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Abstract. We address a fundamental question concerning spatio-tem-
poral database systems: “What are exactly spatio-temporal queries?” We
define spatio-temporal queries to be computable mappings that are also
generic, meaning that the result of a query may only depend to a lim-
ited extent on the actual internal representation of the spatio-temporal
data. Genericity is defined as invariance under transformations that pre-
serve certain characteristics of spatio-temporal data (e.g., collinearity,
distance, velocity, acceleration, ...) that are relevant to a database user.
These transformations also respect the monotone nature of time.
We investigate different genericity classes relative to the constraint da-
tabase model for spatio-temporal databases and we identify sound and
complete languages for the first-order, respectively the computable, que-
ries in these genericity classes.

1 Introduction

Since the early 1990s, various database systems have been developed to handle
spatial data [1, 5, 10, 14, 16, 26] and solid theories for such systems have been pro-
posed and studied [21, 23]. Conceptually, spatial databases are possibly infinite
sets of points in a real space Rn. In more recent years, we have seen the emer-
gence of database systems and applications that are dealing with spatio-temporal

data [4, 7, 12, 15, 25]. Conceptually, spatio-temporal data can be modeled as in-
finite spatial sets that move or change in time, i.e., sets in Rn × R.

A much acclaimed method for effectively representing infinite geometrical
figures is provided by the constraint database model, that was introduced in
1990 by Kanellakis, Kuper and Revesz [18] (recently an overview of the area
of constraint databases appeared [24]). Until recently this model has been used
mainly in the area of spatial databases, but it provides an equally elegant and
efficient way to model spatio-temporal data [7–9, 13, 20]. In the setting of the
constraint model, a spatio-temporal database in Rn×R is finitely represented as
a Boolean combination of polynomial equalities and inequalities. Figure 1 depicts
the spatio-temporal database {(x, y; t) | x2 + y2 + t2 ≤ 1 ∨ (x2 + y2 + (t − 2)2 =
1 ∧ t ≤ 5/2) ∨ (x2 + y2 + (t − 3)2 = 1 ∧ t > 5/2)} in R2 × R.

A number of theoretical studies have appeared on the status of time and
its relation with space in systems that model moving objects. Erwig et al. [11]
give a taxonomy of applications ranging from those that rely on a step-wise
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Fig. 1. An example of a spatio-temporal database in R2 × R.

constant geometry to applications which need more complete integration of space
and time (like for instance a continuous description of a trajectory). MOST, an
example of the latter category, relies on a strong interaction of the space and
time components (since the space variables are described by linear polynomials
in time) and provides a query language that is a combination of a spatial query
language and a temporal logic. On the other range of the spectrum, variable
independence (defined in terms of orthographic dimension) gives rise to a less
expressive data model which has the advantage of a lower complexity of query
evaluation [13, 22].

We study spatio-temporal queries from the perspective of expressive power,
and do this against the background of the full modeling and querying power of
the constraint database model and the first-order and computationally complete
languages it offers. We ask which expressions in these languages may be con-
sidered as reasonable spatio-temporal queries. In database theory it is usually
required that the result of queries should only to a certain limited extent de-
pend on the actual internal representation of databases and that queries should
only ask for properties that are shared by “isomorphic” encodings of the same
data. The meaning of “isomorphic” may be influenced by the actual database
application and by which notions are relevant in it. In the context of the rela-
tional database model, Chandra and Harel [6] formalized this independence of
the actual encoding in terms of the notion of genericity. Paredaens, Van den
Bussche and Van Gucht [23] identified a hierarchy of genericity classes for spa-
tial database applications. The generic queries in the different classes focus on
different geometrical and topological aspects of the spatial data. On a technical
level, generic queries are defined as being invariant under those transformations
of the data that preserve the relevant aspects of the data. Whereas Chandra and
Harel considered the group of the isomorphisms (that possibly fix some elements
of the domain) in the case of relational databases, Paredaens, Van den Bussche
and Van Gucht identified different geometrical and topological transformation
groups (affinities, isometries, translations, homeomorphisms ...) for spatial da-
tabase applications.



We investigate which notions of genericity are appropriate for spatio-temporal
databases and which transformation groups express them. We observe that the
transformations should first and foremost respect the monotone nature of time,
i.e., leave the temporal order of events unchanged. It follows that the relevant
transformation groups are the product of a group of time-(in)dependent spatial
transformations and a group of monotone transformations of the time-component
of the spatio-temporal data. Next, we focus on the former groups and study which
of them leave different spatial and spatio-temporal properties (like collinearity,
distance and orientation) unchanged. We also focus on physical properties of
spatio-temporal data (like velocity and acceleration). The transformation groups
that we consider are all subgroups of the time-dependent or time-independent
affinities of Rn × R.

We study the notion of spatio-temporal genericity relative to two popular
query languages in the constraint model: first-order logic over the reals (FO)
and an extension of this logic with a while-loop (FO + While). Queries in both
languages are known to be effectively computable (given termination in the case
of FO + While-programs) and FO + While is known to be a computationally
complete language on spatio-temporal databases [28]. First, we show that all the
genericity classes are undecidable. We show that the considered classes of generic
first-order queries are recursively enumerable, however. Hereto, we define first-
order point-based languages in which variables range over points in Rn ×R and
which contain certain point predicates. These point-based languages are shown
to be sound and complete for the first-order queries in the considered genericity
classes. We have also shown that extensions of these point-based logics with a
While-loop give sound and complete languages for the computable queries in the
different genericity classes. Our results are inspired by similar results that were
obtained by Gyssens, Van den Bussche and Van Gucht in the context of spatial
databases [17]. However, mainly our results for genericity notions described by
time-dependent transformations require new proof techniques.

This paper is organized as follows. In Section 2, we define spatio-temporal
databases, spatio-temporal queries, and the constraint query languages FO and
FO + While. In Section 3, we define a number of genericity notions. In Section 4
and 5, we present sound and complete first-order and computationally complete
query languages for the different notions of genericity. In Section 6, we end with
a discussion of some open problems.

2 Definitions and preliminaries

We denote the set of the real numbers by R.

2.1 Spatio-temporal databases

In the following, we will consider n-dimensional spatial figures that change in
time (n ≥ 2). A moving figure is described by means of an (often infinite) set of
tuples (x1, x2, . . . , xn; t) in Rn ×R , where (x1, x2, . . . , xn) represent the spatial



coordinates of a point in the n-dimensional real space Rn and t is the time
coordinate in R. We will work with spatio-temporal data that can be modeled
in the constraint model.

Definition 1. An (n-dimensional) spatio-temporal database1 is a set {(x1, x2,
. . . , xn; t) ∈ Rn × R | ϕ(x1, x2, . . . , xn; t)}, where ϕ(x1, x2, . . . , xn; t) is a for-
mula built with the logical connectives ∧,∨,¬ from atomic formulas of the form
p(x1, x2, . . . , xn, t) > 0, with p(x1, x2, . . . , xn, t) a polynomial with integer coef-
ficients and real variables x1, x2, . . . , xn, t. ⊓⊔

Figure 1 in the Introduction gives an illustration of a 2-dimensional spatio-
temporal database. It shows at its beginning (i.e., at t = −1) a single point in
the origin of R2. Then it shows a disk whose radius increases and later decreases
and ends in a point at moment t = 1, followed by a circle whose radius increases,
decreases, increases and then shrinks to a point.

2.2 Spatio-temporal database queries

Here, we give a first definition of a query. In the next section, we will impose
further conditions on the nature of these mappings.

Definition 2. A spatio-temporal database query is a computable function that
maps spatio-temporal databases to spatio-temporal databases. ⊓⊔

2.3 Constraint query languages

In this paper, we will consider two popular constraint query languages: first-order
logic and an extension of this logic with a while-loop.

First-order logic over the reals (in other words, the relational calculus aug-
mented with polynomial inequality constraints p(x1, x2, ..., xm) > 0), FO for
short, has been well-studied as a query language in the context of spatial databa-
ses [18, 23]. In the setting of spatio-temporal databases it can be used similarly as
a query language. For instance, the calculus formula ST (x, y; t)∧ (∃x0)(∃y0)(∃r >
0)(∀x)(∀y)((x − x0)

2 + (y − y0)
2 = r2 ↔ ST (x, y; t)) selects those snapshots

from a spatio-temporal database ST where it shows a circle. It is well-known that
FO-formulas can be effectively evaluated on spatio-temporal databases in the
constraint model and that the output can be represented in the same constraint
formalism [28].

It is known that the extension of first-order logic over the reals with a while-
loop, FO + While for short, yields a computationally complete language for con-
straint databases [28]. An FO + While-program is a finite sequence of statements

1 The results in this paper can be extended straightforwardly to the situation where a
spatio-temporal database consists of more such sets and where these sets are accom-
panied by classical thematic information. However, because the complete problem
that is discussed here is captured by this simplified model, we stick to it for reasons
of simplicity of exposition.



and while-loops . Each statement has the form

R := {(x1, . . . , xk) | ϕ(x1, . . . , xk)} ,

with R a relation variable of arity k and ϕ a formula in FO augmented with
previously introduced relation variables. A while-loop has the form

while ϕ do P ,

where P is a program and ϕ is a sentence in FO augmented with previously
introduced relation variables. Semantically, a FO + While-program expresses a
spatio-temporal query in the obvious way as soon as one of its relation variables
has been designated as the output variable.

3 Spatio-temporal genericity

For simplicity we consider from now on only queries that take an n-dimensional
spatio-temporal database as input and also output an n-dimensional spatio-
temporal database (variations are possible but straightforward). As stated in
the Introduction, we are interested in spatio-temporal database queries that are
invariant under the elements of a certain spatio-temporal transformation group

F = {f | f = (f1, f2, . . . , fn, ft) : Rn × R → Rn × R}.

In the remainder of this section, we will impose two further conditions on
these transformations. The first condition is a purely temporal one (it concerns
the order of events), whereas the second is a purely spatial or spatio-temporal
condition that reflects the nature of the queries one is interested in.

3.1 Temporal condition

An event is a subset of Rn × R. The projection of an event A on the time-axis
is denoted by πt(A) and called the time-interval of A.

Let A and B be events. In Allen’s terminology [2, 3], A and B are called
co-temporal if πt(A) = πt(B) (we denote this by A =t B). Allen says A is before

B if tA < tB for all tA ∈ πt(A) and all tB ∈ πt(B) (we denote this by A <t B).
Remark that A ≤t B := A =t B or A <t B is an order on time-intervals. We
say that a transformation f : Rn × R → Rn × R preserves the order of events

if for all events A and B, A =t B implies f(A) =t f(B) and A <t B implies
f(A) <t f(B).

Proposition 1. A transformation f = (f1, f2, . . . , fn, ft) : Rn × R → Rn × R

preserves the order of events if and only if ft is a strictly monotone function of

t alone. ⊓⊔



Proof. The only-if direction is clear. To prove the other direction, let f = (f1,
f2, . . . , fn, ft) be a transformation of Rn × R. Consider any two events A =
{(x1, x2, . . . , xn, t)} and B = {(x′

1, x
′

2, . . . , x
′

n, t)}. Then ft(x1, x2, . . . , xn, t) =
ft(x

′

1, x
′

2, . . . , x
′

n, t). This shows that ft is a function of t alone.

Consider any two events A = {(x1, x2, . . . , xn, tA)} and B = {(x1, x2, . . . ,
xn, tB)} with tA < tB. Then ft(tA) < ft(tB). This shows that ft is a strictly
monotone function of t. ⊓⊔

Since we require that transformations preserve the order of events, we can
write the transformation groups of interest as a product of groups:

F = (Fst,Ft) = {(fst, ft) | fst = (f1, f2, . . . , fn) : Rn × R → Rn, ft : R → R}.

The groups Ft that we will consider are:

• At = {t 7→ a · t + b | a, b ∈ R and a > 0}, i.e., the monotone affinities of the
time-line;

• Tt = {t 7→ t + b | b ∈ R}, i.e., the translations of the time-line; and

• Id t = {id}, i.e., the identity.

3.2 Spatial and spatio-temporal conditions

For what concerns the spatial (or spatio-temporal) part, we consider transfor-
mations of the form:
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where the aij and bi are functions from R to R.
We will consider the following groups Fst of transformations:

• Ast, the group of transformations of the above form where the aij(t) and bi(t)
are arbitrary functions of t such that the matrix of the aij(t) has an inverse for
each value of t (these are the time-dependent affinities);

• Af
st, the subgroup of Ast consisting of transformations for which the functions

aij(t) and bi(t) only take a finite number of values;

• Ac
st, the subgroup of Ast consisting of transformations for which the functions

aij(t) are constants and bi(t) are linear functions of t;

• Sst, S
f
st, S

c
st, the subgroups of the above where the matrix of the aij(t) repre-

sents at each moment a similarity;

• Ist, I
f
st, I

c
st, the subgroups of the above where the determinant of the matrix

consisting of the aij(t) equals 1 at each moment (i.e., the isometries);

• Tst, T
f

st , T
c

st, the subgroups of the above where the matrix consisting of the
aij(t) is the identity matrix (i.e., the translations).



3.3 Physical conditions

The following groups are of interest when notions such as velocity, acceleration
and force are important in an application. These transformation groups can be
found by solving the differential equations that express that these notions are
preserved. We consider these notions for arbitrary and rigid motions, respec-
tively.
• Vst, the subgroup of Ac

st where the bi are constants. This group of transfor-
mations preserves the velocity vector.
• V(R)st, the subgroup of Ic

st where the bi are constants. This group of trans-
formations preserves the velocity vector of a moving object in rigid motion.
• ACst, is the group Ac

st. This group of transformations preserves the acceleration

vector of a moving object.
• AC(R)st, is the group Ic

st. This group of transformations preserves the accel-

eration vector of a moving object in rigid motion.

In physics it is custom to consider only translations (i.e., Tt) for what concerns
the time-dimension.

3.4 Spatio-temporal genericity: definition

Finally, we define genericity of spatio-temporal database queries.

Definition 3. Let Fst and Ft be two of the above groups. Let Q be a spatio-
temporal database query. We call Q (Fst,Ft)-generic if and only if for all spatio-
temporal databases ST 1 and ST 2 for which there exists a f = (fst, ft) ∈ (Fst,Ft)
such that f(ST 1) = ST 2 also f(Q(ST 1)) = Q(ST 2) holds. ⊓⊔

4 Sound and complete languages for the generic

first-order spatio-temporal queries

In this section, we study the (Fst,Ft)-generic queries that are expressible in FO.
To start with, we give a general undecidability result. It can be proven using
standard techniques from constraint databases [19].

Theorem 1. For all non-trivial groups Fst, Ft mentioned in the previous sec-

tion, (Fst,Ft)-genericity of spatio-temporal FO queries is undecidable. ⊓⊔

We will show that the first-order queries that are (Fst,Ft)-generic are re-
cursively enumerable, however. We will show this by giving sound and complete
languages for the FO queries of the different genericity classes. These languages
are point-based logics of the following form.

Point-based logics. We define a number of first-order point-based languages
that we shall denote by P({P1, P2, . . . , Pm}), where the Pi are point-predicates.
The variables p, q, r, . . . in P({P1, P2, . . . , Pm}) represent points in Rn ×R. The
atomic formulas of P({P1, P2, . . . , Pm}) are ST (p), meaning that the point p



belongs to the input database ST , and Pi(p, q, r, . . .). The formulas of P({P1,
P2, . . . , Pm}) are built from atomic formulas using the connectives ∧,∨,¬ and
quantification of point variables (∃p), (∀p). ⊓⊔

In the remainder of this section, we first discuss notions of genericity de-
termined by time-independent transformations with applications to physics and
next focus on time-dependent transformations.

4.1 Genericity for time-independent transformations

In this section, we give a general result concerning (Fst,Ft)-generic queries where
Fst is a group of time-independent affinities of Rn × R.

Let (O, E1, E2, . . . , En+1) denote the standard coordinate system of Rn ×
R. Let the point-predicate Betweenn+1 be such that Betweenn+1(p, q, r) ex-
presses that the points p, q, r in Rn × R are collinear and that q is between p
and r. Let the predicate Before be such that Before(p, q) expresses that the
time coordinate of p is less than or equal to the time coordinate of q.

The following meta-theorem can be proven using techniques introduced by
Gyssens, Van den Bussche and Van Gucht [17].

Theorem 2. Let Fst be a subgroup of Ac
st and let Ft be a subgroup of At.

Let {P1, P2, . . . , Pm} be a set of point-predicates that contains Betweenn+1 and

Before. If the predicates in {P1, P2, . . . , Pm} are FO expressible and invariant

under the transformations of (Fst,Ft) and if the fact “(p0, p1, p2, . . . , pn+1) is the

image of the standard coordinate system (O, E1, E2, . . . , En+1) under some ele-

ment f of (Fst,Ft)” is expressible in P({P1, P2, . . . , Pm}), then P({P1, P2, . . . ,
Pm}) is sound and complete for the (Fst,Ft)-generic FO queries. ⊓⊔

We apply the previous theorem to some groups (Fc
st,Ft). Further applications

can be found in the next subsection. We need to introduce some further point
predicates:

• UnitTime(p, q) expresses that the points p, q ∈ Rn×R have time-coordinates
pt and qt such that |pt − qt| = 1;

• +t(p, q, r) holds for spatio-temporal points p, q, r with time-coordinates pt, qt

and rt if and only if pt + qt = rt; ∗t is defined similarly;

• the unary predicates 0t and 1t express that the time-coordinate of a point
equals zero and one respectively;

• the predicates ≤i (p, q) (1 ≤ i ≤ n) express that the ith spatial coordinate of
p is less or equal than the ith spatial coordinate of q;

• EqDist(p, q, r, s) is true if the distance between two co-temporal points p and
q equals the distance between the two co-temporal points r and s;

• UnitDist(p, q) expresses that p, q are co-temporal and that the spatial distance
between p and q equals one; and finally

• Posn+1(p0, p1, p2, . . . , pn+1) expresses that (p0, p1, p2, . . . , pn+1) form a posi-
tively oriented (n + 1)-dimensional coordinate system.



Corollary 1. Let (Fst,Ft) be a group from Table 1 and let Π(Fst,Ft) be as in

Table 1. The point language P(Π(Fst,Ft)) is sound and complete for the (Fst,
Ft)-generic FO queries. ⊓⊔

4.2 Applications to Physics

Here, we focus on the transformation groups (Vst, Tt), (V(R)st, Tt), (ACst, Tt)
and (AC(R)st, Tt). To formulate our results we need to define one more point-
predicate, namely =space. If p = (p1, . . . , pn, pt), q = (q1, . . . , qn, qt) ∈ Rn × R,
then =space(p, q) if and only if pi = qi for 1 ≤ i ≤ n.

The following results can be proven using Theorem 2.

Theorem 3. Let (Fst, Tt) be a group from Table 2 and let Π(Fst, Tt) be as in

Table 2. The point language P(Π(Fst, Tt)) is sound and complete for the (Fst,
Tt)-generic FO queries. ⊓⊔

4.3 Genericity for time-dependent transformations

Here, we focus on notions of genericity determined by time-dependent transfor-
mations. Our first result in this context shows that we can restrict our attention,
without loss of generality, to piece-wise constant transformations. The proof of
this proposition is postponed until the end of this section.

Proposition 2. Let Q be a spatio-temporal FO query and let Fst be Ast, Sst,

Ist or Tst and Ft be At, Tt or Id t. Then Q is (Fst,Ft)-generic if and only if it

is (Ff
st,Ft)-generic. ⊓⊔

We first focus on the group (Af
st,At). To formulate our result we need to

define some additional point predicates:

• Betweenn(p, q, r) expresses that three points p, q, r ∈ Rn × R that are co-
temporal are collinear and that q is between p and r;

(Fst,Ft) Sets of point predicates Π(Fst,Ft)

(Ac
st,At) {Betweenn+1, Before}

(Ac
st, Tt) {Betweenn+1, Before,UnitTime}

(Ac
st, Idt) {Betweenn+1, Before,UnitTime, +t, ∗t,0t,1t}

(Sc
st,Ft) Π(Ac

st,Ft) ∪ {EqDist}
(Ic

st,Ft) Π(Ac
st,Ft) ∪ {EqDist,UnitDist}

(T c
st,Ft) Π(Ac

st,Ft) ∪ {EqDist,UnitDist,≤i (1 ≤ i ≤ n), Posn+1}

Table 1. The different sets of point predicates for a number of spatio-temporal gener-
icity notions. In the last three cases, we have Ft ∈ {At, Tt, Idt}.



• EqCR(p, q, r, p′, q′, r′) expresses that the cross ratio2 of three co-temporal and
collinear points p, q, r equals the cross ratio of three co-temporal and collinear
points p′, q′, r′;
• EqCRst(p, q, r, p′, q′, r′) expresses that the cross ratio of three co-temporal
and collinear points p, q, r equals the cross ratio of the time coordinates of the
points p′, q′, r′.

Theorem 4. The point language P({Betweenn,Before,EqCR,EqCRst}) is

sound and complete for the (Af
st,At)-generic FO queries. ⊓⊔

Proof sketch. It is easily verified that the predicates Betweenn, Before,
EqCR and EqCRst are expressible in the language FO and that all these
predicates are invariant under transformations in the group (Af

st,At). We can
then prove by induction on the formulas in P({Betweenn,Before,EqCR,

EqCRst}) that they are (Af
st,At)-generic. This proves soundness.

For completeness, it suffices to show that every FO formula ϕ can be simu-
lated in P({Betweenn,Before,EqCR,EqCRst}) by a formula ϕ̄ in the sense
that ST |= ϕ if and only if f(ST ) |= ϕ̄ with f some transformation from the

group (Af
st,At). For (Af

st,At)-generic FO formulas this implies that they can be
equivalently expressed in P({Betweenn,Before,EqCR,EqCRst}).

Let ϕ be a FO formula that we assume to be in prenex normal form. We now
sketch the translation of an FO formula ϕ into a formula ϕ̄ of P({Betweenn,
Before,EqCR,EqCRst}). In this translation, first the atomic formulas of ϕ
are translated and the connectives and quantifiers are later added in an almost
natural way. First of all, in the description of ϕ̄ two moments in time ptO

and ptE

are chosen such that ¬Before(ptE
, ptO

) (time moments are represented in ϕ̄ by
spatio-temporal points). Next, in the hyperplane of points that are co-temporal
with ptO

an affine coordinate system (O, E1, E2, . . . , En) is chosen (this can be
expressed using the predicate Betweenn only [17]). The arithmetic operations
on real variables (which are translated into point variables on the line OE1) will
be simulated, using only Betweenn, in the computation plane (O, E1, E2) (using
techniques similar to those used by Tarski [27]; see also [17]).

An appearance of ST (x1, . . . , xn; t) in ϕ is translated into a conjunction of three
formulas. The first is ST (p). For the second, we chose an affine coordinate system

2 The cross ratio of three collinear points p, q, r is |pq|
|pr|

. It is known that the cross
ratio is an affine invariant.

(Fst, Tt) Set of point predicates Π(Fst, Tt)

(Vst, Tt) {Betweenn+1,Before,UnitTime, =space}
(V(R)

st
, Tt) {Betweenn+1,Before,UnitTime, =space,EqDist, UnitDist}

(ACst, Tt) {Betweenn+1,Before,UnitTime}
(AC(R)

st
, Tt) {Betweenn+1,Before,UnitTime,EqDist,UnitDist}

Table 2. The different point-predicate sets for the physical genericity notions.



(Op, Ep
1 , Ep

2 , . . . , Ep
n) in the plane of points that are co-temporal with p; deter-

mine in this plane the spatial coordinates p1, p2, . . . , pn of p with respect to the
coordinate system (Op, Ep

1 , Ep
2 , . . . , Ep

n); and, using the point-predicate EqCR,
communicate these coordinates to the line OE1 in the computation plane. The
third conjunct communicates the time coordinate of p to the computation plane
as pt, using the expression EqCRst(O, E1, pt, ptO

, ptE
, p).

When all atomic subformulas of ϕ have been translated, the logical connec-
tives can be added almost naturally (care has to be taken that in connecting,
e.g., the subformulas ST (x1, . . . , xn; t) and ST (x′

1, . . . , x
′

n; t′) it is important that if
t = t′, then the same affine coordinate system is used in their translation; hereto
all possible orders of the time variables in the formula ϕ are considered and the
same affine coordinate system is used for co-temporal events). ⊓⊔

Proof of Proposition 2. Note that we only consider a finite number of moments
in time in the previous proof (there are only a finite number of time variables

in any FO formula ϕ). This implies that the transformation groups Af
st and Ast

yield the same results. In between the moments of time that are considered, it
is indeed not important which transformation function is used. ⊓⊔

Theorem 4 has a number of corollaries. We need two extra point predicates,
namely EqDistcotemp and Posn:

• EqDistcotemp(p, q, r, s) is true if and only if for four co-temporal points p, q, r
and s the distance between p and q equals the distance between r and s; and

• Posn(p0, p1, . . . , pn) expresses that for n + 1 co-temporal points p0, p1, . . . , pn,
(p0, p1, . . . , pn) forms a positively oriented coordinate system.

Corollary 2. Let (Fst,Ft) and Π(Fst,Ft) be taken from Table 3. The language

P(Π(Fst,Ft)) is sound and complete for the (Fst,Ft)-generic FO queries. ⊓⊔

(Fst,Ft) Sets of point predicates Π(Fst,Ft)

(A
(f)
st ,At) {Betweenn,Before,EqCR,EqCRst}

(A
(f)
st , It) {Betweenn,Before,EqCR,EqCRst,UnitTime}

(A
(f)
st , Idt) {Betweenn,Before,EqCR,EqCRst,UnitTime, +t, ∗t, 0t,1t}

(S
(f)
st ,Ft) Π(A

(f)
st ,Ft) ∪ {EqDistcotemp}

(I
(f)
st ,Ft) Π(A

(f)
st ,Ft) ∪ {EqDistcotemp,UnitDist}

(T
(f)

st ,Ft) Π(A
(f)
st ,Ft) ∪ {EqDistcotemp,UnitDist,≤i (1 ≤ i ≤ n),Posn}

Table 3. The different sets of point predicate for some spatio-temporal genericity
notions. In the last three cases, we have Ft ∈ {At, Tt, Idt}.



5 Sound and complete languages for the generic

computable spatio-temporal queries

In this section, we show that most of the languages P({P1, P2, . . . , Pm}) of the
previous section, when augmented with While, yield sound and computation-
ally complete languages for the genericity classes characterized by the point-
predicates P1, P2, . . . , Pm.

Point-based logics extended with While. Let {P1, P2, . . . , Pm} be a finite
set of point predicates. Syntactically, a program in the language P({P1, P2, . . . ,
Pm}) + While is then a finite sequence of statements and while-loops . Each
statement has the form

R := {(p1, . . . , pk) | ϕ(p1, . . . , pk)} ,

with R a relation variable of arity k (the variables pi range over Rn × R) and
ϕ a formula in P({P1, P2, . . . , Pm}) in which relation names of input relations
and of previously introduced relation variables may be used. A while-loop has
the form

while ϕ do P ,

where P is a program and ϕ is a sentence in P({P1, P2, . . . , Pm}) augmented
with previously introduced relation variables.

Semantically, a program in the query language P({P1, P2, . . . , Pm}) + While
expresses a spatio-temporal query in the obvious way as soon as one of its relation
variables has been designated as the output variable. ⊓⊔

We follow the same structure as in the previous section. We first discuss
notions of genericity determined by time-independent transformations with ap-
plications to physics and then focus on time-dependent transformations.

5.1 Genericity for time-independent transformations

In this section, we prove a general result concerning computable (Fst,Ft)-generic
queries where (Fst,Ft) is a time-independent affinity of Rn × R.

Let (O, E1, E2, . . . , En+1) be the standard coordinate system of Rn × R.
The following meta-theorem can then be proven, using techniques introduced by
Gyssens, Van den Bussche and Van Gucht [17].

Theorem 5. Let Fst be a subgroup of Ac
st and let Ft be a subgroup of At. Let

{P1, P2, . . . , Pm} be a set of point predicates that contains Betweenn+1 and

Before. If the predicates in {P1, P2, . . . , Pm} are FO expressible and invariant

under the transformations of (Fst,Ft) and if the fact “(p0, p1, p2, . . . , pn+1) is the

image of the standard coordinate system (O, E1, E2, . . . , En+1) under some ele-

ment f of (Fst,Ft)” is expressible in P({P1, P2, . . . , Pm}), then P({P1, P2, . . . ,
Pm})+While is sound and complete for the computable (Fst,Ft)-generic queries.

⊓⊔



We apply the previous theorem to some groups (Fc
st,Ft). Further applications

can be found in the next subsection.

Corollary 3. Let (Fst,Ft) be a group from Table 1 and let Π(Fst,Ft) be as in

Table 1. The point language P(Π(Fst,Ft)) + While is sound and complete for

the computable (Fst,Ft)-generic queries. ⊓⊔

5.2 Applications to Physics

Here, we focus again on the transformation groups (Vst, Tt), (V(R)st, Tt), (ACst,
Tt) and (AC(R)st, Tt). The following results can be proven using Theorem 5.

Theorem 6. Let (Fst, Tt) be a group from Table 2 and let Π(Fst, Tt) be as in

Table 2. The point language P(Π(Fst, Tt)) + While is sound and complete for

the computable (Fst, It)-generic queries. ⊓⊔

5.3 Genericity for time-dependent transformations

Finally, we study notions of genericity determined by time-dependent transfor-
mations. Here, we only show results for the groups of arbitrary time-dependent
transformations Fst. For the groups Ff

st the problem of identifying sound and
complete languages is open.

Theorem 7. The point language P({Betweenn,Before,EqCR,EqCRst}) +
While is sound and complete for the (Ast,At)-generic computable queries. ⊓⊔

Proof sketch. We show that an (Ast,At)-generic computable query Q can be
simulated in the language P({Betweenn,Before,EqCR,EqCRst}) + While.
This simulation is broken up into three steps: (1) an input database ST is en-
coded as a natural number N(ST ); (2) Q is simulated by a computable function
Q̄ on natural numbers; and (3) Q̄(N(ST )) is decoded into a spatio-temporal data-
base. Since all three steps can be expressed in P({Betweenn,Before,EqCR,
EqCRst}) + While, as we will show, this gives us the desired result.

Steps (2) and (3) differ little from the ones described by Gyssens, Van den
Bussche and Van Gucht [17], so we skip them in this sketch. The major difference
is in step (1). Essentially, step (1) is a loop over the natural numbers, where
for each number N it is tested whether or not N encodes an image of the
database ST under a transformation f ∈ (Ast,At). The fact that N encodes
some spatio-temporal database STN can be expressed in P({Betweenn,Before,
EqCR,EqCRst}) + While by modifying the technique of Gyssens, Van den
Bussche and Van Gucht [17] to the technique of the computation plane explained
in the proof of Theorem 4. In P({Betweenn,Before,EqCR,EqCRst}) it can
then be expressed that STN can be transformed into ST by an element of the group
(Ast,At). Indeed, in the language FO it can be expressed that for all moments
in time t there exists an affinity At such that a spatial point p belongs to the
snapshot of STN at moment t if and only if At(p) belongs to the snapshot ST at



time ft(t), where ft is an element of At. Using Theorem 4, it can therefore also
be expressed in P({Betweenn,Before,EqCR,EqCRst}). ⊓⊔

The previous theorem has a number of corollaries.

Corollary 4. Let (Fst,Ft) be one of the groups (Ast,At), (Ast, It), (Ast, Id t),
(Sst,Gt), (Ist,Gt), or (Tst,Gt) with Gt ∈ {At, Tt, Id t} and let Π(Fst,Ft) be as in

Table 3. The point language P(Π(Fst,Ft)) + While is sound and complete for

the (Fst,Ft)-generic computable queries. ⊓⊔

6 Conclusion and discussion

We have investigated different genericity classes relative to the constraint da-
tabase model for spatio-temporal databases and we have identified sound and
complete languages for the first-order, respectively the computable, queries in
(most of) these genericity classes. Some results were obtained by techniques
introduced by Gyssens, Van den Bussche and Van Gucht [17], but for time-
dependent transformations we have introduced new proof techniques.

For what concerns computationally complete languages these techniques seem
to be insufficient to deal with the genericity notions that are expressed by
the groups (Af

st,At), (Af
st, It), (Af

st, Id t), (Sf
st,Gt), (If

st,Gt), and (T f
st ,Gt) with

Gt ∈ {At, Tt, Id t}. The problem in adapting the proof technique of Theorem 7
to these groups is that it is not clear how we can express in the respective point-
based logics that two spatio-temporal databases can be mapped to each other by
some piece-wise constant affinity. Indeed, since the number of pieces is not de-
fined a priori, this might not be expressible. This would imply that yet another
new proof technique would be required to deal with the remaining cases.
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15. R. H. Güting, M. H. Bohlen, M. Erwig, C. S. Jensen, N. A. Lorentzos, M. Schneider,
and M. Vazirgiannis, A foundation for representing and querying moving objects,
ACM Transactions on Databases Systems 25 (2000), 1–42.
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