
Relational Completeness of Query Languages for

Annotated Databases

Floris Geerts1,2 and Jan Van den Bussche1

1 Hasselt University/Transnational University Limburg
2 University of Edinburgh

Abstract. Annotated relational databases can be queried either by sim-
ply making the annotations explicitly available along the ordinary data,
or by adapting the standard query operators so that they have an im-
plicit effect also on the annotations. We compare the expressive power
of these two approaches. As a formal model for the implicit approach
we propose the color algebra, an adaptation of the relational algebra to
deal with the annotations. We show that the color algebra is relationally
complete: it is equivalent to the relational algebra on the explicit anno-
tations. Our result extends a similar completeness result established for
the query algebra of the MONDRIAN annotation system, from unions
of conjunctive queries to the full relational algebra.

1 Introduction

Recently, much attention has been paid to annotated databases [10,4,2,5,8,7,6,3].
In querying annotated databases, there are two distinct approaches:

1. In annotation propagation [10,4,2,6,3], queries are directed primarily at the
ordinary data, not the annotations: the latter are merely propagated to the
query results. For example, when joining two relations, the annotations of
two joined tuples would become annotations of the new joint tuple.

2. In annotation querying [8,7,5], queries can be directed to the annotations as
well as to the ordinary data. For example, when joining two relations, two
tuples might be considered joinable only if they have a common annotation.
Such join queries are outside the scope of annotation propagation.

Of course, these two approaches are not competing; it is simply that in some
applications we want annotation propagation, while in other applications we
want to really query on the basis of annotations. As a matter of fact, annotation
propagation can be precisely characterized [3] as that part of annotation querying
that is invariant under arbitrary re-annotations, even those re-annotations that
replace two different annotations by the same one.

In the present paper, we are concerned with full annotation querying, and
here one can again distinguish two approaches: explicit and implicit.

1. In explicit querying, we simply make the annotations explicitly available
along with the ordinary data; any standard query language can then be used

M. Arenas and M.I. Schwartzbach (Eds.): DBPL 2007, LNCS 4797, pp. 127–137, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

128 F. Geerts and J. Van den Bussche

to query the database. For example, suppose we want to join annotated rela-
tions R(A, B) and S(A, C) not only on their common A-attribute, but also
on common annotations. Then we simply model R as a relation R(A, B, N),
where N is an extra column holding the annotations, and likewise model S
as S(A, C, N), and write in SQL:

select R.*, S.*
from R, S
where R.A=S.A and R.N=S.N

A similar feature is provided by the ANNOT operator of the pSQL language
in DBNotes [5], where we would write:

select R.*, S.*
from R, ANNOT(R) N1, S, ANNOT(S) N2
where R.A=S.A and N1=N2

2. In implicit querying, which is more in the spirit of annotation propagation,
annotations are not explicitly addressed in query formulations. Rather, the
standard query operators are adapted so that they have an effect not only
on the ordinary data but also on the annotations. For example, in the query
algebra of MONDRIAN [8], one would write the above join query as

μ σR.A=S.A(R × S),

where
– the Cartesian product operator × is adapted so as to keep, for each joint

tuple r ∪ s ∈ R × S with r ∈ R and s ∈ S, two sets of annotations: the
annotations that r already had in R, and the annotations that s already
had in S;

– the selection operator σ simply propagates these sets of annotations;
– the new merge operator μ intersects the two sets of annotations.

A natural question now arises as to the relative expressiveness of explicit
versus implicit annotation querying. This question was already addressed for
the MONDRIAN query algebra, which has been shown to be equivalent to the
positive relational algebra on explicit annotations [8]. In the present paper, we
continue this investigation and extend it to the full relational algebra (as opposed
to its positive fragment, which does not have the difference operator). Recall [1]
that the relational algebra is much more powerful and complicated than its pos-
itive fragment. For instance, in the positive algebra only unions of conjunctive
queries can be expressed, and containment and equivalence of queries is decid-
able; in the full relational algebra, all first-order logic definable queries can be
expressed, and equivalence (let alone containment) is undecidable.

We will introduce color relations as a simple but general abstraction of an-
notated databases. A color relation is a standard database relation, where ad-
ditionally every tuple is annotated by some set of “colors”. Moreover, we will
introduce the color algebra (CA), an adaptation of the relational algebra to deal
with color relations. CA is inspired by, but different from, the MONDRIAN
query algebra. The operators of CA always produce color relations as output;

Relational Completeness of Query Languages for Annotated Databases 129

in particular, in CA one cannot compute intermediate results that explicitly re-
late the colors of different tuples. Nevertheless, we will prove that CA can still
express any expression of the full relational algebra on explicit annotations, as
long as the latter expression starts from color relations and finally ends up in
color relations.

Our result, while answering a natural question, is mainly of theoretical inter-
est. Yet, good theoretical underpinnings of new database management features,
such as annotation, are important. We hope that the elegant formalism pro-
vided by our color algebra can serve as a guide to the understanding and design
of annotation query languages.

2 Color Relations

Basically we assume as given an infinite set of attributes, an infinite set D of data
values, and an infinite set C of colors. The sets D and C are disjoint; colors serve
as an abstraction for annotation values.

1. A relation schema is a finite set R of attributes.
2. A tuple over R is a mapping t : R → D.
3. A relation over R is a finite set of tuples over R.
4. A coloring of a relation r is a subset r′ of r × C, i.e., a set of tuple–color

pairs where the tuples come from r, such that every tuple of r appears in r′,
i.e., every tuple of r gets at least one color.

5. We call r the underlying relation of r′. We agree that whenever we denote
a coloring by a primed letter, the unprimed letter stands for the underlying
relation.

6. Colorings of relations over R are also called color relations over R.
7. A database schema S consists of a finite set of relation variables x, each with

an associated relation schema S(x).
8. A color database D over S consists of a set of color relations D(x), one for

each relation variable x of S, such that D(x) is a color relation over S(x).

We can view a color relation r′ alternatively as a mapping r′ from r to 2C, as
follows:

r′(t) = {c | (t, c) ∈ r′}.
Note that, since every tuple gets at least one color, r′(t) is never empty. For any
subset s ⊆ r, the restriction of the mapping r′ to s, which we denote by r′|s, is
of course a coloring of s. We will use this observation in the following section.

Remark 1. In our data model, we restrict attention to the coloring of entire
tuples. In annotation systems such as DBNotes [2,5], not just tuples in relations
can be colored, but also individual components of these tuples. We can model
this by multiple color relations, one for each attribute. The system MONDRIAN
[8,7] even allows the coloring of arbitrary subsets of projections of a relation.
Even more generally, one can consider annotations of arbitrary combinations

130 F. Geerts and J. Van den Bussche

of records and sets [3]. Such complex structures can always be decomposed in
multiple flat relations, however, and since the focus of this paper is on expressive
power, our model of color relations is sufficient.

3 The Color Algebra

We are familiar with the classical relational algebra operations on relations: union
(∪), difference (−), natural join (��), renaming (ρ), selection (σ), and projection
(π). We now define a number of analogous operations on color relations. The
result of these operations is again a color relation.

Let r′ and s′ be two color relations over the same relation scheme R.

Union: r′ ∪ s′ is the standard set-theoretic union. This is a coloring of r ∪ s.
Tuple difference: r′ � s′ equals r′|r\s. It is thus a coloring of r \ s.
Full difference: r′ − s′ is the standard set-theoretic difference. It is a coloring

not of r \ s, but of

(r \ s) ∪ {t ∈ r ∩ s | r′(t) � s′(t)}.
For the definition of the next two operations, s′ no longer needs to be over

the same relation scheme as r′.

Tuple join: r′ � s′ equals

{(t1 ∪ t2, c) | t1 ∪ t2 ∈ r �� s and c ∈ r′(t1) ∪ s′(t2)}.
It is a coloring of r �� s.

Full join: r �� s is defined in the same way as r � s, except that now we take
the intersection r′(t1)∩s′(t2) rather than the union. It is thus a coloring not
of r �� s, but of

{t1 ∪ t2 ∈ r �� s | r′(t1) ∩ s′(t2) �= ∅}.
Renaming: if A ∈ R and B is an attribute not in R, then ρA/B(r′) equals

{(ρA/B(t), c) | (t, c) ∈ r′},
with ρA/B(t) = t|R−A ∪ {(B, t(A))} the classical renaming of a tuple. It is
thus a coloring of ρA/B(r).

Selection: if A, B ∈ R, then σA=B(r′) equals r′|σA=B(r′).
Color selection: if k ≥ 2 is a natural number, then σcolor≥k(r′) equals r′|u,

where
u = {t ∈ r | |r′(t)| ≥ k},

with |r′(t)| denoting the cardinality of r′(t), i.e., the number of distinct colors
of t in r′.

Projection: if X ⊆ R, then πc
X(r′) equals

{(t|X , c) | (t, c) ∈ r′}.

Relational Completeness of Query Languages for Annotated Databases 131

This concludes the definition of the operations of the color algebra, abbrevi-
ated CA.

Example 1. A simple example is the CA-expression

πc
X(x �� green),

where green is a constant relation (over attributes disjoint from x) consisting
of a single “green”-colored tuple and X consists of the attributes in x. This
expression returns all tuples in x that are colored ‘green’; all colors of those
tuples are returned as well.

For another example, the CA-expression

(x �� (x � y)) − (y �� (x � y))

applied to colored relations r′ and s′, returns joint tuples t1∪t2 from the natural
join of the underlying relations r and s (with t1 ∈ r and t2 ∈ s); these joint
tuples are colored by the colors t1 has in r′, except for the colors t2 has in s′.
In particular, if t1 has only colors that t2 has too, then the joint tuple t1 ∪ t2 is
not returned at all, since in colored relations, each tuple must have at least one
color.

As a final example, the expression

x − σcolor≥3(x)

returns all tuples in x that have at most two colors.

Remark 2. We remark that most of the operators in CA are intuitive except for
maybe the color selection σcolor≥k. This operator is necessary, however, to show
the completeness of CA.

4 CA and the Relational Algebra

Let us reserve a special attribute col and agree that it is never used in the
relation schemes of color relations. For any relation scheme R, we define the
relation scheme R̄ = R ∪ {col}. We can naturally view a color relation r over R
as a relation over R̄, as follows:

{t ∪ {(col , c)} | (t, c) ∈ r}.

Conversely, any relation r over R̄ can be viewed as a color relation as follows:

{(t|R, t(col)) | t ∈ r}.

Beware that when we regard r as a color relation, it is a color relation over R,
i.e., r’s relation scheme is just R, because the color attribute is implicit in color
relations. Indeed, this is exactly the main feature of the color algebra: that colors

132 F. Geerts and J. Van den Bussche

Table 1. Simulation of CA by relational algebra. In the case of x � y, the R refers to
the relation scheme of the color relations x and y; in the cases of x� y and σcolor≥k(x),
the R (S) refers to the relation scheme of the color relation x (y). Moreover, in the
simulation of σcolor≥k(x), the auxiliary attributes col i are chosen such that they do not
appear in R.

x ∪ y x ∪ y
x � y (πR(x) − πR(y)) �� x
x − y x − y
x � y (x �� πS(y)) ∪ (πR(x) �� y)
x �� y x �� y
ρA/B(x) ρA/B(x)
σA=B(x) σA=B(x)
σcolor≥k(x) πR̄σ�

i�=j coli �=colj (ρcol/col1(x) �� · · · �� ρcol/colk (x))

πc
X(x) πX∪{col}(x)

are handled automatically. When we regard r as an ordinary relation, however,
it is a relation over R̄ and the color attribute becomes explicitly visible.

Under the view of color relations as ordinary relations, we can apply classical
relational algebra operations to color relations, and consider relational algebra
expressions with R̄ as result relation scheme to be producing color relations over
R. It then becomes apparent that the classical relational algebra can actually
simulate the color algebra. The simulation is given in Table 1. The table shows
the simulation of the individual operations; the simulation of more complex
expressions can be obtained using composition.

More interestingly, the converse simulation holds as well: every operation on
color relations that is definable in the relational algebra is already definable
in CA. More formally, to every color database schema S we can associate the
relational database schema S̄ which has precisely the same relation variables,
but when relation variable x has relation scheme R in S, then x has relation
scheme R̄ in S̄. We will establish:

Theorem 1. For every relational algebra expression over S̄ whose result relation
scheme is of the form R̄ for some relation scheme R, there exists an equivalent
CA-expression over S.

In proving this theorem, one cannot hope for a simple bottom-up syntax-directed
translation from relational algebra to CA, such as we had with Table 1 for the
other direction. For instance, consider in that table the line for σcolor≥k(x), but
now read from right to left. More generally, the challenge is how to deal with
relational algebra expressions that produce relations as intermediate results that
explicitly relate colors from different tuples in the database.

5 Simulation of the Relational Algebra by the Color
Algebra

In this section, we prove our theorem. It is actually sufficient to do this for
a restricted fragment of the relational algebra, which we call the color-typed

Relational Completeness of Query Languages for Annotated Databases 133

relational algebra, denoted by RAc. In order to define this fragment, we must
first go from our one special color attribute col to an infinite set C of color
attributes, and agree that these are, like col , never used in relation schemes of
color relations. Of course we put col ∈ C. The color-typed restriction now only
lies in a condition imposed on selections and renamings. Specifically, if e is an
expression, then σA=B(e) and ρA/B(e) are only allowed if either A and B are
both color attributes, or are both not color attributes. Expressions of the form
e1 ∪ e2, e1 − e2, e1 �� e2, or πX(e) can be constructed just like in the classical
relational algebra.

A result on the first-order completeness of many-sorted logic [9] implies that
every relational algebra expression over a database schema S̄ with result relation
scheme of the form R̄ can be expressed in RAc. (We point out that this depends
crucially on the disjointness of the universes D of data values and C of colors.)
So, we indeed only have to prove the theorem for RAc.

Our proof uses the technical notion of an R-parameterized monadic database
schema, where R is a relation scheme. This is a relational database schema
where every relation name has the same relation scheme R̄. Equivalently, it can
be viewed as a color database schema where every relation scheme has the same
relation scheme R. Furthermore, an RAc-expression f over such a schema is
called R-uniform if it satisfies the following:

– f uses only renamings ρA/B and selections σA=B where A and B are color
attributes;

– all projections πX appearing in f satisfy R ⊆ X .

The intuition is that an R-uniform expression does not explicitly work with the
attributes in R; these attributes are merely dragged along as parameters.

We now show that CA can simulate R-uniform RAc, in the following sense:

Lemma 1. Let f be an R-uniform RAc-expression over the R-parameterized
monadic database schema S. Let S be the result relation scheme of f .

– If S ∩ C = ∅, i.e., S = R, then there exists a CA-expression sim(f) such
that f(D) equals the relation underlying sim(f)(D), for each color database
D over S.

– If S ∩ C �= ∅, then for each equivalence relation E on S ∩ C, there exists a
set simE(f) of mappings from S ∩ C to CA, such that f(D) equals

⋃

E

⋃

τ∈simE(f)

σ�
(col′,col′′)∈E col′=col′′

σ�
(col′,col′′)/∈E col′ �=col′′ ��

col′∈S∩C
ρcol/col′(τ(col ′)(D))

Proof. Assume that S consists of the relation names z1, . . . , zn. We begin by
refining the classical correspondence between the relational algebra and the
relational calculus (first-order logic, FO) to R-uniform RAc. The correspond-
ing fragment of FO, which we denote by FOc

R, is obtained as follows. Let

134 F. Geerts and J. Van den Bussche

R = {A1, . . . , Am}. We use the Aj ’s, plus all color attributes, as first-order
variables. The allowed atomic formulas are of two forms:

1. zi(A1, . . . , Am, col ′) withcol ′∈C. We abbreviate such formulas by zi(R, col ′).
2. col ′ = col ′′ with col ′, col ′′ ∈ C.

The only variables that can be quantified are color attributes. It is then readily
seen that R-uniform RAc corresponds to FOc

R under the active-domain seman-
tics, with the understanding that, when evaluating a formula in a database D,
the tuple of free variables A1, . . . , Am is only instantiated by R-tuples that ac-
tually appear in D.

We next apply the well-known quantifier elimination method for monadic
first-order logic to FOc

R. Concretely, this gives us that every FOc
R formula can

be written without quantifiers if we additionally allow predicates of the form
|zα(R)| ≥ � in formulas, where � ≥ 1 is a natural number, and α is a nonempty
subset of {1, . . . , n}. The meaning of such a predicate, for a given tuple t over
R, is that |zα(t)| ≥ �, where zα(t) equals

{t′ ∈
⋃

i

zi | t′|R = t &
∧

i∈α

t′ ∈ zi &
∧

i∈α̂

t′ /∈ zi},

where α̂ abbreviates {1, . . . , n} − α.
Putting the quantifier-free formula in disjunctive normal form, and simplify-

ing each conjunction, we obtain a disjunction of conjunctions of factors of the
following possible forms:

– If S ∩ C = ∅, then each factor of the conjunction is of one of the following
three forms:

1. |zα(R)| ≥ 1. This can be expressed in CA by ��
i∈α

zi −
⋃

i∈α̂ zi.

2. |zα(R)| ≥ � with � ≥ 2. This can be expressed in CA by σcolor≥�(|zα(R)| ≥
1).

3. ¬(|zα(R)| ≥ �). This can be expressed in CA by
⋃

i zi � (|zα(R)| ≥ �).
– If S∩C �= ∅, then factors may additionally be of the following possible forms:

4. zi(R, col ′) for some color attribute col ′. This can be expressed in CA by
zi.

5. ¬zi(R, col ′). This can be expressed in CA by
⋃

j zj − zi.
6. equalities and inequalities among color attributes.

Without loss of generality, we may assume that in each conjunction γ, the
set of equalities and inequalities among color attributes is maximally consis-
tent, involving all color attributes in S ∩ C. Such a maximally consistent set
gives rise to an equivalence relation Eγ on the color attributes.

We now construct, for each conjunction γ, the following mapping τ from
S ∩ C to CA and put it in simEγ (f). For each color attribute col ′, we take
the CA-expressions for all factors of types 1–3 above, and also take the
CA-expressions for all factors of types 4–5 that concern the particular color

Relational Completeness of Query Languages for Annotated Databases 135

attribute col ′. If there are no such factors of types 4–5 for col ′, then we add
the CA-expression

⋃
z∈S π∅(z). We conjoin all these CA-expressions using

�. The resulting CA-expression then equals τ(col ′).
�
Our second lemma connects R-uniform expressions to general RAc-expressions.
Together with the first lemma, it establishes the theorem.

Lemma 2. Let h be an RAc-expression over S̄ with result relation scheme S,
and let R = S − C. Then there exist a natural number n; CA-expressions e1,
. . . , en, all with result relation scheme R; and an R-uniform RAc-expression
f(z1, . . . , zn), such that the composition f(e1, . . . , en) is equivalent to h.

Proof. By induction on the structure of e. If h is a relation name x, then n = 1;
e1 is x; and f is z1.

If h is h1 ∪ h2, by induction we have, for j = 1, 2, the natural number nj , the
sequence of CA-expressions ej = ej

1, . . . , e
j
nj

, and the RAc-expression fj . Then
we put

n := n1 + n2

e1, . . . , en := e1, e2

f := f1(z1, . . . , zn1) ∪ f2(zn1+1, . . . , zn).

The case where h is h1 − h2 is similar, but now f is f1 − f2.
If h is h1 �� h2, we again begin by obtaining the ingredients for h1 and h2 by

induction, as above. By Lemma 1, we can simulate f1 and f2 in CA. We now
perform a case analysis based on how the result relation schemes S1 and S2 of
h1 and h2 intersect with C. There are four cases.

First, S1 ∩ C = ∅ = S2 ∩ C. We put

n := 1

e1 := sim(f1)(e1) � sim(f2)(e2)
f := πR(z1).

Second, S1∩C = ∅ and S2∩C �= ∅. Let us first introduce the following derived
CA operator: x � y is an abbreviation for x �� (x � y). Note that r′ � s′, for
color relations r′ and s′, equals {(t1 ∪ t2, c) | t1 ∪ t2 ∈ r �� s & (t1, c) ∈ r′}.
Now in this case we take n to be the total number of expressions occurring in
all sets simE2(f2), for all equivalence relations E2 on S2 ∩ C. For each of those
expressions g, we form g′ := g(e2) � sim(f1)(e1), and all these expressions g′

constitute the ei’s. Denoting the relation name corresponding to g′ by zg, we
can then use the following expression for f :

⋃

E2

⋃

τ∈simE2(f2)

σ�
(col′,col′′)∈E2

col′=col′′σ
�

(col′,col′′)/∈E2
col′ �=col′′ ��

col′∈S2∩C
ρcol/col′(zτ(col′)).

Third, S1∩C = ∅ and S2∩C �= ∅. This case is symmetric to the previous case.
Fourth, S1∩C �= ∅ �= S2∩C. In this case we use three kinds of CA-expressions:

136 F. Geerts and J. Van den Bussche

1. τ1(col ′)(e1) �� τ2(col ′)(e2), with col ′ ∈ S1 ∩ S2 ∩ C, and τj ∈ simEj (fj), for
an equivalence relation Ej of Sj ∩ C, for j = 1, 2;

2. τ(col ′)(e1) � τ(col ′′)(e2), with col ′ ∈ (S1 ∩ C) \ (S2 ∩ C) and col ′′ ∈ S2 ∩ C,
and τj as above;

3. τ(col ′′)(e2) � τ(col ′)(e1), with col ′′ ∈ (S2 ∩ C) \ (S1 ∩ C) and col ′ ∈ S1 ∩ C,
and again τj as above.

So, n equals the total number of all possible CA-expressions of those three kinds.
For all these expressions, which are all of the form i �� j or i � j, the underlying
R-parameterized monadic database schema has corresponding relation names
zi,j . The expression f then becomes:

⋃

E1

⋃

E2

⋃

τ1

⋃

τ2

σ�
(col′,col′′)∈E1

col′=col′′σ
�

(col′,col′′)/∈E1
col′ �=col′′

σ�
(col′,col′′)∈E2

col′=col′′σ
�

(col′,col′′)/∈E2
col′ �=col′′

��
col′∈S1∩S2∩C

ρcol/col′(zτ1(col′),τ2(col′))

�� ��
col′∈(S1∩C)\(S2∩C)

col′′∈S2∩C

ρcol/col′(zτ1(col′),τ2(col′′))

�� ��
col′′∈(S2∩C)\(S1∩C)

col′∈S1∩C

ρcol/col′(zτ2(col′′),τ1(col′)).

If h is ρA/B(h1) with A and B not in C, then we put n := n1; ei := ρA/B(e1
i);

and f := f1.
If h is ρcol′/col′′(h1) with col ′, col ′′ ∈ C, then n := n1; ei := e1

i ; and f :=
ρcol′/col′′(f1).

If h is σA=B(h1) with A and B not in C, then we put n := n1; ei := σA=B(e1
i);

and f := f1.
If h is σcol′=col′′(h1) with col ′, col ′′ ∈ C, then n := n1; ei := e1

i ; and f :=
σcol′=col′′(f1).

Finally, if h is πX(h1), then we simulate f1 in CA according to Lemma 1.
Now if the intersection of the result relation scheme S1 of h1 with C is empty,
then we put n := 1; e1 := πc

X(sim(f1)(e1); and f := z1. If S1 ∩ C �= ∅, then we
take n to be the total number of expressions occurring in all sets simE(f1), for
all equivalence relations E on S1 ∩ C. For each of those expressions g, we form
g′ := πX−C(g)(e1), and all these expressions g′ constitute the ei’s. Denoting the
relation name corresponding to g′ by zg, we can then use the following expression
for f :

πX

⋃

E

⋃

τ∈simE(f1)

σ�
(col′,col′′)∈E col′=col′′σ

�
(col′,col′′)/∈E col′ �=col′′��

col′∈S1∩C
ρcol/col′(zτ(col′)).

�

Relational Completeness of Query Languages for Annotated Databases 137

Acknowledgements

Floris Geerts is a postdoctoral researcher of the FWO Vlaanderen and is sup-
ported in part by EPSRC GR/S63205/01.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Reading (1995)

2. Bhagwat, D., Chiticariu, L., Tan, W.-C., Vijayvargiya, G.: An annotation manage-
ment system for relational databases. The VLDB Journal 14(4), 373–396 (2005)

3. Buneman, P., Cheney, J., Vansummeren, S.: On the expressiveness of implicit
provenance in query and update languages. In: Schwentick, T., Suciu, D. (eds.)
ICDT 2007. LNCS, vol. 4353, pp. 209–223. Springer, Heidelberg (2006)

4. Buneman, P., Khanna, S., Tan, W.-C.: On propagation of deletions and annotations
through views. In: Proceedings 21st ACM Symposium on Principles of Database
Systems, pp. 150–158. ACM Press, New York (2002)

5. Chiticariu, L., Tan, W.-C., Vijayvargiya, G.: DBNotes: A post-it system for rela-
tional databases based on provenance. In: Proceedings 2005 ACM SIGMOD Inter-
national Conference on Management of Data, pp. 942–944. ACM Press, New York
(2005)

6. Cong, G., Fan, W., Geerts, F.: Annotation propagation revisited for key preserving
views. In: Proceedings 15th ACM International Conference on Information and
Knowledge Management, pp. 632–641. ACM Press, New York (2006)

7. Geerts, F., Kementsietsidis, A., Milano, D.: iMONDRIAN: A visual tool to anno-
tate and query scientific databases. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W.,
Matthes, F., Hatzopoulos, M., Boehm, K., Kemper, A., Grust, T., Boehm, C. (eds.)
EDBT 2006. LNCS, vol. 3896, pp. 1168–1171. Springer, Heidelberg (2006)

8. Geerts, F., Kementsietsidis, A., Milano, D.: MONDRIAN: Annotating and query-
ing databases through colors and blocks. In: Proceedings 22th International Con-
ference on Data Engineering, p. 82 (10 pages). IEEE Computer Society Press, Los
Alamitos (2006)

9. Van den Bussche, J., Cabibbo, L.: Converting untyped formulas into typed ones.
Acta Informatica 35(8), 637–643 (1998)

10. Wang, Y.R., Madnick, S.E.: A polygen model for heterogeneous database systems:
the source taging perspective. In: McLeod, D., Sacks-Davis, R., Schek, H. (eds.)
Proceedings of the 16th International Conference on Very Large Data Bases, pp.
518–538. Morgan Kaufmann, San Francisco (1990)

	Relational Completeness of Query Languages for Annotated Databases
	Introduction
	Color Relations
	The Color Algebra
	CA and the Relational Algebra
	Simulation of the Relational Algebra by the Color Algebra

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

