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Abstract
This paper introduces a model to study the phenomenon of long range depen-
dence. This model consists of an infinite superposition of independent Marko-
vian ON/OFF–sources. A condition for assuring long range dependence is
given and the Hurst parameter together with the correlation decay is derived
for a specific example. We also give a physical interpretation of the existing
long range dependence by means of the Ising model.
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1 INTRODUCTION

Recent measurements on Ethernet traffic (see e.g. [LTWW93a,b,94]) show
that its profile exhibits Long Range Dependent (LRD) characteristics. Also
for variable bit rate video traffic a similar behaviour has been observed (see
[BSTW95]). LRD means that correlations extend to an infinite time scale
and the correlation decay follows a power law. Traditional finite state Marko-
vian traffic models, such as Markov Modulated Poission Processes (MMPP),
Markovian Arrival Processes (MAP), etc..., have an exponential correlation
decay and can therefore not adequately model this type of ATM data traffic.
These observations have triggered new research activities on models which are
able to capture LRD characteristics. Several approaches have been proposed
in literature. The theories of Fractional Brownian Motion [Nor94], chaotic
maps [Pru95] and regularly varying functions (see [Box96]) have have been
successfuly applied to study LRD properties. An alternative approach consists
of modeling LRD over a chosen time scale by using a Markovian approxima-
tion (see [AJN95]). Recently, several authors (see [DB97],[LTG95], etc...) use
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the superposition of an infinite number of ON/OFF–sources to characterize
LRD traffic.
This paper follows the last approach. We consider a class of processes consist-
ing of the superposition of an infinite number of ON/OFF–sources. Through
the characterisation of the sum of the covariances, it is possible to establish a
simple explicit necessary and sufficient condition for the process to be LRD.
This condition expresses an asymptotical eigenvalue degeneracy of the tran-
sition matrix. The simplicity of the model allows to derive explicit formulas
for the powerlaw correlation decay and the Hurst parameter. It is also shown
that under LRD conditions the mean queue length is infinite.

In physics, long range dependence occurs in turbulence, quantum field the-
ory, 1/f noises, and critical phenomena. For instance, in the two–dimensional
Ising model, a critical phenomenon appears. The Ising model is a model for
ferromagnetism, and describes phase transitions. A phase transition is e.g. a
transition from non aligned spins to aligned spins (magnetism). This transi-
tion from an unordered system to an ordered one, happens at the critical point
(e.g. a certain temperature). At this point, the correlation decay between spin
regions goes from an exponential decay to a powerlaw decay. The eigenvalue
degeneracy of the transfer matrices (see later) is also here a necessary con-
dition for the existence of long range dependence. It appears that our model
can be incorporated in the Ising model.
More research is needed to study the possibility of applying known techniques
from statistical physics to our model, and the question of a physical interpre-
tation of the queueing process in this context remains open.

This paper is structured as follows. In the next section, the single ON/OFF–
source is described and the eigenvalue structure of the transition matrix is
related to the correlation structure. This is then generalized to a finite super-
position of sources of this type. At the end of this section we introduce our
model. In Section 3 we prove a necessary and sufficient condition for the long
range dependence of this model, and two examples are given. As a direct con-
sequence, we prove in Section 4 the infiniteness of the mean queue length, and
discuss some problems concerning the queueing behaviour. In Section 5, the
exponent of the power decay of the correlation is derived, and an explicit for-
mula is given for the Hurst parameter. We introduce a physical counterpart,
namely the Ising model, of our model in Section 6 and we observe the con-
nection between a phase transition and long range dependence. Conclusions
are drawn in Section 8.

2 CORRELATION AND EIGENVALUE STRUCTURE

An ON/OFF–source is defined to be a two–state discrete time Markov chain.
In the OFF state the process generates 0 cells/slot, and in the ON state the
process generates 1 cells/slot. The duration of the ON state is geometrically
distributed with parameter β. Similarly the duration of the OFF state is



geometrically distributed with parameter α. Let X = {Xi}i∈N be the two–
state discrete time Markov chain with irreducible and aperiodic transition
matrix P,

P =

(

α 1 − α
1 − β β

)

.

The stationary probability vector is given by π = (π0, π1) =
(

1−β
2−α−β

, 1−α
2−α−β

)

,

and the arrival rate of this process is λ = 1−α
2−α−β

. The covariance γ(k) =

E[Xi, Xi+k] − E[Xi]E[Xi+k] is given by

γ(k) = γkπ0π1

= γk (1 − α)(1 − β)

(2 − α − β)2
,

where γ = α + β − 1 is the second largest eigenvalue of P. As P is stochastic
and irreducible, it follows that γ < 1, and hence limk→∞ γ(k) = 0.
Let X(ℓ) be N such Markovian ON/OFF–source with transition matrix P(ℓ)

and arrival rate λ(ℓ), ℓ = 1, 2, . . . , N . We consider the superposition of these

N sources, Y
(N)
i =

∑N

ℓ=1 X
(ℓ)
i . Since each ON/OFF–source can be viewed as

a D-MAP, and the superposition of a finite number of D-MAP’s is a D-BMAP
[Blon92, BG97], we conclude that the corresponding transition matrix PN , is
given by the Kronecker product

PN =

N
⊗

ℓ=1

P(ℓ).

Because the ON/OFF–sources are independent, the covariance γN (k) of the
superposed sources equals

γN (k) =

N
∑

ℓ=1

(

γ(ℓ)
)k (1 − αℓ)(1 − βℓ)

(2 − αℓ − βℓ)2
.

The queueing model used in what follows is the D-BMAP/D/1–queue. The
average number of cells arriving in the queue is given by

λ(N) =

N
∑

ℓ=1

π
(ℓ)
1 .

We assume that λ(N) < 1 to ensure the existence of a stochastic equilibrium
for the queueing system.
Let us now consider an infinite superposition of ON/OFF–sources. Denote

Y
(∞)
i =

∑∞

ℓ=1 X
(ℓ)
i , P∞ = limN→∞ PN , γ∞(k) = limN→∞ γN (k), and the

arrival rate λ(∞) =
∑∞

ℓ=1 λ(ℓ). We shall derive some properties of Y (∞) =

{Y
(∞)
i }i∈N in the next sections.



3 LONG RANGE DEPENDENCE PROPERTIES

The sequence Y
(∞)
1 , Y

(∞)
2 , . . . of stationary random variables is called long

range dependent if
∞
∑

k=1

Cov
(

Y
(∞)
1 , Y

(∞)
k

)

= ∞

(See [Ber94, RMV96]). For our model we have to ensure that

∞
∑

k=1

γ∞(k) = ∞.

Proposition 1 A superposition of an infinite number of Markovian ON/OFF–
sources Y (∞) is long range dependent if and only if

∞
∑

ℓ=1

1 − αℓ

(1 − βℓ)2
= ∞, (1)

where αℓ and βℓ are the elements of P(ℓ).

Proof. We must proof that the series

∞
∑

ℓ=1

∞
∑

k=1

(

γ(ℓ)
)k (1 − αℓ)(1 − βℓ)

(2 − αℓ − βℓ)2
(2)

diverges. We shall prove that the series of condition (1) has the same divergent
behaviour as (2). For this we need two observations
Firstly the stability condition λ(∞) < 1 implies that limℓ→∞

1−αℓ

2−αℓ−βℓ
= 0.

This means that there exist an M ′ such that for ℓ ≫ M ′,

1 − ǫ < 1 −
1 − αℓ

2 − αℓ − βℓ

< 1

for a fixed ǫ.
Secondly the inequality

∞
∑

ℓ=1

γ(ℓ)

1 − γ(ℓ)

(1 − αℓ)(1 − βℓ)

(2 − αℓ − βℓ)2
< max

ℓ

γ(ℓ)

1 − γ(ℓ)

implies that long range dependency exists only if supℓ γ(ℓ) = 1. If γ(m) = 1
for a finite m < ∞, then matrix P(∞) is of the form

m−1
⊗

ℓ=1

P(ℓ) ⊗

(⊗∞

ℓ=m+1 P(ℓ) O

O
⊗∞

ℓ=m+1 P(ℓ)

)

,

and the model consist of two seperate and identical submodels. Hence, we
assume that limℓ→∞ γ(ℓ) = 1. This implies that ∃M ′′ such that for ℓ ≫ M ′′

1 − ǫ < γ(ℓ) < 1



for the same ǫ. We let M = max{M ′, M ′′}. For ℓ ≫ M , we have

(1−ǫ)2
(1 − αℓ)

(2 − αℓ − βℓ)(1 − γ(ℓ))
<

γ(ℓ)

1 − γ(ℓ)

(1 − αℓ)(1 − βℓ)

(2 − αℓ − βℓ)2
<

(1 − αℓ)

(2 − αℓ − βℓ)(1 − γ(ℓ))
.

In view of

1 − αℓ

2 − αℓ − βℓ

=

1−αℓ

1−βℓ

1−αℓ

1−βℓ
+ 1

,

and,

(1 − αℓ)

(2 − αℓ − βℓ)(1 − γ(ℓ))
=

1 − αℓ

(2 − αℓ − βℓ)2

=
1 − αℓ

(1 − βℓ)2(
1−αℓ

1−βℓ
+ 1)2

,

and the fact that,

lim
ℓ→∞

1−αℓ

1−βℓ

1−αℓ

1−βℓ
+ 1

= 0 ⇔ lim
ℓ→∞

1 − αℓ

1 − βℓ

= 0,

the following bounds are obtained,

(1 − ǫ)2
1

2

1 − αℓ

(1 − βℓ)2
≤

1 − αℓ

(1 − βℓ)2(
1−αℓ

1−βℓ
+ 1)2

≤
1 − αℓ

(1 − βℓ)2
,

for ℓ ≫ M . This shows that the series (1) and (2) have the same divergent
behaviour, and concludes the proof. �

From this Proposition it follows that for appropriate choices of αℓ and βℓ,
the resulting superposition of heterogeneous Markovian ON/OFF–sources is
LRD.
We now give two examples

Example 1
Let (see [DB97])

Pℓ =

(

1 − (1/a)ℓ (1/a)ℓ

(b/a)ℓ 1 − (b/a)ℓ

)

with 1 < b < a. It is clear that γ(ℓ) = 1− (1/a)ℓ − (b/a)ℓ goes to 1 as ℓ tends
to infinity. We see that the model P∞ is LRD iff the series

∞
∑

ℓ=1

( a

b2

)ℓ

diverges, or iff b2 ≤ a.



Example 2
Let

Pℓ =

(

1 − 1/ℓp 1/ℓp

1/ℓq 1 − 1/ℓq

)

,

for ℓ = 2, 3, . . .. To ensure ρ < 1 we need p > q + 2. It is clear that γ(ℓ) =
1 − 1/ℓp − 1/ℓq goes to 1 as ℓ tends to infinity. We see that the model P∞ is
LRD iff the series

∞
∑

ℓ=2

(

1

ℓp−2q

)

diverges, or iff p ≤ 2q + 1.

4 QUEUEING BEHAVIOUR

The mean queue length L̄ of an infinite superposition of Markovian ON/OFF–
sources is given by (see Chapter 6 in [Neu89])

L̄ = ρ +
1

1 − ρ

∞
∑

ℓ=1

∑

k>ℓ

π
(ℓ)
1 π

(k)
1

(

1 +
γ(ℓ)

1 − γ(ℓ)
+

γ(k)

1 − γ(k)

)

. (3)

The following Proposition is a direct consequence of Proposition 1.

Proposition 2 The mean queue length L̄ of an infinite superposition of Marko-
vian ON/OFF–sources is infinite if and only if it is long range dependent.

Proof. First assume that the arrival process Y (∞) is LRD and consider the
following term of (3),

∞
∑

ℓ=1

∑

k>ℓ

π
(ℓ)
1 π

(k)
1

γ(k)

1 − γ(k)
.

Interchanging the summation indices and using similar bounds as in Propo-
sition 1, it is clear that

∞
∑

ℓ=2

1 − αℓ

(1 − βℓ)2
π

(1)
1 ≤

∞
∑

ℓ=2

ℓ
∑

k=1

π
(k)
1 π

(ℓ)
1

γ(ℓ)

1 − γ(ℓ)
≤ ρ

∞
∑

ℓ=2

1 − αℓ

(1 − βℓ)2
,

and hence by Proposition 1, L̄ = ∞.
Now, let L̄ = ∞. Because the term in expression (3)

∞
∑

ℓ=1

∑

k>i

π
(ℓ)
1 π

(k)
1

γ(ℓ)

1 − γ(ℓ)
≤ ρ

∞
∑

ℓ=1

1 − αℓ

(1 − βℓ)2
,

is bounded, it immediately follows that
∞
∑

ℓ=1

∑

k>i

π
(ℓ)
1 π

(k)
1

γ(ℓ)

1 − γ(ℓ)
= ∞,



implies long range dependence of Y (∞). This proves the Proposition. �

More interesting properties of the queue distribution, like e.g. the tail of the
queue length distribution, have not yet been derived for our model. The eigen-
value degeneracy of P∞ induces severe difficulties. In the absence of this de-
generacy, one can rely on the dominant pole approximation[LB97]. In this
case there is an unique isolated dominant pole which governs the asymptotic
behaviour of the queue [ACW94, Falk94, Miegh96]. The eigenvalue degener-
acy transforms the isolated pole into a accumulation point in the complex
plane. As a consequence there is not a single dominating pole, but an infinite
number of poles which have to be taken into account.
Using large deviation techniques, Buffet and Duffield [BD92, DZ93, Duff92,
Duff93] derived a bound for the loss probability. This method does not seem
to be applicable to our model.
Boxma [Box96] has shown that in a special case,

P(τA = m) ∼ m−β ⇒ Pr(U > m) ∼ m−(β−2)

holds, using the Fluid Flow approach. We currently belief that this is also true
for our model, but have been unable to establish this result (see also [LB97])
for the superposition of Markovian ON/OFF–sources.

5 THE CORRELATION DECAY, HURST PARAMETER AND

INDEX OF DISPERSION FOR COUNTS

In this section we give a more detailed study of example 2. The method follows
a similar reasoning as for example 1 (see [DB97]).

5.1 Correlation Decay and Hurst parameter

Proposition 3 The correlation decay of the arrival process Y (∞) of example
2 is given by

Cov(Y
(∞)
1 , Y

(∞)
k ) ∼ k

q−p+1

q , (4)

for large k.

PROOF. We need to find the decay of the series

∞
∑

i=2

(1 −
1

ip
−

1

iq
)k i(q+p)

(ip + iq)2
.

Observe that the second factor can be bounded by

1

3

iq+p

i2p
≤

iq+p

(ip + iq)2
≤

iq+p

i2p
.



A second simplification of (4) is is done by replacing (1− 1
ip −

1
iq )k by (1− 1

iq )k,

∞
∑

i=2

(1 −
1

ip
−

1

iq
)ki(q−p) ≤

∞
∑

i=2

(1 −
1

iq
)ki(q−p).

Because (1 − 1
iq )ki(q−p) is a nonnegative descending function, we use a conti-

neous variable x instead of i and we apply Cauchy’s integral test,
∫ ∞

2

(1−
1

xq
)kx(q−p)dx ≤

∞
∑

i=2

(1−
1

iq
)ki(q−p) ≤ (1−

1

2q
)k2(q−p)+

∫ ∞

2

(1−
1

xq
)kx(q−p)dx.

To evaluate this integral, we use the inequalities

(1 −
1

xq
)k ≤ e−

k
xq =

1

e
k

xq
≤

xq

k
.

Furthermore, it is clear that

1 − k
1

xq
≤ (1 −

1

xq
)k ≤ 1 − k

1

xq
+

k2

2

(

1

xq

)2

.

We want that 1− k 1
xq > 0 so it is sufficient that x > k

1
q . We can now give an

upper bound,

∫ ∞

2

(1−
1

xq
)kx(q−p)dx ≤

∫ k1/q

2

x2q−p

k
dx+

∫ ∞

k1/q

(

1 − k
1

xq
+

k2

2

(

1

xq

)2
)

xq−pdx.

The last part equals

1

2q − p + 1

(

k
q−p+1

q −
22q−p+1

k

)

−

(

1

q − p + 1
+

1

1 − p
+

1

2(1 − q − p)

)

k
q−p+1

q .

Using 1− k 1
xq as under bound and after some similar calculations we find the

bounds

C1k
q−p+1

q ≤

∞
∑

i=2

(1 −
1

iq
)ki(q−p) ≤ C2k

q−p+1

q ,

where C1 and C2 are some constants. We now have to assure that this bounds
also the original sum. For this it is neccesary to bound

∞
∑

i=2

(

(1 −
1

iq
)k − (1 −

1

ip
−

1

iq
)k

)

i(q−p). (5)

We have that

(1 −
1

iq
)k − (1 −

1

ip
−

1

iq
)k ≤ k

(

1 −
1

iq

)k−1
1

ip
.

Using similar techniques as above, it is possible to show that the difference

(5) is bounded by Ck
q−p+1

q −δ, with C a constant and δ > 0. The resulting

powerlaw decay is k
q−p+1

q . This proves the Proposition. �



The degree of long range dependence is often expressed by means of the Hurst
parameter.

Proposition 4 The Hurst parameter for the discrete time arrival process
Y (∞) of example 2 is given by

H =
3q − p + 1

q
(6)

PROOF. The Hurst parameter can be derived from the power decay of the
covariance [RMV96]. If the power of the covariance decay is k−β, then the
Hurst parameter is given by H = 2−β

2 . It directly follows from Proposition 4

that β = − q−p+1
q

, hence the Hurst parameter for example 2 is

H =
3q − p + 1

2q
.

From the conditions p > q + 1 and p < 2q + 1, it follows that H ∈ (1
2 , 1]. �

For completeness, we mention that for example 1, the powerlaw decay is given

by k−
log b

log b−log a , and hence H =
(2− log b

log b−log a )
2 .

5.2 The Index of Dispersion for Counts

In this section we derive an expression for the limit of the Index of Dispersion
for Counts (IDC) of the process Y (∞).
Denote Nk the number of arrivals in an interval of length k. The Index of
Dispersion for Counts (IDC) at time k is defined to be the variance of the
number of arrivals in an interval of length k divided by the the mean number
of arrivals in this interval, i.e.

I(k) =
Var(Nk)

E(Nk)
.

Denote I(ℓ)(k) the IDC of the process X(ℓ) with limk→∞ I(ℓ)(k) = J (ℓ) and
I(∞)(k) the IDC of the process Y (∞), with limk→∞ I(∞)(k) = J (∞).
From [BG97], we know that

J (ℓ) =
π

(ℓ)P
(ℓ)
1 e− 3[π(ℓ)P

(ℓ)
1 e]2 + 2π

(ℓ)P
(ℓ)
1 Z(ℓ)P

(ℓ)
1 e

π
(ℓ)P

(ℓ)
1 e

, (7)

with Z(ℓ) the fundamental matrix of the Markov chain P(ℓ), given by

Z(ℓ) = [I − (P(ℓ) − eπ
(ℓ))]−1,



and P
(ℓ)
1 given by

P
(ℓ)
1 =

(

0 0
1/ℓq 1 − 1/ℓq

)

.

Furthermore,

lim
k→∞

I(∞)(k) =

∑∞

ℓ=1[λ
(ℓ) − 3(λ(ℓ))2 + 2π

(ℓ)P
(ℓ)
1 Z(ℓ)P

(ℓ)
1 e]

∑∞

ℓ=1 λ(ℓ)
. (8)

It is easy to show that

Z(ℓ) =
1

(ℓp + ℓq)2

(

ℓp(ℓp + ℓq + ℓ2q) ℓq(ℓp + ℓq − ℓp+q)
ℓp(ℓp + ℓq − ℓp+q) ℓq(ℓp + ℓq + ℓ2p)

)

.

Hence,

π
(ℓ)P

(ℓ)
1 Z(ℓ)P

(ℓ)
1 e =

ℓq

(ℓp + ℓq)3
[ℓ2q − ℓ2p + ℓ2p+q].

Using this expression in (8), we obtain that

J (∞) =
λ(∞) − 3

∑∞

ℓ=1(λ
(ℓ))2 + 2

∑∞

ℓ=1
ℓq [ℓ2q

−ℓ2p+ℓ2p+q]
(ℓp+ℓq)3

λ(∞)
. (9)

From equation (9) it follows that the limit of the IDC of the process Y (∞) is
infinite if p 6 2q+1, which is exactly the condition under which the process has
the long range dependence property. This is in agreement with the criterion
that a process is long range dependent if its IDC is diverging.

6 CORRESPONDENCES BETWEEN LRD IN

TELECOMMUNICATION AND PHASE TRANSITIONS IN

STATISTICAL PHYSICS

There is an important similarity between our model and a model of phase
transitions in statistical physics, namely the Ising model. This model was
introduced in 1925 by Ising [Isin25] as a model for ferromagnetism, and is
solved analytically by Onsager in 1944 [Ons44, Kau49, KO49, SML64].
We consider electrons, located on a rectangular lattice, who can have two
different spins, spin up or spin down. with each microscopic configuration
O = {ω(i, j) = up/down | 1 ≤ i ≤ n, 1 ≤ j ≤ m}, one associates a probability
[Geo88, KSK76, PF91]

P (O) =
1

Z
eE(O),

where E(O) is a function, called the interaction energy, and where Z =
∑

O
expE(O) is called the partition function. One whishes to deduce macro-

scopic statistical properties, by taking the thermodynamic limit, i.e. expand-
ing the lattice to the whole plane.



Focussing on the classical Ising model, the interaction energy is of the form

E(O) = −j

m−1
∑

i=1

∑

j

ω(i, j)ω(i + 1, j) − j

m−1
∑

i=1

∑

j

ω(i, j)ω(i, j + 1)

which is clearly nearest–neighbour, i.e. the summation is over nearest–neighbour
points on the lattice.
The calculation of the macroscopic properties can be done in an elegant way
using transfer matrices. The principle is to put the values of the interaction
energy in a matrix (see Figure 1).

�

�

d u

�

�
�

�

uuud

(

E(uu) E(ud)
E(du) E(dd)

)









E(uuuu) E(uuud) E(uudu) E(uudd)
E(uduu) E(udud) E(uddu) E(uddd)
E(duuu) E(duud) E(dudu) E(dudd)
E(dduu) E(ddud) E(dddu) E(dddd)









Figure 1 Transfer matrices for the one– and two–dimensional Ising model.
The bold entries correspond to the shown spin configuration

One also assumes periodic horizontal boundary conditions. This means that
for a row of size n, the n + 1th spin equals the first spin. In this way the
partition function is nothing but the trace of these matrices. Remark that for
a 1 × m lattice , the size of the corresponding transfer matrix is 2m × 2m.
The transfer matrix of three electrons in a single row is given by the product
of the single 2 × 2 transfer matrix. It can now be proven that, when the
number of rows increases to infinity, the correlation function of two spins
in different column, decays to zero according to a power law, if the transfer
matrix is asymptotically degenerate, i.e. the second greatest eigenvalue equals
the greatest eigenvalue!
To conclude this section, we simplify the Ising model by assuming no vertical
interactions. The corresponding transfer matrix is then the Kronecker product
of the 2×2 transfer matrix, corresponding to a single row. It is now clear that
Figure 2 establishes the link with our model.



�

�

Up–spin

Down–spin

horizontal direction
vertical direction

On–state

Off–state

time direction
number of sources

Ising model Markov model

Figure 2 Correspondences between the Ising Model and the Arrival Process
Y (∞)

Of course the Ising model is far more complex, admitting vertical interactions
(dependent sources). In the thermodynamic limit the infinite transfer matrix
of the Ising model is asymptotic degenerate below a certain value of j. More-
over j is dependent on the temperature T , so beneath the critical temperature
Tc, the system has long range order. For our model, we constructed the trans-
fer (transition) matrices of the rows (sources) in such a way that that the
resulting infinite transfer matrix is always asymptotic degenerate (see Propo-
sition 1). Nevertheless, we can view condition (1) as a way of determining an
abstract critical point. If we take e.g. example 2, we can fix q and take p as
‘temperature’. The critical value is then pc = 2q + 1 (see Figure 3).

- p–axis0 q

q + 2

SRD–areaLRD-area

pc = 2q + 1

Figure 3 The phase diagram of example 2.

For a more accurate description of the Ising model see [DG72, Thom72]



7 CONCLUSIONS AND FUTURE WORK

In this paper we proved a necessary and sufficient condition for long range de-
pendence of an infinite superposition of heterogeneous Markovian ON/OFF–
sources. Two simple examples are given and the corresponding Hurst param-
eters are derived. We are currently investigating the existence of a general
method for calculating the Hurst parameter of our model. It is also shown
that for our model, long range dependence directly implies infinite mean queue
length. The characterization of the queue length distribution remains open.
We give a physical interpretation of our model by means of the Ising model.
The existence of long range dependence is a consequence of the asymptotical
degeneracy of the transition matrix. Further research is needed to study the
possibility of applying known techniques of statistical physics to the context of
ATM modelling. The admittance of dependent sources (vertical interactions)
seems a first step. Also an interpretation of the queueing process in terms of
the Ising model, could be of great help in deriving the tail of the queue length
distribution.
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