
Satisfiability of XPath Queries with Sibling Axes

Floris Geerts1 and Wenfei Fan2

1 Hasselt University and University of Edinburgh
2 University of Edinburgh and Bell Laboratories

Abstract. We study the satisfiability problem for XPath fragments sup-
porting the following-sibling and preceding-sibling axes. Although this
problem was recently studied for XPath fragments without sibling axes,
little is known about the impact of the sibling axes on the satisfiability
analysis. To this end we revisit the satisfiability problem for a variety
of XPath fragments with sibling axes, in the presence of DTDs, in the
absence of DTDs, and under various restricted DTDs. In these settings
we establish complexity bounds ranging from NLOGSPACE to undecid-
able. Our main conclusion is that in many cases, the presence of sibling
axes complicates the satisfiability analysis. Indeed, we show that there
are XPath satisfiability problems that are in PTIME and PSPACE in the
absence of sibling axes, but that become NP-hard and EXPTIME-hard,
respectively, when sibling axes are used instead of the corresponding
vertical modalities (e.g., the wildcard and the descendant axis).

1 Introduction

We revisit the satisfiability problem for XPath [7] in the presence of DTDs. It is
the problem to determine, given an XPath query Q and a DTD D, whether or
not there exists an XML document T such that T conforms to D and satisfies
Q, i.e., the set Q(T ) of nodes of T selected by Q is nonempty.

The prevalent use of XPath highlights the need for the satisfiability analysis
of XPath queries. Indeed, XPath has been commonly used in specifying XML
constraints (e.g., [6, 9, 27]), queries (e.g., XSLT, XQuery), updates (e.g., [26]),
and access control (e.g., [10]). In many applications both XPath expressions and
DTDs are present. The static satisfiability analysis of XPath addresses the in-
teraction between XPath and DTDs, and is useful in query optimization, update
manipulation and reasoning about XML access control, among other things. An
alternative to the static analysis would be a dynamic approach. As an exam-
ple, consider an access-control policy S defined in terms of a DTD and XPath
queries, which is to prevent disclosure of XML documents to unauthorized users
by validating that the documents “satisfy” S. One could simply attempt to vali-
date a document with respect to S at run-time. This, however, would not tell us
whether repeated failures are due to inconsistency between the XPath queries
and the DTD, or problems with the documents.

The satisfiability problem has been studied for a large number of XPath
fragments [2, 13, 15, 17], in the presence and in the absence of DTDs. The pre-
vious work has mostly focused on XPath queries with only vertical modalities



such as child, parent, descendant and ancestor axes (referred to “↓, ↑, ↓∗, ↑∗”,
respectively). However, XML data is ordered and it is often desirable to ac-
cess this order using XPath. Indeed, consider an XML document storing items
bought by customers over a period of time. The items are grouped under cus-
tomers and appear according to their date of acquisition. In order to detect
customer behavior over time, one needs to be able to pose queries involving or-
der. Therefore, it is common to find XPath queries that need sideways traversal
via horizontal modalities such as (immediate) right-sibling and left-sibling axes
(denoted by “→,→∗,←,←∗”, respectively). It is natural to ask whether the
presence of sibling axes simplifies or complicates the satisfiability analysis. For
example, consider a fragment X (↓, [ ]) that supports wildcard (↓) and qualifiers
([ ]) and characterizes well-studied tree pattern queries [1, 2, 28, 29]. One would
want to know whether the satisfiability analysis becomes easier or harder for
X (→, [ ]) (resp. X (←, [ ])), the horizontal counterpart of X (↓, [ ]) by substitut-
ing → (resp. ←) for ↓. The complexity of the satisfiability analysis is not yet
known for a variety of XPath fragments with sibling axes.

Related to the satisfiability analysis is the containment problem, which is
to determine, given two XPath queries Q1, Q2 and a DTD D, whether or not
for all XML documents T that conform to D, Q1(T ) is contained in Q2(T ).
While there has also been a host of work on the containment analysis [8, 17,
19, 22, 29], the previous results cannot answer the questions of the satisfiability
analysis. Indeed, as already observed by [2], the lower bounds for the containment
analysis are often much higher than its satisfiability counterpart. Worse still, to
our knowledge there has not been a full treatment of the containment problem
for various fragments with the sibling axes or XPath negation.

Main results. To this end we investigate the satisfiability problem for a variety
of XPath fragments with sibling axes, in the following settings:

– XPath fragments: with or without recursion axis (e.g.,→∗,←∗, ↓∗, ↑∗), qual-
ifiers ([ ]), data-value joins (denoted by =), and negation (¬);

– DTDs: in the presence of DTDs vs. in the absence of DTDs; fixed DTDs
vs. arbitrary DTDs; and restricted DTDs with or without DTD recursion,
disjunction, and Kleene star in element type definitions.

We establish lower and upper bounds for the satisfiability analysis in these set-
tings, which range from NLOGSPACE to undecidable. We also explore the im-
pact of sibling axes on the analysis. We show that in the absence of XPath qual-
ifiers, the presence of sibling axes does not complicate the satisfiability analysis.
In contrast, in the presence of qualifiers, sibling axes make the analysis harder.
Indeed, we show the following. (a) The satisfiability problem for X (→, [ ]) is
NP-hard under fixed, disjunction-free DTDs, whereas it is in PTIME for its
vertical counterpart X (↓, [ ]) in the same setting [2]. (b) It is EXPTIME-hard
for X (↑,→,∪, [ ],¬)), a fragment with upward and sibling axes and negation
but without recursion; in contrast, it is in PSPACE for the vertical counterpart
X (↓, ↑,∪, [ ],¬)) [2]. (c) Under non-recursive and fixed DTDs and in the absence
of DTDs, it is still unknown [2] whether or not the satisfiability problem is de-



cidable for X (↓, ↓∗, ↑, ↑∗,∪, [ ],¬, =), a fragment with negation, data-value joins
and all the vertical axes. In contrast, the problem is undecidable when sibling
axes are introduced; indeed, it is undecidable for X (↑,←,→,→∗,∪, [ ], =,¬) in
the same settings.

In addition to the complexity bounds for the satisfiability problems, we also
explore the connection between vertical and horizontal axes and the connec-
tion between the satisfiability and containment analysis, establishing first lower
bound results for the containment analysis of XPath fragments with sibling axes.

These results help us understand the interaction between different XPath
axes, as well as their interaction with various DTD constructs. Taken together,
these results and the previous work [2, 13, 15, 17] provide a detailed treatment
of the satisfiability analysis for a large number of XPath fragments commonly
found in practice, in a variety of DTD settings.

Related work. The satisfiability problem has been studied in [2, 13, 15, 17].
Complexity bounds were provided in [2] for various XPath fragment under a va-
riety of DTDs. However, no sibling axes were considered there. Our results in this
paper complement and extend the results of [2]. The main focus of [17] is about
extensions of XPath, and it provided EXPTIME (lower and upper) bounds on
equivalence for an extension of XPath in the presence of DTDs, which implies
an EXPTIME bound for our fragment with all the axes and negation but with-
out data-value joins. We will show in Section 4.3 that the EXPTIME-hardness
already holds for a subclass of the fragment without recursion axes. The XPath
queries considered in [15] are basically tree patterns with node equality, inequal-
ity and limited use of data joins; neither negation nor sibling axes were considered
there; furthermore, DTDs were restricted to be non-recursive disjunction-free
in [15]. In the absence of DTDs, [13] studied the satisfiability problem for XPath
without negation and data-value joins. From the results of [2], we already know
that these bounds do not hold in the presence of DTDs. In particular, [13] gave
PTIME bounds for XPath fragments with qualifiers, sibling axes, upward axes,
and a root test in the absence of DTDs. We show that in the presence of DTDs,
the problem is NP-hard, and we give PTIME bounds in the absence of qualifiers,
and in the presence of sibling, upward axes and DTDs.

There has also been work on the containment problem for XPath fragments
in the absence and in the presence of DTDs [8, 17, 19, 22, 29]. Most of the work
(except [22, 17]) only studied fragments without upward axes, sibling axes, data-
value joins and negation. The negation defined in [22] is quite different from the
general XPath negation operator. See [25] for a recent survey. As shown in [2],
the complexity bounds for the containment analysis are typically much higher
than its satisfiability counterpart in the absence of negation. In the presence of
negation, the connection between the containment analysis and its satisfiability
counterpart was explored in [2] and will be further discussed in Section 5.

Other active areas of XPath research include the expressive power of XPath
(e.g., [3, 12, 16–18, 20, 21]) and query rewriting and minimization (e.g., [1, 9, 11,
23, 28]). While XPath satisfiability is not the focus in those areas, the satisfia-
bility analysis is useful for XPath rewriting, minimization and optimization.



Organization. Section 2 reviews DTDs and defines XPath fragments. Section 3
explores the connection between sibling and vertical axes. Section 4 studies the
satisfiability problem for XPath fragments with sibling axes, followed by the
containment analysis in Section 5. Section 6 summarizes the main results of the
paper. All proofs can be found in the full paper.

2 Preliminaries

In this section we first review DTDs [5] and describe the XPath [7] fragments
considered in this paper. We then state the satisfiability problem in the presence
of DTDs and address its connection with the counterpart in the absence of DTDs.

2.1 DTDs

Without loss of generality, we represent a Document Type Definition (DTD [5])
D as (Ele, Att, P, R, r), where (1) Ele is a finite set of element types, ranged
over by A, B, . . .; (2) r is a distinguished type in Ele, called the root type; (3)
P is a function that defines the element types: for each A in Ele, P (A) is a
regular expression over Ele; we refer to A → P (A) as the production of A; (4)
Att is a finite set of attribute names, ranged over by a, b, . . .; and (5) R defines
the attributes: for each A in Ele, R(A) is a subset of Att.

A DTD D = (Ele, Att, P, R, r) is said to be disjunction-free if for any
element type A ∈ Ele, P (A) does not contain disjunction ‘+’. It is called no-
star if for any A ∈ Ele, P (A) does not contain the Kleene star ‘∗’ (this should not
be confused with star-free regular expressions). It is recursive if the dependency
graph of D, which contains an edge (A, B) iff B is in P (A), has a cycle.

An XML document is typically modeled as a (finite) node-labeled tree [5],
with nodes additionally annotated with values for attributes. We refer to this
as an XML tree. An XML tree T satisfies (or conforms to) a DTD D =
(Ele, Att, P, R, r), denoted by T |= D, if (1) the root of T is labeled with
r; (2) each node n in T is labeled with an Ele type A, called an A element ; the
label of n is denoted by lab(n); (3) each A element has a list of children such
that their labels are a word in the regular language defined by P (A); and (4) for
each A in Ele and each a ∈ R(A), each A element n has a unique a attribute
value, denoted by n.a. We call T an XML tree of D if T |= D.

Example 1. Consider a DTD D1 = (Ele, Att, P, R, r) defined as

Ele = {r, X, A, B}.
P : r → X∗, X → (A, B∗)∗

Att = ∅, R(X) = R(T ) = R(F ) = ∅.
It is non-recursive and disjunction-free. An XML tree of D1 is shown at the left
in Fig. 1.
Another DTD D2 = (Ele, Att, P, R, r) is defined as

Ele = {r, X, Y }.
P : r → X, Y , X → Y, X + ǫ, Y → X, Y + ǫ
Att = ∅, R(X) = R(T ) = R(F ) = ∅.



r

X

A B

X

A B B B A

X

A B B B B A

r

X

Y

X Y

X

Y X

Y

X

Y X

Y

Y Y

Fig. 1. XML trees of the DTDs D1 (left) and D2 (right) given in Example 1.

It is recursive and no-star. An XML tree of D2 is shown at the right in Fig. 1.

Note that a DTD D may not have any XML tree T such that T |= D. This is
because some element type A in D is non-terminating, i.e., there exists no finite
subtree rooted at an A element that satisfies D. Fortunately, one can determine
whether this is the case for any element type of D in O(|D|) time, where |D| is
the size of D [14]. In the remainder of the paper we will assume that all element
types in a DTD are terminating. This does not affect any of our results.

2.2 XPath Fragments

Over an XML tree, an XPath query specifies the selection of nodes in the tree.
Assume a (possibly infinite) alphabet Σ of labels. The largest fragment of XPath
studied in this paper, denoted by X (↓, ↓∗, ↑, ↑∗,←,←∗,→,→∗,∪, [ ], =,¬), is
defined syntactically as follows:

p ::= ǫ | A | ↓ | ↓∗ | ↑ | ↑∗ | → | →∗

| ← | ←∗ | p/p | p ∪ p | p[q],

where ǫ and A denote the empty path (the self-axis) and a label in Σ (the child-
axis); ‘↓’ and ‘↓∗’ stand for the wildcard (child) and the descendant-or-self-axis,
while ↑ and ↑∗ denote the parent-axis and ancestor-or-self-axis, respectively;
‘→∗’ (resp. ‘←∗’) is the following-sibling (resp. preceding-sibling) axis, and ‘→’
(resp. ‘←’) denotes the immediate right sibling (reps. the immediate left sibling);
‘/’ and ‘∪’ stand for concatenation and union, respectively; and finally, q in p[q]
is called a qualifier and is defined by:

q ::= p | lab() = A | p/@a op c | p/@a op p’/@b

| q1 ∧ q2 | q1 ∨ q2 | ¬q,

where p is as defined above, A is a label in Σ, op is either ‘=’ or ‘6=’ (referred
to as data-value joins), a, b stand for attributes, c is a constant (string value),
and ∧,∨,¬ stand for and (conjunction), or (disjunction) and not (negation),
respectively.

It is worth mentioning that while XPath [7] does not explicitly define ‘←,→’,
these operators are definable in terms of the preceding-sibling and following-
sibling axes, together with position(), as follows:

← = ←∗[position() = 1], → = →∗[position() = 1].

A query p in X (↓, ↓∗, ↑, ↑∗,←,←∗,→,→∗,∪, [ ], =,¬) over an XML tree T is
interpreted as a binary predicate on the nodes of T , while a qualifier is interpreted



as a unary predicate. More specifically, for any node n in T , T satisfies p at n
iff T |= ∃n′ p(n, n′), where T |= p(n, n′) and the associated version for qualifiers,
T |= q(n), are defined inductively on the structure of p, q, as follows:

1. if p = ǫ, then n = n′;
2. if p = l, then n′ is a child of n, and is labeled l;
3. if p = ↓, then n′ is a child of n, regardless of its label;
4. if p = ↓∗, then n′ is either n or a descendant of n;
5. if p = ↑, then n′ is the parent of n;
6. if p = ↑∗, then n′ is either n or an ancestor of n;
7. if p =→, then n′ is the immediate right sibling of n.
8. if p =→∗, then n′ is either n or a right sibling of n.
9. if p =←, then n′ is the immediate left sibling of n.

10. if p =←∗, then n′ is either n or a left sibling of n.
11. if p = p1/p2, then there exists a node v in T such that T |= p1(n, v)∧p2(v, n′);
12. if p = p1 ∪ p2, then T |= p1(n, n′) ∨ p2(n, n′);
13. if p = p1[q], then T |= p1(n, n′) and T |= q(n′), where q is a unary predicate

of the following cases:
(a) q is p2: then T |= ∃n′′ p2(n

′, n′′);
(b) q is lab() = A: then the label of n′ is A;
(c) q is p2/@a op ‘c’: then T |= ∃n1 (p2(n

′, n1) ∧ n1.a op ‘c’), where n1.a
denotes the value of the a attribute of n1; that is, there exists a node n1

in T such that T |= p2(n
′, n1), n1 has attribute a and n1.a op ‘c’;

(d) q is p2/@a op p′2/@b: then T satisfies the existential formula: T |=
∃n1 ∃n2 (p2(n

′, n1) ∧ p′2(n
′, n2) ∧ n1.a op n2.b);

(e) q is q1 ∧ q2: then T |= (q1(n
′) ∧ q2(n

′));
(f) q is q1 ∨ q2: then T |= (q1(n

′) ∨ q2(n
′));

(g) q is ¬q′: then T 6|= q′(n′); for instance, if q is ¬p2, then T |=
∀n′′ ¬p2(n

′, n′′).

Here n is referred to as the context node. If T |= p(n, n′) then we say that n′

is reachable from n via p. We use n[[p]] to denote the set of all the nodes reached
from n via p, i.e., n[[p]] = {n′ | n′ ∈ T, T |= p(n, n′)}.

We investigate various fragments of X (↓, ↓∗, ↑, ↑∗,←,←∗,→,→∗,∪, [ ], =,¬).
We denote a fragment X by listing the operators supported by X : the presence
or absence of negation ‘¬’, data-value joins ‘=, 6=’, upward traversal ‘↑’ (’↑∗’),
sideways traversal ‘←’ (’←∗’) and ‘→’ (’→∗’), wildcard ‘↓’, recursive axis ‘↓∗, ↑∗,
←∗’, and ’→∗’, qualifiers ‘[ ]’, and union and disjunction ‘ ∪’. The concatenation
operator ‘/’ is included in all fragments by default.

Example 2. Consider the XML tree T of D2 shown in Fig. 1, and the following
XPath queries. (a) Over T , ↓∗[↓/→[lab() = X ]] is to find all the nodes in T
that have child whose right sibling is labeled X . This query is in the fragment
X (↓, ↓∗,→, [ ]). (b) Posed on T , ↓∗[¬↓∗[X/→[lab() = Y ]]] is to find all the nodes
in T that have no descendant which has children X and Y in this order. This
query is in X (↓, ↓∗,→, [ ],¬). (c) Over the XML tree T1 of D1 shown in Fig. 1,
↓∗[A/→/→∗[lab() = A] ∧ ¬(B/→/→∗[lab() = B]/→/→∗[lab() = B])] is to find
all the nodes that have at least two A children but at most three B children. It
is in X (↓, ↓∗,→,→∗, [ ],¬).



2.3 The Satisfiability Problem

We say that an XML tree T satisfies a query p, denoted by T |= p, iff T |=
∃n p(r, n), where r is the root of T . In other words, r[[p]] 6= ∅. We focus on the
satisfiability of XPath queries applied to the root of T . The complexity results
of this paper remain intact for arbitrary context nodes.

We study the satisfiability problem for XPath queries considered together
with a DTD. That is the problem to determine whether a given XPath query
p and a DTD D are satisfiable by an XML tree. We say that an XML tree T
satisfies p and D, denoted by T |= (p, D), if T |= p and T |= D. If such a T
exists, we say that (p, D) is satisfiable.

Formally, for a fragment X of XPath we define the XPath satisfiability prob-
lem SAT(X ) as follows:

PROBLEM: SAT(X )
INPUT: A DTD D, an XPath query p in X .
QUESTION: Is there an XML document T such that T |= (p, D)?

We are also interested in the complexity of the satisfiability analysis in the
query size alone. The satisfiability problem for a fragment X in the absence of
DTDs is the problem of determining, given any query p in X , whether or not
there is an XML tree T such that T |= p. As shown in [2], this problem is a
special case of SAT(X ), when DTDs D are restricted to have a certain syntactic
form. Since such DTDs can be computed in low polynomial of the size of the
input queries, all the lower bounds for SAT(X ) established in this paper, except
Proposition 6, also hold in the absence of DTDs.

3 Horizontal versus Vertical Traversal

In this section we study the basic properties of XPath fragments with sibling
axes, and explore the connection between these fragments and the corresponding
fragments without sibling axes.

Increase in expressive power. We first show that the sibling axes do add
expressive power to fragments without horizontal modalities.

Proposition 1. The sibling axes are not expressible in X (↓, ↓∗, ↑, ↑∗,∪, [ ], =,
¬), our largest fragment with only vertical axes.

Proof. Consider an XPath query Q = A/→, and two XML trees T1 and T2,
where T1 consists of a root with two A children, and T2 has a root with three A
children. Over T1 and T2, Q is to find all A children of the root except the very
first one. One can verify that Q is not expressible in X (↓, ↓∗, ↑, ↑∗,∪, [ ], =,¬),
in which T1 and T2 are not distinguishable. Similarly for ←,→∗ and ←∗.

We say that an XPath fragment X has the finite model property if for any
query p in X , if p is satisfiable by a (possibly infinite) tree, then there exists a



finite tree that satisfies p. An XPath fragment X has the small model property
if there exists a recursive function f such that for each p ∈ X , if p is satisfiable,
then p has a finite model of size at most f(|p|), where |p| is the size of p.

As another evidence for the increase of expressive power, observe that the
fragment X (→, [ ],¬) does not have the finite model property. Indeed, the query
ǫ[A ∧ ¬A[¬→[lab() = A]]] does not have the finite model. Thus we have:

Proposition 2. The satisfiability problem for any fragment that subsumes
X (→, [ ],¬) does not have the finite model property, in the presence of DTDs
and in the absence of DTDs.

In contrast, [2] has shown the following: (a) X (↓, ↑,∪, [ ],¬) has the small
model property in the presence of DTDs and in the absence of DTDs, and (b)
X (↓, ↓∗, ↑, ↑∗,∪, [ ],¬) has the small model property over non-recursive DTDs.
This shows that the sibling axes may complicate the satisfiability analysis.

DTD coding. We next show that certain DTDs can be encoded in terms of a
qualifier in X (↓, ↓∗,→, [ ],¬). Recall the following from [2]: a normalized DTD
restricts its productions A→ α such that α is of the following forms:

α ::= ǫ | B1, . . . , Bn | B1 + · · ·+ Bn | B∗

where Bi is a type in Ele. It was shown there that any DTD can be “normalized”
in linear time, and moreover, for any XPath fragment with ∪ and ↓ and without
sibling axes, the normalization has no impact on the complexity bounds of its
satisfiability analysis. Below we further show that we can actually encode a
normalized DTD in terms of XPath qualifiers in X (↓, ↓∗,→, [ ],¬).

Proposition 3. A normalized DTD D can be expressed as a qualifier qD in any
XPath fragment that subsumes X (↓, ↓∗,→, [ ],¬). That is, for any query Q in
a fragment that subsumes X (↓, ↓∗,→, [ ],¬), (Q, D) is satisfiable iff ǫ[qD]/Q is
satisfiable in the absence of DTDs.

Proof. We show that for any A in the set Ele of the element types of a nor-
malized DTD, the production A → P (A) can expressed as a qualifier QA in
X (↓, ↓∗,→, [ ],¬), by induction on the structure of P (A). Putting these together,
we obtain a single qualifier qD = ǫ[

∧
A∈Ele QA] at the root.

As an immediate result, for any XPath fragment X (↓, ↓∗,→,→∗, [ ],¬, . . .),
its satisfiability analysis in the presence of normalized DTDs is equivalent to its
counterpart in the absence of DTDs.

In contrast, below we show that normalized DTDs are not expressible in
fragments without sibling axes. Indeed, it was shown in [2] that without sibling
axes, the lower bounds for XPath satisfiability analysis in the presence of DTDs
typically do not carry over to the counterpart in the absence of DTDs, although
the analysis without DTDs is a special case of its counterpart with DTDs.

Proposition 4. A normalized DTD D cannot be expressed as a qualifier qD in
X (↓, ↓∗, ↑, ↑∗,∪, [ ], =,¬).



Proof. One can verify that two different DTDs D1 and D2 are not distinguish-
able by any XPath query in X (↓, ↓∗, ↑, ↑∗,∪, [ ], =,¬), where D1 has a single
production r → A, A, and D2 consists of a single production r → A, A, A.

Encoding horizontal traversal in terms of vertical modalities. Let
X (→,→∗, [ ], . . .) be any class of XPath queries that allows ‘→,→∗’ and quali-
fiers. Let X ∗(↓, ↑,∪, [ ], . . .) be a variation of X (→,→∗, [ ], . . .) by (a) supporting
↓, ↑, and ∪, (b) supporting the general Kleene closure defined by β∗, where β
is a simple path A1[q1]/ . . . /Ak[qn], where Ai is a label and [qi] is a Boolean
combination of simple label testing qualifiers (of the form lab() = A), and (c)
discarding any queries with ‘→,→∗’. Note that X ∗(↓, ↑,∪, [ ], . . .) is far more
restrictive than the regular XPath fragment introduced and studied in [17].

Proposition 5. For any class X (→,→∗, [ ], . . .) of XPath queries, there ex-
ists a PTIME computable function N from DTDs to DTDs, and there ex-
ists a PTIME computable function f from queries in X (→,→∗, [ ], . . .) to
queries in X ∗(↓, ↑,∪, [ ], . . .) such that, for any DTD D and any XPath query
p ∈ X (→,→∗, [ ], . . .), there exists an XML tree T such that T |= (p, D) iff there
exists an XML tree T ′ such that T ′ |= (f(p), N(D)).

Proof. The mapping N is based on the canonical binary encoding of instances
of the input D, which introduces new labels. Then f can be defined such that
it traverses “descendants” and “siblings” by visiting left subtrees and right sub-
trees in the binary trees, respectively. The query translation requires the use of
↓, ↑,∪, [ ] and simple paths of the form A1[q1]/ . . . /Ak[qn] as described above.

This tells us that, upon the availability of upper bounds for conditional and
regular XPath fragments [17] without siblings, the bounds can carry over to our
fragments with sibling axes.

4 Complexity of XPath Satisfiability with Sibling Axes

In this section we study the satisfiability problem for various XPath fragments
with sibling axes, and contrast the complexity bounds with their counterparts
for the corresponding fragments without sibling axes. To understand the impact
of different XPath modalities on the satisfiability analysis, we start with a simple
fragment X (↓, ↓∗,→,→∗,∪), and then extend the fragment gradually by adding
qualifiers, data-value joins, and negation one by one. To study the interaction
between XPath modalities and DTD constructs, we also consider the analysis
under DTDs restricted to have certain constructs and in the absence of DTDs.

4.1 XPath Fragments without Qualifiers

Without sibling axes, the absence of qualifiers simplifies the satisfiability analy-
sis [2]. Below we show that it is also the case for XPath fragments with siblings.



Proposition 6. SAT(X (↓∗)) is NLOGSPACE-hard in the presence of DTDs.

Proof. This can be verified by LOGSPACE reduction from directed graph con-
nectivity with specified source and target, which is NLOGSPACE-hard [24].

In the absence of DTDs, all queries in X (↓, ↓∗,∪) are always satisfiable [2].

Theorem 1. Both SAT(X (↓, ↓∗,→,→∗,∪)) and SAT(X (↓, ↓∗,←,←∗,∪)) are
NLOGSPACE-complete in the presence of DTDs.

Proof. We provide a NLOGSPACE algorithm for checking the satisfiability of
(Q, D) for an input DTD D and query Q ∈ X (↓, ↓∗,→,→∗,∪) (resp. ←,←∗).
The key idea is to code vertical navigation using a query graph GQ of Q and
horizontal moves using NFAs of the regular expressions in D. This only requires
us to store triplets (q, v, A) at each step, where q is a NFA state, v is node in
GQ and A is a label. This only needs LOGSPACE.

Recall that SAT(X (↓, ↓∗,∪)) is in PTIME [2], which contains NLOGSPACE.
Thus Theorem 1 tells us that in the absence of qualifiers, the addition of sibling
axes does not complicate the satisfiability analysis. As another evidence:

Theorem 2. SAT(X (→,←)) is in PTIME in the presence of DTDs.

In contrast, SAT(X (↓, ↑)) is NP-hard [2]. The difference between X (↓, ↑) and
X (→,←) is that while a query in X (↓, ↑) can constrain the subtree of a node by
moving downward and upward repeatedly in the subtree, queries in X (→,←) are
not able to do it: as soon as the navigation moves down in a tree, it cannot move
back to the same node. Leveraging this we are able to develop a PTIME algo-
rithm, based on dynamic programming, for deciding the satisfiability of (Q, D)
for a given DTD D and query Q ∈ X (→,←).

From these we can see that XPath queries with sibling axes are quite well
behaved in the absence of qualifiers.

4.2 Positive XPath Queries with Qualifiers

We now consider positive XPath fragments, i.e., fragments supporting qualifiers
but not including negation (¬). Positive fragments are contained in positive
existential two-variable first-order logic over trees, with binary predicates child,
descendant, and sibling [17]. It is known that qualifiers make the satisfiability
analysis harder for XPath fragments without siblings [2]. We show that this is
also the case when sibling axes are considered instead of vertical modalities.

Theorem 3. The satisfiability problem for the following fragments is NP-hard:

1. SAT(X ([ ])) under nonrecursive DTDs;
2. SAT(X (→, [ ])) and SAT(X (←, [ ])) under fixed, disjunctive-free and nonre-

cursive DTDs;
3. SAT(X (→,∪, [ ])) and SAT(X (←,∪, [ ])) in the absence of DTDs.



Proof. These can be verified by reduction from the 3SAT problem, which is
NP-complete (cf. [24]).

Here by fixed DTDs we mean that the input to the satisfiability analysis
consists of only a query rather than both a query and a DTD, and the XML
trees considered are required to conform to a predefined DTD.

Contrast these with the following results in [2]. (a) SAT(X (↓, [ ])) is NP-
hard under normalized DTDs. Here we improve that result by showing that
SAT(X ([ ])) is already intractable under (not necessarily normalized) DTDs.
(b) While SAT(X (↓, [ ])) is NP-complete for arbitrary DTDs, but it is in PTIME
when DTDs are restricted to be disjunction-free. In contrast, Theorem 3 shows
that it is no longer the case when ↓ is replaced by → or ←. (c) In the absence
of DTDs, SAT(X (↓,∪, [ ])) is in PTIME, as opposed to Theorem 3. Thus sibling
axes complicate the satisfiability analysis in the presence of qualifiers.

Recall that SAT(X (↓, ↓∗, ↑, ↑∗,∪, [ ], =)) is in NP [2]. The result below shows
that the addition of the sibling axes does not increase the upper bound.

Theorem 4. SAT(X (↓, ↓∗, ↑, ↑∗,←,←∗,→,→∗,∪, [ ], =)) is in NP.

Proof. It suffices to show that SAT(X ∗(↓, ↓∗, ↑, ↑∗,∪, [ ], =)) is in NP by Proposi-
tion 5. A NP decision algorithm is then provided for this fragment, by extending
the NP algorithm for SAT(X (↓, ↓∗, ↑, ↑∗,∪, [ ], =)) developed in [2].

4.3 XPath Fragments with Negation

In contrast to positive XPath fragments, negation introduces universal quanti-
fiers and complicates the satisfiability analysis without sibling axes [2]. We show
that in the presence of sibling axes the situation is also bad, and may be worse.

It is known that SAT(X (↓, [ ],¬)) is PSPACE-hard in the presence of DTDs
[2]. We show that the lower bound remains intact if we substitute → (resp. ←)
for ↓ in the fragment, even when the DTDs are restricted or left out.

Theorem 5. SAT(X (→, [ ],¬)) and SAT(X (←, [ ],¬)) are PSPACE-hard in the
following settings: (1) under non-recursive and no-star DTDs; and (2) in the
absence of DTDs.

Proof. The lower bounds can be proved by reduction from 3QSAT, a well-known
PSPACE-complete problem (cf. [24]).

Theorem 6. SAT(X (↓, ↑,←,←∗,→,→∗,∪, [ ],¬)) is PSPACE-complete under
no-star DTDs.

Proof. The upper bound can be verified by reduction to SAT(X (↓, [ ],¬)), based
on a variation of the proof of Proposition 5.

It is known [17] that SAT(X (↓, ↓∗,∪, [ ],¬)) is EXPTIME-hard and that
SAT(X (↓, ↓∗, ↑, ↑∗,←,←∗,→,→∗,∪, [ ],¬)) is in EXPTIME. We now show that
we already have the EXPTIME hardness in the presence of neither recursion in
XPath nor recursion in DTDs.



Theorem 7. SAT(X (↑,→, [ ],¬)) is EXPTIME-hard under fixed, nonrecursive
and disjunction-free DTDs.

This can be verified by reduction from the two-player game of corridor tiling,
which is EXPTIME-complete (cf. [4]). To see why the result holds, observe the
following. One can encode a certain recursive DTD D1 in terms of a “flattened”
DTD D2, and based on this a mapping N can be defined from XML trees of D1

to XML trees of D2 via “unnesting”; furthermore, there is a mapping f such that
for certain queries Q in X (↓, ↓∗,∪, [ ],¬), f(Q) is in X (↑,→, [ ],¬) and moreover,
if Q is satisfiable by an XML tree T of D1, then f(Q) is satisfiable by N(T ). In
N(T ), the child, parent and right sibling axes suffice to access certain elements
that are deep in T . From this it follows that a reduction from the two-player
game of corridor tiling to SAT(X (↓, ↓∗,∪, [ ],¬)) can be coded in terms of a
query in X (↑,→, [ ],¬) and a fixed, nonrecursive DTD as described above. This
explains why the EXPTIME lower bounds is robust in the absence of XPath
and DTD recursions, and demonstrates the power of sibling axes.

4.4 XPath Fragments with Negation and Data Values

Finally, we investigate the satisfiability analysis for XPath fragments with data-
value joins, negation and sibling axes. As observed in [2], the interaction between
data-value joins and negation is already intricate in the absence of sibling axes.
Indeed, SAT(X (↓, ↓∗, ↑, ↑∗,∪, [ ], =,¬)) is undecidable in presence of fixed recur-
sive DTDs [2]. However, it is not yet known whether or not the undecidability
result still holds (a) under non-recursive DTDs, (b) under fixed DTDs, and (c)
in the absence of DTDs. In contrast, we next show that in the presence of sib-
ling axes but without vertical XPath recursion ↓∗ and ↑∗, the problem remains
undecidable in all the settings mentioned above.

Theorem 8. SAT(X (↑,←,→,→∗,∪, [ ], =,¬)) is undecidable in any of the fol-
lowing setting: (1) under non-recursive, fixed and disjunction-free DTDs; and
(2) in the absence of DTDs.

The undecidability result can be verified by reduction from the halting prob-
lem for two-register machines, which is known to be undecidable (see, e.g., [4]).
The proof extends the undecidability proof of [2] for SAT(X (↓, ↓∗, ↑, ↑∗, [ ], =,¬)
under fixed recursive DTDs, by “flattening” DTDs in the same way as mentioned
above. The proof leverages the following observation: by means of XPath quali-
fiers with →,→∗,← and ↑, (a) DTD linear recursion introduced by productions
of the form A → A + ǫ can be coded with productions of the form A → B∗;
(b) disjunction in a DTD can also be coded in terms of the use of Kleene star.
This allows us to get rid of linear recursion and disjunction required by the
undecidability proof of [2], and again shows the expressive power of sibling axes.

5 The Containment Analysis for XPath with Siblings

In this section we present a few lower bounds for the containment analysis of
XPath fragments with sibling axes, by exploring the connection between the con-



tainment analysis and its satisfiability counterpart, and by using the complexity
results for the satisfiability analysis given in the last section.

The containment problem for a fragment X in the presence of DTDs, denoted
by CNT(X ), is the problem to determine, given any queries Q1, Q2 ∈ X and a
DTD D, whether or not for any XML tree T of D, r[[Q1]] ⊆ r[[Q2]], where r is
the root of T . If this holds then we say that Q1 ⊆ Q2 under D.

It is easy to see that for any fragment X , SAT(X) is reducible to the
complement of CNT(X ). Recall that for a complexity class K, coK stands for
{P̄ | P ∈ K}.

Proposition 7. [2] For any class X of XPath queries, if CNT(X ) is in K for
some complexity class K, then SAT(X ) is in coK. Conversely, if SAT(X ) is K-
hard, then CNT(X ) is coK-hard.

From this and Theorems 3, 5, 7 and 8 it immediately follows:

Corollary 1. For the containment problem,

1. CNT(X (→, [ ])) and CNT(X (←, [ ])) are coNP-hard under fixed, disjunction-
free and nonrecursive DTDs;

2. CNT(X (→,∪, [ ])) and CNT(X (←,∪, [ ])) are coNP-hard in the absence of
DTDs;

3. CNT(X (→, [ ],¬)) and CNT(X (←, [ ],¬)) are PSPACE-hard (a) under non-
recursive and no-star DTDs, and (b) in the absence of DTDs;

4. CNT(X (↑,→, [ ],¬)) is EXPTIME-hard under fixed, disjunction-free and
nonrecursive DTDs;

5. CNT(X (↑,←,→,→∗,∪, [ ], =,¬)) is undecidable (a) under non-recursive,
disjunction-free and fixed DTDs, and (b) in the absence of DTDs.

These are among the first lower bound results for the containment problem
for XPath fragments with sibling axes. Indeed, the only other result that we
are aware of is the EXPTIME lower bound given by [17] for CNT(X (↓, ↓∗,∪, [ ],
¬)). Corollary 1 strengthens that result by showing that CNT(X (↑,→, [ ],¬)) is
already EXPTIME-hard under restricted DTDs.

As observed in [2], the upper bound for SAT(X ) is often much lower than
its counterpart for CNT(X ). However, for certain fragments X without sibling
axes, SAT(X ) and CNT(X ) actually coincide. These include the following: (a)
the class X(bl, [ ],¬) of Boolean queries, i.e., queries of the form ǫ[q], in any class
X (. . . , [ ],¬) with negation and qualifiers; and (b) any class containing negation
and closed under the inverse operator that is defined as a simple extension of
inverse(↓) = ↑, inverse(↓∗) = ↑∗, inverse(↑) = ↓ and inverse(↑∗) = ↓∗.

We next show that this result of [2] carries over to XPath fragments with
sibling axes, by extending (a) the class X(bl, [ ],¬) by including Boolean queries
with sibling axes; (b) the definition of inverse such that inverse(←) = →,
inverse(←∗) =→∗, inverse(→) =←, inverse(→∗) =←∗.



NLOGSPACE
-comp.

X (↓, ↓∗,→,→∗,∪), X (↓, ↓∗,←,←∗,∪)
any DTDs

nonrec. DTDs

PTIME X (←,→) any DTD

NP-hard X ([ ]) nonrec DTDs

NP-hard X (←, [ ]), X (→, [ ]) fixed, ‘+’-free, nonrec DTDs

NP-hard X (←,∪, [ ]), X (→,∪, [ ]) no DTDs

NP-comp. X (↓, ↓∗, ↑, ↑∗,←,←∗,→,→∗,∪, [ ], =) any DTD

PSPACE-hard X (→, [ ],¬), X (←, [ ],¬)
nonrec, no-star DTDs

no DTDs

PSPACE-comp. X (↓, ↑,←,←∗,→,→∗,∪, [ ],¬) no-star DTDs

EXPTIME-hard X (↑,←, [ ],¬) fixed, ‘+’-free, nonrec. DTDs

undecidable X (↑,←,→,→∗,∪, [ ],¬, =)
fixed, ‘+’-free, nonrec DTDs

no DTDs

Table 1. The complexity of SAT(X ) for various fragments X under different DTDs

Proposition 8. For any class X(bl, [ ],¬) of Boolean queries, CNT(X(bl, [ ],¬)) is
reducible in constant time to the complement of SAT(X(bl, [ ],¬)). For any class
X with negation and closed under inverse, CNT(X ) is reducible in linear time to
the complement of SAT(X ).

6 Conclusions

We have established complexity bounds for a number of XPath fragments with
sibling axes, in the presence of DTDs, in the absence of DTDs, and under various
restricted DTDs. The main results of the paper are summarized in Table 1. As
immediate corollaries of these results, we have also provided several lower bounds
for the containment problem for XPath queries. Our main conclusion is that
while sibling axes do not complicate the satisfiability analysis in the absence of
qualifiers, they do make our lives harder in the presence of qualifiers.

To the best of our knowledge, the results of this paper are among the first
results for the satisfiability and containment analyses of XPath fragments with
sibling axes. They are complementary to the recent study on the satisfiability
problem for XPath fragments without sibling axes [2]. They are useful not only
for XML query and update optimization, but also for the static analysis of
inference control for XML security, among other things.

There is naturally much more to be done. One open problem is to close
the complexity gaps. For example, we do not know yet whether SAT(X ([ ]))
is still intractable under fixed and disjunction-free DTDs, and whether or not
SAT(X (→, [ ],¬)) is in PSPACE under arbitrary DTDs. Another topic for future
work is to study the satisfiability problem for XPath in the presence of XML
Schema, which typically consists of both a type (a specialized DTD) and a set of
XML constraints. This setting was considered in [8] for the containment analysis.

Acknowledgment. The authors would like to thank Frank Neven for giving the

proof idea for Theorem 1. Wenfei Fan is supported in part by EPSRC GR/S63205/01,

EPSRC GR/T27433/01 and NSFC 60228006. Floris Geerts is postdoctoral researcher

of the FWO Vlaanderen and is supported in part by EPSRC GR/S63205/01.



References

1. S. Amer-Yahia, S. Cho, L. Lakshmanan, and D. Srivistava. Minimization of tree
pattern queries. In SIGMOD, 2001.

2. M. Benedikt, W. Fan, and F. Geerts. XPath satisfiability in the presence of DTDs.
In PODS, 2005.

3. M. Benedikt, W. Fan, and G. M. Kuper. Structural properties of XPath fragments.
In ICDT, 2003.

4. E. Börger, E. Grädel, and Y. Gurevich. The Classical Decision Problem. Springer,
1997.

5. T. Bray, J. Paoli, and C. M. Sperberg-McQueen. Extensible Markup Language
(XML) 1.0. W3C Recommendation, Feb 1998. http://www.w3.org/TR/REC-xml.

6. P. Buneman, S. Davidson, W. Fan, C. Hara, and W. Tan. Keys for XML. Computer
Networks, 39(5):473–487, 2002.

7. J. Clark and S. DeRose. XML Path Language (XPath). W3C Recommendation,
Nov. 1999.

8. A. Deutsch and V. Tannen. Containment for classes of XPath expressions under
integrity constraints. In KRDB, 2001.

9. A. Deutsch and V. Tannen. Reformulation of XML queries and constraints. In
ICDT, 2003.

10. W. Fan, C. Chan, and M. Garofalakis. Secure XML querying with security views.
In SIGMOD, 2004.

11. G. Gottlob, C. Koch, and R. Pichler. Efficient algorithms for processing XPath
queries. In VLDB, 2002.

12. G. Gottlob, C. Koch, and K. Schulz. Conjunctive queries over trees. In PODS,
2004.

13. J. Hidders. Satisfiability of XPath expressions. In DBPL, 2003.
14. J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages

and Computation (2nd Edition). Addison Wesley, 2000.
15. L. Lakshmanan, G. Ramesh, H. Wang, and Z. Zhao. On testing satisfiability of

tree pattern queries. In VLDB, 2004.
16. L. Libkin. Logics over unranked trees: an overview. In ICALP, 2005.
17. M. Marx. XPath with conditional axis relations. In EDBT, 2004.
18. M. Marx. First order paths in ordered trees. In ICDT, pages 114–128, 2005.
19. G. Miklau and D. Suciu. Containment and equivalence for a fragment of XPath.

JACM, 51(1):2–45, 2004.
20. M. Murata. Extended path expressions for XML. In PODS, 2001.
21. F. Neven and T. Schwentick. Expressive and efficient languages for tree-structured

data. In PODS, 2000.
22. F. Neven and T. Schwentick. XPath containment in the presence of disjunction,

DTDs, and variables. In ICDT, 2003.
23. D. Olteanu, H. Meuss, T. Furche, and F. Bry. XPath: Looking forward. In XMLDM,

2002.
24. C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
25. T. Schwentick. Xpath query containment. SIGMOD Rec., 33(1):101–109, 2004.
26. G. Sur, J. Hammer, and J. Siméon. An XQuery-based language for processing

updates in XML. In PLAN-X, 2004.
27. H. Thompson et al. XML Schema. W3C Recommendation, Oct. 2004.

http://www.w3.org/TR/xmlschema1.
28. P. T. Wood. Minimising simple XPath expressions. In WebDB, 2001.
29. P. T. Wood. Containment for XPath fragments under DTD constraints. In ICDT,

2003.


