
13

First-Order Complete and Computationally
Complete Query Languages for
Spatio-Temporal Databases

FLORIS GEERTS

University of Edinburgh, Hasselt University, Transnational University of Limburg

and

SOFIE HAESEVOETS and BART KUIJPERS

Hasselt University, Transnational University of Limburg

We address a fundamental question concerning spatio-temporal database systems: “What are ex-

actly spatio-temporal queries?” We define spatio-temporal queries to be computable mappings that

are also generic, meaning that the result of a query may only depend to a limited extent on the ac-

tual internal representation of the spatio-temporal data. Genericity is defined as invariance under

groups of geometric transformations that preserve certain characteristics of spatio-temporal data

(e.g., collinearity, distance, velocity, acceleration, . . .). These groups depend on the notions that are

relevant in particular spatio-temporal database applications. These transformations also have the

distinctive property that they respect the monotone and unidirectional nature of time.

We investigate different genericity classes with respect to the constraint database model for

spatio-temporal databases and we identify sound and complete languages for the first-order and

the computable queries in these genericity classes. We distinguish between genericity determined

by time-invariant transformations, genericity notions concerning physical quantities and genericity

determined by time-dependent transformations.

F. Geerts is post-doctoral researcher of the Fund for Scientific Research of Flanders (FWO-

Vlaanderen).

This research has been partially funded by the European Union under the FP6-IST-FET pro-

gramme, Project FP6-14915, GeoPKDD: “Geographic Privacy-Aware Knowledge Discovery and De-

livery” and by the Research Foundation Flanders (FWO-Vlaanderen), Research Project G.0344.05.

An extended abstract of this article appeared as “A theory of spatio-temporal database queries,

In Database Programming Languages, 8th International Workshop (DBPL 2001) (Frascati, Italy,

Sept. 8–10), G. Ghello and G. Grahne, Eds, Lecture Notes in Computer Science, vol. 2397, Springer-

Verlag, New York, 198–212.

Authors’ addresses: F. Geerts, University of Edinburgh, Laboratory for Foundations of Computer

Science, Appleton Tower, Crichton Street, Edinburgh EH8 9LE, Scotland, UK; email: fgeerts@

inf.ed.ac.uk; S. Haesevoets and B. Kuijpers, Hasselt University, Theoretical Computer Science

Group, Agoralaan, Gebouw D, B-3590 Diepenbeek, Belgium; email: sofie.haesevoets@luciad.com;

bart.kuijpers@uhasselt.be.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 1529-3785/2008/03-ART13 $5.00 DOI 10.1145/1342991.1342997 http://doi.acm.org/

10.1145/1342991.1342997

ACM Transactions on Computational Logic, Vol. 9, No. 2, Article 13, Publication date: March 2008.

13:2 • F. Geerts et al.

Categories and Subject Descriptors: F.4.0 [Mathematical Logic and Formal Languages]: Gen-

eral; H.2.3 [Database Management]: Languages—Query languages; H.2.8 [Database Manage-
ment]: Database Applications—Spatial databases and GIS

General Terms: Design, Languages, Theory

Additional Key Words and Phrases: Constraint databases, moving objects, query languages, spatial

databases, spatio-temporal databases

ACM Reference Format:
Geerts, F., Haesevoets, S., and Kuijpers, B. 2008. First-Order complete and computation-

ally complete query languages for spatio-temporal databases. ACM Trans. Comput. Logic

9, 2, Article 13 (March 2008), 51 pages. DOI = 10.1145/1342991.1342997 http://doi.acm.org/

10.1145/1342991.1342997

1. INTRODUCTION

Since the early 1990s, various database systems have been developed to han-
dle spatial data [Abel and Ooi 1993; Buchmann 1989; Egenhofer and Herring
1995; Gunther and Schek 1991; Güting 1999; Rigaux et al. 2000; Scholl and
Voisard 1997] and solid theories for such systems have been proposed and stud-
ied [Paredaens et al. 1994; Kuper and Scholl 2000]. Conceptually, spatial data-
bases contain possibly infinite sets of points in a real space Rn. In more recent
years, we have seen the emergence of database systems and applications that
are dealing with spatio-temporal data [Böhlen et al. 1999; Chen and Zaniolo
2000; Frank et al. 1999; Güting et al. 2000; Pfoser and Tryfona 1998]. Concep-
tually, spatio-temporal data can be modeled as infinite spatial sets that move
or change in time, that is, sets in Rn × R.

We can distinguish between three main approaches towards modeling spatio-
temporal data: one based on new data types, the second focusses on moving
objects and the third is based on the constraint database model.

In the data type approach [Frank et al. 1999], a set of base, spatial, temporal
and spatio-temporal data types is proposed. The (two-dimensional) spatial data
types are “point”, “points” (a finite set of points), “line”, and “region”. Time
is to be considered linear and continuous. A type constructor named “moving”
takes any type α and provided a mapping from time to α. In this way, moving
types can be modeled. On top of this, a set of spatial operators are defined
which can be lifted to spatio-temporal operators. For example, the intersection
operator defined on “region” and a “point” can be lifted such that it computes
the intersection of moving regions and points. Those operators are embedded
in SQL-like languages and the geometry is most often considered to be discrete
(polylines, polygons,).

One particular line of research in the field of spatio-temporal databases,
started by Wolfson, concentrates on moving object databases (MODs) [Güting
and Schneider 2005; Wolfson 2002], a field in which several data models and
query languages have been proposed to deal with moving objects whose position
is recorded at, not always regular, moments in time. Some of these models are
geared towards handling uncertainty that may come from various sources (mea-
surements of locations, interpolation, . . .) and often ad-hoc query formalisms

ACM Transactions on Computational Logic, Vol. 9, No. 2, Article 13, Publication date: March 2008.

Complete Query Languages for Spatio-Temporal Databases • 13:3

y

−1 40 1
t

5

x

Fig. 1. An example of a spatio-temporal database in R2 × R.

have been proposed [Su et al. 2001]. For an overview of models and techniques
in this field, we refer to the recent textbook by Güting and Schneider [2005].

The third approach, the constraint approach, considers the data to be con-
tinuous. It is a recent and much acclaimed method for effectively representing
infinite geometrical figures is provided by the constraint database model, that
was introduced in Kanellakis et al. [1990, 1995] (an overview of the area of
constraint databases appeared in Paredaens et al. [2000]; and Revesz [2002]
wrote a textbook on this topic).

Until recently, this model has been used mainly in the area of spatial data-
bases, but it provides an equally elegant and efficient way to model spatio-
temporal data [Chen and Zaniolo 2000; Chomicki and Revesz 1997, 1999;
Grumbach et al. 1998; Kuijpers et al. 2000]. In the setting of the constraint
model, a spatio-temporal relation in Rn ×R is finitely represented as a Boolean
combination of polynomial equalities and inequalities. Figure 1 depicts the
spatio-temporal database {(x, y ; t) | x2 + y2 + t2 ≤ 1 ∨ (x2 + y2 + (t − 2)2 =
1 ∧ t ≤ 5/2) ∨ (x2 + y2 + (t − 3)2 = 1 ∧ t > 5/2)} in R2 × R. A spatio-temporal
database is a finite collection of such relations and can be finitely represented
by the polynomial constraint formulas that represent its relations.

A number of theoretical studies have appeared on the status of time and
its relation with space in systems that model moving objects. Erwig et al.
[1999] give a taxonomy of applications ranging from those that rely on a step-
wise constant geometry to applications which need more complete integration
of space and time (like for instance a continuous description of a trajectory).
MOST [Sistla et al. 1997], an example of the latter category, relies on a strong
interaction of the space and time components (since the space variables are
described by linear polynomials in time) and provides a query language that is
a combination of a spatial query language and a temporal logic. On the other
range of the spectrum, variable independence (defined in terms of orthographic
dimension) gives rise to a less expressive data model which has the advantage
of a lower complexity of query evaluation [Grumbach et al. 1998; Libkin 2000].

We study spatio-temporal queries from the perspective of expressive power,
and do this against the background of the full modeling and querying power
of the constraint database model and the first-order and computationally
complete languages it offers. We ask which expressions in these languages may
be considered as reasonable spatio-temporal queries. In database theory, it is
usually required that the result of queries should only to a certain limited ex-
tent depend on the actual internal representation of databases and that queries

ACM Transactions on Computational Logic, Vol. 9, No. 2, Article 13, Publication date: March 2008.

13:4 • F. Geerts et al.

should only ask for properties that are shared by “isomorphic” encodings of the
same data. The meaning of “isomorphic” may be influenced by the actual data-
base application and by which notions are relevant to it. In the context of the
relational database model, Chandra and Harel [1980] formalized this indepen-
dence of the actual encoding in terms of the notion of genericity. Paredaens et al.
[1994] identified a hierarchy of genericity classes for spatial database applica-
tions. The generic queries in the different classes focus on different geometrical
and topological aspects of the spatial data. On a technical level, generic queries
are defined as being invariant under those transformations of the data that
preserve the relevant aspects of the data. Whereas Chandra and Harel [1980]
considered the group of the isomorphisms (that possibly fix some elements of the
domain) in the case of relational databases, Paredaens et al. [1994] identified
different geometrical and topological transformation groups (affinities, isome-
tries, translations, homeomorphisms, . . .) for spatial database applications.

We define spatio-temporal queries to be computable mappings that are also
generic, meaning that the result of a query may only depend to a limited extent
on the actual internal representation of the spatio-temporal data. Genericity
is defined as invariance under some (application-dependent) group of geomet-
ric transformations. These transformations preserve certain characteristics of
spatio-temporal data (e.g., collinearity, distance, velocity, acceleration, . . .).

We investigate which notions of genericity are appropriate for spatio-tempo-
ral databases and which transformation groups express them. We observe that
the transformations should first and foremost respect the monotone and unidi-
rectional nature of time, that is, leave the temporal order of events unchanged.
It follows that the relevant transformation groups are the product of a group of
time-(in)dependent spatial transformations and a group of monotone increas-
ing transformations of the time-component of the spatio-temporal data. Next,
we focus on the former groups and study which of them leave different spa-
tial and spatio-temporal properties (like collinearity, distance and orientation)
unchanged. We also focus on physical properties of spatio-temporal data (like
velocity and acceleration). The transformation groups that we consider are all
subgroups of the time-dependent or time-independent affinities of Rn × R.

We study the notion of spatio-temporal genericity relative to two popu-
lar query languages in the constraint model: first-order logic over the reals
(FO) and an extension of this logic with a while-loop (FO + while). Both lan-
guages are known to be effectively computable (given termination in the case of
FO + while-programs) and FO + while is known to be a computationally com-
plete language on spatio-temporal databases [Van den Bussche 2000]. First,
we show that all the genericity classes are undecidable. We show that the con-
sidered classes of generic first-order queries are recursively enumerable, how-
ever. Hereto, we define first-order point-based languages in which variables
are assumed to range over points in Rn × R and which contain certain point
predicates (such as Between and Before). These point-based languages are
shown to be sound and complete for the first-order queries in the considered
genericity classes. We have also shown that extensions of these point-based
logics with a while-loop give sound and complete languages for the computable
queries in the different genericity classes. Our results are inspired by similar

ACM Transactions on Computational Logic, Vol. 9, No. 2, Article 13, Publication date: March 2008.

Complete Query Languages for Spatio-Temporal Databases • 13:5

results that were obtained by Gyssens et al. [1999] in the context of spatial
databases. Also, the proof techniques we use for time-independent transfor-
mation groups, are generalisations of techniques introduced in those papers.
However, our results for genericity notions described by time-dependent trans-
formations require new proof techniques.

This article is organized as follows: In Section 2, we define spatio-temporal
databases, spatio-temporal queries, and the constraint query languages FO and
FO + while. In Section 3, we define a number of genericity notions. In Section 4,
we present sound and complete first-order query languages for the different
notions of genericity. In Section 5, we present sound and complete languages
for the computable queries satisfying the different notions of genericity. We end
with a discussion in Section 6.

2. DEFINITIONS AND PRELIMINARIES

We denote the set of the real numbers by R and the n-dimensional real space
by Rn.

Throughout this article, we use the following notational convention. Vari-
ables that range over real numbers are denoted by characters x, y , z, x1, y1,
z1, x2, y2, z2, When there is the need to distinguish between real variables
that indicate spatial coordinates and time coordinates, we use x, y , z, x1, y1,
z1, x2, y2, z2, . . . for the former and use t, t1, t2, . . . for the latter. Variables that
range over vectors in Rn and that represent spatial information are denoted by
bold characters x, x1, x2, Real constants are represented by characters a,
b, c, a1, b1, c1, a2, b2, c2, When there is the need to distinguish between real
constants that indicate spatial coordinates and time coordinates, we use a, b,
c, a1, b1, c1, a2, b2, c2 . . . for the former and use Greek characters τ, τ1, τ2, . . . for
the latter.

Finally, bold characters a, a1, a2, . . . represent constant n-dimensional spa-
tial vectors.

Vectors (a, τ) containing mixed spatial and temporal information are de-
noted p, q, r, p1, q1, r1, p2, q2, r2 . . . and variable vectors (x, t) are represented
by characters u, v, w, u1, v1, w1, u2, v2, w2,

2.1 Semi-Algebraic and Spatio-Temporal Databases

We consider n-dimensional spatial figures that move or change over time. A
moving figure in Rn can be described by means of an infinite set of tuples
(a1, a2, . . . , an, τ) in Rn × R, where (a1, a2, . . . , an) represent the n-dimensional
spatial coordinates of (a1, a2, . . . , an, τ) and τ its time coordinate. Obviously,
this infinite information needs to be represented finitely in order to be stored
in the memory of a computer. In this section, we describe two approaches to
model such changing figures, namely the semi-algebraic database model and
the spatio-temporal database model. Semi-algebraic databases are based on real
numbers, while spatio-temporal databases are based on (n + 1)-dimensional
points. Both models resort under the constraint database model [Paredaens
et al. 2000; Revesz 2002]. Neither of these models require the explicit storage
of real numbers.

ACM Transactions on Computational Logic, Vol. 9, No. 2, Article 13, Publication date: March 2008.

13:6 • F. Geerts et al.

Definition 2.1. A semi-algebraic relation in Rn is a subset of Rn that can
be described as a Boolean combination of sets of the form

{(x1, x2, . . . , xn) ∈ Rn | p(x1, x2, . . . , xn) > 0},
with p a polynomial with integer coefficients in the real variables x1, x2, . . . ,
xn.

In mathematical terms, semi-algebraic relations are known as semi-algebra-
ic sets [Bochnak et al. 1987]. In this article, we will be mainly interested in
semi-algebraic relations in real spaces of the form R(n+1)×k . These relations can
be viewed as k-ary relations over Rn×R (i.e., the n-dimensional space extended
with a time dimension). The next example illustrates this for k = 1 and n = 2.

Example 2.2. Figure 1 gives an example of a semi-algebraic relation in
R3. This set can be described as follows: {(x, y , t) ∈ R2 × R | x2 + y2 + t2 ≤
1 ∨ (x2 + y2 + (t − 2)2 = 1 ∧ t ≤ 5/2) ∨ (x2 + y2 + (t − 3)2 = 1 ∧ t > 5/2)}. This
relation shows at its beginning, that is, at t = −1, a single point in the origin
of R2. Then, it shows a disk whose radius increases and later decreases and
ends in a point at moment t = 1, followed by a circle whose radius increases,
decreases, increases and then shrinks to a point.

We call a semi-algebraic relation in Rn also a semi-algebraic relation of arity
n. A semi-algebraic database is essentially a finite collection of semi-algebraic
relations. We define this now.

Definition 2.3. A (semi-algebraic) database schema σ is a finite set of rela-
tion names, where each relation name R has a natural number ar(R), called
its arity, associated to it.

Let σ be a database schema. A semi-algebraic database over σ is a structure
D over σ with domain R such that, for each relation name R of σ , the associated
relation RD in D is a semi-algebraic relation of arity ar(R).

Example 2.4. Let σ = {R, S}, with ar(R) = 2 and ar(S) = 1 be a semi-
algebraic database schema. Then the structure D given by

(R, RD = {(x, y) ∈ R2 | x2 + y2 < 1}, SD = {x ∈ R | 0 ≤ x ≤ 1})
is an example of a semi-algebraic database over σ that contains the open unit
disk and the closed unit interval.

We now define spatio-temporal databases. In contrast to semi-algebraic data-
bases, in which points are described by their real coordinates, spatio-temporal
databases are based on (n + 1)-dimensional points. The domain of a spatio-
temporal database is Rn × R. We prefer the notation Rn × R over Rn+1 for the
domain because it stresses the distinction between the time coordinate and the
n spatial coordinates of the (n + 1)-dimensional points.

In the following definition, we work with Rn ×R as the domain of the spatio-
temporal databases and we assume that this underlying dimension n is fixed on
before hand. In this article, we assume, for technical reasons that will become
clear in Section 4, that n ≥ 2.

ACM Transactions on Computational Logic, Vol. 9, No. 2, Article 13, Publication date: March 2008.

Complete Query Languages for Spatio-Temporal Databases • 13:7

Throughout this article we will often use the canonical bijection

can : (Rn × R)k → R(n+1)×k

that maps a tuple ((a1, τ1), . . . , (ak, τk)) to (a1,1, . . . , a1,n, τ1, . . . , ak,1, . . . , ak,n, τk),
where for 1 ≤ i ≤ k and 1 ≤ j ≤ n, ai, j denotes the j th real coordinate of the
vector ai, and where τi denotes the time coordinate of the vector ai.

Definition 2.5. A (spatio-temporal) database schema σ is a finite set of re-
lation names, where each relation name R has a natural number ar(R), called
its arity, associated to it.

A subset of (Rn×R)k is a spatio-temporal relation of arity k if its image under
the canonical bijection can : (Rn × R)k → R(n+1)×k is a semi-algebraic relation
of arity (n + 1) × k.

Let σ be a spatio-temporal schema. A spatio-temporal database over σ is a
structure ST over σ with domain Rn × R such that to each relation name R in
σ , a spatio-temporal relation RST of arity ar(R) is associated to it.

Remark 2.6. A spatio-temporal database ST over σ can be viewed in a natu-
ral way as a semi-algebraic database ST over the semi-algebraic schema σ , which
has for each relation name R of σ , a relation name R of arity (n + 1) × ar(R).

For each relation name R, R
ST

is obtained from RST by applying the canonical
bijection can : (Rn × R)ar(R) → R(n+1)×ar(R). We will use the notation introduced
here throughout the article.

Following this remark, we observe that spatio-temporal relations and data-
bases can be finitely encoded and stored by means of the systems of polynomial
equalities and inequalities (i.e., by means of a quantifier-free formula of first-
order logic over the reals with +, ×, < and the constants 0 and 1) that describe
the associated semi-algebraic relations and databases.

Remark 2.7. Throughout this article, we assume that databases are finitely
encoded by systems of polynomial equations and that a specific data structure
is fixed (possible data structures are dense or sparse representations of polyno-
mials). The specific choice of data structure is not relevant to the topic of this
article, but we assume that one is fixed. When we talk about computable queries
later on, we mean Turing computable with respect to the chosen encoding and
data structures.

The model presented here and the results in this article can be extended
straightforwardly to the situation where spatio-temporal relations are accom-
panied by classical thematic information, like the typical alpha-numeric data
you find in business applications and also, in combination with spatial data,
in Geographical Information Systems. However, because the problem that is
discussed here is captured by this simplified model, we stick to it for reasons of
simplicity of exposition.

Example 2.8. Figure 1 in the Introduction gives an illustration of a spatio-
temporal database over a schema σ = {R} with underlying dimension 2, where
R has arity 1.

ACM Transactions on Computational Logic, Vol. 9, No. 2, Article 13, Publication date: March 2008.

13:8 • F. Geerts et al.

Definition 2.9. Let σ be a spatio-temporal schema and let ST be a spatio-
temporal database over σ with underlying dimension n. Let R be a relation
name in σ and let τ0 be a real number representing a moment in time. We call
the subset

RST ∩ (Rn × {τ0})ar(R)

of (Rn×{τ0})ar(R) the snapshot of R at the moment τ0. The snapshot of the spatio-
temporal database ST at the moment τ0 is the finite set of snapshots of all its
relations at τ0.

Example 2.10. For the spatio-temporal relation depicted in Figure 1, the
snapshot at −1 is {(0, 0, −1)}, the snapshot at 0 is the closed unit disk in the
plane t = 0 and the snapshot at 5 is the empty set.

2.2 Spatio-Temporal and Semi-Algebraic Database Queries

Here, we define spatio-temporal and semi-algebraic database queries as com-
putable mappings of some type. In the next section, we will argue that not all
such mappings should be regarded as “reasonable” queries and that further
conditions on the nature of these mappings have to be imposed.

Definition 2.11. Let σ be a semi-algebraic database schema. A k-ary semi-
algebraic database query Q over σ is a partial, computable mapping (in the
sense of Remark 2.7) from the set of semi-algebraic databases over σ to the set
of k-ary semi-algebraic relations.

Definition 2.12. Let σ be a spatio-temporal database schema and let us con-
sider input spatio-temporal databases over σ with underlying dimension n. A
k-ary n-dimensional spatio-temporal database query Q over σ is a partial, com-
putable mapping (in the sense of Remark 2.7) from the set of spatio-temporal
databases over σ to the set of k-ary spatio-temporal relations with underlying
dimension n.

We also call a k-ary n-dimensional spatio-temporal database query a spatio-
temporal database query of output type (n, k).

Note that we restrict spatio-temporal database queries to preserve the un-
derlying dimension of the input database.

Example 2.13. Let σ = {R}, where R has arity 1 and let the underlying
dimension be 2. The query that selects those snapshots from the relation R
where R shows a circle is a spatio-temporal database query of output type
(2, 1). Applied to the database of Example 2.8 and shown in Figure 1, this
query returns the union of its snapshots in the open time interval]1, 4[.

There is a natural way to see spatio-temporal queries as semi-algebraic
queries, that is captured in the following definition of equivalence of queries.

Definition 2.14. Let σ be a spatio-temporal database schema and let us
consider input spatio-temporal databases over σ with underlying dimension n.
Let σ be the corresponding semi-algebraic database schema (see Remark 2.6).
Let Q be a k-ary n-dimensional spatio-temporal database query over σ and let

ACM Transactions on Computational Logic, Vol. 9, No. 2, Article 13, Publication date: March 2008.

Complete Query Languages for Spatio-Temporal Databases • 13:9

Q be a ((n + 1) × k)-ary semi-algebraic database query over σ . We say that Q
and Q are equivalent if for every database ST over σ we have

Q(ST) = Q(ST).

2.3 First-Order Logic and Its Extension with a While Loop as a Spatio-Temporal
Query Language

First-order logic over the field of the real numbers, FO(+, ×, <, 0, 1) for short,
has been well-studied as a query language for spatial databases [Kanellakis
et al. 1995; Paredaens et al. 1994, 2000]. In the setting of spatio-temporal data-
bases, it can be used as a query language in a similar way. We introduce FO(+,
×, <, 0, 1) here as a spatio-temporal query language, beit on semi-algebraic
databases that represent spatio-temporal databases.

Definition 2.15. Let σ = {R1, R2, . . . , Rm} be a spatio-temporal database
schema and let us consider queries working on input databases over σ with
underlying dimension n. Let Ri (1 ≤ i ≤ m) be the corresponding semi-algebraic
relation names of arity (n + 1) × ar(Ri) (we follow the notation of Remark 2.6)
and let σ be the semi-algebraic schema {R1, R2, . . . , Rm}.

Let ϕ(x1, t1, x2, t2, . . . , xk, tk), be a first-order logic formula over the alpha-
bet (+, ×, 0, 1, <, R1, R2, . . . , Rm). If xi = (xi,1, . . . , xi,n), then the free variables
of ϕ are x1,1, . . . , x1,n, t1, x2,1, . . . , x2,n, t2, . . . , xk,1, . . . , xk,n, tk . The formula ϕ ex-
presses a semi-algebraic ((n+1)×k)-ary query Q which is equivalent to a k-ary
n-dimensional spatio-temporal query Q . For each input spatio-temporal data-
base ST over σ , Q(ST) is defined as the set of points ((a1, τ1), (a2, τ2), . . . , (ak, τk))
of (Rn × R)k such that

(R, +, ×, 0, 1, <, R
ST
1 , R

ST
2 , . . . , R

ST
m) |= ϕ[a1, τ1, a2, τ2, . . . , ak, τk],

where ϕ[a1, τ1, a2, τ2, . . . , ak, τk] denotes the formula ϕ(x1, t1, x2, t2, . . . , xk, tk)
with its free variables instantiated by a1, τ1, a2, τ2, . . . , ak, τk .

We will refer to the first-order query language, introduced here, as FO(+, ×,
<, 0, 1, R1, R2, . . . , Rm), or, if the schema is clear from the context, as FO(+, ×,
<, 0, 1).

Example 2.16. As in Example 2.13, let σ = {R}, where R has arity 1 and let
the underlying dimension be 2. The formula (∃x0)(∃ y0)(∃r > 0)((x − x0)2 + (y −
y0)2 = r2 ↔ R(x, y , t)) expresses a spatio-temporal query of output type (2, 1).
It selects those snapshots from a spatio-temporal relation R where R shows a
circle. As mentioned, applied to the database of Example 2.8, this query returns
all its snapshots in the time interval]1, 4[.

We remark that the formalism of semi-algebraic and spatio-temporal databa-
ses and the first-order query language introduced here, fits within the frame-
work of constraint databases [Paredaens et al. 2000; Revesz 2002]. It is well
known that FO(+, ×, <, 0, 1)-formulas can be effectively evaluated in the con-
straint model and therefore also in this context. It is also known that the output
can be represented in the same constraint formalism [Paredaens et al. 2000;
Van den Bussche 2000], that is, by a quantifier-free formula over (+, ×, 0, 1, <).

ACM Transactions on Computational Logic, Vol. 9, No. 2, Article 13, Publication date: March 2008.

13:10 • F. Geerts et al.

Remark 2.17. Although any FO-formula expresses a database query, it
does not necessarily express a spatio-temporal database query. Indeed, a spatio-
temporal database query should always return a spatio-temporal relation (see
Definition 2.12). The following example shows that not every FO-formula guar-
antees this: The formula

(∃t)R(x1, x2, t)

expresses the projection of the spatio-temporal relation R on the spatial (x1, x2)-
plane. The formula returns a set of couples (x1, x2) in R2 that form a semi-
algebraic set with a purely spatial meaning. In other words, this formula does
not define a spatio-temporal relation.

We end this section by specifying the programming language FO(+, ×, <, 0,
1, σ) + while which is known to be computationally complete on semi-algebraic
databases [Gyssens et al. 1999]. Essentially, this language is an extension of
FO(+, ×, <, 0, 1, σ) with assignments and a while loop. The use of similar lan-
guages will be illustrated in Section 5. We also refer to Gyssens et al. [1999];
and Van den Bussche [2000] for illustrations.

Definition 2.18. Let σ be a spatio-temporal database schema. Syntactically,
a program in the language FO(+, ×, <, 0, 1, σ) + while is a finite (ordered) se-
quence of statements and while-loops. It is assumed there is a sufficient supply
of new relation variables, each with an appropriate arity.

(i) Each statement has the form

R := {(x1, . . . , xk) | ϕ(x1, . . . , xk)};
Here, R is a new relation variable with assigned arity k (the variables xi
range over R) and ϕ is a formula in FO(+, ×, <, 0, 1, σ ′), where σ ′ is the set
of relation names containing the elements of σ together with the relation
variables introduced in previous statements of the program. Here, a pre-
vious statement is a statement appearing before the current statement in
the sequence of statements which constitute the program.

(ii) A while-loop has the form

while ϕ do P end while

where P is a program and ϕ is a sentence in FO(+, ×, <, 0, 1, σ ′), where σ ′ is
again the set of relation names containing the elements of σ together with
the relation variables introduced in previous statements of the program.

(iii) One of the relation names occurring in the program is designated as the
output relation and is named Rout.

Semantically, a program in the query language FO(+, ×, <, 0, 1, σ) + while
expresses a spatio-temporal query as soon as Rout is assigned a return value.
The execution of an FO(+, ×, <, 0, 1, σ) + while-program applied to an input
database is performed step-by-step. A statement is executed by first evaluating
the FO(+, ×, <, 0, 1, σ)-formula on the right-hand side on the input database
together with the new relations resulting from previous statements. Next, the
result of the evaluation of the right-hand side is assigned to the relation variable

ACM Transactions on Computational Logic, Vol. 9, No. 2, Article 13, Publication date: March 2008.

Complete Query Languages for Spatio-Temporal Databases • 13:11

on the left-hand side. The effect of a while loop is to execute the body as long
as the condition ϕ evaluates to true.

Note that these programs are not guaranteed to halt. For those input data-
bases it does not, the query represented by the program is not defined on that
particular input database.

3. SPATIO-TEMPORAL GENERICITY

As stated in the introduction, we are interested in spatio-temporal database
queries that are invariant under the elements of a certain spatio-temporal
transformation group (for function composition)

F = { f | f = (f1, f2, . . . , fn, ft) : Rn × R → Rn × R}.
The idea is that the result of spatio-temporal queries should be largely inde-
pendent of the particular coordinate system in which the data are presented.
In this section, we formalize this idea by the notion of F-genericity.

In this section, we look at different types of transformation groups and we
impose two further conditions on these transformations. First, we look at purely
temporal conditions. Second, we look at purely spatial or spatio-temporal con-
ditions that reflect the nature of the queries one is interested in. We also look
at transformation groups that are suited for applications in which physical
notions such as velocity and acceleration are of importance.

3.1 Definition of Spatio-Temporal Genericity

Let f : Rn × R → Rn × R be a function, let R be a spatio-temporal relation
name of arity k and let RST be a relation instance with underlying dimension
n. In the following, we use the notation f (RST) to abbreviate the set {(f (a1, τ1),
f (a2, τ2), . . . , f (ak , τk)) ∈ (Rn × R)k | (a1, τ1, a2, τ2, . . . , ak , τk) ∈ RST }.

Definition 3.1. Let Q be a spatio-temporal database query that takes da-
tabases of signature σ = {R1, . . . , Rm} with underlying dimension n as input.
Let F = { f | f : Rn × R → Rn × R} be a spatio-temporal transformation
group. We say that Q is F-generic if, for any f in F and for each pair of spatio-
temporal databases ST 1 and ST 2 over σ , the fact that ST 2 = (RST 2

1 , . . . , RST 2
m) =

(f (RST 1

1), . . . , f (RST 1
m)) implies that f (Q(ST 1)) = Q(ST 2).

This definition will be illustrated in Section 3.5.
It is clear that if a query is F-generic, it is also F ′-generic for any subgroup

F ′ of F .

3.2 Temporal Restrictions on the Transformations

It is very natural to describe spatio-temporal events with the notions “before”,
“after” and “co-temporal”. For instance, when two people arrive shortly after
each other, we say “Mary arrived before Jane” rather than “Mary arrived at
9:31 and Jane at 9:35”. Another example is any kind of race. The winner is
the one that finishes first. So, foremost the order of arrival of the participants
matters. Exact-time moments are only important in very specific situations.

ACM Transactions on Computational Logic, Vol. 9, No. 2, Article 13, Publication date: March 2008.

13:12 • F. Geerts et al.

We start with the definition of a spatio-temporal event.

Definition 3.2. An event is a subset of Rn × R. The projection of an event A
on the time-axis is denoted by πt(A) and called the time-domain of A.

Let A and B be events. In the terminology of Allen’s interval calculus [Allen
1983; Allen and Ferguson 1994], A and B are called co-temporal if πt(A) = πt(B)
(we denote this by A =t B). Allen says A is before B if tA < tB for all tA ∈ πt(A)
and all tB ∈ πt(B) (we denote this by A <t B).

Remark that A ≤t B := (A =t B or A <t B) is a pre-order on events.

Definition 3.3. We say that a transformation f : Rn×R → Rn×R preserves
the order of events if for all events A and B, A =t B implies f (A) =t f (B) and
A <t B implies f (A) <t f (B).

PROPOSITION 3.4. A transformation f = (f1, f2, . . . , fn, ft) : Rn ×R → Rn ×
R : (x, t)
→ (f1(x, t), . . . , fn(x, t), ft(x, t)) preserves the order of events if and
only if ft is a strictly monotone increasing bijection of t alone.

PROOF. The if-direction is straightforward. To prove the other direction,
let f = (f1, f2, . . . , fn, ft) be a transformation of Rn × R. Consider any two
events A = {(a1, a2, . . . , an, τ)} and B = {(a′

1, a′
2, . . . , a′

n, τ)}. Since A =t B, then
ft(a1, a2, . . . , an, τ) = ft(a′

1, a′
2, . . . , a′

n, τ). This shows that ft is a function of t
alone.

Consider any two events A = {(a1, a2, . . . , an, τ1)} and B = {(a1, a2, . . . , an, τ2)}
with τ1 < τ2. Since A <t B, then ft(τA) < ft(τB). This shows that ft is a strictly
monotone function of t.

The transformation groups that we consider are all groups with respect to
the composition operator ◦ of functions. Therefore, for every transformation
f also its inverse exists, and hence f is a bijection. Given the fact that the
component ft is a function of t alone, it has to be a bijection too.

We require that transformations preserve the order of events. We can therefore
write the transformation groups of interest as a product of groups, that is,
F = (Fst , Ft), where

(Fst , Ft) = {(fst , ft) | fst = (f1, f2, . . . , fn) : Rn × R → Rn and ft : R → R}.
The particular groups Ft that we will consider in this article are:

—At = {t
→ at + b | a, b ∈ R and a > 0}, that is, the monotone affinities of the
timeline;

—Tt = {t
→ t + b | b ∈ R}, that is, the translations of the timeline; and

—Idt = {id}, that is, the identity of time.

Invariance with respect to this type of transformations of time is often en-
countered in physics [Desloge 1982].

3.3 Spatial and Spatio-Temporal Restrictions on Transformations

In the following, we consider transformations coming from practical situations
where moving objects are monitored from a fixed position or situations where a

ACM Transactions on Computational Logic, Vol. 9, No. 2, Article 13, Publication date: March 2008.

Complete Query Languages for Spatio-Temporal Databases • 13:13

fixed object is observed from a moving position. The frame of reference is there-
fore changing in a time-dependent way. In real life, this continuous change of
reference system arises in different kinds of situations. For example, when a
moving person is watching an event, his/her description of that event will be
related to his/her position and orientation at each time moment. When this per-
son moves along a straight line at constant speed, the transformation that de-
scribes this continuous change of reference system would be a time-dependent
affinity.

In this article, we only look at transformations that have an algebraic de-
scription. The general form of the transformation groups Fst that we consider
have elements of the form:⎛

⎜⎜⎜⎜⎜⎝

x1

x2

...
xn
t

⎞
⎟⎟⎟⎟⎟⎠
→

⎛
⎜⎜⎜⎝

α11(t) α12(t) · · · α1n(t)
α21(t) α22(t) · · · α2n(t)

...
... · · · ...

αn1(t) αn2(t) · · · αnn(t)

⎞
⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎝

x1

x2

...
xn

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎝

β1(t)
β2(t)

...
βn(t)

⎞
⎟⎟⎟⎠ ,

where the αij and βi are functions from R to R. Furthermore, we require that the
transformation groups that we consider are “semi-algebraic” (we give a precise
definition in Section 5.3).

We will consider the following groups Fst of transformations:

—Ast is the group of transformations of the above form where the αij(t) and βi(t)
are arbitrary functions of t such that the matrix of the αij(t) has an inverse
for each value of t, that is, these are the time-dependent affinities;

—A f
st is the subgroup of Ast consisting of transformations for which the func-

tions αij(t) and βi(t) only take a finite number of values, that is, functions
that are piecewise constant;

—Ac
st is the subgroup of A f

st consisting of transformations for which the func-
tions αij(t) and βi(t) are constant;

—Sst ,S
f

st andSc
st are subgroups ofAst ,A

f
st andAc

st respectively, where the matrix
of the αij(t) represents at each moment a similarity, that is, the composition
of an orthogonal matrix and a scaling (given by a non-zero multiple of the
unit matrix);

—Ist , I
f

st , Ic
st are the subgroups of the above groups where the matrix consisting

of the αij(t) is an orthogonal matrix, that is, these are groups of isometries.

—Tst , T
f

st , T c
st are the subgroups of the above groups where the matrix consisting

of the αij(t) is the identity matrix, that is, these are groups of translations.

The choice of these transformation groups is to some extent arbitrary.
These groups extend the transformation groups encountered in physics (see
Section 3.4) in a natural way. Furthermore, they have the advantage that they
can be defined in a semi-algebraic way. But it should be clear that other groups,
like time-dependent homeomorphisms, could be considered.

ACM Transactions on Computational Logic, Vol. 9, No. 2, Article 13, Publication date: March 2008.

13:14 • F. Geerts et al.

3.4 Physical Transformation Groups

The following groups are of interest when notions such as velocity, acceleration
and force are important in an application. These transformation groups can
be found by solving the differential equations that express that these physical
entities are preserved [Desloge 1982].

We define the velocity (respectively, acceleration) of a moving figure as the
velocity (respectively, acceleration) of its center of mass. Changes in the shape
of a moving figure during motion clearly affect the motion of the center of mass.

In case that we consider an arbitrary motion of a figure, the velocity and
acceleration of the center of mass are preserved by the following two groups:

—Vst is the subgroup of Ac
st where the βi are constants. This group of transfor-

mations preserves the velocity vector of a moving figure.

—ACst is the group Ac
st . This group of transformations preserves the accelera-

tion vector of a moving figure.

However, when we only consider figures which are in rigid motion or isometric
movement, that is, a motion that preserves the shape of a figure, we require the
transformations to preserve the rigidity as well. As a consequence we obtain
the following two groups:

—V(R)st is the subgroup of Ic
st where the βi are constants. This group of trans-

formations preserves the velocity vector of a moving figure in rigid motion.

—AC(R)st is the group Ic
st . This group of transformations preserves the accel-

eration vector of a moving figure in rigid motion.

In physics it is customary to consider only translations for what concerns
the time dimension, that is, the transformations in the group Tt . The group
(AC(R)st , Tt) is also known as the group of the Galilei transformations. It is
particularly useful because all laws of classical mechanics are invariant for
this group of transformations of space-time [Desloge 1982].

3.5 Examples of Generic Queries

We end this section with a number of examples of queries that are generic for
some of the genericity classes that we have introduced above.

Suppose in some city, an experiment is set up to evaluate the traffic sit-
uation. A number of probe cars (for simplicity, we assume two) is continu-
ously driving around the city in a random way. The trajectories of the cars are
stored in a spatio-temporal database, of underlying dimension 2, with schema
σ = {carA, carB}, where the relations carA and carB both have arity 1. In these
examples, we assume that time is measured in seconds and distance is mea-
sured in meters. We now give some example queries, and indicate for each the
transformation groups it is generic for.

Example 3.5. Q1 : Does the route followed by car A self-intersect more often
than the route followed by car B does?

This query is (Vst , At)-generic, but not (Ast , At)-generic, for instance. It is not
expressible in first-order logic. In Section 5, we will give a “program” expressing
this query.

ACM Transactions on Computational Logic, Vol. 9, No. 2, Article 13, Publication date: March 2008.

Complete Query Languages for Spatio-Temporal Databases • 13:15

Example 3.6. Q2 : Give the places and time moments where it is true for
car A that when it reaches them, it is standing still at that spot for at least 300
more seconds, (i.e., where and when did car A encounter a traffic jam?).

This query is (Vst , Tt)-generic. Indeed, the fact that a car has speed zero (when
it is standing still) has to be preserved, which requires the group Vst , and the
length of time intervals has to be preserved, which requires Tt . This query is
expressed by the following FO(+, ×, <, 0, 1, carA)-formula:

ϕ2(x, y , t) := carA(x, y , t) ∧ (∀t2)((t ≤ t2 ∧ t2 ≤ t + 300) → carA(x, y , t2)).

Example 3.7. Q3 : Was there a collision between car A and car B?

This query is (Ast , At)-generic and is expressed by the following FO(+, ×, <,
0, 1, carA, carB)-formula:

ϕ3 := (∃x)(∃ y)(∃t)(carA(x, y , t) ∧ carB(x, y , t)).

Example 3.8. Q4 : Did car A pass at 500 meters north of car B at time
moment t = 5930?

This query is (Tst , Idt)-generic and is expressed by the following FO(+, ×, <,
0, 1, carA, carB)-formula:

ϕ4 := (∃x1)(∃ y1)(∃ y2)(carA(x1, y1, 5930) ∧ carB(x1, y2, 5930) ∧ y1 = y2 + 500).

Example 3.9. Q5 : Did car A encounter any “empty roads”? (I.e., were there
parts of its trajectory where it could drive at constant speed in a straight line for
at least 6000 seconds?)

This query is (ACst , Tt)-generic. The fact that a car drives at constant speed
(i.e., has an acceleration of zero) has to be preserved. Note that, because the car’s
movement is a polynomial function of time, driving at constant speed means
driving in a straight line. Query Q5 can be expressed by the following FO(+,
×, <, 0, 1, carA)-formula:

ϕ5 := (∃t1)(∃t2)(∃x1)(∃ y1)(∃x2)(∃ y2)(carA(x1, y1, t1) ∧ carA(x2, y2, t2) ∧
t2 = t1 + 6000 ∧ (∀t3)((t1 ≤ t3 ∧ t3 ≤ t2) → (∃x3)(∃ y3)(carA(x3, y3, t3) ∧

(t2 − t1)x3 = (t2 − t3)x1 + (t3 − t1)x2 ∧ (t2 − t1) y3 = (t2 − t3) y1 + (t3 − t1) y2))).

This completes the examples section. We return to these examples later on,
when we have defined point languages.

4. SOUND AND COMPLETE LANGUAGES FOR THE GENERIC FIRST-ORDER
SPATIO-TEMPORAL QUERIES

In this section, we study the (Fst , Ft)-generic queries that are expressible in
FO(+, ×, <, 0, 1), for all groups (Fst , Ft) listed in Section 3.3 and Section 3.4.

To start with, we give a general undecidability result. We prove that it is
undecidable whether a query is (Fst , Ft)-generic, for any nontrivial group (Fst ,
Ft).

The strategy to prove this result was introduced by Paredaens et al. [1994].
Let N denote the set of the natural numbers.

ACM Transactions on Computational Logic, Vol. 9, No. 2, Article 13, Publication date: March 2008.

13:16 • F. Geerts et al.

THEOREM 4.1. For all nontrivial groups (Fst , Ft) mentioned in the previous
section, (Fst , Ft)-genericity of spatio-temporal FO(+, ×, <, 0, 1, σ)-queries is un-
decidable, where σ is a non-empty schema.

PROOF. Let F be a group of transformations of Rn × R that contains an
element f0 that does not map (0, 0) to itself. We show thatF-genericity of spatio-
temporal queries over a certain schema σ = {R}, where R is a one-dimensional
unary spatio-temporal relation, of output type (1, 1) is undecidable. For other
non-empty schemas the proof is similar. We will do this by reducing deciding
the truth of sentences of the ∀∗-fragment of number theory to the genericity
question. The ∀∗-fragment of number theory is known to be undecidable since
Hilbert’s 10th problem [Matijasevich 1993] can be formulated in it.

We encode a natural number n by the unary one-dimensional spatio-temporal
relation

enc(n) := {(0, 0), (1, 0), . . . , (n, 0)}.
A (k-dimensional) vector of natural numbers (n1, n2, . . . , nk) is encoded by

the relation

enc(n1, n2, . . . , nk) := enc(n1) ∪ (enc(n2) + (n1 + 2, 0)) ∪

· · · ∪ (enc(nk) + (n1 + 2 + · · · + nk−1 + 2, 0)).

For fixed k, the corresponding decoding is expressible in FO(+, ×, <, 0, 1). We
thus associate to the first-order sentence (∀n1) · · · (∀nk)ϕ(n1, . . . , nk) of number
theory to the following spatio-temporal query Qϕ over the input schema
σ = {R}:

if R encodes a vector (n1, . . . , nk) ∈ Nk

then
if ϕ(n1, . . . , nk)
then return ∅
else return {(0, 0)}
end if

else return ∅
end if

This query is expressible in FO(+, ×, <, 0, 1).

CLAIM. The query Qϕ is F-generic if and only if the sentence (∀n1) · · ·
(∀nk)ϕ(n1, . . . , nk) holds in the natural numbers.

PROOF: Now, we prove this claim. First, suppose that, for all (n1, . . . ,
nk) ∈ Nk , ϕ(n1, . . . , nk) holds. Let R be a one-dimensional unary spatio-temporal
relation and let f be some transformation of F . We have to prove that

f (Qϕ(R)) = Qϕ(f (R)).

The result of Qϕ(R) will always be ∅: either R does not encode a vector
(n1, . . . , nk), or it does and ϕ(n1, . . . , nk) holds. For the same reason, Qϕ(f (R))
also equals ∅. The transformation f maps ∅ to ∅, hence f (Qϕ(R)) = ∅, which
concludes the first part of the proof.

ACM Transactions on Computational Logic, Vol. 9, No. 2, Article 13, Publication date: March 2008.

Complete Query Languages for Spatio-Temporal Databases • 13:17

Now assume that there exists an (n0
1, . . . , n0

k) such that ϕ(n0
1, . . . , n0

k) is not

true. Let R be the database that decodes (n0
1, . . . , n0

k). The result of Qϕ(R)
will be the origin (0, 0) of R × R. If we now apply f0 to this result, the output
is a vector (y , z) �= (0, 0). On the other side, if we first apply f0 to R, there
are three possibilities. Either f0(R) encodes a vector (n1

1, . . . , n1
k) for which

ϕ(n1
1, . . . , n1

k) is true, then the result of Qϕ(f0(R)) will be ∅. Or, f0(R) encodes

a vector (n1
1, . . . , n1

k) for which ϕ(n1
1, . . . , n1

k) is not true, and Qϕ(f0(R)) returns
(0, 0). In the last case, f0(R) does not encode a vector of natural numbers, in
which case the result of Qϕ(f0(R)) will be ∅ again. In all cases, we have that
Qϕ(f0(R)) �= f0(Qϕ(R)). Therefeore, the query Qϕ is not F-generic.

We can conclude that Qϕ is F-generic if and only if the sentence (∀n1) · · ·
(∀nk)ϕ(n1, . . . , nk) holds in the natural numbers.

Therefore, if F-genericity would be decidable, also the truth of sentences
in the ∀∗-fragment of number theory would be decidable. This concludes the
proof.

Next, we show that (Fst , Ft)-generic FO(+, ×, <, 0, 1)-queries are recursive
enumerable, however. We do this by syntactically specifying sound and complete
languages that capture the (Fst , Ft)-generic FO-queries. These languages are
point-based logics defined as follows:

Definition 4.2. Let σ = {R1, R2, . . . , Rm} be a spatio-temporal database
schema and let � be a set of predicates. The first-order logic over σ and �, de-
noted by FO(�, R1, R2, . . . , Rm) or FO(�, σ) for short, can be used as a spatio-
temporal query language when variables are interpreted to range over points in
Rn×R, (we denote variables by u, v, w, . . .). The atomic formulas in FO(�, σ) are
equality constraints on point variables, the predicates of � applied to point vari-
ables, and the relation names R1, R2, . . . , Rm from σ applied to point variables.

Example 4.3. Let p1 and p2 be points in Rn × R. Let Before(p1, p2) be a
predicate which evaluates to true if the time coordinate τ1 of p1 is smaller than
or equal to the time coordinate τ2 of p2. Let � = {Before} and consider the
following formula Cotemp in FO(�):

Cotemp(u, v) := Before(u, v) ∧ Before(v, u).

This formula expresses that two points p1 and p2 are co-temporal, or equiva-
lently, that τ1 equals τ2.

A FO(�, σ)-formula ϕ(v1, v2, . . . , vk) defines for each spatio-temporal data-
base ST over σ a subset ϕ(ST) of (Rn × R)k defined as

{(p1, . . . , pk) ∈ (Rn × R)k | (
Rn × R, �Rn×R, RST

1 , . . . , RST
m

) |= ϕ[p1, . . . , pk]},
where ϕ[p1, . . . , pk] is obtained from the formula ϕ(v1, . . . , vk) by instantiating
the variables vi by the constant points pi, 1 ≤ i ≤ k.

From Definition 2.14, it is clear what it means that a FO(�, σ)-formula ex-
presses a semi-algebraic databases query.

Definition 4.4. A query language is said to be sound for the (Fst , Ft)-generic
FO(+, ×, <, 0, 1)-queries on spatio-temporal databases, if that language only

ACM Transactions on Computational Logic, Vol. 9, No. 2, Article 13, Publication date: March 2008.

13:18 • F. Geerts et al.

expresses (Fst , Ft)-generic FO(+, ×, <, 0, 1)-queries on spatio-temporal data-
bases.

A query language is said to be complete for the (Fst , Ft)-generic FO(+, ×, <,
0, 1)-queries on spatio-temporal databases, if all (Fst , Ft)-generic FO(+, ×, <,
0, 1)-queries on spatio-temporal databases can be expressed in that language.

In the following, we will omit the dependence on the input schema when
this is clear from the context, and use the notation FO(�) for first-order point
languages over the predicate set �.

In the remainder of this section, we give sound and complete point lan-
guages for (i) time-independent transformations (Theorem 4.10, Section 4.1),
(ii) physics-related transformations (Theorem 4.12, Section 4.2), and (iii) time-
dependent transformations (Theorem 4.20, Section 4.3).

4.1 Genericity for Time-Independent Transformations

In this section, we give a general result concerning (Fst , Ft)-generic queries
whereFst is a subgroup ofAc

st , the group of time-independent affinities of Rn×R.
First, we introduce the point predicates that we will use for the different point
languages.

To express the temporal order of events, we use the point predicate Before
defined in Example 4.3. We will also often use the derived predicate Cotemp,
which expresses the co-temporality of events. The definition of Cotemp is given
in Example 4.3 as well.

There are three more other purely temporal predicates: UnitTime, 0t and 1t.
The predicate UnitTime(p1, p2) expresses that the points p1, p2 ∈ Rn ×R have
time-coordinates τ1 and τ2 such that |τ1 − τ2| = 1. The unary predicates 0t and
1t are such that 0t(p) and 1t(p) respectively express that the time coordinate
of the point p equals to zero and to one.

The following predicates address spatio-temporal relations between points.
The point-predicate Betweenn+1 is defined such that Betweenn+1(p1, p2, p3)
expresses that the points p1, p2, p3 in Rn ×R are collinear (in the space Rn ×R)
and that p2 is between p1 and p3. The predicates ≤i (p1, p2) (1 ≤ i ≤ n) ex-
press that the ith spatial coordinate of p1 is less or equal than the ith spatial
coordinate of p2. The expression EqDist(p1, p2, p3, p4) is true if the distance
between the two co-temporal points p1 and p2 equals the distance between the
two co-temporal points p3 and p4. The binary predicate UnitDist applied to
two points p1 and p2 expresses that they are co-temporal and that the (spatial)
distance between p1 and p2 equals one. Finally, Posn+1(p0, p1, p2, . . . , pn+1) ex-
presses that the (n + 2)-tuple (p0, p1, p2, . . . , pn+1) of points in Rn × R forms a
positively oriented (n + 1)-dimensional coordinate system with p0 as origin.

The proof of the following property consists of a straightforward encoding
of the point predicates in FO(+, ×, <, 0, 1) similar to the encodings presented
in Gyssens et al. [1999]. We leave the proof as an exercise for the reader.

PROPERTY 4.5. The point predicates Before, Betweenn+1, UnitTime, 0t,
1t, ≤i (1 ≤ i ≤ n), EqDist, UnitDist and Posn+1 are all expressible in FO(+,
×, <, 0, 1).

ACM Transactions on Computational Logic, Vol. 9, No. 2, Article 13, Publication date: March 2008.

Complete Query Languages for Spatio-Temporal Databases • 13:19

Table I. An Overview of the Different Sets of Point Predicates for a

Number of Spatio-Temporal Time-Independent Genericity Notions.

In the Three Last Cases Ft ∈ {At , Tt , Idt }
(Fst , Ft) Sets of Point Predicates �(Fst , Ft)

(Ac
st , At) {Betweenn+1, Before}

(Ac
st , Tt) {Betweenn+1, Before, UnitTime}

(Ac
st , Idt) {Betweenn+1, Before, UnitTime, 0t, 1t}

(Sc
st , Ft) �(Ac

st , Ft) ∪ {EqDist}
(Ic

st , Ft) �(Ac
st , Ft) ∪ {EqDist, UnitDist}

(T c
st , Ft) �(Ac

st , Ft) ∪ {EqDist, UnitDist, ≤i (1 ≤ i ≤ n), Posn+1}

PROPERTY 4.6. Let (Fst , Ft) be a group and let �(Fst , Ft) be a set of point
predicates as in Table I. The point predicates in �(Fst , Ft) are invariant under
elements of (Fst , Ft).

PROOF. This is a straightforward consequence of the definitions of the point
predicates and the properties of the different transformation groups. We refer
to Section A.1 in the appendix for the complete proof.

Remark 4.7. From now, all results are valid for underlying dimension
n ≥ 2.

We now identify sound and complete point languages for the time-
independent transformations in Table I. Soundness and completeness are es-
tablished as follows: First, we provide a “meta-theorem” (Theorem 4.8) that
gives sufficient conditions for any point language containing Betweenn+1 to
be sound and complete. Next, we specialize this theorem for point languages
containing Betweenn+1 and Before and for time-independent transformations
(Theorem 4.9). Finally, we show that the sufficient conditions are satisfied for
the point languages and groups in Table I, and as a result obtain soundness
and completeness (Theorem 4.10).

The following theorem follows directly from the proof of Theorem 5.5
[Gyssens et al. 1999]. We recall that the correspondence between a spatio-
temporal database schema σ and its semi-algebraic counterpart σ is defined
in Remark 2.6.

THEOREM 4.8. Let σ be a spatio-temporal database schema. Let F be a sub-
group of the affinities of Rn × R. Let � be a set of point-predicates that contains
Betweenn+1. If the predicates in � are FO(+, ×, <, 0, 1)-expressible and invari-
ant under the transformations of F and if the fact “(v0, v1, . . . , vn+1) is the image
of the standard coordinate system of Rn × R under some element f of F” is
expressible in FO(�), then FO(�, σ) is sound and complete for the F-generic
spatio-temporal database queries that are expressible in FO(+, ×, <, 0, 1, σ).

We now prove the following theorem.

THEOREM 4.9. Let σ be a spatio-temporal database schema. Let Fst be a
subgroup of Ac

st and Ft a subgroup of At . Let �(Fst , Ft) be a set of point-
predicates that contains Betweenn+1 and Before. If the predicates in �(Fst , Ft)
are FO-expressible and invariant under the transformations of (Fst , Ft) and if

ACM Transactions on Computational Logic, Vol. 9, No. 2, Article 13, Publication date: March 2008.

13:20 • F. Geerts et al.

the fact “(v0, v1, . . . , vn+1) is the image of the standard coordinate system un-
der some element f of (Fst , Ft)” is expressible in FO(�(Fst, Ft)), then the logic
FO(�(Fst, Ft), σ) is sound and complete for the (Fst , Ft)-generic spatio-temporal
database queries that are expressible in FO(+, ×, <, 0, 1, σ).

PROOF. First, we show that the language FO({Betweenn+1, Before}) is
sound and complete for the (Ac

st , At)-generic FO(+, ×, <, 0, 1, σ)-expressible
spatio-temporal database queries using Theorem 4.8. Indeed, it is clear that
the group (Ac

st , At) is a subgroup of the affinities of Rn × R. Furthermore, the
expression Before(u, v), is expressible in FO(+, ×, <, 0, 1) (see Property 4.5).
Also, the predicates Betweenn+1 and Before are both invariant under ele-
ments of (Ac

st , At) (see Property 4.6).
To conclude this part of the proof, we need to show that there is an expression

in FO({Betweenn+1, Before}) that, for n + 2 arbitrary points p0, p1, , . . . , pn+1

in Rn × R, states that (p0, p1, . . . , pn+1) is the image of the standard coordi-
nate system under some element f of (Ac

st , At). It is known (e.g. Gyssens et al.
[1999] and Schwabhäuser et al. [1983]) that there exists an expression in the
language FO({Betweenn+1}) that, for n + 2 points p0, p1, , . . . , pn+1 of Rn × R,
expresses that (p0, p1, . . . , pn+1) is the image of the standard (n+1)-dimensional
coordinate system under some affinity of Rn × R. We refer to this expression as

CoSysA(v0, v1, . . . , vn+1).

Obviously, this formula also belongs to FO({Betweenn+1, Before}). The expres-
sion for the image of the standard coordinate system under some element of
(Ac

st , At) is as follows:

CoSys(Ac
st ,At)

(v0, v1, . . . , vn+1) := CoSysA(v0, v1, . . . , vn+1) ∧
n∧

i=1

Cotemp(v0, vi) ∧ ¬Before(vn+1, v0).

It is easy to verify that any coordinate system that is an image of the standard
coordinate system under an element of (Ac

st , At) satisfies this expression. Also,
the reverse is true. For clarity, we show this only for n = 2 (the general case is
analogous).

Any coordinate system (p0, p1, p2, p3) satisfying the expression CoSys(Ac
st ,At)

(v0, v1, v2, v3) is of the form p0 = (a0,1, a0,2, τ0), p1 = (a1,1, a1,2, τ0), p2 =
(a2,1, a2,2, τ0), p3 = (a3,1, a3,2, τ3), where τ0 < τ3 and the determinant

∣∣∣∣∣∣
a1,1 − a0,1 a1,2 − a0,2 0
a2,1 − a0,1 a2,2 − a0,2 0
a3,1 − a0,1 a3,2 − a0,2 τ3 − τ0

∣∣∣∣∣∣ �= 0. (∗)

Now, we have to show that there exists an element f of (Ac
st , At) such that

the image of the standard coordinate system under f equals (p0, p1, p2, p3).
As (Ac

st , At) is a subgroup of the affinities, f is representable by a matrix. It is

ACM Transactions on Computational Logic, Vol. 9, No. 2, Article 13, Publication date: March 2008.

Complete Query Languages for Spatio-Temporal Databases • 13:21

straightforward to derive that f = (fst , ft), where

fst(x, y , t) =
(
a1,1 − a0,1 a2,1 − a0,1

a1,2 − a0,2 a2,2 − a0,2

) (
x
y

)
+

(
(a3,1 − a0,1)t + a0,1

(a3,2 − a0,2)t + a0,2

)
, and

ft(t) = (τ3 − τ0)t + τ0.

It is clear that (τ3−τ0) > 0 and that, because of the inequality (∗), the value of

the determinant

∣∣∣∣a1,1 − a0,1 a2,1 − a0,1

a1,2 − a0,2 a2,2 − a0,2

∣∣∣∣ differs from zero, hence f is an element

of (Ac
st , At).

So far, we proved that the language FO({Betweenn+1, Before}, σ) is sound
and complete for the (Ac

st , At)-generic queries expressible in FO(+, ×, <, 0, 1, σ).
The fact that any other language FO(�(Fst, Ft), σ), where �(Fst , Ft) contains
Betweenn+1 and Before, is sound and complete for the (Fst , Ft)-generic FO(+,
×, <, 0, 1, σ)-queries for each subgroup (Fst , Ft) of (Ac

st , At), under the conditions
stated in Theorem 4.9, follows from Theorem 4.8 together with the first part of
this proof.

THEOREM 4.10. Let σ be a spatio-temporal database schema. Let (Fst , Ft) be
a group and let �(Fst , Ft) be as in Table I. The point language FO(�(Fst , Ft), σ)
is sound and complete for the (Fst , Ft)-generic queries expressible in FO(+, ×,
<, 0, 1, σ).

PROOF. We can apply Theorem 4.9 for all groups in Table I, because they
are all subgroups of (Ac

st , At). From Properties 4.5 and 4.6, it follows that all
predicates are expressible in FO(+, ×, <, 0, 1) and that they are invariant under
transformations of the appropriate groups. The only thing left to prove is that,
for all groups (Fst , Ft) from Table I, and for n + 2 points v0, v1, , . . . , vn+1 in
Rn×R, the fact “(v0, v1, . . . , vn+1) is the image of the standard coordinate system
under some element f of (Fst , Ft)” is expressible in FO(�(Fst , Ft)). For each
group (Fst , Ft) from Table I, we now give a formula that expresses this fact. The
correctness of these formulas is easy to verify.

—For the group (Ac
st , At), we already gave a formula, denoted by CoSys(Ac

st ,At)
,

expressing the desired fact in the proof of Theorem 4.9.

—For the group (Ac
st , Tt), we have

CoSys(Ac
st ,Tt)

(v0, v1, . . . , vn+1) :=
CoSys(Ac

st ,At)
(v0, v1, . . . , vn+1) ∧ UnitTime(v0, vn+1).

—For the group (Ac
st , Idt), we have

CoSys
(Ac

st ,Idt)
(v0, v1, . . . , vn+1) :=

CoSys(Ac
st ,Tt)

(v0, v1, . . . , vn+1) ∧ 0t(v0) ∧ 1t(vn+1).

Let Ft be an element of {At , Tt , Idt}.
—For the groups (Sc

st , Ft), we have

CoSys(Sc
st ,Ft)

(v0, v1, . . . , vn+1) :=

CoSys(Ac
st ,Ft)

(v0, v1, . . . , vn+1) ∧
n∧

i=1

n∧
j=1

EqDist(v0, vi, v0, vj).

ACM Transactions on Computational Logic, Vol. 9, No. 2, Article 13, Publication date: March 2008.

13:22 • F. Geerts et al.

Table II. An Overview of the Different Point-Predicate Sets for the

Physics-Related Transformation Groups

(Fst , Tt) Set of point predicates �(Fst , Tt)

(Vst , Tt) {Betweenn+1, Before, UnitTime, =space}
(V(R)st , Tt) {Betweenn+1, Before, UnitTime, =space, EqDist, UnitDist}
(ACst , Tt) {Betweenn+1, Before, UnitTime}
(AC(R)st , Tt) {Betweenn+1, Before, UnitTime, EqDist, UnitDist}

—For the groups (Ic
st , Ft), we have

CoSys(Ic
st ,Ft)

(v0, v1, . . . , vn+1) :=

CoSys(Sc
st ,Ft)

(v0, v1, . . . , vn+1) ∧
n∧

i=1

UnitDist(v0, vi).

—For the groups (T c
st , Ft), we have

CoSys(T c
st ,Ft)

(v0, v1, . . . , vn+1) :=
CoSys(Ic

st ,Ft)
(v0, v1, . . . , vn+1) ∧

Posn+1(v0, v1, . . . , vn+1) ∧
n∧

j=1

n∧
i=1

≤i (v0, vj).

This concludes the proof.

4.2 Genericity for Physics-Related Transformations

Here, we focus on the physics-related transformation groups (Vst , Tt), (V(R)st ,
Tt), (ACst , Tt) and (AC(R)st , Tt). To formulate our results, we need to define
one more point-predicate, namely =space. If p1 = (a1,1, . . . , a1,n, τ1) and p2 =
(a2,1, . . . , a2,n, τ2) are elements of Rn × R, then =space(p1, p2) if and only if
a1,i = a2,i for all 1 ≤ i ≤ n.

Remark 4.11. The expression

=space(v1, v2) :=
n∧

i=1

(≤i (v1, v2)∧ ≤i (v2, v1))

is expressible in FO(+, ×, <, 0, 1).

THEOREM 4.12. Let σ be a spatio-temporal database schema. Let the groups
(Fst , Tt) and the predicate sets �(Fst , Tt) be as in Table II. The point language
FO(�(Fst , Tt), σ) is sound and complete for the (Fst , Tt)-generic spatio-temporal
queries that are expressible in FO(+, ×, <, 0, 1, σ).

PROOF. The transformation groups (Fst , Tt) of Table II are all subgroups of
the group (Ac

st , At). Furthermore, the predicates of �(Fst , Tt) are expressible in
FO(+, ×, <, 0, 1) (see Property 4.5 and Remark 4.11). Straightforward geomet-
rical and physical arguments show that all predicates are invariant under the
appropriate transformation groups. We can now apply Theorem 4.9. We only
have to verify that it is possible to express in the languages FO(�(Fst , Tt)) that
a coordinate system is the image of the standard (n+ 1)-dimensional coordinate

ACM Transactions on Computational Logic, Vol. 9, No. 2, Article 13, Publication date: March 2008.

Complete Query Languages for Spatio-Temporal Databases • 13:23

system under an element of (Fst , Tt). We now give, for each group (Fst , Tt) from
Table II, the expression for the fact that (v0, v1, . . . , vn+1) is the image of the
standard coordinate system under some element f of (Fst , Tt).

The correctness of these expressions is easy to verify.

—For the group (Vst , Tt), we have

CoSys(Vst ,Tt)
(v0, v1, . . . , vn+1) :=

CoSys(Ast ,Tt)
(v0, v1, . . . , vn+1) ∧ =space(v0, vn+1),

because elements of this group map the origin (0, . . . , 0, 0) and the unit vector
in the time-direction (0, . . . , 0, 1) of the standard coordinate system of Rn ×R
onto points which have equal spatial coordinates.

—For the group (V(R)st , Tt), we have

CoSys(V(R)st ,Tt)
(v0, v1, . . . , vn+1) :=

CoSys(Ist ,Tt)
(v0, v1, . . . , vn+1) ∧ =space(v0, vn+1).

—For the groups (ACst , Tt) and (AC(R)st , Tt) we can simply use the expressions
for (ACst , Tt) and (Ist , Tt), respectively, given in the proof of Theorem 4.10.

Next, we illustrate the languages summarized in Table I and Table II on the
appropriate examples of Section 3.5.

Example 4.13. We give the FO({Betweenn+1, Before, UnitTime,
=space})—query Q ′

2 equivalent to the (Vst , Tt)-generic query of Example 3.6:
Give the places and time moments where car A is standing still at that spot for
at least 300 more seconds.

Remember that we assumed before that time is measured in seconds and
distance is measured in meters. We first remark that the fact that one point is
a constant number of seconds before another, can be expressed using UnitTime
and Before. We illustrate this for an easy example where one point is 3 seconds
after another:

3sec(u, v) := (∃w1)(∃w2)(Before(u, w1) ∧ Before(w1, w2) ∧ Before(w2, v)∧
UnitTime(u, w1) ∧ UnitTime(w1, w2) ∧ UnitTime(w2, v)).

Now we give the expression for Q ′
2:

carA(u) ∧ (∃v)(300sec(u, v)∧
(∀w)((Before(u, w) ∧ Before(w, v) ∧ carA(w)) → =space(u, w))).

Example 4.14. We give the FO({Betweenn+1, Before, UnitTime})-query
Q ′

5 equivalent to the (ACst , Tt)-generic query of Example 3.9: Did car A en-
counter any empty roads? That is, were there parts of its trajectory where it
could drive at constant speed for at least 6000 seconds.

(∃u)(∃v)(carA(u) ∧ carA(v) ∧ 6000sec(u, v) ∧ (∀w)((carA(w)∧
Before(u, w) ∧ Before(w, v)) → (Betweenn+1(u, v, w)))).

ACM Transactions on Computational Logic, Vol. 9, No. 2, Article 13, Publication date: March 2008.

13:24 • F. Geerts et al.

tb

x

y

t

t1t0

x

y

t

t1t0

Fig. 2. The elements of (A f
st , At) do not preserve betweenness of points.

4.3 Genericity for Time-Dependent Transformations

Here, we focus on notions of genericity determined by time-dependent trans-
formations. We will focus first on time-dependent transformations which are
piecewise constant, that is, (A f

st , At) and its subgroups introduced in Section 3.3.
Later we show how to deal with the arbitrary, that is, not piecewise-constant,
time-dependent transformation groups, that is, (Ast , At) and its subgroups in-
troduced in Section 3.3.

It is important to note that for (A f
st , At) and its subgroups, we cannot apply

Theorem 4.9. Indeed, it heavily relies on the fact that, using the predicate
Betweenn+1, it can be expressed that n + 2 points form an affine coordinate
system for the space Rn×R, and also that some points represent the coordinates
of another point, relative to such an affine coordinate system (the latter is a
straightforward consequence of the former). When using the transformation
group (A f

st , At) or one of its subgroups, the predicate Betweenn+1 is too strong.
Indeed, transformations of the group (A f

st , At) do not preserve “betweenness” in
(n + 1)-dimensional space of points with different time coordinates. Therefore,
the notion of collinearity in (n + 1)-dimensional space can no longer be used.
Figure 2 illustrates this with a line (left) and the image of the line under some
transformation α = (αst , αt) in (A f

st , At) for which αt is the identity function and
αst equals the identity in the time interval [t0, tb[and is a constant translation
of space for the interval [tb, t1]. In the left part of Figure 2, it is true that
all points different from the endpoints at time moments t0 and t1 lie between
the endpoints. For the right part of Figure 2, this is not true (the dashed line
connecting the end points indicates all points between them.)

However, as we want our language to be able to express all first-order
(A f

st , At)-generic queries, somehow there needs to be a link between an (n + 1)-
dimensional point and its coordinates. It will become more clear later that,
although we cannot express projection along the time axis, this link can be ex-
pressed using the predicates Betweenn, Before and a new predicate, EqCRst.
The predicate Before has already been introduced in Section 4.1. The expres-
sion Betweenn(p, q, r) states, for three points p, q, r ∈ Rn × R, that they are
co-temporal, collinear in the space Rn and that q is between p and r. We also
introduce a new 6-ary predicate, EqCRst. For six points p1, p2, p3, q1, q2, q3 ∈
Rn × R, EqCRst(p1, p2, p3, q1, q2, q3) expresses that the cross ratio of the three
co-temporal and collinear points p1, p2 and p3 equals the cross ratio of the time

ACM Transactions on Computational Logic, Vol. 9, No. 2, Article 13, Publication date: March 2008.

Complete Query Languages for Spatio-Temporal Databases • 13:25

coordinates τq1
, τq2

and τq3
of the points q1, q2 and q3. The cross ratio of three

collinear points p, q, r is |pq|
|pr| , where |pq| denotes the length of the line segment

between p and q. It is well known that the cross ratio is invariant under affine
transformations.

For example, in R2 × R,

EqCRst((0, 0, 0), (1, 1, 0), (2, 2, 0), (0, 0, 0), (0, 0, 1), (0, 0, 2))

holds, since the former three points have a cross ratio of
√

2

2
√

2
and the latter three

points have a cross ratio of 1
2
.

For ease of use, we will often use the predicates EqCRs for the cross-ratio
of spatial coordinates, and EqCRt for the cross-ratio of temporal coordinates.
Both predicates can be expressed using EqCRst:

EqCRs(u1, u2, u3, v1, v2, v3) := (∃w1)(∃w2)(∃w3)

(EqCRst(u1, u2, u3, w1, w2, w3) ∧ EqCRst(v1, v2, v3, w1, w2, w3)),

and

EqCRt(u1, u2, u3, v1, v2, v3) := (∃w1)(∃w2)(∃w3)

(EqCRst(w1, w2, w3, u1, u2, u3) ∧ EqCRst(w1, w2, w3, v1, v2, v3)).

For the remainder of this section, we will assume that � denotes the set

{Betweenn, Before, EqCRst},
unless stated otherwise.

Next, we present the main theorem of this section.

THEOREM 4.15. Let σ be a spatio-temporal database schema. The language
FO({Betweenn, Before, EqCRst}, σ) is sound and complete for the (A f

st , At)-
generic spatio-temporal queries that are expressible in FO(+, ×, <, 0, 1, σ).

PROOF. We prove this theorem by three lemmas. First, the soundness is ad-
dressed in Lemma 4.16. Next, we prove completeness in two steps: Lemma 4.17
shows that every FO(+, ×, <, 0, 1, σ)-formula can be converted into a FO(�, σ)-
formula, parameterized by a set of coordinate systems and Lemma 4.18 shows
then that every (A f

st , At)-generic spatio-temporal query that is expressible in
FO(+, ×, <, 0, 1, σ) can be converted into an equivalent query expressible in the
language FO(�, σ). Taken together, these three lemma’s prove the theorem.

It remains to prove the three lemma’s. First, we establish the soundness of
FO(�, σ) for piecewise constant time-dependent transformation groups.

LEMMA 4.16. Let σ be a spatio-temporal database schema and let n be the
underlying dimension. The language FO(�, σ) is sound for the (A f

st , At)- generic
spatio-temporal queries expressible in FO(+, ×, <, 0, 1, σ).

PROOF. Soundness is proved in two steps. First, we show that every
FO(�, σ)-formula is equivalently expressible in FO(+, ×, <, 0, 1, σ) and after-
wards that every FO(�, σ)-formula is invariant under elements of (A f

st , At).

ACM Transactions on Computational Logic, Vol. 9, No. 2, Article 13, Publication date: March 2008.

13:26 • F. Geerts et al.

Both are proved by induction on the structure of FO(�, σ)-formulas. We refer
to Section A.2 of the appendix for the complete proof.

We now show that every FO(+, ×, <, 0, 1, σ)-formula can be converted into
a FO({Betweenn, Before, EqCRst}, σ)-formula, which is parameterized by a
finite set of coordinate systems.

A coordinate system in a n-dimensional hyperplane of Rn × R, orthogonal to
the time axis will be referred to as a spatial coordinate system and a coordinate
system on the time-axis will be referred to as a temporal coordinate system.

If p, q and r are collinear points in Rn × R, then we denote by
−→pq−→pr the real

number α such that −→pq = α−→pr .

LEMMA 4.17. Let σ be a spatio-temporal database schema and let the under-
lying dimension be n. For every FO(+, ×, <, 0, 1, σ)-formula

ψ(x1, x2, . . . , xm, t1, . . . , tl),

there exists a FO(�, σ)-formula

ψ(utO , utE , u0,0, u0,1, . . . , u0,n, . . . , ul ,0, ul ,1, . . . , ul ,n, v1, v2, . . . , vk),

where l is the number of variables occurring in the formula that refer to a time
dimension and where k is the total number of free variables of ψ , that is, k =
m + l .

Furthermore, for each spatio-temporal database ST over σ , for each set of spa-
tial coordinate systems (pi,0, pi,1, . . . , pi,n), i = 0, . . . , l of the spatial component
of Rn × R, for each temporal coordinate system (ptO , ptE) of the temporal compo-
nent of Rn × R, and for all points q1, q2, . . . , qk on the line p0,0 p0,1:

(Rn × R, �Rn×R, ST) |= ψ[ptO , ptE , p0,0, p0,1, . . . , p0,n, . . . ,

pl ,0, pl ,1, . . . , pl ,n, q1, q2, . . . , qk]

if and only if

(R, +, ×, <, 0, 1, α(ST)) |= ψ

[−−−→p0,0q1

−−−−→p0,0 p0,1

,
−−−→p0,0q2

−−−−→p0,0 p0,1

, . . . ,
−−−→p0,0qk

−−−−→p0,0 p0,1

]
,

where α = (αst , αt) is an element of (A f
st , At) such that (p0,0, . . . , p0,n) is

mapped by αst onto the standard spatial coordinate system in the hyperplane
Rn × {(0, . . . , 0, 0)} of Rn × R, and each spatial coordinate system (pi,0, pi,1, . . . ,
pi,n)(i = 1, . . . , l) is mapped on the standard coordinate system in the hyperplane
at time Rn × {α(τpi,0)} where the temporal part αt of α is the unique time-affinity
that maps τpO to 0 and τpE to 1.

PROOF. We present the structure of the proof here and refer to Section A.3
in the appendix for the complete proof.

Let ψ be a FO(+, ×, <, 0, 1, σ)-formula. We assume that ψ is in prenex normal
form. The proof constructs a translation of ψ into a formula ψ of FO(�, σ) (by
induction on its structure). In this translation, first the quantifier-free part of
ψ is translated.

ACM Transactions on Computational Logic, Vol. 9, No. 2, Article 13, Publication date: March 2008.

Complete Query Languages for Spatio-Temporal Databases • 13:27

To start with, a 2-dimensional “computation plane” is chosen in some n-
dimensional coordinate system that is used to simulate real variables, constants
and all the polynomial equations, polynomial equalities and inequalities.

Next, relation predicates R in ψ are translated into R. This is the most intri-
cate part of the translation. With each point variable v in R an n-dimensional
coordinate systems is associated, which is defined using n + 1 point variables
and is co-temporal with v. In this coordinate system, n other point variables
represent the coordinates of v with respect to this coordinate system. Since all
variables are already represented by point variables in the computation plane,
we need to link the set of point variables in the computation plane with the
point variables representing the coordinates of v in its associated coordinate
system. This can be achieved by means of the predicate EqCRs. As a result,
if R contains m point variables, m + 1 coordinate systems are needed. This
explains the occurrence of the parameters in the translation in the statement
of the Lemma.

The composition of formulas requires some special attention to ensure that
coordinate systems introduced in different formulas are in agreement with each
other. Finally, quantifiers are added in the obvious way.

LEMMA 4.18. Let σ be a spatio-temporal database schema. For every
(A f

st , At)-generic spatio-temporal query expressible in FO(+, ×, <, 0, 1, σ), there
exists an equivalent FO({Betweenn, Before, EqCRst}, σ)-query.

PROOF. Given a (A f
st , At)-generic spatio-temporal query of output type (n, k),

expressible in FO(+, ×, <, 0, 1, σ),

ψ(x1,1, . . . , x1,n, x1,t , . . . , xk,1, . . . , xk,n, xk,t).

The conversion procedure, given in Lemma 4.17, returns a formula

ψ(utO , utE , u0,0, . . . , u0,n, u1,0, . . . , u1,n, . . . , uk,0, . . . , uk,n,

v1,1, . . . , v1,n, v1,t , . . . , vk,1, . . . , vk,n, vk,t),

parameterized by one temporal and k spatial coordinate systems and which
is, up to a transformation of the group (A f

st , At), that depends on the coordi-
nate systems, equivalent to the original formula ψ . Since it has additional free
variables, the query ψ clearly has the wrong output type. A FO(�, σ)-query
equivalent to ψ should be a formula

ψfinal(v1, v2, . . . , vk)

having k free variables only. We obtain the desired formula by introducing k
new point variables vi, and for each 1 ≤ i ≤ k, n new point variables v′

i,1, . . . , v′
i,n

such that v′
i, j is collinear with ui,0 and ui,1 and

Coordinatesn(ui,0, . . . , , ui,n, v′
i,1, . . . , v′

i,n, vi). (1)

Moreover, we require that

EqCRst(u0,0, u0,1, vi,t , utO , utE , vi) (2)

ACM Transactions on Computational Logic, Vol. 9, No. 2, Article 13, Publication date: March 2008.

13:28 • F. Geerts et al.

and
n∧

j=1

EqCRs(u0,0, u0,1, vi, j , ui,0, ui,1, v′
i, j). (3)

The final formula ψfinal is now obtained by existentially quantifying all point
variables, except for v1, . . . , vk in the conjunction of ψ with the expressions (1),
(2) and (3).

Now consider the (partial) output of ψfinal when we choose a specific coordi-
nate system for each set of variables ui,0, . . . , ui,n. By similar reasoning as in
Lemma 4.17, we obtain that this partial output equals

α′−1
(ψ(α(ST)))

where α′ = (α′
st , α′

t) and α = (αst , αt) both are transformations as specified in
the statement of Lemma 4.17. This means that they both satisfy the same set
of constraints, that is, α′

t = αt and for certain time moments τ , α′
st(τ) = αst(τ).

In between those time moments α′
st and αst can differ. However, it follows from

Lemma 4.17 that for any two transformations α and α′ satisfying the constraints

as described in the statement of Lemma 4.17, (R, +, ×, <, 0, 1, α(ST)) |= ψ[
−−−→p0,0q1−−−−−→p0,0 p0,1

,−−−→p0,0q2−−−−−→p0,0 p0,1
, . . . ,

−−−→p0,0qk−−−−−→p0,0 p0,1
] if and only if (Rn × R, �Rn×R, ST) |= ψ[ptO , ptE , p0,0, p0,1, . . . ,

p0,n, . . . , pl ,0, pl ,1, . . . , pl ,n, q1, q2, . . . , qk] if and only if (R, +, ×, <, 0, 1, α′(ST)) |=
ψ[

−−−→p0,0q1−−−−−→p0,0 p0,1
,

−−−→p0,0q2−−−−−→p0,0 p0,1
, . . . ,

−−−→p0,0qk−−−−−→p0,0 p0,1
]. In other words, we have that ψ(α(ST)) = ψ(α′(ST)).

Hence, we can conclude without loss of generality that the partial output of ψfinal

when we fill in a specific coordinate system for each set of variables ui,0, . . . , ui,n
equals α−1(ψ(α(ST))) where α is a transformation as specified in the statement
of Lemma 4.17.

If we now consider all possible coordinate systems for each set of variables
ui,0, . . . , ui,n, then we have

ψfinal(ST) =
⋃

c

⋃
αc

(α−1
c (ψ(αc(ST)))),

where c ranges over all possible coordinate system assignments and αc ranges
over all transformations satisfying the constraints following from this choice of
coordinate systems.

The union
⋃

c
⋃

αc
(α−1

c (ψ(αc(ST)))) is in fact the union over all elements α of

(A f
st , At) of α−1(ψ(α(ST))). So,

ψfinal(ST) =
⋃
α

(α−1(ψ(α(ST)))),

where α ranges over all elements of (A f
st , At).

Since ψfinal is a (A f
st , At)-generic query and the group (A f

st , At) is semi-
algebraic (we give a precise definition in Section 5.3), we have that for every α,

α−1(ψ(α(ST))) = ψ(ST).

So, finally,

ψfinal(ST) = ψ(ST).

This concludes the proof.

ACM Transactions on Computational Logic, Vol. 9, No. 2, Article 13, Publication date: March 2008.

Complete Query Languages for Spatio-Temporal Databases • 13:29

Table III. An Overview of the Different Sets of Point Predicate for Some

Transformation Groups. We have Ft ∈ {At , Tt , Idt }
(Fst , Ft) Sets of point predicates �(Fst , Ft)

(A(f)
st , At) {Betweenn, Before, EqCRst}

(A(f)
st , Tt) {Betweenn, Before, EqCRst, UnitTime}

(A(f)
st , Idt) {Betweenn, Before, EqCRst, UnitTime, 0t, 1t}

(S(f)
st , Ft) �(A(f)

st , Ft) ∪ {EqDistcotemp}
(I(f)

st , Ft) �(A(f)
st , Ft) ∪ {EqDistcotemp, UnitDist}

(T (f)
st , Ft) �(A(f)

st , Ft) ∪ {EqDistcotemp, UnitDist, ≤i (1 ≤ i ≤ n), Posn}

As mentioned at the beginning of this section, Theorem 4.15 only relates to
piecewise constant transformations groups. However, a careful analysis of the
proof of Lemma 4.17 shows that we only consider a finite number of moments
in time (i.e., there are only a finite number of time variables in any FO(+, ×,
<, 0, 1, σ)-formula ϕ). This implies that the transformation A f

st and Ast yield
the same results. So, we can use the proof given above for the group (Ast , At).
Indeed, in between the moments of time that are considered, it is not important
which transformation function is used.

As a result, Theorem 4.15 applies to the transformation groups (Ast , At) as
well:

COROLLARY 4.19. Let σ be a spatio-temporal database schema. The language
FO({Betweenn, Before, EqCRst}, σ) is sound and complete for the (Ast , At)-
generic spatio-temporal queries that are expressible in FO(+, ×, <, 0, 1, σ).

Corollary 4.19 has the following corollary. Before we can state this corollary,
we need to define two extra point predicates, namely EqDistcotemp and Posn.

First, EqDistcotemp(p, q, r, s) is true for four co-temporal points p, q, r and
s if and only if the (Euclidean) distance between p and q equals the distance
between r and s. Second, the expression Posn(p0, p1, . . . , pn) is true for n + 1
co-temporal points p0, p1, . . . , pn if and only if (p0, p1, . . . , pn) forms a positively
oriented coordinate system.

COROLLARY 4.20. Let σ be a spatio-temporal database schema. Let (Fst , Ft)
and FO(Fst , Ft)) be taken from Table III. The language P(�(Fst , Ft), σ) is sound
and complete for the (Fst , Ft)-generic spatio-temporal queries that are expressible
in FO(+, ×, <, 0, 1, σ).

PROOF. It follows directly from the proof of Theorem 4.15 that, for each

subgroup (F (f)
st , Ft) of (A(f)

st , At), the language FO(�, σ) is sound and complete

for the (F (f)
st , Ft)−generic queries expressible in FO(+, ×, <, 0, 1, σ) if and only

if the following three conditions are satisfied:

(i) the set � contains the elements Betweenn, Before and EqCRst;

(ii) all elements of � are FO(+, ×, <, 0, 1, σ)-expressible and invariant under

the transformations of (F (f)
st , Ft);

(iii) the facts “(v0, v1, . . . , vn) is the image of the standard coordinate system in

the hyperplane co-temporal with vtO under an element of (F (f)
st , Ft)” and

ACM Transactions on Computational Logic, Vol. 9, No. 2, Article 13, Publication date: March 2008.

13:30 • F. Geerts et al.

“(vtO , vtE) is the image of the standard temporal coordinate system under an

element of (F (f)
st , Ft)”, where v0, v1, . . . , vn, vtO and vtE are points in (n + 1)-

dimensional real space, are expressible in FO(�).

All groups listed in Table III are subgroups of (A(f)
st , At) and satisfy the first

condition. It is also straightforward to verify that they satisfy the second con-
dition.

For the third condition, we list for every group mentioned in Table III the
expressions for the spatial and temporal coordinate system. The proof that
these expressions are correct is straightforward.

—For the group (A(f)
st , At), the expressions for TCoSysA(u1, u2) and CoSysn

A(
u0, u1, . . . , un) were given in Lemma 4.17.

—For the group (A(f)
st , It), the expression for the spatial coordinate system does

not change, but

TCoSysT (u1, u2) := TCoSysA(u1, u2) ∧ UnitTime(u1, u2).

—For the group (A(f)
st , Idt), the expression for the spatial coordinate system does

again not change, but

TCoSysId (u1, u2) := TCoSysT (u1, u2) ∧ 0t(u1) ∧ 1t(u2).

For the following groups, we only list the expression for the spatial coordinate
system. The temporal coordinate system depends on the groups Ft and is
completely analogous to the previous cases.

—For the group (S (f)
st , Ft), we have

CoSysS (u0, u1, . . . , un) :=

CoSysn
A(u0, u1, . . . , un) ∧

n∧
i=1

n∧
j=1

EqDistcotemp(u0, ui, u0, u j).

—For the group (I (f)
st , Ft), we have

CoSysI (u0, u1, . . . , un) := CoSysS (u0, u1, . . . , un) ∧
n∧

i=1

UnitDist(u0, ui).

—For the group (T (f)
st , Ft), we have

CoSysT (u0, u1, . . . , un) :=

CoSysI (u0, u1, . . . , un) ∧
n∧

i=1

n∧
j=1

≤i (u0, u j) ∧ Posn(u0, u1, . . . , un).

This concludes the proof.

Next, we illustrate the languages summarized in Table III with the appro-
priate examples of Section 3.5.

Example 4.21. We give the FO({Betweenn, Before, EqCRst})-expression
ϕ′

3 equivalent to the (Ist , At)-generic query of Example 3.7: Was there a collision
between car A and car B?:

ϕ′
3 := (∃u)(carA(u) ∧ carB(u)).

ACM Transactions on Computational Logic, Vol. 9, No. 2, Article 13, Publication date: March 2008.

Complete Query Languages for Spatio-Temporal Databases • 13:31

Remark that this query can be expressed without the use of the point predicates
from �.

Example 4.22. We give the FO({Betweenn, Before, EqCRst, EqDistcotemp,
UnitDist, ≤i (1 ≤ i ≤ n), Posn, UnitTime, 0t, 1t})-expression ϕ′

4 equivalent to
the (Tst , Idt)-generic query of Example 3.8: Did car A pass at 500 meters north
of car B at time moment t = 5930?

The fact that a point has time coordinate 5930 can be expressed using
UnitTime, 0t, and 1t. We illustrate this with a predicate expressing the fact
that a point has time coordinate 3:

eq3t(u) := (∃v1)(∃v2)(1t(v1) ∧ Before(v1, v2) ∧ UnitTime(v1, v2) ∧
Before(v2, u) ∧ UnitTime(v2, u)).

The fact that the distance between two points is 500 can be expressed using
UnitDist in a way comparable to the construction of the predicate 3sec of Ex-
ample 4.13.

Now we give the expression ϕ′
4:

(∃u)(∃v)(∃w)(carA(u) ∧ carB(v) ∧ eq5930t(u) ∧ eq5930t(v) ∧
(≤1 (u, w)∧ ≤1 (w, u)) ∧ (≤2 (v, w)∧ ≤2 (w, v)) ∧ 500meters(u, w)).

5. SOUND AND COMPLETE LANGUAGES FOR THE COMPUTABLE
GENERIC SPATIO-TEMPORAL QUERIES

In this section, we show that the languages FO(�(Fst , Ft), σ) of the previous
section, when extended with assignment statements and a while loop, yield
languages that are computationally sound and complete for the computable
queries that are (Fst , Ft)-generic. To start with, we explain in more detail how
point-based logics are extended with assignment statements and a while loop.
Afterwards, this section is organized in the same way as Section 4. We first dis-
cuss sound and complete languages for the queries generic for time-independent
transformation groups. Then we focus on genericity for groups related to phys-
ical notions. Finally, we address sound and complete languages for the queries
that are generic for the time-dependent transformations.

We start with extending the point-based logics described in Definition 4.2
with while loops.

Definition 5.1. Let � be a finite set of point predicates, and let σ be a
database schema. Syntactically, a program in the language FO(�, σ) + while
is a finite sequence of statements and while-loops. It is assumed there is a
sufficient supply of new relation variables, each with an appropriate arity.

(i) Each statement has the form

R := {(u1, . . . , uk) | ϕ(u1, . . . , uk)}; .
Here, R is a new relation variable with assigned arity k (the variables ui
range over Rn × R) and ϕ is a formula in FO(�, σ ′), where σ ′ is the set
of relation names containing the elements of σ together with the relation
variables introduced in previous statements of the program.

ACM Transactions on Computational Logic, Vol. 9, No. 2, Article 13, Publication date: March 2008.

13:32 • F. Geerts et al.

(ii) A while-loop has the form

while ϕ do P end while

where P is a program and ϕ is a sentence in FO(�, σ ′), where σ ′ is again
the set of relation names containing the elements of σ together with the
relation variables introduced in previous statements of the program.

(iii) One of the relation names occurring in the program is designated as the
output relation and is named Rout.

Semantically, a program in the query language FO(�, σ) + while expresses a
spatio-temporal query as soon as Rout is assigned a return value. The execution
of a FO(�, σ) + while-program applied to an input database is performed step-
by-step. A statement is executed by first evaluating the FO(�, σ)-formula on
the right-hand side on the input database together with the newly created
relations resulting from previous statements. Next, the result of the evaluation
of the right-hand side is assigned to the relation variable on the left-hand side.
The effect of a while loop is to execute the body as long as the condition ϕ

evaluates to true.
Note that an FO(�, σ) + while-program is not guaranteed to halt. For those

input databases it does not, the query represented by the program is not defined
on that particular input database.

Consider the following example which will be used later on to express the
query from Example 3.5.

Example 5.2. Suppose that we have a spatio-temporal database with
schema σ = {R, S}, where the underlying dimension is two and both R and
S have arity one. We assume that all points in R and S have disjoint time
coordinates. This means that we can sort all points according to their time
coordinates. We also assume that R and S both contain a finite number of
points.

The query Q we want to answer is the following: Does R contain more points
than S?. It is well known that we cannot express this query in first-order
logic [Grumbach and Su 1997]. The FO(�, σ) + while-program expressing Q
is:

RNot := {};
SNot := {};
RSmallest := {(u)|R(u) ∧ ¬RNot(u) ∧

(∀v)((R(v) ∧ ¬R Not(v)) → (Before(u, v)))};
SSmallest := {(u)|S(u) ∧ ¬SNot(u) ∧

(∀v)((S(v) ∧ ¬S Not(v)) → (Before(u, v)))};
while (∃u)(RSmallest(u)) ∧ (∃v)(SSmallest(v)) do

RNot := {(u)|RNot(u) ∨ RSmallest(u)};
SNot := {(u)|SNot(u) ∨ SSmallest(u)};
RSmallest := {(u)|R(u) ∧ ¬RNot(u) ∧

(∀v)((R(v) ∧ ¬R Not(v)) → (Before(u, v)))};
SSmallest := {(u)|S(u) ∧ ¬SNot(u) ∧

(∀v)((S(v) ∧ ¬SNot(v)) → (Before(u, v)))};
end while
Rout := {()|(∃u)(RSmallest(u))};

ACM Transactions on Computational Logic, Vol. 9, No. 2, Article 13, Publication date: March 2008.

Complete Query Languages for Spatio-Temporal Databases • 13:33

Intuitively, this program repeatedly takes the earliest point from both R and
S until they do not both contain unvisited points anymore. When the while loop
terminates and R still contains unvisited points, true is returned.

5.1 Genericity for Time-Independent Transformations

In this section, we prove a general result concerning computable (Fst , Ft)-
generic queries where (Fst , Ft) is a time-independent affinity of Rn ×R, that is,
a group from Table I. The following theorem follows directly from the proof of
Theorem 6.1 [Gyssens et al. 1999].

THEOREM 5.3. Let σ be a spatio-temporal database schema. Let F be a sub-
group of the affinities of Rn×R, let � be a set of point predicates and let FO(�, σ)
be a point language that is sound and complete for the F-generic queries ex-
pressible in FO(+, ×, <, 0, 1, σ). Then, the language FO(�) + while is sound
and complete for the F-generic computable queries.

From this, we can derive the following result:

COROLLARY 5.4. Let σ be a spatio-temporal database schema. Let (Fst , Ft) be
a group and let �(Fst , Ft) be as in Table I. The point language FO(�(Fst , Ft), σ)
+ while is sound and complete for the computable (Fst , Ft)-generic queries over
σ .

PROOF. The correctness follows from Theorem 4.10 and Theorem 5.3.

5.2 Genericity for Physics-Related Transformations

Here, we focus again on the transformation groups (Vst , Tt), (V(R)st , Tt), (ACst ,
Tt) and (AC(R)st , Tt). As they are all subgroups of the affinities of Rn × R, we
can apply Theorem 5.3 again.

COROLLARY 5.5. Let σ be a spatio-temporal database schema. Let (Fst , Tt)
be a group from Table II and let �(Fst , Tt) be as in Table II. The point lan-
guage FO(�(Fst , Tt), σ)+while is sound and complete for the computable spatio-
temporal queries over σ that are (Fst , It)-generic.

PROOF. The correctness follows from Theorem 4.12 and Theorem 5.3.

Example 5.6. We now give the FO({Betweenn+1, Before, =space})+while-
program expressing query Q1 of Example 3.5: Does the route followed by car A
self-intersect more often than the route followed by car B does?

If a car is standing still at a certain position, this will result in an infinite
number of points in Rn × R with the same spatial coordinates. However, one
would not consider this situation to be an infinite number of self-intersections.
Therefore, when such a situation happens, we only consider the last moment
of the interval during which the car is at that specific location.

Intuitively, the program first computes the relations containing all self-
intersections of the trajectories of both cars, and then determines whether
the route of car A self-intersects the most. The program of Example 5.2 can

ACM Transactions on Computational Logic, Vol. 9, No. 2, Article 13, Publication date: March 2008.

13:34 • F. Geerts et al.

be used to perform this last task. We slightly adapt it such that it expresses
query Q1:

A∩ := { (u)|carA(u) ∧ (∃v)(carA(v) ∧ Before(u, v) ∧ =space(u, v) ∧
(∀w)((carA(w) ∧ Before(u, w) ∧ Before(w, v) ∧ u �= w ∧ v �= w)

→ ¬(=space(w, v))))};
B∩ := { (u)|carB(u) ∧ (∃v)(carB(v) ∧ Before(u, v) ∧ =space(u, v) ∧

(∀w)((carB(w) ∧ Before(u, w) ∧ Before(w, v) ∧ u �= w ∧ v �= w)
→ ¬(=space(w, v))))};

ANot := {};
BNot := {};
ASmallest := {(u)|A∩(u) ∧ ¬ANot(u) ∧ (∀v)(

(A∩(v) ∧ ¬ANot(v)) → (Before(u, v)))};
BSmallest := {(u)|B∩(u) ∧ ¬BNot(u) ∧ (∀v)(

(B∩(v) ∧ ¬BNot(v)) → (Before(u, v)))};
while (∃u)(ASmallest(u)) ∧ (∃v)(BSmallest(v)) do

ANot := {(u)|ANot(u) ∨ ASmallest(u)};
BNot := {(u)|BNot(u) ∨ BSmallest(u)};
ASmallest := {(u)|A∩(u) ∧ ¬ANot(u) ∧ (∀v)(

(A∩(v) ∧ ¬ANot(v)) → (Before(u, v)))};
BSmallest := {(u)|B∩(u) ∧ ¬BNot(u) ∧ (∀v)(

(B(v) ∧ ¬BNot(v)) → (Before(u, v)))};
end while
Rout := {()|(∃u)(ASmallest(u))};

5.3 Genericity for Time-Dependent Transformations

Finally, we study notions of genericity determined by groups of time-dependent
transformations. Here, we only show results for the groups of arbitrary time-
dependent transformationsFst . We concentrate on the group (Ast , At). The other
time-dependent transformation groups will be addressed afterwards (Corol-
lary 5.11). For the groups F f

st the problem of identifying sound and complete
languages is open, we will discuss the problems concerning this at the end of
this section.

We introduce some definitions first. Recall that we introduced, in Section 3.1,
the abbreviation f (RST) for the formula {(f (a1, τ1), f (a2, τ2), . . . , f (ak , τk)) |
(a1, τ1, a2, τ2, . . . , ak , τk) ∈ RST }, where R is a relation name and ST a spatio-
temporal database over a schema σ that contains R.

Definition 5.7. Let ST 1 and ST 2 be spatio-temporal databases over the
schema σ = {R1, . . . , Rm} with underlying dimension n. The databases ST 1 and
ST 2 are called (Fst , Ft)-isomorphic if and only if there exists a f = (fst , ft) ∈
(Fst , Ft) such that for all Ri in σ , f (RST 1

i) = RST 2

i .

Recall that a representation of a spatio-temporal database ST over a schema
σ = {R1, . . . , Rm} is a tuple (ϕ1, . . . , ϕm) of quantifier-free formulas in FO(+, ×,
<, 0, 1), such that ϕi describes RST

i .
Assuming some order on the characters or symbols that may appear in

a FO(+, ×, <, 0, 1)-formulas, we associate with each FO(+, ×, <, 0, 1)-formula
its unique Gödel number (see the encoding step in Section A.4 for details).

ACM Transactions on Computational Logic, Vol. 9, No. 2, Article 13, Publication date: March 2008.

Complete Query Languages for Spatio-Temporal Databases • 13:35

These Gödel numbers induce an order on the set of FO(+, ×, <, 0, 1)-formulas.
Similarly, we can also order tuples of FO(+, ×, <, 0, 1)-formulas.

Definition 5.8. The (Fst , Ft)-canonization of a spatio-temporal database ST
over a schema σ = {R1, . . . , Rm}, denoted by Canon(Fst ,Ft)(ST), is the spatio-
temporal database ST ′

, which is (Fst , Ft)-isomorphic to ST and has a representa-
tion by quantifier-free FO(+, ×, <, 0, 1)-formulas(

ϕCanon(Fst ,Ft)(R1), . . . , ϕCanon(Fst ,Ft)(Rm)

)
that occurs first, in the above mentioned order on tuples of formulas, among
the representations of spatio-temporal databases (Fst , Ft)-isomorphic to ST .

Definition 5.9. Let ST be a spatio-temporal database. The (Fst , Ft)-type of ST ,
denoted Type(Fst ,Ft)

(ST), equals

{ f ∈ (Fst , Ft)| f (ST) = Canon(Fst ,Ft)(ST)}.
We can derive directly from a similar proposition of Gyssens et al. [1999]

that, for a spatio-temporal database ST , a representation of Canon(Fst ,Ft)(ST) can
be computed if and only if (Fst , Ft) is a semi-algebraic transformation group.

A transformation group G of Rn × R is semi-algebraic if and only if there
exists a semi-algebraic subset of Rl , described by a FO(+, ×, <, 0, 1)-formula
ϕG , for some fixed l , representing all elements of G, such that the set

{(g1, . . . , gl , x1, . . . , xn, t, x ′
1, . . . , x ′

n, t ′)|
ϕG(g1, . . . , gl) ∧ ϕG−img (g1, . . . , gl , x1, . . . , xn, t, x ′

1, . . . , x ′
n, t ′)},

also called the graph of G, is a semi algebraic subset of Rl+2(n+1). The formula
ϕG−img expresses that, for the element of G represented by the tuple (g1, . . . , gl),
the tuple (x1, . . . , xn, t) is mapped to (x ′

1, . . . , x ′
n, t ′). It is an easy exercise to show

that all groups considered in this article are semi-algebraic.
We now prove the main theorem of this section. The proof technique used here

was introduced by Gyssens et al. [1999]. We first sketch the proof technique, but
only give details about the aspects of the proof that need modifications in the
context of spatio-temporal databases. These modifications are based on proof
techniques introduced in Section 4.

THEOREM 5.10. Let σ be a spatio-temporal database schema. The point lan-
guage FO({Betweenn, Before, EqCRst}, σ) + while is sound and complete for
the (Ast , At)-generic computable spatio-temporal queries over σ .

PROOF. We refer to Section A.4 in the appendix for the proof.

The reason that the problem of identifying sound and complete languages
for the groups F f

st is still open, is that for those groups, there is no first-order
logic formula expressing their graph. Indeed, it is not possible to express that
there should exist a finite number of time moments for which there is a different
affinity, when describing the groups F f

st . Hence, we cannot use the above proof
technique.

The previous theorem has the following corollary:

ACM Transactions on Computational Logic, Vol. 9, No. 2, Article 13, Publication date: March 2008.

13:36 • F. Geerts et al.

COROLLARY 5.11. Let σ be a database schema. Let (Fst , Ft) be one of
the groups (Ast , At), (Ast , It), (Ast , Idt), (Sst , Ft), (Ist , Ft), or (Tst , Ft) with
Ft ∈ {At , Tt , Idt} and let �(Fst , Ft) be as in Table III. The point language
FO(�(Fst , Ft), σ) + while is sound and complete for the (Fst , Ft)-generic com-
putable spatio-temporal queries over σ .

PROOF. The proof of this corollary is similar to the proof of Theorem 5.10.
The encoding and decoding programs for the various transformation groups
only differ where the transformation in Type(Ast ,At) is described, and where
a coordinate system needs to be defined. The rest of the proof is the same,
regardless of the transformation groups considered. The descriptions of the
coordinate systems for the various transformation groups can be found in the
proof of Corollary 4.20

6. CONCLUSION AND DISCUSSION

We have investigated different genericity classes relative to the constraint da-
tabase model for spatio-temporal databases and we have identified sound and
complete languages for the FO(+, ×, <, 0, 1, σ), respectively the computable,
queries in (most of) these genericity classes. Some results were obtained by
techniques introduced by Gyssens et al. [1999], but for time-dependent trans-
formations we have introduced new proof techniques.

For what concerns computationally complete languages these techniques
seem to be insufficient to deal with the genericity notions that are expressed
by the groups (A f

st , At), (A f
st , It), (A f

st , Idt), (S f
st , Ft), (I f

st , Ft), and (T f
st , Ft) with

Ft ∈ {At , Tt , Idt}. The problem in adapting the proof technique of Theorem 5.10
to these groups is that it is not clear how we can express in the respective point-
based logics that two spatio-temporal databases can be mapped to each other by
some piece-wise constant affinity. Indeed, since the number of pieces is not de-
fined a priori, this might not be expressible. This would imply that yet another
new proof technique would be required to deal with the remaining cases.

APPENDIX

A.1 Proof of Property 4.6

First, remark that, if we fix Ft to be one of {At , Tt , Idt}, then

(T c
st , Ft) ⊂ (Ic

st , Ft) ⊂ (Sc
st , Ft) ⊂ (Ac

st , Ft).

Also, if we fix Fst to be one of {Ac
st , Sc

st , Ic
st , T c

st}, then

(Fst , Idt) ⊂ (Fst , Tt) ⊂ (Fst , At).

Also, all groups (Fst , Ft) are subgroups of the affinities of Rn ×R. As we already
remarked, if a point predicate is invariant for a certain transformation group
(Fst , Ft), it is also invariant for all subgroups of (Fst , Ft).

We now prove invariance for each of the predicates in the sets �(Fst , Ft) of
Table I.

—The predicate Betweenn+1 is invariant under elements of (Ac
st , At). It is well

known that affinities preserve the betweenness of points. As all groups listed

ACM Transactions on Computational Logic, Vol. 9, No. 2, Article 13, Publication date: March 2008.

Complete Query Languages for Spatio-Temporal Databases • 13:37

in Table I are subgroups of the affinities of Rn×R, the predicate Betweenn+1

is invariant for all those groups.

—The predicate Before is invariant under elements of (Ac
st , At), since the el-

ements of At are monotone bijections of time. As shown in Proposition 3.4,
the order on time events is preserved under all strictly monotone increasing
bijections of time. The groups At , It , Idt are all such bijections.

—The predicate UnitTime is invariant under elements of (Ac
st , Tt). It is straight-

forward that all elements of Tt , which are translations in the time direction,
preserve the time difference between any two points p1 and p2 in Rn × R.

—The predicates 0t and 1t are invariant under elements of (Ac
st , Idt). It is clear

that the identity transformation on the time preserves the fact that a point
p in Rn × R has time coordinate zero or one.

—The predicate EqDist is invariant under elements of (Sc
st , At). It is well known

that isometries and scalings (and thus similarities) preserve the fact that the
distance between one pair of points equals the distance between a second pair
of points. The groups At , Tt , Idt all preserve co-temporality of points.

—The predicate UnitDist is invariant under elements of (Ic
st , At), because

isometries are distance preserving transformations.

—The predicates ≤i (1 ≤ i ≤ n) are invariant under elements of (T c
st , At). It is

easy to verify that if for two points p1 and p2 in Rn ×R, ≤i (p1, p2) is true for
some i in {1, . . . , n}, also ≤i (f (p1), f (p2)) holds for each f in (T c

st , Ft), where
Ft is one of At , Tt , Idt .

—The predicate Posn+1 is invariant under elements of (T c
st , At), since transla-

tions are orientation-preserving transformations.
This concludes the proof of Property 4.6.

A.2 Proof of Lemma 4.16

Soundness is proved in two steps. First, we show that every FO(�, σ)-formula
is equivalently expressible in FO(+, ×, <, 0, 1, σ) and afterwards that every
FO(�, σ)-formula is invariant under elements of (A f

st , At). Both are proved by
induction on the structure of FO(�, σ)-formulas.

Every FO(�, σ)-formula is expressible in FO(+, ×, <, 0, 1, σ). The atomic for-
mulas of FO(�, σ) are equality on point variables, the predicates Betweenn,
Before, EqCRst and formulas of the type R(v1, . . . , vl), where R is a relation
name from σ , with arity l . We now describe, for each of the above types of atomic
formulas, how they can be translated into FO(+, ×, <, 0, 1, σ). A point variable
v occurring in a FO(�, σ)-formula is translated into real variables xv

1, . . . , xv
n, tv.

Equality between two point variables is then expressed in FO(+, ×, <, 0, 1, σ)
by requiring that all corresponding coordinates of the two point variables are
equal.

We already know that the predicate Before is expressible in FO(+, ×, <,
0, 1). The predicate Betweenn is translated in a similar way as Betweenn+1,
with the additional restriction that the time coordinates of the variables should
be the same.

ACM Transactions on Computational Logic, Vol. 9, No. 2, Article 13, Publication date: March 2008.

13:38 • F. Geerts et al.

The formula EqCRst(u1, u2, u3, v1, v2, v3) is translated as the conjunction of
the translation of the expression Collinearn(u1, u2, u3), which is equal to

Betweenn(u1, u2, u3) ∨ Betweenn(u2, u1, u3) ∨ Betweenn(u1, u3, u2)

and the formula

(tv3 − tv1)2
n∑

i=1

(
xu1

i − xu2

i

)2 = (tv2 − tv1)2
n∑

i=1

(
xu1

i − xu3

i

)2
.

We translate formulas of the type R(v1, . . . , vl), where R is a relation name
from σ with arity l , by the formula R(xv1

1 , . . . , xv1
n , tv1 , . . . , xvl

1 , . . . , xvl
n , tvl).

Compositions of atomic formulas by logical connectives and quantifiers are
translated in a natural way.

Every FO(�, σ) formula is invariant for elements of the group (A f
st , At). The

only non-trivial part here is showing that all point predicates are (A f
st , At)-

invariant. The predicate Before is invariant for all transformations f =
(f1, f2, . . . , fn, ft), that map Rn × R to Rn × R, such that ft is a strictly mono-
tone increasing bijection of t alone (Proposition 3.4). Since all elements of At
are such bijections, this condition is satisfied for (A f

st , At). It is well known
that affinities preserve the cross-ratio of three points. Because the predicate
Betweenn requires its parameters to be co-temporal (which is preserved by el-
ements of (A f

st , At)), these co-temporal points will be transformed by the same
affinity and hence their cross-ratio is preserved. Also the predicate EqCRst

is invariant under elements of (A f
st , At), because the group A f

st preserves the
cross-ratio between the spatial coordinates of co-temporal points and the group
At preserves the cross-ratio between time coordinates.

This concludes the proof of Lemma 4.16.

A.3 Proof of Lemma 4.17

Let ψ be a FO(+, ×, <, 0, 1, σ)-formula. We assume that ψ is in prenex normal
form. We now describe the translation of ψ into a formula ψ of FO(�, σ) (by
induction on its structure). In this translation, first the quantifier-free part of
ψ is translated and the quantifiers are later added in the obvious way.

To start with, a 2-dimensional “computation plane” is chosen that is used to
simulate real variables, constants and all the polynomial equations, polynomial
equalities and inequalities.

The choice of a computation plane. First of all, two moments in time utO and
utE (time moments are simulated in ψ by variables in Rn × R) are chosen such
that ¬Before(utE , utO). They form a temporal coordinate system; the formula
describing this is as follows:

TCoSysAt
(u1, u2) := ¬Before(u2, u1).

Next, in the hyperplane of points co-temporal with utO , n+1 points u0,0, u0,1, . . . ,
u0,n are chosen such that they form an affine coordinate system for the hyper-
plane co-temporal with utO . The predicate CoSysn

A, expressing this, is similar
to the previously introduced predicate CoSysA (see the proof of Theorem 4.10),

ACM Transactions on Computational Logic, Vol. 9, No. 2, Article 13, Publication date: March 2008.

Complete Query Languages for Spatio-Temporal Databases • 13:39

except that some constraints are added that express that the points should be
co-temporal.

As the variables utO , utE , u0,0, u0,1, . . . , u0,n represent arbitrary points (up to
the mentioned restrictions), they parameterise the translation of ψ . To start
with, ψ will contain the subformula ψcomp, defined as

ψcomp(utO , utE , u0,0, u0,1, . . . , u0,n) := TCoSysA(utO , utE)

∧ CoSysn
A(u0,0, u0,1, . . . , u0,n) ∧ Cotemp(utO , u0,0),

as a conjunct.
We will use the 2-dimensional plane through the points u0,0, u0,1 and u0,2

as a “computation plane”. The idea is that we will simulate real variables and
constants by points on the line through u0,0 and u0,1 and that addition and
multiplication of real terms are simulated by FO(�) expressions in the plane
through u0,0, u0,1 and u0,2.

—The translation of terms and atomic formulas. A quantifier-free FO(+, ×, <,
0, 1, σ)-formula may contain the following terms and atomic subformulas:
real variables; the constants 0 and 1; polynomial constraints; and relation
predicates where the relation names from σ are used. We translate each
separately.

—The translation of real variables. Each real variable x appearing in the for-
mula ψ is translated into a spatio-temporal variable v. Also, ψ will contain
a conjunct

ψvar(v) := Collinearn(u0,0, u0,1, v),

expressing that v is in the computation plane on the line connecting u0,0 and
u0,1. The idea is that a real variable x taking concrete value a, is simulated

by requiring that v is such that
−−→u0,0v

−−−−→u0,0u0,1
equals a.

—The translation of the constants 0 and 1. The real constants 0 and 1 that may
appear in ψ are translated into u0,0 and u0,1 respectively.

—The translation of polynomial constraints. The arithmetic operations (addi-
tion and multiplication) on real terms will be simulated in the computation
plane (u0,0, u0,1, u0,2). It was shown by Tarski [Schwabhäuser et al. 1983] (the
results of Tarski were also used in Gyssens et al. [1999]) that all arithmetic
operations on points that are located on the line through u0,0 and u0,1 can be
simulated in the plane (u0,0, u0,1, u0,2) using only the construct Betweenn.
Hence, a subformula p(x1, . . . , xm) > 0, with p a polynomial with integer
coefficients, using the translation of the real variables x1, . . . , xm in point
variables v1, . . . , vm, is translated into ψpoly(u0,0, u0,1, u0,2, v1, . . . , vm), defined
using the predicate Betweenn.

The correctness of the three above translations can be demonstrated as
that of the similar translations in Gyssens et al. [1999].

—The translation of relation predicates. A subformula of ψ of type R(x1,1, . . . ,
x1,n, x1,t , . . . , xm,1, . . . , xm,n, xm,t), where R ∈ σ and where m is the arity of R

ACM Transactions on Computational Logic, Vol. 9, No. 2, Article 13, Publication date: March 2008.

13:40 • F. Geerts et al.

in σ , is translated into a formula

R(v1, . . . , vm)

and ψ has a conjunct expressing that the point variables v1,1, . . . , v1,n, v1,t , . . . ,
vm,1, . . . , vm,n, vm,t , that are the translations of x1,1, . . . , x1,n, x1,t , . . . , xm,1, . . . ,
xm,n, xm,t , are the coordinates of v1, . . . , vm respectively. For the moment, we
assume that the variables xi,t and x j ,t are different for 1 ≤ i < j ≤ m and
later show how to deal with the general case. Indeed, recall that each variable
xi, j (1 ≤ i ≤ m, 1 ≤ j ≤ n) and xi,t (1 ≤ i ≤ m) is already translated into
a point variable vi, j and vi,t , which are all collinear with u0,0 and u0,1. To
express the link between the coordinates of point variables v1, . . . , vm and
the point variables vi, j and vi,t , we proceed as follows. We associate with each
point variable vi (1 ≤ i ≤ m) the following set of point variables:

(i) n + 1 point variables ui,0, . . . , ui,n representing an n-dimensional coordi-
nate system which is co-temporal with vi; and

(ii) n point variables v′
i, j which are collinear with ui,0 and ui,1, such that v′

i, j
represents the j th coordinate of vi with respect to the coordinate systems
specified by ui,0, . . . , ui,n, and such that the coordinate of v′

i, j , on the line
through ui,0 and ui,1, gives the same cross ratio with respect to these
points as the coordinate of vi, j , on the line through u0,0 and u0,1, gives

with respect to these points, that is,
−−−−→
ui,0v′

i, j−−−−→ui,0ui,1
= −−−−→u0,0vi, j−−−−→u0,0u0,1

.

As explained before, the first set of n+1 point variables can be defined using
the expression

CoSysn
A(ui,0, ui,1, . . . , ui,n) ∧ Cotemp(ui,0, vi).

For the second set of n point variables, we first observe that from Gyssens et al.
[1999], we know that we can express, using Betweenn, that n point variables
v′

i,1, . . . , v′
i,n represent the spatial coordinates of the point variable vi relative to

a chosen spatial coordinate system (in this case, the coordinate system specified
by ui,0, . . . , ui,n). In order to establish the link between the point variables v′

i, j in
the plane specified by ui,0, . . . , ui,n and the point variables vi, j in the computation
plane we need to use the predicate EqCRs. The predicate EqCRs performs a
transformation between the affine coordinate systems at two different time
moments, and so connects each v′

i, j to a vi, j (i = 1, . . . , m, j = 1, . . . , n). Remark
that all v′

i, j are collinear with ui,0 and ui,1, and that all vi, j are collinear with

u0,0 and u0,1. Therefore, EqCRs can be used to express this equality of cross
ratios.

Until now, we only considered the spatial coordinates. To link the tem-
poral variables vi,t to the temporal coordinate of vi, we use the expression

EqCRst(u0,0, u0,1, vi,t , utO , utE , vi). Recall that the predicate EqCRst can be used
to relate the cross ratio of points on the time axis to the cross ratio of points,
representing coordinates on the line through u0,0 and u0,1, and thus connects
each vi to a vi,t (i = 1, . . . , m).

ACM Transactions on Computational Logic, Vol. 9, No. 2, Article 13, Publication date: March 2008.

Complete Query Languages for Spatio-Temporal Databases • 13:41

Putting everything together results in the expression ψrel:

(∃v1)(∃v2) . . . (∃vm)

(
R(v1, v2, . . . , vm) ∧

m∧
i=1

CoSysn
A(ui,0, ui,1, . . . , ui,n) ∧

[−2pt]
m∧

i=1

Cotemp(ui,0, vi) ∧ (∃v′
1,1) . . . (∃v′

1,n) . . . (∃v′
m,1) . . . (∃v′

m,n)

(m∧
i=1

Coordinatesn(ui,0, ui,1, . . . , ui,n, v′
i,1, . . . , v′

i,n, vi) ∧
m∧

i=1

n∧
j=1

EqCRs(u0,0, u0,1, vi, j , ui,0, ui,1, v′
i, j) ∧

m∧
i=1

EqCRst(u0,0, u0,1, vi,t , utO , utE , vi)
))

where Coordinatesn(ui,0, . . . , ui,n, v′
i,1, . . . , v′

i,n, vi) expresses for each (1 ≤ j ≤
n) that v′

i, j is represents the j th coordinate of vi with respect to the coordinate
systems specified by ui,0, . . . , ui,n.

We now show the correctness of the above translation of a relation pred-
icate. We have to prove that for each spatio-temporal database ST , and
for any points ptO , ptE , p0,0, . . . , p0,n, . . . , pm,0, . . . , pm,n, q1,1, . . . , q1,n, q1,t , . . . ,
qm,1, . . . , qm,n, qm,t :

(Rn × R, �Rn×R, ST) |= ψrel[ptO , ptE , p0,0, . . . , p0,n, . . . , pm,0, . . . , pm,n,

q1,1, . . . , q1,n, q1,t , . . . , qm,1, . . . , qm,n, qm,t]

if and only if

(R, +, ×, 0, 1, α(ST)) |= R
[−−−−→p0,0q1,1

−−−−→p0,0 p0,1

, . . . ,
−−−−→p0,0q1,n
−−−−→p0,0 p0,1

,
−−−−→p0,0q1,t
−−−−→p0,0 p0,1

, . . . ,

−−−−−→p0,0qm,1

−−−−→p0,0 p0,1

, . . . ,
−−−−−→p0,0qm,n
−−−−→p0,0 p0,1

,
−−−−→p0,0qm,t
−−−−→p0,0 p0,1

]
,

where α = (αst , αt) ∈ (A f
st , At) is the affinity which maps (p0,0, . . . , p0,n) to the

spatial standard basis at time τ0 = 0, (pi,0, . . . , pi,n) to the spatial standard
basis at time τi = α(τpi,0), where αt is uniquely determined on the time axis by
αt(τpO) = 0 and αt(ptE) = 1. Note that by assumption, xi,t �= x j ,t for (1 ≤ i < j <

m) and hence also τpi,0 and τpj ,0 , and consequently τi �= τ j for (1 ≤ i < j < m).
This condition is essential to ensure that αt exists and is well defined. Indeed,
suppose that there exists an i and j such that τpi,0 = τpj ,0 and hence τi = τ j . Then
we would require that α maps two possibly different co-temporal coordinate
systems (pi,0, . . . , pi,n) and (pj ,0, . . . , pj ,n) the same standard basis. This can

clearly not be done by a (A f
st , At)-generic query.

We know that the formula ψrel is true for the points ptO , ptE , p0,0, . . . , p0,n, . . . ,
pm,0, . . . , pm,n, q1,1, . . . , q1,n, q1,t , . . . , qm,1, . . . , qm,n, qm,t if and only if there
exist points p1, . . . , pm, q′

1,1, . . . , q′
1,n, . . . , q′

m,1, . . . , q′
m,n such that for each

ACM Transactions on Computational Logic, Vol. 9, No. 2, Article 13, Publication date: March 2008.

13:42 • F. Geerts et al.

i = 1, . . . , m:

−−−→p0,0 pi = −−−→pi,0 pi + −−−−→p0,0 pi,0 =
n∑

j=1

−−−−→
pi,0q′

i, j
−−−−→pi,0 pi,1

−−−−→pi,0 pi, j + −−−−→p0,0 pi,0, (1)

and the following equations hold:

−−−−→
pi,0q′

i, j
−−−−→pi,0 pi,1

=
−−−−→p0,0qi, j
−−−−→p0,0 p0,1

, 1 ≤ j ≤ n, (2)

τpi − τptO

τptE
− τptO

=
−−−−→p0,0qi,t
−−−−→p0,0 p0,1

. (3)

Using Eq. (2), Eq. (1) is equivalent to

−−−→p0,0 pi =
n∑

j=1

−−−−→p0,0qi, j
−−−−→p0,0 p0,1

−−−−→pi,0 pi, j + −−−−→p0,0 pi,0. (4)

Considering the fact that α is a linear transformation, and using Eq. (4), the
following holds:

α(−−−→p0,0 pi) =
n∑

j=1

−−−−→p0,0qi, j
−−−−→p0,0 p0,1

α(−−−−→pi,0 pi, j) + α(−−−−→p0,0 pi,0).

Moreover, let ei(τ) be the ith vector of the standard spatial basis at time τ and
denote by ei = ei(0). We then have

α(−−−→p0,0 pi) =
n∑

j=1

−−−−→p0,0qi, j
−−−−→p0,0 p0,1

−−−−−−−→
e0(τi)e j (τi) + −−−−→

e0e0(τi).

As Eq. (3) is invariant under elements of (A f
st , At), we also have that

α(τpi) − α(τptO
)

α(τptE
) − α(τptO

)
= τi − 0

1 − 0
= τi =

−−−−→p0,0qi,t
−−−−→p0,0 p0,1

.

So we have that:

α(−−−→p0,0 pi) =
n∑

j=1

−−−−→p0,0qi, j
−−−−→p0,0 p0,1

−−−−−−−→
e0(τi)e j (τi) +

−−−−→p0,0qi,t
−−−−→p0,0 p0,1

−−−→e0en+1.

Since all standard bases (e0(τi), . . . , en(τi)) are parallel along the time axis,
we have that

α(−−−→p0,0 pi) =
n∑

j=1

−−−−→p0,0qi, j
−−−−→p0,0 p0,1

−−→e0e j +
−−−−→p0,0qi,t
−−−−→p0,0 p0,1

−−−→e0en+1.

This completes the correctness proof for the conversion of relational predi-
cates.

ACM Transactions on Computational Logic, Vol. 9, No. 2, Article 13, Publication date: March 2008.

Complete Query Languages for Spatio-Temporal Databases • 13:43

—The translation of composed formulas. When all the atomic subformulas of
ψ have been translated as described above, the logical connectives can be
added in a natural way. We assume that two atomic formulas χ1 and χ2 are
translated already, into χ1 and χ2. The translations of χ1 ∧ χ2 and χ1 ∨ χ2

are χ1 ∧ χ2 and χ1 ∨ χ2, respectively. The formula ¬χ1 is translated into ¬χ1.
Remember that with the conversion of a formula ψrel of type R(x1,1, . . . , x1,n,
x1,t , . . . , xm,1, . . . , xm,n, xm,t) we assumed that xi,t �= x j ,t for any (1 ≤ i < j <

m). The reason is that we want to have only one affine coordinate system for
every different time moment considered in that formula. Indeed, an element
α of (A f

st , At) is a one-to-one mapping from the snapshots of a certain input
database ST to the snapshots of the output database α(ST). Therefore, we can-
not map two different co-temporal coordinate systems to the same standard
coordinate system using such an affinity.
Suppose now that xi,t = x j ,t for some (1 ≤ i < j ≤ m). Then we adapt
the previous translation with the extra requirement that vi,k = vj ,k for k =
0, . . . , n and we have unique coordinate system for each point occurring in
time.
When translating an FO(+, ×, <, 0, 1, σ)-formula ψ , it is in general not
known in advance which time coordinates are equal (this may depend on
the input database; and it is undecidable in general which time coordinates
are equal in an FO(+, ×, <, 0, 1, σ)-formula). To circumvent this problem, we
consider all possible orders (using Before) of the time variables of ψ (a real
variable denoting a time moment is recognized as it appears on the i(n+1)-th
place (i = 1, . . . , m) in the argument list of a spatio-temporal relation predi-
cate) and take the disjunction over all possible orders of these time variables.
We denote the set of all possible orders by P .
For each ρ ∈ P the formula ψρ is the translation of ψ taken the (in)equalities
into account according to the order of the time variables corresponding to
ρ. Hence, each ψρ formula can have a different number �ρ of free variables,
depending on ρ. We denote by � the total number of free variables across all
formulas ψρ , ρ ∈ P .
When connecting several subformulas, the same principle has to be used, as
arithmetic subformulas can impose equality on different time variables.
When applying the thus obtained translation of the quantifier-free part of ψ

to a spatio-temporal database instance, only some of the disjuncts will apply
(possibly depending on the particular input database).

—Formulas with quantifiers. Finally, the quantifier prefix of ψ is translated
in the natural way. Suppose that we already translated the quantifier-free
formula χ into the formula χ . Then the translation of (∃x)(χ) is (∃v)(χ), where
v is the point variable associated to x for which we have already declared
Collinearn(u0,0, u0,1, v). This concludes the proof of Lemma 4.17.

A.4 Proof of Theorem 5.10

It suffices to show that an (Ast , At)-generic computable query Q over σ can be

simulated in the language FO({Betweenn, Before, EqCRst}, σ) + while. We
first briefly sketch the proof strategy, including the conversion procedure and

ACM Transactions on Computational Logic, Vol. 9, No. 2, Article 13, Publication date: March 2008.

13:44 • F. Geerts et al.

the encoding and decoding step, that appear in it. Later the coding and decoding
will be explained in more detail. For the remainder of this proof, � will denote
the set {Betweenn, Before, EqCRst}.

We start with the encoding that will be used to convert formulas that repre-
sent spatio-temporal relations into natural numbers.

The encoding mechanism. Let ST be a spatio-temporal database over σ . Let
K be the maximum of the arities of all relations in σ and the query Q .
Let n be the underlying dimension. Then each relation of ST can be repre-
sented by a quantifier-free FO(+, ×, <, 0, 1)-formula using only the variables
x1, . . . , x(n+1)K , the symbols ≤, +, ×, (,), ∨ and ¬, and the constants 0 and 1.

We denote these 9 + (n + 1)K symbols by s1, . . . , s9+(n+1)K . Hence, we can
encode a quantifier-free FO(+, ×, <, 0, 1)-formula as a string s = si1 . . . sik as

the natural number N = pi1
1 . . . pik

k , where pj is the j -th prime number. And we
denote N by Encode(s).

Proof strategy. Given a spatio-temporal database ST over a schema σ =
{R1, . . . , Rm}, the simulation of a (Ast , At)-generic k-ary computable query on
input ST is broken up into three steps:

—The encoding step. The database ST is encoded as a tuple of natural num-
bers (NR1

, . . . , NRm), one for each relation of the database. Here, NRi =
Encode(si), where (s1, . . . , sm) are the string representation of the quantifier-
free formulas ϕCanon(Ast ,At)(Ri) (i = 1, . . . , m) of the database Canon(Ast ,At)(ST).
It will be shown below that this encoding can be performed in the language
FO(�, σ) +while. The set Type(Ast ,At)

(ST) is also computed, to be used in the
decoding step.

—The computing step. It was shown that query the language FO(�)+while has
full computational power on the natural numbers, by simulating a counter
machine [Gyssens et al. 1999].
More specifically, one can simulate a counter machine M in FO(�) + while
such that on input (NR1

, . . . , NRm), M halts if and only if Q is defined on
the corresponding ST and M will output a natural number Nq which is the
encoding of Q(ST).

—The decoding step. If M terminates on input (NR1
, . . . , NRm) then it outputs a

natural number Nq . Using Type(Ast ,At)
(ST), the decoding algorithm computes

the point set of which Nq is the encoding. This can be implemented in the
language FO(�) +while.

We show next the details in the encoding and decoding algorithms that are
different for (Ast , At)-generic queries, as compared to the affine-generic queries
considered in Gyssens et al. [1999]. For ease of exposition, we will assume
for the remainder of this proof that the input spatio-temporal database ST has
only one relation, with arity one, that is, σ = {R}. For relations with arity
greater than one, the encoding algorithm has to consider more variables. If the
input database contains more relations, the encoding has to be generalized to
encoding tuples of relations.

The encoding algorithm can be expressed in FO(�) + while. Roughly speak-
ing, the encoding procedure enumerates all natural numbers and meanwhile

ACM Transactions on Computational Logic, Vol. 9, No. 2, Article 13, Publication date: March 2008.

Complete Query Languages for Spatio-Temporal Databases • 13:45

stores the evaluation of the terms and formulas that are encoded by those
numbers in relations that are called T and F , respectively. This enumeration
continues until one natural number is found that encodes a relation that is
(Ast , At)-isomorphic to R. This relation, for which the evaluation is stored in
F , corresponds to Canon(Ast ,At)(R). The set Type(Ast ,At)

(ST) is also computed, to
use in the decoding step.

First, we explain the role of the relations T and F in more detail, as well as
the way they are built during the encoding process.

The encoding program builds up terms and formulas until the formula is
found that encodes Canon(Ast ,At)(ST). The terms and formulas are stored in the
relations T and F . In general, the arity of T is (n + 1) + 2 + 2 + l × (n + 1),
where n is the underlying dimension and l = ar(R). Under the assumption that
ar(R) = 1 and the underlying dimension is 2, each tuple in T is of the form

(utO , utE , u0, u1, u2, ut , p1, p2, pt , v),

where (utO , utE) is a temporal coordinate system, (u0, u1, u2) a spatial coordinate
system, ut the encoding of a term which only uses the variables x1, x2, xt (which
are translated into v1, v2, vt), and v the value of the term when evaluated under
the valuation v1
→ p1, v2
→ p2, vt
→ pt . The arity of F is (n+1)+2+1+l×(n+1).
Under the same assumptions, each tuple in F is of the form

(utO , utE , u0, u1, u2, u f , p1, p2, pt),

where (utO , utE) and (u0, u1, u2) are as before, u f the encoding of a formula ϕ

which only uses the variables x1, x2, xt , and where ϕ(p1, p2, pt) is true.
We now give the structure of the encoding program in FO({Betweenn,

Before, EqCRst}) +while. In this algorithm, it is assumed that substrings
s′ of a string s is encountered in the enumeration before s is encountered. The
input is an FO(+, ×, <, 0, 1, R)-sentence.

m := 0;
T := ∅;
F := ∅;
found :=False;
while not found do

m := m + 1;
if m encodes x1

T := T ∪ {(utO , utE , u0, u1, u2, m, p1, p2, pt , p1)|
p1, p2, pt collinear with u0 and u1};

else if m encodes x2 then
T := T ∪ {(utO , utE , u0, u1, u2, m, p1, p2, pt , p2)|

p1, p2, pt collinear with u0 and u1};
else if m encodes xt then

T := T ∪ {(utO , utE , u0, u1, u2, m, p1, p2, pt , pt)|
p1, p2, pt collinear with u0 and u1};

else if m encodes 0 then
T := T ∪ {(utO , utE , u0, u1, u2, m, p1, p2, pt , u0)|

p1, p2, pt collinear with u0 and u1};
else if m encodes 1 then

T := T ∪ {(utO , utE , u0, u1, u2, m, p1, p2, pt , u1)|
p1, p2, pt collinear with u0 and u1};

else if m encodes (s + t) then
T := T ∪ {(utO , utE , u0, u1, u2, m, p1, p2, pt , pe)|

ACM Transactions on Computational Logic, Vol. 9, No. 2, Article 13, Publication date: March 2008.

13:46 • F. Geerts et al.

T (utO , utE , u0, u1, u2, enc(s), p1, p2, pt , pc)∧
T (utO , utE , u0, u1, u2, enc(t), p1, p2, pt , pd) ∧ Plus(pc, pd , pe)};

else if m encodes (s × t) then
T := T ∪ {(utO , utE , u0, u1, u2, m, p1, p2, pt , pe)|

T (utO , utE , u0, u1, u2, enc(s), p1, p2, pt , pc)∧
T (utO , utE , u0, u1, u2, enc(t), p1, p2, pt , pd) ∧ Times(pc, pd , pe)};

else if m encodes (s ≤ t) then
F := F ∪ {(utO , utE , u0, u1, u2, m, p1, p2, pt)|

(∃c)(∃d)(T (utO , utE , u0, u1, u2, enc(s), p1, p2, pt , pc)∧
T (utO , utE , u0, u1, u2, enc(t), p1, p2, pt , pd) ∧ Less(pc, pd))};

else if m encodes (¬ϕ) then
F := F ∪ {(utO , utE , u0, u1, u2, m, p1, p2, pt)|

¬F (utO , utE , u0, u1, u2, enc(ϕ), p1, p2, pt)};
else if m encodes (ϕ ∨ ψ) then

F := F ∪ {(utO , utE , u0, u1, u2, m, p1, p2, pt)|
F (utO , utE , u0, u1, u2, enc(ϕ), p1, p2, pt)∨

F (utO , utE , u0, u1, u2, enc(ψ), p1, p2, pt)};
end if
found:= m encodes a formula which represents Canon(Ast ,At)(R);

end while
NCanon(Ast ,At)(R) := m;

Type(Ast ,At) := {a ∈ (Ast , At) | a(R) = Canon(Ast ,At)(R)};

We will discuss in detail

(i) the representation of natural numbers (as we only have point-variables),

(ii) the expression that checks whether a certain natural number encodes a
formula which represents Canon(Ast ,At)(ST), and

(iii) the computation of the set Type(Ast ,At)
(R).

All other elements of the encoding can be adopted from the proof of Gyssens
et al. [1999] with only slight modifications. For ease of exposition, we give the
formulas for n = 2.

(i) Natural numbers can be represented by (n + 1)-dimensional points using
the computation plane technique introduced in Section 4. Further on, in de
encoding and decoding algorithm, we need to simulate assignments such
as m := 0 and m := m + 1 (since we have to run through all natural
numbers in those algorithms). As an illustration, we explain here how
these are simulated in FO(�) +while. The expression m := 0, for example,
is translated in FO(�) +while by assigning to a spatio-temporal relation
a point that is the origin of the chosen computation plane. The translated
expression is

N := {(utO , utE , u0, u1, u2, v) | TCoSysA(utO , utE) ∧
CoSysn

A(u0, u1, u2) ∧ Collinear(u0, u1, v) ∧ v = u0}.
For the assignment m := m + 1, we have:

N := {(utO , utE , u0, u1, u2, v) | (∃w)(N (utO , utE , u0, u1, u2, w) ∧
Plus(utO , utE , u0, u1, u2, w, u1, v))}.

ACM Transactions on Computational Logic, Vol. 9, No. 2, Article 13, Publication date: March 2008.

Complete Query Languages for Spatio-Temporal Databases • 13:47

The predicate Plus, which expresses that, relative to a computation plane,
a certain point represents the sum of two other points can be written in
FO(�) +while because of Theorem 4.15.

(ii) We now give the expression ϕ that checks whether a certain natural num-
ber m encodes a formula which represents ϕCanon(Ast ,At)(Ri) (i = 1, . . . , m).
Remember that the evaluation of the formula encoded by m is stored
in the relation F . This relation has arity n + 3 + K , where K is the
maximal arity in the input database schema. Let (p1, p2, . . . , pn+3+K)
be a tuple of points satisfying F . The points p1 and p2 are a tempo-
ral coordinate system, pn+3 represents the natural number m encoding
the formula and p3, p4, . . . , pn+2 form a hyperplane of which the plane
through p3, p4 and p5 will be used as a computation plane. The last K
points are the translation of the free variables in the formula encoded
by m.
Let the formula ψ(Ast ,At) be the translation of the semi-algebraic description
ϕ(Ast ,At) of the group (Ast , At).
Intuitively, the next formula checks, for a natural number m, whether there
exists an element of the group (Ast , At) that maps each point in R to a point
in the set of points satisfying the formula encoded by m, the evaluation of
which is stored in F .
The following formula ψ checks whether the right quantifier-free formula
has been found. It reflects the stop condition of the while-loop that runs
through the natural numbers. This formula ψ can be written as

(∀utO)(∀utE)(∀u0)(∀u1)(∀u2)
(
(TCoSysA(utO , utE) ∧

CoSysn
A(u0, u1, u2)) → (∃vα)(∃vβ)(∃w)(∀ut)(∃va1,1

)(∃va1,2
)(∃va2,1

)(∃va2,2
)

(∃vb1
)(∃vb2

)(N (utO , utE , u0, u1, u2, w) ∧
(∀vx)(∀vy)(∀vt)(F (utO , utE , u0, u1, u2, w, vx , vy , vt) ↔

(∃v)(∃v′
x)(∃v′

y)(R(v) ∧ comp-coord(utO , utE , u0, u1, u2, v, v′
x , v′

y , ut) ∧
ψ(Ast ,At)(utO , utE , u0, u1, u2, va1,1

, va1,2
, va2,1

, va2,2
, vb1

, vb2
, ut , vα, vβ ,

v′
x , v′

y , ut , vx , vy , vt))))
)
.

In the above formula, we omitted, for all point variables except v, the sub
formulas expressing collinearity with v0 and v1. Also, the predicate comp-
coord is an abbreviation for the fact that the translation of v’s coordinates
to the computation plane are v′

x , v′
y and ut . The exact formula expressing

this can be found in the proof of Lemma 4.17, when the translation of
relation predicates is explained.

(iii) For the set Type(Ast ,At)
(R) = {α ∈ (Ast , At) | α(R) = Canon(Ast ,At)(R)},

we compute two separate relations storing the At-type, respectively Ast-
type of the encoded relation. In the previous formula, it was checked
whether there exists a transformation mapping all points in R to points
in the formula coded by m (that is, in F). Here, we compute that
transformation:

ACM Transactions on Computational Logic, Vol. 9, No. 2, Article 13, Publication date: March 2008.

13:48 • F. Geerts et al.

TAt := {(utO , utE , u0, u1, u2, vα, vβ)|(TCoSysA(utO , utE) ∧
CoSysn

A(u0, u1, u2)) → (∃w)(N (utO , utE , u0, u1, u2, w) ∧
(∀vx)(∀vy)(∀vt)(F (utO , utE , u0, u1, u2, w, vx , vy , vt) ↔

(∃v)(∃v′
x)(∃v′

y)(∃v′
t)(∃v′′

x)(∃v′′
y)(∃vα0,0

)(∃vα0,1
)(∃vα1,0

)(∃vα1,1
)(∃vβ0

)(∃vβ1
)

(R(v) ∧ comp-coord(utO , utE , u0, u1, u2, v, v′
x , v′

y , v′
t) ∧

ψAst (utO , utE , u0, u1, u2, vα0,0
, vα0,1

, vα1,0
, vα1,1

, vβ0
, vβ1

,

v′
t , v′

x , v′
y , v′

t , v′′
x , v′′

y , v′
t) ∧

ψAt (utO , utE , u0, u1, u2, vα, vβ , v′′
x , v′′

y , v′
t , vx , vy , vt))))}

and

TAst := {(utO , utE , u0, u1, u2, vα0,0
, vα0,0

, vα0,1
, vα1,0

, vα1,1
, vβ0

, vβ1
, ut)|

(TCoSysA(utO , utE) ∧ CoSysn
A(u0, u1, u2)) →

(∃w)(N (utO , utE , u0, u1, u2, w) ∧ (∀vx)(∀vy)(∀vt)

(F (utO , utE , u0, u1, u2, w, vx , vy , vt) ↔ (∃v)(∃v′
x)(∃v′

y)(∃v′
t)(∃vα)(∃vβ)

(R(v) ∧ comp-coord(utO , utE , u0, u1, u2, v, v′
x , v′

y , v′
t) ∧

TAt (utO , utE , u0, u1, u2, vα, vβ) ∧
ψAt (utO , utE , u0, u1, u2, vα, vβ , v′

x , v′
y , v′

t , v′
x , v′

y , vt) ∧
ψAst (utO , utE , u0, u1, u2, vα0,0

, vα0,1
, vα1,0

, vα1,1
, vβ0

, vβ1
,

vt , v′
x , v′

y , vt , vx , vy , vt))))}.

The decoding algorithm can be expressed in FO(�) + while. Input databases
are encoded by natural numbers. A counter machine simulates the query on this
natural number and returns a natural number that encodes the output. In the
decoding algorithm, again all natural numbers are enumerated and the evalu-
ation of the terms and formulas they encode are stored in relations called T and
F . When the number that is the output of the counter machine is encountered,
the relation F contains all points of the result, up to the transformation stored
in Type(Ast ,At) (because the query is (Ast , At)−generic). The result corresponds
to the set Q(Canon(Ast ,At)(ST)). As Q is assumed to be a (Ast , At)−generic query,
we have that for all f ∈ Type(Ast ,At)

(ST)

Q(Canon(Ast ,At)(ST)) = Q(f (ST)) = f (Q(ST)),

so Q(ST) is computed as⋃
f ∈Type(Ast ,At)(ST)

f −1(Q(Canon(Ast ,At)(ST))) =
⋃

f ∈Type(Ast ,At)(ST)

f −1(f (Q(ST))).

For completeness, we give a program Decode that, when applied to the encoding
Nϕ of a formula ϕ, computes in a relation variable Dec the spatio-temporal
relation defined by ϕ. Thereto it suffices to modify the encode program as shown
in here. The input is a natural number encoding a relation.

m := 0;
T := ∅;
F := ∅;

ACM Transactions on Computational Logic, Vol. 9, No. 2, Article 13, Publication date: March 2008.

Complete Query Languages for Spatio-Temporal Databases • 13:49

found :=False;
while not found do

m := m + 1;
build relations T and F ;
found:= m = Nϕ ;

end while
Dec := all points which are the image under the transformation stored in

Type(Ast ,At) of the points with coordinates
(represented as points on the line u0u1) px , py , pt
such that F (utO , utE , u0, u1, u2, m, p1, p2, pt);

The formula constructing the output, using the above, only differs slightly
from the formulas we gave when explaining the encoding algorithm. In the
encoding phase, it had to be checked, for some natural number m, whether
there existed a transformation mapping all points of R to the points satisfying
the formula encoded by m. Also, that transformation was computed. Here, we
have the transformation stored in Type(Ast ,At), and we know we have the right
natural number m, so all points mapped by the transformation in Type(Ast ,At)

to points satisfying the formula encoded by m, are returned.
To conclude we summarize the conversion procedure. Given a k-ary com-

putable query Q over a schema σ = {R1, . . . , Rm}, there exists a counter pro-
gram M such that for each database ST over σ , if (nR1

, . . . , nRm) are the results
of applying the program Encode to ST then M (nR1

, . . . , nRm) is the encoding of

the quantifier-free formula defining Q(ST), using the variables x1
1 , . . . , xn+1

1 , . . . ,

x1
K , . . . , xn+1

K . If Q(ST) is not defined, then M does not halt on this input. As al-
ready noted above, we can simulate M by a program P in FO(�)+while. Hence,
the query Q is expressed by the program

Encode;
P ;
Decode;

This concludes the proof of Theorem 5.10.

ACKNOWLEDGMENTS

The authors would like to thank Walied Othman for suggesting improvements
to the text.

REFERENCES

ABEL, D. AND OOI, B. C., EDS. 1993. Advances in Spatial Databases—3rd Symposium (SSD’93).
Lecture Notes in Computer Science, vol. 692. Springer-Verlag, New York.

ALLEN, J. F. 1983. Maintaining knowledge about temporal intervals. Commun. ACM 26, 11, 832–

843.

ALLEN, J. F. AND FERGUSON, G. 1994. Actions and events in interval temporal logic. J. Logic Com-
put. 4, 5, 531–579.

BOCHNAK, J., COSTE, M., AND ROY, M. 1987. Géométrie Algébrique Réelle. Springer-Verlag, Berlin,

Germany.

BÖHLEN, M. H., JENSEN, C. S., AND SCHOLL, M., EDS. 1999. Proceedings of the International Work-
shop on Spatio Temporal Database Management (STDBM’99). Lecture Notes in Computer Sci-

ence, vol. 1678. Springer-Verlag, New York.

ACM Transactions on Computational Logic, Vol. 9, No. 2, Article 13, Publication date: March 2008.

13:50 • F. Geerts et al.

BUCHMANN, A., ED. 1989. Design and Implementation of Large Spatial Databases—1st Sympo-
sium (SSD’89). Lecture Notes in Computer Science, vol. 409. Springer-Verlag, New York.

CHANDRA, A. K. AND HAREL, D. 1980. Computable queries for relational data bases. J. Comp. Syst.
Sci. 21, 2, 156–178.

CHEN, C. X. AND ZANIOLO, C. 2000. SQLST: A spatio-temporal data model and query lan-

guage. In Conceptual Modeling, 19th International Conference on Conceptual Modeling (ER’00),
A. H. F. Laender, S. W. Liddle, and V. C. Storey, Eds. Lecture Notes in Computer Science, vol.

1920. Springer-Verlag, New York, 96–111.

CHOMICKI, J. AND REVESZ, P. 1997. Constraint-based interoperability of spatio-temporal databases.

In Proceedings of the 5th International Symposium on Advances in Spatial Databases. Lecture

Notes in Computer Science, vol. 1262. Springer-Verlag, New York, 142–161.

CHOMICKI, J. AND REVESZ, P. 1999. A geometric framework for specifying spatiotemporal objects.

In Proceedings of the 6th International Workshop on Temporal Representation and Reasoning.

IEEE Computer Society, Press, Los Alamitos, CA, 41–46.

DESLOGE, E. 1982. Classical Mechanics. Wiley, New York.

EGENHOFER, M. J. AND HERRING, J. R., EDS. 1995. Advances in Spatial Databases—4th Symposium
(SSD’95). Lecture Notes in Computer Science, vol. 951. Springer-Verlag, New York.

ERWIG, M., GÜTING, R. H., SCHNEIDER, M., AND VAZIRGIANNIS, M. 1999. Spatio-temporal data types:

An approach to modeling and querying moving objects in databases. GeoInformatica 3, 3, 269–

296.

FRANK, A., GRUMBACH, S., GÜTING, R., JENSEN, C., KOUBARAKIS, M., LORENTZOS, N., MANOPOULOS, Y.,

NARDELLI, E., PERNICI, B., SCHEK, H.-J., SCHOLL, M., SELLIS, T., THEODOULIDIS, B., AND WIDMAYER,

P. 1999. Chorochronos: A research network for spatiotemporal database systems. SIGMOD
Record 28, 12–21.

GRUMBACH, S., RIGAUX, P., AND SEGOUFIN, L. 1998. Spatio-temporal data handling with constraints.

In Proceedings of the 6th International Symposium on Advances in Geographic Information Sys-
tems (ACM-GIS’98), R. Laurini, K. Makki, and N. Pissinou, Eds. ACM, New York, 106–111.

GRUMBACH, S. AND SU, J. 1997. Queries with arithmetical constraints. Theor. Comput. Sci. 173, 1,

151–181.

GUNTHER, O. AND SCHEK, H.-J., EDS. 1991. Advances in Spatial Databases—2nd Symposium
SSD’91. Lecture Notes in Computer Science, vol. 525. Springer-Verlag, New York.

GÜTING, R., ED. 1999. Advances in Spatial Databases—6th Symposium (SSD’99). Lecture Notes

in Computer Science, vol. 1651. Springer-Verlag, New York.

GÜTING, R. AND SCHNEIDER, M. 2005. Moving Object Databases. Morgan Kaufmann, San Francisco,

CA.

GÜTING, R. H., BOHLEN, M. H., ERWIG, M., JENSEN, C. S., LORENTZOS, N. A., SCHNEIDER, M., AND VAZIR-

GIANNIS, M. 2000. A foundation for representing and querying moving objects. ACM Trans.
Datab. Syst. 25, 1–42.

GYSSENS, M., DEN BUSSCHE, J. V., AND GUCHT, D. V. 1999. Complete geometric query languages. J.
Comput. Syst. Sci. 58, 3, 483–511.

KANELLAKIS, P. C., KUPER, G. M., AND REVESZ, P. 1990. Constraint query languages. In Proceedings
of the 9th ACM Symposium on Principles of Database Systems (PODS’90). ACM, New York.

299–313.

KANELLAKIS, P. C., KUPER, G. M., AND REVESZ, P. 1995. Constraint query languages. J. Comput.
Syst. Sci. 51, 26–52.

KUIJPERS, B., PAREDAENS, J., AND GUCHT, D. V. 2000. Towards a theory of movie database queries.

In Proceedings of the 7th International Workshop on Temporal Representation and Reasoning.

IEEE Computer Society, Press, Los Alamitos, CA, 95–102.

KUPER, G. AND SCHOLL, M. 2000. Geographic information systems. In Constraint Databases,

J. Paredaens, G. Kuper, and L. Libkin, Eds. Springer-Verlag, New York, Chapter 2, 175–

198.

LIBKIN, L. 2000. Variable independence, quantifier elimination, and constraint representation. In

Automata, Languages and Programming, 27th International Colloquium (ICALP 2000), U. Mon-

tanari, J. D. P. Rolim, and E. Welzl, Eds. Lecture Notes in Computer Science, vol. 1853. Springer-

Verlag, New York, 260–271.

MATIJASEVICH, Y. V. 1993. Hilbert’s Tenth Problem. MIT Press, Cambridge, MA.

ACM Transactions on Computational Logic, Vol. 9, No. 2, Article 13, Publication date: March 2008.

Complete Query Languages for Spatio-Temporal Databases • 13:51

PAREDAENS, J., KUPER, G., AND LIBKIN, L., Eds. 2000. Constraint databases. Springer-Verlag, New

York.

PAREDAENS, J., VAN DEN BUSSCHE, J., AND VAN GUCHT, D. 1994. Towards a theory of spatial database

queries. In Proceedings of the 13th ACM Symposium on Principles of Database Systems. ACM,

New York, 279–288.

PFOSER, D. AND TRYFONA, N. 1998. Requirements, definitions and notations for spatiotemporal

application environments. In Proceedings of the 6th International Symposium on Advances in
Geographic Information Systems (ACM-GIS’98), R. Laurini, K. Makki, and N. Pissinou, Eds.

ACM, New York, 124–130.

REVESZ, P. 2002. Introduction to Constraint Databases. Springer-Verlag, New York.

RIGAUX, P., SCHOLL, M., AND VOISARD, A. 2000. Introduction to Spatial Databases: Applications to
GIS. Morgan Kaufmann, Reading, MA.

SCHOLL, M. AND VOISARD, A., EDS. 1997. Advances in Spatial Databases—5th Symposium
(SSD’97). Lecture Notes in Computer Science, vol. 1262. Springer-Verlag, New York.

SCHWABHÄUSER, W., SZMIELEW, W., AND TARSKI, A. 1983. Metamathematische Methoden in der Ge-
ometrie. Springer-Verlag, New York.

SISTLA, A. P., WOLFSON, O., CHAMBERLAIN, S., AND DAO, S. 1997. Modeling and querying moving

objects. In Proceedings of the 13th International Conference on Data Engineering. IEEE Computer

Society, Press, Los, Alamitos, CA, 422–432.

SU, J., XU, H., AND IBARRA, O. 2001. Moving objects: Logical relationships and queries. In Advances
in Spatial and Temporal Databases (SSTD’01). Lecture Notes in Computer Science, vol. 2121.

Springer-Verlag, New York, 3–19.

VAN DEN BUSSCHE, J. 2000. Constraint Databases, queries and query languages. In Constraint
Databases, J. Paredaens, G. Kuper, and L. Libkin, Eds. Springer-Verlag, New York, Chapter 2,

21–54.

WOLFSON, O. 2002. Moving ob jects information management: The database challenge. In Pro-
ceedings of the 5th International Workshop (NGITS). Springer-Verlag, New York, 75–89.

Received March 2005; revised September 2006; accepted September 2006

ACM Transactions on Computational Logic, Vol. 9, No. 2, Article 13, Publication date: March 2008.

