defined and non-
zero, or is undefined when such a y does not exists. We
consider as singleton input relation {~x}, with all xi natural
numbers. Let ψ(y′, y) := (0 ≤ y′) ∧ (y = y′ + 1) ∧ (∃z >
0)ϕg(~x, y, z) and σ(~x, T ) := (∃y)((0, y) ∈ T ∧ ϕg(~x, y, 0)).
We can express the µ-operator in FO + Poly + TC

Σ as
follows.

ϕf (~x, y) := (y = 0 ∧ ϕg(~x, y, 0)) ∨ max
y

[TCΣψ |T σ](0, y),

with ϕg the FO + Poly + TC
Σ formula for the function

g.

4.2 Encoding/decoding ofZ-linear spatial da-
tabases

It has been shown by Vandeurzen et al. [31] that any Z-
linear spatial database has a finite geometric representation
by means of a finite database over Q consisting of (n +
1)2-ary tuples, with n the dimension of the Z-linear spatial
database. Basically, this geometric representation contains
the projective coordinates1 of a complete triangulation of
the linear spatial relations. Moreover, this representation
can be computed by an FO + Poly formula ϕencode. Also,
the corresponding decoding, which computes the Z-linear
spatial relation out of its finite geometric representation,
can be performed using a FO + Poly formula ϕdecode [31].

Using classical encoding techniques [10] (see also [14]), we
now show how these finite rational databases can be encoded
into a single natural number in FO+Poly +TC

Σ. We also
show that the corresponding decoding can be performed in
FO + Poly + TC

Σ.

Since the arity of the tuples in the finite representation of
a Z-linear spatial relation is 9, we first encode a projective
coordinate triple q = (x, y, z) of rational coordinates into a
6-tuple of natural numbers p = ((dx, nx), (dy, nx), (dz, nz)),
where d and n denote the denominator and nominator of
the rational coordinates. Then we encode this -tuple in the
natural number np = 2dx × 3nx × 5dy × 7ny × 11dz × 13nz ,
and then decode each tuple (p1, . . . , p9), into the natural
number 2np1 × 3np2 × · · · × 23np9 . Hence, to finalize the
encoding of a finite relation over the rationals is to encode
a finite set R = {a1, . . . , aℓ} of integers as a single integer.
We can assume that a1 < a2 < · · · < an (since the original
point tuples were different). We will encode this set R as
the natural number n = 2a1 × 3a2 × · · · × paℓ

ℓ , with pℓ the
ℓth prime number.

This encoding can be expressed in FO + Poly + TC
Σ. In-

deed, first we generate successively pairs of natural num-
bers which enumerate the set of rational numbers Q. We
represent a rational number p/q by the pair (p, q). This
can be done by defining in FO + Poly, a successor rela-
tion on pairs of natural numbers. E.g., consider the interval
[−1, 1] ∩ Q. The following successor relation is easily de-
fined in FO + Poly: (0, 1) 7→ (1, 1) 7→ (−1, 1) 7→ (0, 2) 7→
(1, 2) 7→ (−1, 2) 7→ (0, 3) 7→ (1, 3) 7→ (−1, 3) 7→ (2, 3) 7→ · · · .
Also outside [−1, 1], an analogous successor relation can be
defined in FO+Poly. We then stop this enumeration when
for every rational number r in the projective coordinates
of the representation of a Z-linear spatial relation, a pair
(p, q) is found such that q × x = p. This clearly is in FO +
Poly + TC

Σ. Secondly, the cardinality ℓ of R can be de-
termined in FO + Poly + TC

Σ. By completeness, the ℓ-th
prime number pℓ can be computed in FO + Poly + TC

Σ,
and also the set A = {2, 3, 4, . . . , pℓ}. The subset of A con-
sisting of elements z such that there are no x, y ∈ A, such
that z = x× y can be defined. This gives the set of the first

1Projective coordinates are used to deal with unbounded
databases and the unbounded triangles or lines in their tri-
angulation.



ℓ prime numbers. In FO + Poly + TC
Σ, the set of pairs

{(p1, a1), . . . , (pℓ, aℓ)} can be computed. Because of com-
pleteness, exponentiation xy is expressible in FO + Poly +
TC

Σ, we only need to show how to multiply the elements in
the set R′ = {pa11 , . . . , paℓ

ℓ }. First, define the binary relation
M = {((x, pai

i ), (x × pai
i , p

ai+1

i+1 )) | x ∈ R and 1 ≤ i < ℓ}.
Then y×paℓ

ℓ is the product of the elements in R′, where y is
such that ((1, pa11 ), (y, p

aℓ
ℓ )) belongs to the transitive closure

of M . To decode a natural number into a finite rational re-
lation mainly requires the factoring of natural numbers into
prime factors. This can also be done in FO + Poly + TC

Σ.
Indeed, given a natural number n, the set A = {2, 3, 4, . . . ,
n} can be computed in FO + Poly + TC

Σ. From A, the
divisors of n, the prime divisors of n, and the highest powers
of these prime divisors that still divide n can be computed.
Hence also the set of pairs (pi, ai) such that n =

Q
pai
i can

be computed.

4.3 Completeness results
In this section, we conclude that FO+Poly+TC

Σ is compu-
tationally complete on Z-linear spatial databases, and com-
putationally complete for the Boolean topological queries on
arbitrary databases.

Theorem 4.2. The language FO + Poly + TC
Σ is com-

putationally complete on Z-linear spatial databases.

Proof. This follows directly from the finite geometrical
encoding/decoding of Z-linear sets, presented in the previ-
ous section, and the fact that any Turing computable func-
tion on N is expressible by an FO + Poly + TC

Σ formula
(see Section 4.1).

A Boolean query Q is said to be topological, if for any two
spatial databases A = (A1, . . . , Am) and B = (B1, . . . , Bm)
for which there exists an isotopy h of the plane such that
h(Ai) = Bi, 1 ≤ i ≤ m, Q(A1, . . . , Am) = Q(B1, . . . , Bm)
holds. 2

Theorem 4.3. All computable Boolean topological quer-
ies on spatial databases can be expressed in FO + Poly +
TC

Σ.

Proof. (Sketch) Let Q be a Boolean topological com-
putable query. By Theorem 3.10, there exists an FO +
Poly+TC

Σ formula Qapprox that defines, for any given spa-
tial database (A1, . . . , Am), a Z-linear spatial database (B1,
. . . , Bm) for which there is an isotopy h of the plane such
that h(Ai) = Bi, for 1 ≤ i ≤ m. Since Q is computable,
it is in particular computable on Z-linear spatial databases,
and therefore, by Theorem 4.2 expressible on these databa-
ses by an FO +Poly +TC

Σ formula QZ. Now clearly, Q is
equivalent to the composition of QZ and Qapprox.

There are also topological queries that can be expressed in
FO + Poly + TC in a more straightforward manner, i.e.,
2In the literature, topological queries are also sometimes
defined using homeomorphisms instead of isotopies. The
difference is not essential.

avoiding the deviation via the encoding by natural numbers.
As an illustration, we discuss the path-connectivity query.
This expresses whether two given points p and q in a given
spatial relation A, can be connected by a path lying entirely
in A. This query can be expressed in FO + Poly + TC by
first computing an ε-approximation of the spatial database

(A, {p, q}). On this approximation, ( bA, {p′, q′}), a binary
relation

Path( bA) = {(r, s) ∈ R
2 × R

2 | (∃λ)(0 ≤ λ ≤ 1∧
(∀t)(t = λ · r + (1 − λ) · s→ t ∈ bA))}

can be defined in FO+Poly consisting of all pairs of points
that can be connected by a straight line segment lying en-

tirely in bA. Let ϕPath( bA, p′, q′) be the FO + Poly + TC

formula that tests whether (p′, q′) belongs to the transitive

closure of the relation Path( bA).

Using techniques similar to those used to prove correctness
of a spatial Datalog program [20, 22] to test connectivity of
spatial databases, the following can be shown.

Proposition 4.4. The FO+Poly+TC formula ϕPath( bA,
p′, q′) correctly tests whether there exists a path between two

points p′ and q′ of an A-linear spatial relation bA, in par-
ticular, the evaluation of this formula always terminates on
these inputs.
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