
On Database Query Languages for K-relations

Floris Geertsa, Antonella Poggib

a University of Edinburgh
bSapienza Università di Roma

Abstract

The relational model has recently been extended to so-called K-relations in which tuples are assigned a
unique value in a semiringK. A query language, denoted byRACK , similar to the classical positive relational
algebra, allows for the querying of K-relations. In this paper, we define more expressive query languages
for K-relations that extend RACK with the difference and constant annotations operations on annotated
tuples. These operations are natural extensions of the difference and duplicate elimination operations in
the relational algebra on sets and bags, respectively. We investigate conditions on semirings under which
these operations can be added to RACK in a natural way, and establish basic properties of the resulting
query languages. Moreover, we show how the provenance semiring of Green et al. can be extended to
record provenance of data in the presence of difference and constant annotations. Finally, we investigate the
completeness of RACK and extensions thereof in the sense of Bancilhon and Paredaens (BP).

1. Introduction

Annotated relations appear in various contexts in the database literature. The querying of such re-
lations involves the generalization of the relational algebra to perform corresponding operations on the
annotations. Recently, a general data model (referred to as K-relations) has been proposed for annotated
relations in which tuples in a relation are assigned a unique value coming from a semiring K [12]. By
varying the semiring K, K-relations can model the standard relational model with both set [1] and bag
semantics [16], incomplete databases (positive Boolean c-tables to be more precise) [13, 15] and proba-
bilistic databases [10, 19]. Moreover, operations that queries in the relational algebra perform on tuples can
be naturally extended to operations on annotated tuples. More specifically, operations on tuples naturally
translate into the algebraic operations (sum and product) in semirings. This leads to the definition of the
positive relational algebra on K-relations, or RACK for short [12].

The generality of semirings further allows for the definition of new data models which are of particular
interest for the study of provenance of data [6, 12]. A notable example is the provenance semiring that
allows to record provenance information of data obtained as result of positive relational algebra queries. A
crucial property of this semiring, named factorization property, is that it is the most general semiring. That
is, for any semiring K, to evaluate queries in RACK on K-relations it is sufficient to know how to evaluate
these queries on the provenance semiring.

In this paper, we study query languages for K-relations. Indeed, while some basic properties of RACK
are already established in [12], less is known about its expressive power. Furthermore, it was left open
in [12] how to incorporate difference in RACK to get a full relational algebra on K-relations. Hence, our
goal is twofold. On one hand, we define more expressive query languages for K-relations that extendRACK
with operations on annotated tuples that are natural extensions of corresponding operations of the relational



algebra. On the other hand, we investigate the expressive power of RACK and extensions thereof. In partic-
ular, we investigate the completeness of these query languages. Recall that Codd qualified a query language
on relational databases as complete if its expressive power is at least that of the relational calculus [8].
Bancilhon [4] and Paredaens [18] independently provided a language-independent characterization of com-
pleteness. This characterization, known as BP-completeness, can be stated as follows: a relation R2 is the
result of a relational algebra query applied to a database R1 if and only if (i) the active domain of R2 is
included in the active domain of R1; and (ii) every automorphism of R1 is also an automorphism of R2.

The contributions of the paper can be summarized as follows:

� First, we define the query languagesRACK .n/,RA
C
K .ı/ andRACK .n; ı/, obtained by extendingRACK

with difference, constant annotations, and with both difference and constant annotations, respectively.
Here, constant annotations correspond to a family of operators that assign annotations to tuples among
a finite set of elements of the semiring, that are the semiring generators. Note, in particular, that
extending RACK with these operators forces to restrict the class of semirings under consideration.
Specifically, on one hand, adding difference requires the definition of a monus operator on the un-
derlying semiring, which might not always be possible. We call m-semirings the class of semirings
admitting a monus operator. On the other hand, constant annotations require the underlying semiring
to be finitely generated, i.e., to have a finite set of semiring generators. Interestingly, we observe that
most semirings encountered in the literature are indeed finitely generated m-semirings.

� Second, we show how to extend the provenance semiring of [12], so that it can be used to record the
provenance of data obtained as result of queries inRACK .n/,RA

C
K .ı/ andRACK .n; ı/. We show that

the extended provenance semirings also satisfy the factorization property.

� Finally, we naturally extend the notion of BP-completeness to the setting of K-relations and inves-
tigate whether query languages on K-relations proposed so far are BP-complete. In particular, we
show that none of the languages RACK , RACK .n/ and RACK .ı/ is BP-complete on K-relations for ar-
bitrary semirings, m-semirings, and finitely generated semirings, respectively. In contrast,RACK was
shown to be BP-complete in the standard relational case [4, 18]. We show, however, that RACK .n; ı/
is BP-complete on K-relations for arbitrary finitely generated m-semirings K.

Organization: The paper is organized as follows. After recalling in Section 2 the basic notions of K-
relations and the positive query language RACK , we present in Section 3, the query languages RACK .n/,
RACK .ı/ and RACK .n; ı/, obtained by extending RACK with difference and constant annotations. Then, in
Section 4, we discuss the relationship between provenance and K-relations, and show how the provenance
semiring can be extended to record provenance forRACK .n/,RA

C
K .ı/ andRACK .n; ı/. Section 5 discusses

BP-completeness of RACK and extensions thereof. We conclude the paper in Section 6.

2. Preliminaries

In this section we recall the notions of K-relation and the query language RACK that were introduced
by Green et al. [12]. Then, we conclude the section by discussing an important property of RACK , named
homomorphism property.

2



R1D

drink kind origin
Heineken beer Holland false

Montefalco wine Italy true
Pinot grappa Italy true

R2D

drink kind origin
Stella beer Belgium 2

Montefalco wine Italy 1
Pinot grappa Italy 1

R3D

drink kind origin
Stella beer Belgium party

Montefalco wine Italy tasting
Pinot grappa Italy party_tasting

R4D

drink kind origin
Stella beer Belgium P

Montefalco wine Italy T
Pinot grappa Italy P[T

Figure 1: Examples of K-relations.

2.1. K-relations
A (commutative) semiring KD.K;˚;˝;0;1/ is an algebraic structure consisting of a set K equipped

with two binary operations, i.e., sum (˚) and product (˝), such that .K;˚;0/ is a commutative monoid with
identity element 0; .K;˝;1/ is a commutative monoid with identity element 1; the operation ˝ distributes
over˚; and finally 0 is an annihilating element. Recall that a monoid consists of set equipped with a binary
operation that is associative and has an identity element. Furthermore, the set is closed under the binary
operation, i.e., the result of the operation on any two elements in the set belongs to the set as well.

Example 1. It is easily verified that the following structures are semirings: (1) The Boolean semiringKBD
.B;_;^; false; true/ with BDftrue; falseg; (2) The natural numbers KND.N;C;�;0;1/; (3) Kc-tableCD

.PosBool.X/;_;^; false; true/, where PosBool.X/ is the set of all positive Boolean expressions (over a
finite set of variables X ) in which any two equivalent expressions are identified; and (4) the probabilistic
semiring KprobD.P.�/;[;\;;;�/, where � is a finite set of events and P.�/ stands for the powerset of
�.

To formally introduce semirings into the relational data model, we next recall the definition of K-
relations (see [12] for more details). Let D be an (infinite) domain of data values and let U be a finite
set of attributes. We define a U -tuple Nt to be mapping from U!D. The set of U -tuples is denoted by
U -Tup. A relation over U is a subset of U -Tup. Let KD.K;˚;˝;0;1/ be a semiring. A K-relation R
over U is then a function R WU -Tup!K. The support of a K-relation R, denoted by supp.R/, is defined
as supp.R/DfNt jR.Nt /¤0g; it is the standard relational database underlying R. The active domain of a
K-relation R, denoted by adom.R/, is defined as the set of data values (in D) occurring in supp.R/.

As already mentioned in the introduction, K-relations have recently been used to unify a variety of
data models, including the standard relational model with both set and bag semantics, incomplete databases
(positive Boolean c-tables to be more precise) and probabilistic databases [12].

Example 2. Consider the set of attributes U Dfdrink;kind;origing. Figure 1 shows K-relations over U ,
for the four different semirings described in Example 1. The semiring value associated with each tuple is
shown in the last column. (1) R1 is a KB-relation and corresponds to a standard relational table with set
semantics; the interpretation of this relation is that the tuple NthD.Heineken;beer;Holland/ does not belong
to the support of the relation while the tuples NtmD.Montefalco;wine; Italy/ and NtpD.Pinot;grappa; Italy/
do; (2) R2 is a KN-relation and corresponds to a relational table with bag semantics; the interpretation of
R2 is that there are two tuples NtsD.Stella;beer;Belgium/, while there is only one tuple Ntm and one tuple Ntp;
(3) R3 is a Kc-tableC and corresponds to a (positive) Boolean c-table [13]. A Boolean c-table is a restricted
form of c-tables [15] in which variables take Boolean values and only appear in conditions (not in the
attributes); Hence, the tuple Nts belongs to the support of relation if there is a party, the tuple Ntm belongs to
it if there is a tasting, while the tuple Ntp is present if there is a party or a tasting; finally, (4) R4 is a Kprob-
relation and corresponds to a probabilistic event table introduced in [10, 19]; assuming that both P and T

3



denote probabilistic events, then the tuple Nts belongs to the support of the relation with the probability of
event P , the tuple Ntm with probability of event T and the tuple Ntp with probability of the event P[T .

The real strength ofK-relations becomes apparent, however, when considering provenance information.
Indeed, the flexibility of semirings allows for the definition of new provenance models at different levels
of granularity. We will illustrate this in more detail in Section 4 after we describe query languages on
K-relations.

2.2. The query language RACK
The introduction of semirings in the relational model requires the redefinition of the semantics of the

standard relational algebra operators. Recall that the relational algebra consists of projection, selection,
union, renaming and difference [1]. When difference is omitted, one obtains the so-called positive fragment
of the relational algebra or positive algebra for short. In [12], the semantics of the positive algebra on K-
relations has been introduced. We next recall the definition of the positive relational algebra on K-relations,
denoted by RACK . As before, KD.K;˚;˝;0;1/ denotes a semiring. Then RACK includes the following
operators:

empty relation For any set of attributes U , we have ;WU -Tup!K such that ;.Nt /D0 for any Nt .

union If R1;R2 WU -Tup!K then R1[R2 WU -Tup!K is defined by

.R1[R2/.Nt /DR1.Nt /˚R2.Nt /:

projection If R WU -Tup!K and V �U then �V .R/ WV -Tup!K is defined by

.�VR/.Nt /D
M

NtD Nt 0 on V andR.Nt 0/¤0

R.Nt 0/:

selection If R WU -Tup!K and the selection predicate P maps each U -tuple to either 0 or 1 depending on
the (in-)equality of attribute values, then �P.R/ WU -Tup!K is defined by

.�P.R//.Nt /DR.Nt /˝P.Nt /:

natural join If Ri WUi -Tup!K, for iD1;2, then R1‰R2 is the K-relation over U1[U2 defined by

.R1‰R2/.Nt /DR1.Nt /˝R2.Nt /:

renaming If R WU -Tup!K and ˇ WU!U 0 is a bijection then �ˇ .R/ is the K-relation over U 0 defined by

.�ˇR/.Nt /DR.Nt ıˇ
�1/:

It is observed in [12] that the semantics ofRACK coincides with standard positive relational algebras for
various semirings encountered in the database literature, i.e., for KB (set semantics) [1], KN (bag seman-
tics) [16], Kc-tablesC (positive Boolean c-tables under closed world semantics) [13, 15] and Kprob (proba-
bilistic event tables) [10, 19].

4



2.3. The homomorphism property of RACK
A desirable property of query languages is that they provide the user with a conceptual interface of

the underlying data, independent of how exactly that data is stored and without interpreting the exact data
objects [2]. This property is also known as genericity of query languages and is formally stated that for any
permutation � of the data domain D and any database R, a query Q in the query language should satisfy
Q.�.R//D�.Q.R//. Here, � is extended to a function on tuples in the standard way. The relational
algebra with set semantics is known to be generic.

A similar property, named homomorphism property, is desired to hold with respect to the values
in the semiring for query languages over K-relations. Intuitively, the homomorphism property ensures
that the RACK operations do not interpret the values of the underlying semiring. Formally, let KD
.K;˚K;˝K;0K;1K/ and K0D.K0;˚K0 ;˝K0 ;0K0 ;1K0/ be two (commutative) semirings and let h WK!K0
be a mapping. It is shown in [12] that the transformation from K-relations to K0-relations induced by h,
which we also denote by h, satisfies the property that Q.h.R//Dh.Q.R// for any Q2RACK iff h is a
semiring homomorphism [12]. That is, h satisfies the following properties: h.0K/D0K0 , h.1K/D1K0 , and
for any x;y2K, h.x˚Ky/Dh.x/˚K0h.y/ and h.x˝Ky/Dh.x/˝K0h.y/.

3. The query languages RAC

K.n/, RAC

K.ı/ and RAC

K.n;ı/

In this section we provide three extensions of RACK : First, we extend RACK with a difference operator
(n) resulting in the algebraRACK .n/ overK-relations. Second, we extendRACK with (a family of) operators
called constant annotations (ı). These can be thought of as a generalization of the duplicate elimination
operator, an operator that is normally included in query languages over bags. The resulting query language is
denoted by RACK .ı/. Finally, we extend RACK with both the difference and constant annotations, resulting
in RACK .n; ı/.

3.1. The query language RACK .n/
We first extendRACK with a difference operator. More specifically, we identify a large class of semirings

that can be equipped with a so-called monus operator 	. The addition of the monus operator on semirings
will then allow to extend RACK with a difference operator (n). Finally, we show that RACK .n/ satisfies a
homomorphism property similar to RACK .

3.1.1. Semirings with monus
We follow the standard approach for introducing a “monus” operator, denoted by	, into additive com-

mutative monoids [3]. As we will see shortly, when introducing 	 one has to pose some restriction on the
class of semirings. More specifically, we first assume that K is naturally ordered. That is, the quasi-order
x�y on K defined as x�y iff there exists a z2K such that x˚zDy, must define a partial order on K.
This means that apart from being reflexive and transitive, � should also be antisymmetric.

It is easily verified that all examples of semirings described in this paper are naturally ordered. We
additionally require the following property (�): for each pair of elements x;y2K, the set fz2K jx�y˚zg
has a smallest element. Note that the fact that � defines a partial order guarantees that fz2K jx�y˚zg
has a unique smallest element, provided that it exists.

Definition 1. Let K be a naturally ordered semiring that satisfies property (�). For any x;y2K, we define
x	y to be the smallest element z such that x�y˚z. A semiring K which can be equipped with a monus
operator	 is called a semiring with monus or m-semiring for short.

5



A classical result in theory of additive commutative monoids with monus, or CMM for short, identifies
two “natural” classes of CMMs [3]. Indeed, Amer shows that there are only two equationally complete
classes of CMMs in the variety of CMMs. These are respectively Boolean algebras (or prime ideals thereof),
for which the monus behaves like set difference, and so-called positive cones of lattice-ordered commutative
groups, for which the monus behaves like the truncated minus of the natural numbers. Translated to the
setting ofm-semirings, this dichotomy translates tom-semirings that are a Boolean algebra on the one hand,
andm-semirings that are the positive cone of a lattice-ordered commutative ring on the other hand [14, 17].
In the following example, we revisit the semirings described in Example 1 and discuss their extension to
m-semirings.

Example 3. One can easily verify that the semirings described in Example 1 in Section 2 all satisfy property
(�). Hence, they can all be extended to m-semirings. Moreover, it is easily verified that they all fall in one
of the two natural classes of m-semirings described above, except for Kc-tableC . More specifically, KB and
Kprob are both Boolean algebras and the monus behaves like set difference. On the other hand, KN is the
positive cone of the ring Z, i.e., NDfn jn2Z;0�ng. Consequently, the monus on KN corresponds to the
truncated minus, i.e., m	nDm :

�n which is defined as m�n if m>n and 0 otherwise. Finally, the case
of Kc-tableC is more subtle since the corresponding m-semiring is neither a Boolean algebra nor the positive
cone of a lattice-ordered ring. In fact, the semiringKc-tableCD.PosBool.X/;_;^; false; true/was originally
defined for positive queries only and therefore only positive Boolean expressions overX were allowed [12].
The original definition of c-tables, however, does allow for arbitrary Boolean expressions [15]. Hence, we
define the semiring Kc-table as .Bool.X/;_;^; false; true/, where Bool.X/ is the set of Boolean expressions
over X in which any two equivalent expressions are identified. Clearly, Kc-table is a Boolean algebra.
Furthermore, for any two expressions �1;�2 in Bool.X/, we have that �1	�2 is a Boolean expression that
is equivalent to �1^:�2, as expected.

It is not surprising that not every semiring can be extended to an m-semiring.

Example 4. From the definition of m-semiring it follows that a semiring cannot be extended to an m-
semiring if the semiring is not naturally ordered or it is naturally ordered but property (�) fails to hold.
For instance, consider the semiring KRD.R;C;�;0;1/. Clearly, r�s for any two elements r;s2R and
hence � is not antisymmetric. Worse still, for any r;s2R, the set ft 2R jr�sCtg is equal to R which
contains no minimum since � holds for any two elements in R. Therefore, r	s is ill-defined in KR. We
observe that KR is in fact a ring and any element r 2R has a unique additive inverse �r 2R. It is possible
to develop a theory of K-relations, where K are ring structures, but we leave this to future work. Consider
next the semiring KRminD.R[fC1g;min;C;C1;0/ where minfx;yg returns the minimum of x and y
according to the usual ordering on R[fC1g. It is easily verified KRmin is naturally ordered. Indeed, if
there exists a z such that minfx;zgDy and if in addition there exists a z0 such that minfy;z0gDx, then it
follows that xDy. However, for any x;y2R[fC1g, the set fz2R[fC1gjx�minfy;zgg is equal to
fz2R[fC1gj9z0minfx;z0gDminfy;zgg. Clearly, this is not bounded below since one can take arbitrary
small values for z. Hence, although KRmin is naturally ordered, it does not satisfy property .�/ and the
monus operator is ill-defined in this semiring. We observe that a slight modification of KRmin remediates
the above problem. Indeed, consider .R[f�1;C1g;min;C;C1;0/. The addition of the lowest element
�1 ensures that this semiring satisfies property .�/. The resulting semiring is known as the dual of the
schedule algebra.

3.1.2. The difference operator
We are now ready to extendRACK with the difference operator. LetK be an arbitrarym-semiring. Then,

we obtain RACK .n/ by extending RACK with the operator
6



difference If R1;R2 WU -Tup!K then R1	R2 WU -Tup!K is defined by

.R1nR2/.t/DR1.t/	R2.t/:

As a sanity check, from Example 3, it immediately follows that RACK .n/ coincides with the (full) rela-
tional algebra on relational databases for KB (set semantics), and the bag algebra with the monus operator
for KN [16]. Furthermore, in the case of Kc-table it coincides with the semantics of the relational algebra
on Boolean c-tables under closed world semantics [15] and for Kprob it coincides with the semantics of the
relational algebra provided on probabilistic event tables [10, 19].

3.1.3. The homomorphism property for RACK .n/
When looking atm-semirings the notion of semiring homomorphism needs to be revisited. Specifically,

let KD.K;˚K;˝K;	K;0K;1K/ and K0D.K0;˚K0 ;˝K0 ;	K0 ;0K0 ;1K0/ be two m-semirings. A mapping
h WK!K0 is an m-semiring homomorphism iff it is a semiring homomorphism and furthermore it also
preserves 	, i.e., for any two elements x;y2K we have that h.x	Ky/Dh.x/	K0h.y/. The following is
easily verified:

Proposition 1. Let K and K0 be two m-semirings. Let h WK!K0 be a mapping. Then the transforma-
tion induced by h from K-relations to K0-relations commutes with any RACK .n/-query Q,i.e., Q.h.R//D
h.Q.R// if and only if h is an m-homomorphism.

Proof. The proof is by induction on the structure of queries in RACK .n/. Since RACK is embedded in
RACK .n/ we already know by the result forRACK that h being a semiring homomorphism is a necessary re-
quirement. Suppose that h is anm-homomorphism as well and thatQDQ1nQ2 (the other cases are treated
as in the RACK case [12]). By the induction hypothesis we have that Q.h.R//DQ1.h.R//nQ2.h.R//D
h.Q1.R//nh.Q2.R//. Furthermore, since h is an m-homomorphism and by the definition of n we have
that h.Q1.R/.Nt //	K0h.Q2.R/.Nt //Dh.Q1.R/.Nt /	KQ2.R/.Nt // for all Nt . Hence, Q.h.R//Dh.Q.R//.

Conversely, it is easily verified that the requirement that Q.h.R//Dh.Q.R// for any R implies that
h must preserve 	. That h must be a semiring homomorphism is already established in [12]. In-
deed, consider QD.�A.�ADB.R//n�A.�A¤B.R// and RDf.a;a/ 7!x;.a;b/ 7!yg for a¤b and arbi-
trary x;y2K. Since the query result contains one tuple .a/ associated with h.x/	K0h.y/ in the one case
and h.x	Ky/ in the other, the result immediately follows.

3.2. The query language RACK .ı/
We next extend the positive algebra RACK on K-relations with a family of operators called constant

annotations. These operators are a generalization of the duplicate elimination operator present in most
algebras over bags [16]. The intuition behind these operators is that they are “forgetful”, i.e., they allow to
replace all values of tuples in K-relations by some constant value. Similar to RACK and RACK .n/, we show
that RACK .ı/ satisfies a homomorphism property.

3.2.1. Constant annotations
When consideringKN-relations it is common to include the duplicate elimination operator ı in the query

language. Intuitively, when ı is applied on a bag-relation the result is a relation with the same support but
in which each tuple is counted only once. In the language of K-relations, ı.R/.Nt /D1 for all Nt in supp.R/
and ı.R/.Nt /D0 otherwise.

To introduce duplicate elimination in RACK on general K-relations, we restrict our attention to m-
semirings KD.K;˚;˝;	;0;1/ that are finitely generated, i.e., every element in K can be written as a

7



finite sequence of sums, monus and products of a finite set of elements k1; : : : ;km in K, called generators
of K. We denote a set of generators of K by Gen.K/ and for convenience assume it is minimal.

Example 5. The semirings considered so far are all finitely generated. Indeed, it is easily verified that
Gen.B/Dftrueg, Gen.N/Df1g, Gen.Bool.X//DX , and Gen.P.�//D�. The two semirings KR and
KRmin given in Example 4 are not finitely generated since they consist of uncountably many elements.

We now formally define the notion of constant annotations. Given a finitely generated m-semiring
KD.K;˚;˝;	;0;1/ with generators Gen.K/Dfk1; : : : ;kmg, we define the following set of constant an-
notation operators:

constant annotation If R WU -Tup!K and ki is a generator of K then ıki
WU -Tup!K is defined by

.ıki
.R//.Nt /Dki for each Nt 2supp.R/ and .ıki

.R//.Nt /D0 otherwise.

We denote by RACK .ı/ the query language obtained by extending RACK with the constant annotation
operators for the m-semiring K and set of generators of K under consideration. Note that for some m-
semirings, constant annotations do not add expressive power. For instance, for KB we have thatRACK .ı/D
RACK .

3.2.2. The homomorphism property for RACK .ı/
When considering the homomorphism property of queries in RACK .ı/ one has to make the choice of

generators in K and K0 explicit. Let Gen.K/Dfk1; : : : ;kng and Gen.K0/Dfl1; : : : ; lmg. We say that h is an
generator preserving semiring homomorphism from K to K0 if h is a semiring homomorphism and further-
more, h.Gen.K//DGen.K0/. Given a query Q2RACK .ı/, let h.Q/ be the query in RACK0.ı/ obtained by
replacing each occurrence of ıki

by ıh.ki /. Observe that for generator preserving homomorphisms h, each
ıh.ki / is of the form ılj for some j D1; : : : ;m. In other words, h.Q/ is well-defined. The following is now
easily verified:

Proposition 2. Let K and K0 be two semirings with generators Gen.K/ and Gen.K0/, respectively. Let h
be a generator-preserving homomorphism from K to K0. Then, for any query Q2RACK .ı/, h.Q/.h.R//D
h.Q.R// where h.Q/2RACK0.ı/ is the query defined above.

3.3. The query language RACK .n; ı/
Finally, we introduce the query language obtained by extending RACK with both the difference and

constant annotations operators. The resulting language is denoted by RACK .n; ı/ and this language also
satisfies a homomorphism property. Indeed, it is easily verified that Proposition 2 carries over to this setting
by replacing homomorphism by m-homomorphism and substituting the appropriate query languages.

4. K-relations and provenance

Besides providing a general framework capturing many data models encountered in the literature, K-
relations are particularly useful for tracking various kinds of provenance information [6, 12]. We illustrate
this with two examples: the lineage semiring and the provenance semiring. We refer again to Green et
al. [12] and [11] for more details concerning these and other provenance models. In particular, in this sec-
tion we recall how to compute the why- and how-provenance for positive queries and present m-semirings
that allow for computing provenance information in the presence of difference in the relational algebra
queries. We conclude this section by describing how to compute provenance in the presence of constant
annotations.

8



R5D

drink kind origin
Stella beer Belgium fxg

Montefalco wine Italy fyg
Pinot grappa Italy fzg

R6D

drink kind origin
Pinot wine France fvg

Ardbeg whiskey Scotland fwg

R7D

drink kind
Stella beer fxg

Montefalco wine fyg
Montefalco grappa fy;zg

Pinot wine fy;z;vg
Pinot grappa fzg

Ardbeg whiskey fwg

Figure 2: The lineage semiring.

NR5D

drink kind origin
Stella beer Belgium x

Montefalco wine Italy y
Pinot grappa Italy z

NR6D

drink kind origin
Pinot wine France v

Ardbeg whiskey Scotland w

R8D

drink kind

Stella beer x2

Montefalco wine y2

Montefalco grappa yz
Pinot wine yzCv

Pinot grappa z2

Ardbeg whiskey w

Figure 3: The provenance semiring.

4.1. The lineage semiring
Lineage/why-provenance was defined in [5, 9] as a way of relating the tuples in a query output to the

tuples in the source relations that contribute to them. Let X be a finite set representing the ids of the tuples
in the source relations. Then, the lineage semiring KlinD.P.X/;[;[;;;;/ can be used to represent and
compute the why-provenance, as we illustrate in the following example.

Example 6. Consider the Klin-relations R5;R6 shown in Figure 2, where the set of source tuples ids is
XDfx;y;z;v;wg. In bothR5 andR6 tuples are annotated with the singleton containing their respective id.
Next, letQ.R0;R00/ be the following query over the relationsR0 andR00 of schema U Dfdrink;kind;origing:

Q.R0;R00/D�drink;kind.�drink;originR
0
‰�kind;originR

0/[�drink;kindR
00:

It is easily verified thatR7 (see Figure 2) is the query resultQ.R5;R6/. TheKlin-values associated with the
tuples in R7 now provide their why-provenance. For example, they state that the tuple NspD.Pinot;wine/
was obtained from the contribution of the tuples in R5 and R6 identified by y;z and v. Note, however, that
why-provenance does not provide any information on the how-provenance, e.g., on the way the tuple Nsp
was obtained. In particular, it is not possible to infer from the why-provenance information that Nsp can be
obtained either from joining y and z together or from v alone.

4.2. The provenance semiring
In order to overcome the limitations of why-provenance a more powerful provenance semiring was

proposed in [12]. This semiring allows to represent and compute the how-provenance of tuples in the query
result. More precisely, the (positive algebra) provenance semiring is defined as KprovD.NŒX�;C;�;0;1/,
where X is a set of source tuple ids and NŒX� consists of all polynomials with variables taken from X and
with coefficients in N. Hence, Kprov-relations consist of tuples that are annotated with polynomials. These
polynomials are to be interpreted as symbolic expressions over the source tuples ids that describe how the
tuples were obtained from the source. This is illustrated in the following example:

Example 7. Consider the Kprov-relations NR5; NR6 and R8 shown in Figure 3. It can be easily checked
that R8 is the query result Q. NR5; NR6/ for the query Q given in Example 6. Consider again the tuple

9



R9D

drink kind origin
Pinot wine France 2

Ardbeg whiskey Scotland 1

R10D

drink kind
Stella beer 4

Montefalco wine 1
Montefalco grappa 1

Pinot wine 3
Pinot grappa 1

Ardbeg whiskey 1

Figure 4: The factorization property forRACK .

NspD.Pinot;wine/. The Kprov-value of Nsp is the polynomial R8.Nsp/DyzCv and states that Nsp can be
obtained either by joining together the tuples in NR5 and NR6 identified by y and z or by simply using the
tuple in NR6 identified by v. On the contrary, the tuple NsmD.Montefalco;grappa/ can only be obtained by
joining together the tuples identified by y and z. Clearly, the provenance information obtained by using
Kprov instead of Klin provides more information.

A nice property of the provenance semiring is that for any semiring K, to evaluate queries in RACK on
K-relations it is sufficient to know how to evaluate these queries over Kprov-relations [12]. This property,
called the factorization property for RACK , crucially relies on the existence of a universal object in the
class of semirings which in this case is precisely the provenance semiring KprovD.NŒX�;C;�;0;1/. More
formally, let K be a semiring, R a K-relation and Q2RACK . Suppose that supp.R/DfNt1; : : : ; Ntkg and let
XDfx1; : : : ;xkg be a set of tuple ids for the tuples in supp.R/. That is, xi is the tuple id for tuple Nti for
iD1; : : : ;k. Let NR be the abstractly tagged version ofR, obtained by letting NR.Nti /Dxi for Nti 2supp.R/ and
NR.Nt /D0 otherwise. Let � WX!K be the valuation that maps xi to R.Nti /.

Because KprovD.NŒX�;C;�;0;1/ is the free semiring generated by X , we have the property that there
exists a unique semiring homomorphism Eval� WNŒX�!K such that for one-variable monomials we have
that Eval�.x/D�.x/. Combined with the homomorphism property forRACK (see Section 2.3) and observ-
ing that Eval�. NR/DR we recall from [12] that

Q.R/DEval�ıQ. NR/:

In other words, the semantics of queries in RACK over arbitrary semirings factors through its semantics in
the provenance semiring.

Example 8. Consider the Klin-relations R5 and R6 shown in Figure 2. Their respective abstractly
tagged versions NR5 and NR6 are shown in Figure 3. Consider again the query Q of Example 6. Then,
the Kprov-relation R8 is the query result Q. NR5; NR6/. Let � be the valuation that maps � to f�g, for
�2fx;y;z;v;wg. The factorization property then tells us that the Klin-relation R7, shown in Figure 2,
is equal to Eval�.R8/. Indeed, consider the tuple NspD.Pinot;grappa/ annotated with yzCv. Then,
Eval�.yzCv/D.�.y/[�.z//[�.v/Dfy;z;vg, as desired. Similarly, consider the KN-relations R2 shown
in Figure 1 and R9 shown in Figure 4. Their abstractly tagged versions NR2 and NR9 are identical to NR5 and
NR6, respectively. Let � be the valuation that maps x and v to 2 and y;z and w to 1. Then the factorization

property tells that Q.R2;R9/DR10, shown in Figure 4, is equal to Eval�.R8/. Indeed, consider again the
tuple Nsp associated with yzCv. In this case we have that Eval�.yzCv/D.�.y/��.z//C�.v/D1C2D3,
as desired.

4.3. The provenance semiring with monus

We next describe how to represent and compute why and how provenance in the presence of difference.
It is easily verified that both Klin and Kprov can be extended to m-semirings:

10



R10D

drink kind origin
Stella beer Belgium 2

Montefalco wine Italy 0
Pinot grappa Italy 0

R11D

drink kind origin

Stella beer Belgium x2

Montefalco wine Italy y2

Pinot grappa Italy z2

R12D

drink kind origin
Stella beer Belgium 4

Montefalco wine Italy 1
Pinot grappa Italy 1

Figure 5: The failure of the factorization property forRACK.n/ and Kprov0 .

Example 9. In the case of Klin the monus operator simply coincides with set difference. For the prove-
nance semiring, let XDfx1; : : : ;xng be the set of variables and for ˛2Nn, denote by x˛ the monomial
x
˛1

1 x
˛2

2 � � �x
˛n
n , where by definition x0i D1. Let I be a finite subset of Nn and let f ŒX�D

P
˛2I f˛x

˛ and
gŒX�D

P
˛2I g˛x

˛ be two polynomials in NŒX�. Then it is easily verified that f ŒX�	gŒX�D
P
˛2I .f˛

:
�

g˛/x
˛, where :� denotes the truncated minus on N.

Unfortunately, the m-semiring Kprov0D.NŒX�;C;�;	;0;1/ is not the universal object in the variety of
all m-semirings and as a consequence it does not satisfy the factorization property for RACK .n/:

Example 10. Let R2 be the KN-relation shown in Figure 1 and consider the query

Q0.R/D.R‰R/�R:

It is easily verified that Q0.R2/ is the KN-relation R10 shown in Figure 5. The straightforward gen-
eralization of the factorization property to RACK .n/ and using Kprov0 as factoring m-semiring would
imply that Q0.R2/ can be obtained from the query evaluation Q0. NR2/ on the abstractly tagged ver-
sion of R2 (now interpreted as a Kprov0-relation) and from the valuation � that maps x to 2, and y;z
to 1. The Kprov0-relation Q0. NR2/ is shown as relation R11 in Figure 5. Here, each tuple is associ-
ated with �2	�D.0��C1��2/	.1��C0��2/D.0 :�1/��C.1 :�0/��2D�2, for some id �2fx;y;zg. Then,
Q0.R2/DR10¤Eval�.R11/DR12. It is easily verified that a similar counterexample works when we
consider the KB-relation R1 shown in Figure 1 and query Q0. Indeed, in this case Q0.R1/ returns the
empty relation, i.e., all tuples are associated with false. On the contrary, if we consider the valuation �
maps x to false, and y;z to true, then we have that Eval�.Q0. NR1// contains two tuples associated with
�.y2/D�.y/^�.y/D true and �.z2/D�.z/^�.z/D true, respectively.

We next show how a factorization property forRACK .n/ can be obtained. Indeed, from universal algebra
it follows that there exists a unique freem-semiring. We next describe the construction of this semiring and
then show how it can be used to represent and compute provenance for RACK .n/.

First, we observe that the class of m-semirings is an equational variety. Indeed, an algebraic structure
.K;˚;˝;	;0;1/ is an m-semiring iff it satisfies (i) the defining equations of being a semiring; and (ii)
the defining equations of .K;˚;	;0/ being a commutative monoid with monus [3]. Hence, by Birkhoff’s
Theorem the class of m-semirings is indeed a variety and furthermore admits free objects [7].

We recall the standard universal algebra construction for the unique free object T ŒX� generated by
XDfx1; : : : ;xng in the equational variety of m-semirings [7]. In a nutshell, elements of T ŒX� consist of
terms constructed inductively as follows: xi , 1 and 0 are terms; and moreover, if t and s are terms then so
are .t˚s/, .t	s/ and .t˝s/; and finally, nothing else is a term.

We next need the notion of congruence relation. A congruence relation C over T ŒX� is an equiva-
lence relation over T ŒX� that is compatible with ˚, ˝ and 	, i.e., if C.s1; t1/ and C.s2; t2/ then also

11



C.s1 ops2; t1 op t2/ for op2f˚;˝;	g. We next specialize C to correspond to the congruence relation that
identifies terms based on the equations of m-semirings. It is then easily verified that the quotient structure
T ŒX�=C that consists of expressions in T ŒX� in which any two equivalent expressions are identified (as
specified by C ), is indeed an m-semiring. Furthermore, it follows that T ŒX�=C is the free m-semiring
generated by X [7]. Hence, for anym-semiring K and any valuation � WX!K, we have that � can be lifted
to an m-semiring homomorphism Eval� WT ŒX�=C!K that coincides with � on X . We denote by Kdprov
the free m-semiring .T ŒX�=C;˚;˝;	;0;1/ obtained in this way.

The following example illustrates Kdprov and its corresponding factorization property.

Example 11. Consider again the relation NR2 (which is equal to NR5 shown in Figure 3). This can obviously
be seen as a Kdprov relation. Let Q0 be the query of Example 10. It is easily verified that the Kdprov-relation
Q0. NR2/ is similar to the relation R11 shown in Figure 5, except that each tuple is now associated with
.�˝�/	� for �2fx;y;zg. If we consider the valuation � that maps x to 2 and y;z to 1 and extend � to an
m-homomorphism Eval� WT ŒX�=C!N in the natural way, then Q0.R2/DR10DEval�.Q0. NR2//. Indeed,
this follows from the fact that Eval�..�˝�/	�/D.�.�/��.�//

:
��.�/. Similarly, if we consider the valua-

tion � that maps x to false and y;z to true and let Eval� WT ŒX�=C!B, then Q0.R1/DEval�.Q0. NR1//.
This follows again from the fact that Eval�..�˝�/	�/D.�.�/^�.�//	�.�/D�.�/^ N�.�/D false, for
�2fx;yg.

The following proposition is an immediate consequence of Proposition 2 and the fact that Kdprov is a
free m-semiring over X :

Proposition 3. Le K be anm-semiring. For any queryQ2RACK .n/ and any K-relation R with tuple id set
X , Q.R/DEval�ıQ. NR/, where NR denotes the Kdprov-relation obtained by tagging each tuple in R with its
own tuple id.

4.4. The provenance semiring with monus and constant annotations

We can easily extend the construction of the provenancem-semiringKdprov to obtain an extended prove-
nancem-semiring forRACK .n; ı/ for which a factorization property holds. We first note that the provenance
semirings discussed in this and other papers [12, 11] are all finitely generated. Similarly for the extended
provenance m-semiring described next.

In a nutshell, thism-semiring is constructed in the same way asKdprov, with the proviso that if t is a term
of the m-semiring, then so are ıyi

.t/ for yi 2Y . Here, Y is a set of variables disjoint from X . Intuitively,
the factorization property holds also for RACK .n; ı/, after extending the valuation also to variables in Y .
Formally, let K be a finitely generated m-semiring with Gen.K/Dfk1; : : : ;kng. Let R be K-relation and Q
be a query in RACK .n; ı/. Let Y be a set of n fresh variables yi , one for each generator in K, and let � be
the valuation of X[Y that maps, as before, xi to R.Nti / and yi to ki . Furthermore, we define Q0 to be Q
in which each occurrence of ıki

is replaced by ıyi
. Then, Q.R/DEval�ıQ0. NR/ where NR is viewed as an

extended provenance m-semiring relation.

5. BP-Completeness for K-relations

In this section, we initiate our study of the completeness of query languages overK-relations in the sense
of Bancilhon and Paredaens [4, 18]. First, recall that Codd qualified a query language on standard relational
databases as complete if its expressive power is at least that of the relational calculus [8]. Bancilhon [4]
and Paredaens [18] independently provided a language-independent characterization of completeness. This
characterization, now known as BP-completeness, can be stated as follows: a relation T is the result of

12



S1D

A B
a a 2
b b 2

S2D

A B
a a 1
b b 2

S3D
A B
b b 2

S4D

A B
a a 1
b b 1

S5D

A B
a a 2
b b 1

Figure 6: Example KN-relations.

a generic relational algebra query applied to a database S if and only if (i) the active domain of T is
included in the domain of S ; and (ii) every automorphism of S is also an automorphism of T . In fact,
Paredaens [18] observed that once inequality conditions are allowed in the selection predicate, one does not
require difference in the relational algebra to be BP-complete.

Recall that a generic query is one which is oblivious to the constants appearing in the relation, i.e., for
any permutation � of the domain D, we have that Q.�.R//D�.Q.R//. Furthermore, an automorphism
of a relation R is a permutation � of D that leaves R invariant, i.e., for any Nt 2R, �.Nt /2R. Hence, in-
tuitively, the set of automorphisms of a relation S , denoted by Aut.S/, allows to identify values that are
“indistinguishable” for the relation, i.e. values that can be switched without changing the relation itself.

In order to study BP-completeness in the setting of K-relations, we first need to define the notion of
automorphism of a K-relation. Given that K-relations are annotated relations, by analogy to the case of
standard relations, K-relations should allow to identify values in the support that can be switched without
changing neither the tuples, nor the respective tuples annotations. That is, apart from being an automorphism
of the underlying relational database, an automorphism of a K-relation should additionally preserve the
semiring values associated with the tuples. Hence, formally, the set of automorphisms of R, denoted by
AutK.R/, is defined as

AutK.R/Df� j� 2Aut.supp.R// and R.�.Nt //DR.Nt /;8Nt 2Dng:

Example 12. Consider the relations given in Figure 6 and assume that DDfa;bg. When con-
sidering the underlying standard relations, i.e., ignoring the annotations, we have that Aut.S1/D
Aut.S2/DAut.S4/DAut.S5/Df.a 7!a;b 7!b/; .a 7!b;b 7!a/g and Aut.S3/Df.a 7!a;b 7!b/g. When
viewed as KN-relations, however, with the multiplicities of each tuple shown in the last column, we
have that AutK.S1/DAutK.S4/Df.a 7!a;b 7!b/; .a 7!b;b 7!a/g, AutK.S2/DAutK.S5/Df.a 7!a;b 7!

b/g and finally, AutK.S3/Df.a 7!a;b 7!b/g.

The set of K-relations that are preserved by AutK.R/, denoted by InvD.R/, is defined as:

InvD.R/DfS jadom.S/�adom.R/;AutK.R/�AutK.S/g:

Example 13. Consider again the relations given in Figure 6. From the definition above, it follows that
InvD.S1/D InvD.S4/� InvD.S2/D InvD.S5/ and moreover, InvD.S3/� InvD.Si / for i 2f2;5g. In particu-
lar, S32 InvD.Si / for i 2f2;5g.

Finally, the expressiveness of a query language can be described in terms of the “information” that can
be deduced from a K-relation using queries in that query language. Following Paredaens [18] we define:
Let Q be a query language and R a K-relation, then the basic information of R with respect to Q is the set
of K-relations:

BI.R;Q/DfS jQ.R/DS for some generic query Q2Qg:

Finally, BP-completeness links the notions of basic information and invariant relations together:

Definition 2. A query language Q is BP-complete if BI.R;Q/D InvD.R/ for all K-relations R.

13



It is worth noting that the above definitions coincide with the standard notions in the relational setting under
the set semantics, i.e., when considering KDKB.

We first study BP-completeness for RACK . A straightforward induction on the structure of queries in
RACK shows that the inclusion of BI.R;RACK /� InvD.R/ holds for any semiring K and K-relation R:

Lemma 1. For any semiring K, any Q2RACK and any K-relation R, we have that (i) adom.Q.R//�
adom.R/ and (ii) AutK.R/�AutK.Q.R//.

The other direction, i.e., whether InvD.R/�BI.R;RACK / holds for any semiring K and K-relation R is
not true. Indeed, a counterexample can be found for the semiring KN.

Proposition 4. There exists a semiring K such that RACK is not BP-complete on K-relations.

Proof. Let K be the semiring KN and consider the relations S1 and S4 in Figure 6. From Example 13
we know that S42 InvD.S1/. However, it is easily verified, by induction on the structure of queries, that
for every generic query Q2RACK , Q.S1/ is either: (i) empty, or (ii) the empty tuple, or (iii) such that it
contains only tuples having even multiplicity. In other words, S4 cannot be the result of a generic query in
RACK , i.e. S4 62BI.S1;RACK /.

In fact, the counterexample in the previous proof shows that more expressive power is needed to make
RACK BP-complete for the semiring KN. It is easy to see that considering the language RACK .ı/ obtained
by adding constant annotation operators to RACK , resolves the previous counterexample for KN. Indeed,
S4Dı1.S1/ and therefore S42BI.S1;RACK .ı// for KN. It turns out, however, that the query language
RACK .ı/ is still not BP-complete for arbitrary finitely generated semirings.

Proposition 5. There exists a finitely generated semiring K such that RACK .ı/ is not BP-complete on K-
relations.

Proof. Let K be the semiring KN and consider the relations S2 and S5 in Figure 6. From Example 13 we
know S52 InvD.S2/. It is easily verified, however, that for any generic queryQ2RACK .ı/, the query result
Q.S2/ satisfies the property that for any two tuples Nt1 and Nt2 inQ.S2/, Nt1 occurs with less or equal multiplic-
ity than Nt2 if and only if Nt1 contains a less or equal number of b’s than Nt2. Hence, S5 62BI.S2;RACK .ı//.

The counterexample in the previous proof can, however, be resolved when considering RACK .n; ı/
instead of RACK .ı/. Indeed, it is easily verified that for the m-semiring KND.N;C;�; :�;0;1/,

S5D...ı1.S2/[ı1.S2//nS2/[ı1.S2/:

In other words, in this case, we have that S52BI.S2;RACK .n; ı//.
At this point, one may wonder whether the extension of RACK with difference alone, i.e., RACK .n/

results in a BP-complete language over arbitrary m-semirings. The proof of Proposition 4, however, carries
through for RACK .n/. Hence, RACK .n/ is not BP-complete for arbitrary m-semirings.

We next show that the factRACK .n; ı/ resolves both counterexamples given in the proofs of Propostion 4
and 5 is not a coincidence.

Theorem 1. The query language RACK .n; ı/ is BP-complete on K-relations for all finitely generated m-
semirings K.

14



Proof. We first observe that Lemma 1 extends to RACK .n; ı/ for any finitely generated m-semiring K
and any K-relation R. Indeed, a straightforward induction on the queries in RACK .n; ı/ shows that
BI.R;RACK .n; ı//� InvD.R/ for any K-relation R.

For the opposite direction, i.e., given a K-relation R, whether InvD.R/�BI.R;RACK .n; ı// holds, we
show that for any K-relation S 2 InvD.R/, there exists a generic query Q2RACK .n; ı/ such that Q.R/DS .
In other words, we show that S 2BI.R;RACK .n; ı//.

Let R and S be K-relations and assume that S 2 InvD.R/. The desired query Q2RACK .n; ı/ such that
Q.R/DS is constructed in a number of steps:

First, we define a query QAut2RACK .n; ı/ such that QAut.R/DAutK.R/. Strictly speaking, QAut.R/

returns permutations of adom.R/ instead of permutation of D. This, however, is sufficient for our pur-
pose since adom.S/�adom.R/. More specifically, let .a1; : : : ;an/ be a tuple that represents all values in
adom.R/. Then QAut.R/ consists of all tuples .b1; : : : ;bn/2adom.R/n such that the mapping �.ai /Dbi ,
for iD1; : : : ;n, is an automorphism of R, i.e., � 2AutK.R/. Observe that .a1; : : : ;an/ is always present
in QAut.R/ since it corresponds to the trivial automorphism of R. The query QAut.R/ is constructed as
follows. Assume that supp.R/DfNt1; : : : ; Ntpg and denote the corresponding K-values by `iDR.Nti /, for
iD1; : : : ;p. For iD1; : : : ;p, we construct the following queries:

� Q`i
: A query such that Q`i

.R/.Nt /D`i for all Nt 2supp.R/ and Q`i
.R/.Nt /D0 otherwise. This query

can be expressed inRACK .n; ı/ using the constant annotation operators; Indeed, these operators allow
to generate arbitrary K-values and assign them to tuples in a relation. In particular, one can assign
each tuple in R the constant value `i .

� QD`i
: A query such that QD`i

.R/.Nt /D`i if R.Nt /D`i and QD`i
.R/.Nt /D0 otherwise. That is, this

query extracts all tuples Nt from R that satisfy R.Nt /D`i . This query is expressible in RACK .n; ı/.
Indeed, we claim that QD`i

D.RnQ`i 6�
/nQ 6�`i

, where Q`i 6�
DR‰Q1.Q`i

.R/nR/ and Q6�`i
D

R‰Q1.RnQ`i
.R//. Here,Q`i

is the query previously constructed andQ1 is a similar query except
that it replaces all semiring values of the tuples with the unit value 1 in K instead of with `i . To
show the correctness of this query we first observe that R.Nt /D`i iff both R.Nt /�`i and `i �R.Nt /.
This follows from the fact we consider m-semirings for which the natural order � is, by assumption,
a partial order. Consider first the query Q`i 6�

. It is easily verified that Q`i 6�
.R/.Nt /DR.Nt / if `i 6�

R.Nt / and Q`i 6�
.R/.Nt /D0 otherwise. Similarly, Q 6�`i

.R/.Nt /DR.Nt / if R.Nt / 6�`i and Q 6�`i
.R/.Nt /D0

otherwise. As a consequence, .RnQ`i 6�
/.Nt /DR.Nt / if `i �R.Nt / and .RnQ�`i

/.Nt /D0 otherwise.
From this and the definition of Q 6�`i

the correctness of QD`i
then follows.

� QsAut: A query that computes the automorphisms of domain values in adom.R/ of a K-relation in
which each tuple is assigned the same K-value. Observe that for such K-relations T , AutK.T /D
Aut.supp.T //. As a consequence, the query QsAut can be expressed in the same way as for the
classical relational case [18].

Finally, we obtain QAut.R/ by taking the intersection of QsAut.QD`i
.R// for iD1; : : : ;p. That is,

QAut.R/DQ
s
Aut.QD`1

.R//‰�� �‰QsAut.QD`p
.R//:

It is easily verified that QAut.R/DAutK.R/, as desired.

We next proceed as follows: First we define a query Qs in RACK .n; ı/ such that supp.Qs.R//Dsupp.S/,
i.e., Qs.R/ and S agree as standard relations; Second, we show how Qs can be modified into a query Q in
RACK .n; ı/ such that Q.R/DS , i.e.,Q.R/ and S also agree as K-relations.

15



� By assumption we have that adom.S/�adom.R/. Furthermore, recall that AutK.R/ contains a
tuple .a1; : : : ;an/ that represents all values in adom.R/. Let Ns2supp.S/. It is clear that Ns2
supp. Q�Ns.QAut.R///, where Q�Ns stands for an appropriate generalized projection. Recall that a general-
ized projection is a projection in which the same attribute can be repeated several times. This operator
can be simulated using the standard projection and join operator and therefore does not add to the ex-
pressive power of RACK .n; ı/. For instance, suppose that adom.R/Dfa;b;cg is represented by the
tuple .a;b;c/ in AutK.R/. Furthermore, assume that NsD.a;b;b/. Then Ns2supp. Q�1;2;2.QAut.R///.
By assumption we also have that AutK.R/�AutK.S/. As a consequence, for each Ns2supp.S/ we
have that supp. Q�Ns.Qaut.R///�supp.S/. In other words, supp.S/D

S
Ns2S supp. Q�Ns.QAut.R///. Fi-

nally, we observe that for any two tuples Ns; Nt 2S , if Ns2supp. Q�Nt .QAut.R/// then supp. Q�Nt .QAut.R///D

supp. Q�Ns.QAut.R///. As a consequence, supp.S/ can be partitioned as

supp.S/Dsupp. Q�Ns1.QAut.R///]� � �]supp. Q�Nsr .QAut.R///;

for some tuples Nsi 2supp.S/, iD1; : : : ; r . We define QsD
Sr
iD1 Q�Nsi .QAut.R//. Clearly this query

satisfies supp.S/Dsupp.Qs.R//.

� We next show how to modify Qs into Q such that SDQ.R/. Observe that it only remains to cor-
rectly set the K-values of the tuples in Qs.R/. For this, we observe that since AutK.R/�AutK.S/,
we have that for each iD1; : : : ; r , all tuples in supp. Q�Nsi .Qaut.R/// have the same K-value in
S , say �i . We therefore use the constant annotation operators in RACK .n; ı/ to set, for each
iD1; : : : ; r , the K-value of the tuples in Q�Nsi .Qaut.R/// to �i . It is now easily verified that the query
QDQ�1

. Q�Nsi .Qaut.R////[� � �[Q�r
. Q�Nsr .Qaut.R//// satisfiesQ.R/DS , i.e.,Q is the desired query.

It is interesting to observe that in case of KBD.B;_;^;	; false; true/, i.e., when considering the stan-
dard relational algebra with the set semantics, the construction of Q in the previous proof reduces to the
construction given by Paredaens [18]. More specifically, neither difference nor duplicate elimination are
needed in this case to obtain BP-completeness, in accordance with the results in [18].

Example 14. Consider the relations S3 and S5 given in Figure 6. When viewed asKN-relations, Theorem 1
guarantees the existence of a queryQ inRACK .n; ı/ such thatQ.S5/DS3. Although the query constructed
in the proof of Theorem 1 is such a query, this query is by no means the unique (and most elegant) query with
this property. Indeed, it is easily verified that S3D..ı1.S5/[ı1.S5//nS5/[..ı1.S5/[ı1.S5//nS5/.

6. Conclusion

In view of the lack of expressive power ofRACK , we extendedRACK with a difference operator, resulting
in the query language RACK .n/, constant annotation operators ı, resulting in the query language RACK .ı/,
and both operators resulting in RACK .n; ı/. We proposed extended provenance semirings for RACK .n/
and RACK .n; ı/ and established crucial properties of the newly defined query languages, in particular the
factorization property. This naturally extends previous work on the positive relational algebra. Finally, we
initiated the study of BP-completeness of query languages on K-relations. In particular, we showed that
for some semirings K, RACK is not BP-complete. Our main result is that RACK .n; ı/ is BP-complete on
K-relations for a general class of semirings K. More specifically, RACK .n; ı/ is BP-complete for semirings
that can be extended with a monus operator and that are finitely generated. This class of semirings covers
most of the semirings considered in the database literature so far. We also showed that neither the difference
nor duplicate elimination can be omitted while still retaining BP-completeness.

16



In future work, we plan to find an exact characterization of when two K-relations are related by means
of a query in RACK and establish the complexity of deciding this problem. Also, it is interesting to study
the semantics of RACK .n; ı/ for provenance models different than the why- and how-provenance. Finally,
in the spirit of Codd, it is challenging to find a characterization of the completeness ofRACK and extensions
thereof in terms of first-order logic.

Acknowledgments

We would like to thank Leonid Libkin for helpful discussions, Jan Van den Bussche, Todd J. Green and
Val Tannen for comments on a preliminary version of this paper.

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.
[2] A. V. Aho and J. D. Ullman. Universality of data retrieval languages. In POPL ’79, pages 110–119. ACM, 1979.
[3] K. Amer. Equationally complete classes of commutative monoids with monus. Algebra Universalis, 18(1):129–131, 1984.
[4] F. Bancilhon. On the completeness of query languages for relational data bases. In MFCS ’79, volume 64 of Lecture Notes

in Computer Science, pages 112–123. Springer, 1978.
[5] P. Buneman, S. Khanna, and W. C. Tan. Why and where: A characterization of data provenance. In ICDT ’01, volume 1973

of Lecture Notes in Computer Science, pages 316–330. Springer, 2001.
[6] P. Buneman and W. C. Tan. Provenance in databases. In SIGMOD ’07, pages 1171–1173. ACM, 2007.
[7] S. Burris and H. Sankappanavar. A course in universal algebra. Springer-Verlag, 1981.
[8] E. F. Codd. Relational completeness of data base sublanguages. IBM Research Report RJ 987, San Jose, California, 1972.
[9] Y. Cui, J. Widom, and J. L. Wiener. Tracing the lineage of view data in a warehousing environment. ACM TODS, 25(2):179–

227, 2000.
[10] N. Fuhr and T. Rölleke. A probabilistic relational algebra for the integration of information retrieval and database systems.

ACM Trans. Inf. Syst., 15(1):32–66, 1997.
[11] T. J. Green. Containment of conjunctive queries on annotated relations. In ICDT, pages 296–309, 2009.
[12] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance semirings. In PODS ’07, pages 31–40. ACM, 2007.
[13] T. J. Green and V. Tannen. Models for incomplete and probabilistic information. IEEE Data Eng. Bull., 29(1):17–24, 2006.
[14] M. Henriksen and J. R. Isbell. Lattice-ordered rings and function rings. Pacific J. Math., 12:533–565, 1962.
[15] T. Imieliński and J. W. Lipski. Incomplete information in relational databases. J. ACM, 31(4):761–791, 1984.
[16] L. Libkin and L. Wong. Query languages for bags and aggregate functions. J. Comput. Syst. Sci., 55(2):241–272, 1997.
[17] F. Montagna and V. Sebastiani. Equational fragments of systems for arithmetic. Algebra Universalis, 46(3):417–441, 2001.
[18] J. Paredaens. On the expressive power of the relational algebra. Inf. Process. Lett., 7(2):107–111, 1978.
[19] E. Zimányi. Query evaluation in probabilistic relational databases. In Selected papers from the international workshop on

Uncertainty in databases and deductive systems, pages 179–219. Elsevier, 1997.

17


