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The relational model has recently been extended to so-called K-relations in which tuples
are assigned a unique value in a semiring K. A query language, denoted by R A+

K , similar
to the classical positive relational algebra, allows for the querying of K-relations. In this
paper, we define more expressive query languages for K-relations that extend R A+

K
with the difference and constant annotations operations on annotated tuples. The latter are
natural extensions of the duplicate elimination operator of the relational algebra on bags.
We investigate conditions on semirings under which these operations can be added to
R A+

K in a natural way, and establish basic properties of the resulting query languages.
Moreover, we show how the provenance semiring of Green et al. can be extended to
record provenance of data in the presence of difference and constant annotations. Finally,
we investigate the completeness of R A+

K and extensions thereof in the sense of Bancilhon
and Paredaens.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Annotated relations appear in various contexts in the database literature. The querying of such relations involves the
generalization of the relational algebra to perform corresponding operations on the annotations. Recently, a general data
model (referred to as K-relations) has been proposed for annotated relations in which tuples in a relation are assigned a
unique value coming from a semiring K [12]. By varying the semiring K, K-relations can model the standard relational
model with both set [1] and bag semantics [16], incomplete databases (positive Boolean c-tables to be more precise) [13,
15] and probabilistic databases [10,19]. Moreover, operations that queries in the relational algebra perform on tuples can
be naturally extended to operations on annotated tuples. More specifically, operations on tuples naturally translate into
the algebraic operations (sum and product) in semirings. This leads to the definition of the positive relational algebra on
K-relations, or RA+

K for short [12].
The generality of semirings further allows for the definition of new data models which are of particular interest for

the study of provenance of data [6,12]. A notable example is the provenance semiring that allows to record provenance
information of data obtained as result of positive relational algebra queries. A crucial property of this semiring, named
factorization property, is that it is the most general semiring. That is, for any semiring K, to evaluate queries in RA+

K on
K-relations it is sufficient to know how to evaluate these queries on the provenance semiring.

In this paper, we study query languages for K-relations. Indeed, while some basic properties of RA+
K are already estab-

lished in [12], less is known about its expressive power. Furthermore, it was left open in [12] how to incorporate difference
in RA+

K to get a full relational algebra on K-relations. Hence, our goal is twofold. On one hand, we define more expressive
query languages for K-relations that extend RA+

K with operations on annotated tuples that are natural extensions of the
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difference and duplicate elimination operations of the standard relational algebra. On the other hand, we investigate the
expressive power of RA+

K and extensions thereof. In particular, we investigate the completeness of these query languages.
Recall that Codd qualified a query language on relational databases as complete if its expressive power is at least that of the
relational calculus [8]. Bancilhon [4] and Paredaens [18] independently provided a language-independent characterization of
completeness. This characterization, known as BP-completeness, can be stated as follows: a relation R2 is the result of a
relational algebra query applied to a database R1 if and only if (i) the active domain of R2 is included in the active domain
of R1; and (ii) every automorphism of R1 is also an automorphism of R2.

The contributions of the paper can be summarized as follows:

• First, we define the query languages RA+
K(\), RA+

K(δ) and RA+
K(\, δ), obtained by extending RA+

K with difference,
constant annotations, and with both difference and constant annotations, respectively. Here, constant annotations corre-
spond to a family of operators that assign annotations to tuples among a finite set of elements of the semiring, that
are the semiring generators. Note, in particular, that extending RA+

K with these operators forces to restrict the class of
semirings under consideration. Specifically, on one hand, adding difference requires the definition of a monus operator
on the underlying semiring, which might not always be possible. We call m-semirings the class of semirings admitting
a monus operator. On the other hand, constant annotations require the underlying semiring to be finitely generated, i.e.,
to have a finite set of semiring generators. Interestingly, we observe that most semirings encountered in the literature
are indeed finitely generated m-semirings.

• Second, we show how to extend the provenance semiring of [12], so that it can be used to record the provenance of
data obtained as result of queries in RA+

K(\), RA+
K(δ) and RA+

K(\, δ). We show that, similarly to RA+
K , the extended

provenance semirings also satisfy the factorization property.
• Finally, we naturally extend the notion of BP-completeness to the setting of K-relations and investigate whether query

languages on K-relations proposed so far are BP-complete. In particular, we show that none of the languages RA+
K ,

RA+
K(\) and RA+

K(δ) is BP-complete on K-relations for arbitrary semirings, m-semirings, and finitely generated semir-
ings, respectively. In contrast, RA+

K was shown to be BP-complete in the standard relational case [4,18]. We show,
however, that RA+

K(\, δ) is BP-complete on K-relations for arbitrary finitely generated m-semirings K.

Organization. The paper is organized as follows. After recalling in Section 2 the basic notions of K-relations and the
positive query language RA+

K , we present in Section 3, the query languages RA+
K(\), RA+

K(δ) and RA+
K(\, δ), obtained by

extending RA+
K with difference and constant annotations. Then, in Section 4, we discuss the relationship between provenance

and K-relations, and show how the provenance semiring can be extended to record provenance for RA+
K(\), RA+

K(δ) and
RA+

K(\, δ). Section 5 discusses BP-completeness of RA+
K and extensions thereof. We conclude the paper in Section 6.

2. Preliminaries

In this section we recall the notions of K-relation and the query language RA+
K that were introduced by Green et al.

[12]. Then, we conclude the section by discussing an important property of RA+
K , named homomorphism property.

2.1. K-relations

A (commutative) semiring K = (K,⊕,⊗,0,1) is an algebraic structure consisting of a set K equipped with two binary
operations, i.e., sum (⊕) and product (⊗), such that (K,⊕,0) is a commutative monoid with identity element 0; (K,⊗,1)

is a commutative monoid with identity element 1; the operation ⊗ distributes over ⊕; and finally 0 is an annihilating
element. Recall that a monoid consists of a set equipped with a binary operation that is associative and that has an identity
element. Furthermore, the set is closed under the binary operation, i.e., the result of the operation on any two elements in
the set belongs to the set as well.

Example 1. It is easily verified that the following structures are semirings: (1) the Boolean semiring KB = (B,∨,∧, false, true)
with B = {true, false}; (2) the natural numbers semiring KN = (N,+,×, 0,1); (3) the positive Boolean expressions semi-
ring Kc-table+ = (PosBool(X),∨,∧, false, true), where PosBool(X) is the set of all Boolean expressions (over a finite set of
variables X ) that involve only disjunction, conjunction, and constants for true and false and in which any two equivalent
expressions are identified; and (4) the probabilistic semiring Kprob = (P (Ω),∪,∩,∅,Ω), where Ω is a finite set of events
and P (Ω) stands for the powerset of Ω .

To formally introduce semirings into the relational data model, we next recall the definition of K-relations (see [12]
for more details). Let D be an (infinite) domain of data values and let U be a finite set of attributes. We define an
U -tuple t̄ to be a mapping from U → D. The set of U -tuples is denoted by U -Tup. Let K = (K,⊕,⊗, 0,1) be a semiring.
A K-relation R over U is then a function R : U -Tup → K. The support of a K-relation R , denoted by supp(R), is defined as
supp(R) = {t̄ | R(t̄) �= 0}; it is the standard relational database underlying R . The active domain of a K-relation R , denoted by
adom(R), is defined as the set of data values (in D) occurring in supp(R).
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R1 =
drink kind origin

Montefalco wine Italy true
Pinot grappa Italy true

R2 =
drink kind origin

Stella beer Belgium 2
Montefalco wine Italy 1
Pinot grappa Italy 1

R3 =
drink kind origin

Stella beer Belgium party
Montefalco wine Italy tasting
Pinot grappa Italy party ∨ tasting

R4 =
drink kind origin

Stella beer Belgium P
Montefalco wine Italy T
Pinot grappa Italy P ∪ T

Fig. 1. Examples of K-relations.

As already mentioned in the introduction, K-relations have recently been used to unify a variety of data models, includ-
ing the standard relational model with both set and bag semantics, incomplete databases (positive Boolean c-tables to be
more precise) and probabilistic databases [12].

Example 2. Consider the set of attributes U = {drink, kind,origin}. Fig. 1 shows K-relations over U , for the four different
semirings described in Example 1. Strictly speaking, a K-relation assigns a semiring value to every possible tuple. In Fig. 1
we only show the support of the K-relations. The semiring value associated with each tuple is shown in the last column.
(1) R1 is a KB-relation and corresponds to a standard relational table with set semantics; specifically, the standard relational
table corresponding to R1 contains the tuples t̄m = (Montefalco,wine, Italy) and t̄ p = (Pinot,grappa, Italy); (2) R2 is a KN-
relation and corresponds to a relational table with bag semantics; the bag corresponding to R2 contains two tuples t̄s =
(Stella,beer,Belgium), one tuple t̄m and one tuple t̄ p ; (3) R3 is a Kc-table+ and corresponds to a positive Boolean c-table
[13]; Boolean c-tables are a restricted form of c-tables [15] in which tuples are annotated with conditions that can be
any Boolean expression and variables can only take Boolean values and appear in conditions (not in the attributes); positive
Boolean c-tables are Boolean c-tables in which annotation are positive Boolean expressions; hence, the c-table corresponding
to R3 represents a set of possible worlds, according to the closed-world semantics as defined in [15]; finally, (4) R4 is a
Kprob-relation and corresponds to a probabilistic event table introduced in [10,19]; assuming that both P and T denote
probabilistic events, then R4 corresponds to a probabilistic event table stating that the tuple t̄s occurs with the probability
of event P , the tuple t̄m with probability of event T and the tuple t̄ p with probability of the event P ∪ T .

The real strength of K-relations becomes apparent, however, when considering provenance information. Indeed, the
flexibility of semirings allows for the definition of new provenance models at different levels of granularity. We will illustrate
this in more detail in Section 4 after we describe query languages on K-relations.

2.2. The query language RA+
K

The introduction of semirings in the relational model requires the redefinition of the semantics of the standard relational
algebra operators. Recall that the relational algebra consists of projection, selection, union, renaming and difference [1].
When difference is omitted, one obtains the so-called positive fragment of the relational algebra or positive algebra for
short. In [12], the semantics of the positive algebra on K-relations has been introduced. We next recall the definition of the
positive relational algebra on K-relations, denoted by RA+

K . As before, K = (K,⊕,⊗,0,1) denotes a semiring. Then RA+
K

includes the following operators:

empty relation For any set of attributes U , we have ∅ : U -Tup → K such that ∅(t̄) = 0 for any t̄ .
union If R1, R2 : U -Tup → K then R1 ∪ R2 : U -Tup → K is defined by

(R1 ∪ R2)(t̄) = R1(t̄) ⊕ R2(t̄).

projection If R : U -Tup → K and V ⊆ U then πV (R) : V -Tup → K is defined by

(πV R)(t̄) =
⊕

t̄=t̄′ on V and R(t̄′) �=0

R(t̄′).

selection If R : U -Tup → K and the selection predicate P maps each U -tuple to either 0 or 1 depending on the (in-)equality
of attribute values, then σP(R) : U -Tup → K is defined by

(
σP(R)

)
(t̄) = R(t̄) ⊗ P(t̄).

natural join If Ri : Ui-Tup → K, for i = 1,2, then R1 �� R2 is the K-relation over U1 ∪ U2 defined by

(R1 �� R2)(t̄) = R1(t̄) ⊗ R2(t̄).

renaming If R : U -Tup → K and β : U → U ′ is a bijection then ρβ(R) is the K-relation over U ′ defined by

(ρβ R)(t̄) = R
(
t̄ ◦ β−1).
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It is observed in [12] that the semantics of RA+
K coincides with standard positive relational algebras for various semi-

rings encountered in the database literature, i.e., for KB (set semantics) [1], KN (bag semantics) [16], Kc-tables+ (positive
Boolean c-tables under closed world semantics) [13,15] and Kprob (probabilistic event tables) [10,19].

2.3. The homomorphism property of RA+
K

A desirable property of query languages is that they provide the user with a conceptual interface of the underlying
data, independent of how exactly that data is stored and without interpreting the exact data objects [2]. In this spirit,
intuitively, the homomorphism property ensures that the RA+

K operations do not interpret the values of the underlying
semiring. Formally, let K = (K,⊕K,⊗K,0K,1K) and K′ = (K′,⊕K′ ,⊗K′ ,0K′ ,1K′ ) be two semirings and let h : K → K

′ be
a mapping. It is shown in [12] that the transformation from K-relations to K′-relations induced by h, which we also
denote by h, satisfies the property that Q (h(R)) = h(Q (R)) for any Q ∈ RA+

K iff h is a semiring homomorphism [12].
That is, h satisfies the following properties: h(0K) = 0K′ , h(1K) = 1K′ , and for any x, y ∈ K, h(x ⊕K y) = h(x) ⊕K′ h(y) and
h(x ⊗K y) = h(x) ⊗K′ h(y).

3. The query languages RA+
K(\), RA+

K(δ) and RA+
K(\, δ)

In this section we provide three extensions of RA+
K : First, we extend RA+

K with a difference operator (\) resulting in
the algebra RA+

K(\) over K-relations. Second, we extend RA+
K with (a family of) operators called constant annotations (δ).

These can be thought of as a generalization of the duplicate elimination operator, an operator that is normally included in
query languages over bags. The resulting query language is denoted by RA+

K(δ). Finally, we extend RA+
K with both the

difference and constant annotations, resulting in RA+
K(\, δ).

3.1. The query language RA+
K(\)

We first extend RA+
K with a difference operator. More specifically, we identify a large class of semirings that can be

equipped with a so-called monus operator �. The addition of the monus operator on semirings will then allow to extend
RA+

K with a difference operator (\). Finally, we show that RA+
K(\) satisfies a homomorphism property similar to RA+

K .

3.1.1. Semirings with monus
We follow the standard approach for introducing a monus operator, denoted by �, into additive commutative monoids

[3]. As we will see shortly, when introducing � one has to pose some restrictions on the class of semirings. More specifically,
we first assume that K is naturally ordered. That is, the quasi-order x � y on K defined as x � y iff there exists a z ∈ K such
that x ⊕ z = y, must define a partial order on K. This means that apart from being reflexive and transitive, � should also be
antisymmetric.

It is easily verified that all examples of semirings described in this paper are naturally ordered. We additionally require
the following property (†): for each pair of elements x, y ∈ K, the set {z ∈ K | x � y ⊕ z} has a smallest element. Note that
the assumption that � defines a partial order guarantees that {z ∈ K | x � y ⊕ z} has a unique smallest element, provided
that it exists.

Definition 1. Let K be a naturally ordered semiring that satisfies property (†). For any x, y ∈ K, we define the monus x � y
to be the smallest element z such that x � y ⊕ z. A semiring K which can be equipped with a monus operator � is called
a semiring with monus or m-semiring for short.

A classical result in theory of additive commutative monoids with monus, or CMM for short, identifies two “natural”
classes of CMMs [3]. Indeed, Amer shows that there are only two equationally complete classes of CMMs in the variety of
CMMs. These are respectively Boolean algebras (or prime ideals thereof), for which the monus behaves like set difference,
and so-called positive cones of lattice-ordered commutative groups, for which the monus behaves like the truncated minus
of the natural numbers. Translated to the setting of m-semirings, this dichotomy translates to m-semirings that are Boolean
algebras on the one hand, and m-semirings that are the positive cone of a lattice-ordered commutative ring on the other
hand [14,17]. In the following example, we revisit the semirings described in Example 1 and discuss their extension to
m-semirings.

Example 3. One can easily verify that the semirings described in Example 1 in Section 2 all satisfy property (†). Hence,
they can all be extended to m-semirings. Moreover, it is easily verified that they all fall in one of the two natural classes
of m-semirings described above, except for Kc-table+ . More specifically, KB and Kprob are both Boolean algebras and the
monus behaves like set difference. On the other hand, KN is the positive cone of the ring Z, i.e., N = {n | n ∈ Z, 0 � n}.
Consequently, the monus on KN corresponds to the truncated minus, i.e., m � n = m −̇n which is defined as m − n if m > n
and 0 otherwise. Finally, the case of Kc-table+ is more subtle since the corresponding m-semiring is neither a Boolean algebra
nor the positive cone of a lattice-ordered ring. In fact, the semiring Kc-table+ = (PosBool(X),∨,∧, false, true) was defined
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in [12] for positive queries only and therefore only positive Boolean expressions over X were allowed. The original definition
of Boolean c-tables, however, does allow for arbitrary Boolean expressions [13]. Similar to general c-tables [15], the inclusion
of difference only makes sense under the closed-world semantics. Recall, however, that K-relations fully specify a relation
and hence correspond to the closed-world semantics. We therefore define the semiring Kc-table as (Bool(X),∨,∧, false, true),
where Bool(X) is the set of Boolean expressions over X in which any two equivalent expressions are identified. Then, each
Kc-table corresponds to the Boolean c-table representing a set of possible worlds under the closed-world semantics. Clearly,
Kc-table is a Boolean algebra. Furthermore, for any two expressions φ1, φ2 in Bool(X), we have that φ1 � φ2 is a Boolean
expression that is equivalent to φ1 ∧ ¬φ2, as expected.

It is not surprising that not every semiring can be extended to an m-semiring.

Example 4. From the definition of m-semiring it follows that a semiring cannot be extended to an m-semiring if the semiring
is not naturally ordered or it is naturally ordered but property (†) fails to hold. For instance, consider the semiring KR =
(R,+,×, 0,1). Clearly, r � s for any two elements r, s ∈ R and hence � is not antisymmetric. Therefore, r � s cannot be
defined in KR . Consider next the semiring KRmin = (R ∪ {+∞}, min,+,+∞,0) where min{x, y} returns the minimum of x
and y according to the usual ordering on R ∪ {+∞}. It is easily verified KRmin is naturally ordered. Indeed, if there exists a
z such that min{x, z} = y and if in addition there exists a z′ such that min{y, z′} = x, then it follows that x = y. However, for
any x, y ∈ R ∪ {+∞}, the set {z ∈ R ∪ {+∞} | x � min{y, z}} is equal to {z ∈ R ∪ {+∞} | ∃z′ min{x, z′} = min{y, z}}. Clearly,
this is not bounded below since one can take arbitrary small values for z. Hence, although KRmin is naturally ordered, it
does not satisfy property (†) and the monus operator cannot be defined in this semiring.

3.1.2. The difference operator
We are now ready to extend RA+

K with the difference operator. Let K be an arbitrary m-semiring. Then, we obtain
RA+

K(\) by extending RA+
K with the operator

difference If R1, R2 : U -Tup → K then R1 � R2 : U -Tup → K is defined by

(R1 \ R2)(t) = R1(t) � R2(t).

As a sanity check, from Example 3, it immediately follows that RA+
K(\) coincides with the (full) relational algebra

on relational databases for KB (set semantics), and the bag algebra with the monus operator for KN [16]. Furthermore,
in the case of Kc-table it coincides with the semantics of the relational algebra on Boolean c-tables under closed world
semantics [15] and for Kprob it coincides with the semantics of the relational algebra provided on probabilistic event tables
[10,19].

3.1.3. The homomorphism property for RA+
K(\)

When looking at m-semirings the notion of semiring homomorphism needs to be revisited. Specifically, let K = (K,⊕K,

⊗K,�K,0K,1K) and K′ = (K′,⊕K′ ,⊗K′ ,�K′ ,0K′ ,1K′ ) be two m-semirings. A mapping h : K → K
′ is an m-semiring homo-

morphism if it is a semiring homomorphism and, furthermore, h preserves �, i.e., for any two elements x, y ∈ K we have
that h(x �K y) = h(x) �K′ h(y). The following is easily verified:

Proposition 1. Let K and K′ be two m-semirings. Let h : K → K
′ be a mapping. Then, for every query Q in RA+

K(\) and for ev-
ery R, the transformation induced by h from K-relations to K′-relations commutes, i.e., Q (h(R)) = h(Q (R)), if and only if h is an
m-homomorphism.

Proof. We first prove that if h is an m-semiring homomorphism, then for every Q in RA+
K(\) and for every R , Q (h(R)) =

h(Q (R)). We proceed by induction on the structure of queries in RA+
K(\). Since RA+

K is embedded in RA+
K(\) and since

every m-semiring homomorphism is a semiring homomorphism, by the homomorphism property for RA+
K , we only need to

treat the case of Q having the form Q = Q 1 \ Q 2 and can refer to [12] for the other cases. By the induction hypothesis, we
have that Q (h(R)) = Q 1(h(R)) \ Q 2(h(R)) = h(Q 1(R)) \ h(Q 2(R)). Furthermore, since h is an m-homomorphism and by the
definition of \ we have that h(Q 1(R)(t̄))�K′ h(Q 2(R)(t̄)) = h(Q 1(R)(t̄)�K Q 2(R)(t̄)) for every t̄ . Hence, Q (h(R)) = h(Q (R)).

Conversely, let h be a mapping from K to K
′ . We next show that if for every Q in RA+

K(\) and for every R , Q (h(R)) =
h(Q (R)), then it follows that h is an m-semiring homomorphism. Since RA+

K is embedded in RA+
K(\), by the result for

RA+
K , h is a semiring homomorphism. Now, suppose by contradiction that h is not an m-semiring homomorphism. Let Q̄

and R̄ be such that Q̄ = (πA(σA=B(R̄))\πA(σA �=B(R̄)) and R̄ = {(a,a) �→ x, (a,b) �→ y} for a �= b and arbitrary x, y ∈ K. Then,
on one hand, Q̄ (h(R̄)) contains one tuple (a) associated with h(x) �K′ h(y). On the other hand, h(Q̄ (R̄)) contains one tuple
(a) associated with h(x �K y). Hence, from Q̄ (h(R̄)) = h(Q̄ (R̄)), it follows that for every x, y ∈ K, h(x)�K′ h(y) = h(x �K y).
Clearly, this contradicts the fact that h is not an m-semiring homomorphism. �
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3.2. The query language RA+
K(δ)

We next extend the positive algebra RA+
K on K-relations with a family of operators called constant annotations. These

operators are a generalization of the duplicate elimination operator present in most algebras over bags [16]. The intuition
behind these operators is that they are “forgetful”, i.e., they allow to replace all values of tuples in K-relations by some
constant value. Similar to RA+

K and RA+
K(\), we show that RA+

K(δ) satisfies a homomorphism property.

3.2.1. Constant annotations
When considering KN-relations it is common to include the duplicate elimination operator δ in the query language.

Intuitively, when δ is applied on a bag-relation, the result is a relation with the same support but in which each tuple is
counted only once. In the language of K-relations, δ(R)(t̄) = 1 for all t̄ in supp(R) and δ(R)(t̄) = 0 otherwise.

To introduce duplicate elimination in RA+
K on general K-relations, we restrict our attention to semirings K =

(K,⊕,⊗,0,1) that are finitely generated, i.e., every element in K can be written as a finite sequence of sums and prod-
ucts of a finite set of elements k1, . . . ,km in K, called generators of K. We denote a set of generators of K by Gen(K) and,
for convenience, assume it is minimal.

Example 5. The semirings considered so far are all finitely generated. Indeed, it is easily verified that Gen(B) = {true},
Gen(N) = {1}, Gen(Bool(X)) = X , and Gen(P (Ω)) = Ω . The two semirings KR and KRmin given in Example 4 are not
finitely generated since they consist of uncountably many elements.

We now formally define the notion of constant annotations. Given a finitely generated semiring K = (K,⊕,⊗,0,1) with
generators Gen(K) = {k1, . . . ,km}, we define the following set of constant annotation operators:

constant annotation If R : U -Tup → K and ki is a generator of K then δki : U -Tup → K is defined by
(
δki (R)

)
(t̄) = ki for each t̄ ∈ supp(R) and

(
δki (R)

)
(t̄) = 0 otherwise.

We denote by RA+
K(δ) the query language obtained by extending RA+

K with the constant annotation operators for
the semiring K and set of generators of K under consideration. Note that for some semirings, e.g., the Boolean semiring,
constant annotations do not add expressive power.

3.2.2. The homomorphism property for RA+
K(δ)

When considering the homomorphism property of queries in RA+
K(δ) one has to make the choice of generators in K and

K′ explicit. Let Gen(K) = {k1, . . . ,kn} and Gen(K′) = {l1, . . . , lm}. We say that a mapping h : K → K
′ is a generator preserving

semiring homomorphism from K to K′ if h is a semiring homomorphism and furthermore, h(Gen(K)) = Gen(K′). Given a
query Q ∈ RA+

K(δ), let h(Q ) be the query in RA+
K′ (δ) obtained by replacing each occurrence of δki by δh(ki) . Observe that

for generator preserving homomorphisms h, each δh(ki) is of the form δl j for some j = 1, . . . ,m. In other words, h(Q ) is
well-defined. The following is now easily verified:

Proposition 2. Let K and K′ be two semirings with generators Gen(K) and Gen(K′), respectively. Let h : K → K
′ be a mapping. Then,

for every query Q in RA+
K(δ) and for every R, h(Q )(h(R)) = h(Q (R)), if and only if h is a generator-preserving homomorphism from

K to K′ .

3.3. The query language RA+
K(\, δ)

Finally, we introduce the query language obtained by extending RA+
K with both the difference and constant annotations

operators. The resulting language is denoted by RA+
K(\, δ). It is easily verified that RA+

K(\, δ) satisfies the following
homomorphism property:

Proposition 3. Let K and K′ be two m-semirings with generators Gen(K) and Gen(K′), respectively. Let h : K → K
′ be a mapping.

Then, for every query Q in RA+
K(\, δ) and for every R, h(Q )(h(R)) = h(Q (R)) if and only if h is a generator-preserving m-semiring

homomorphism from K to K′ .

4. K-relations and provenance

Besides providing a general framework capturing many data models encountered in the literature, K-relations are partic-
ularly useful for tracking various kinds of provenance information [6,12]. We illustrate this with two examples: the lineage
semiring and the provenance semiring. We refer again to Green et al. [12,11] for more details concerning these and other
provenance models. In particular, in this section we recall how to compute the why- and how-provenance for positive
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R5 =
drink kind origin

Stella beer Belgium {x}
Montefalco wine Italy {y}
Pinot grappa Italy {z}

R7 =

drink kind

Stella beer {x}
Montefalco wine {y}
Montefalco grappa {y, z}
Pinot wine {y, z, v}
Pinot grappa {z}
Ardbeg whiskey {w}

R6 =
drink kind origin

Pinot wine France {v}
Ardbeg whiskey Scotland {w}

Fig. 2. The lineage semiring.

R̄5 =
drink kind origin

Stella beer Belgium x
Montefalco wine Italy y
Pinot grappa Italy z

R8 =

drink kind

Stella beer x2

Montefalco wine y2

Montefalco grappa yz
Pinot wine yz + v
Pinot grappa z2

Ardbeg whiskey w

R̄6 =
drink kind origin

Pinot wine France v
Ardbeg whiskey Scotland w

Fig. 3. The provenance semiring.

queries and present m-semirings that allow for computing provenance information in the presence of difference in the re-
lational algebra queries. We conclude this section by describing how to compute provenance in the presence of constant
annotations.

4.1. The lineage semiring

Lineage/why-provenance was defined in [5,9] as a way of relating the tuples in a query output to the tuples in the source
relations that contribute to them. Let X be a finite set representing the ids of the tuples in the source relations. Then, the
lineage semiring Klin = (P (X),∪,∪,∅,∅) can be used to represent and compute the why-provenance, as we illustrate in the
following example.

Example 6. Consider the Klin-relations R5, R6 shown in Fig. 2, where the set of source tuples ids is X = {x, y, z, v, w}. In
both R5 and R6 tuples are annotated with the singleton containing their respective id. Next, let Q (R ′, R ′′) be the following
query over the relations R ′ and R ′′ of schema U = {drink, kind,origin}:

Q (R ′, R ′′) = πdrink,kind(πdrink,origin R ′ �� πkind,origin R ′) ∪ πdrink,kind R ′′.

It is easily verified that R7 (see Fig. 2) is the query result Q (R5, R6). The Klin-values associated with the tuples in R7 now
provide their why-provenance. For example, they state that the tuple s̄p = (Pinot,wine) was obtained from the contribution
of the tuples in R5 and R6 identified by y, z and v . Note, however, that why-provenance does not provide any information
on the how-provenance, e.g., on the way the tuple s̄p was obtained. In particular, it is not possible to infer from the why-
provenance information that s̄p can be obtained either from joining the tuples identified by y and z together or from the
tuple identified by v alone.

4.2. The provenance semiring

In order to overcome the limitations of why-provenance a more powerful provenance semiring was proposed in [12]. This
semiring allows to represent and compute the how-provenance of tuples in the query result. More precisely, the (positive
algebra) provenance semiring is defined as Kprov = (N[X],+,×, 0,1), where X is a set of source tuple ids and N[X] consists
of all polynomials with variables taken from X and with coefficients in N. Hence, Kprov-relations consist of tuples that are
annotated with polynomials. These polynomials are to be interpreted as symbolic expressions over the source tuples ids
that describe how the tuples were obtained from the source. This is illustrated in the following example:

Example 7. Consider the Kprov-relations R̄5, R̄6 and R8 shown in Fig. 3. It can be easily checked that R8 is the query result
Q (R̄5, R̄6) for the query Q given in Example 6. Consider again the tuple s̄p = (Pinot,wine). The Kprov-value of s̄p is the
polynomial R8(s̄p) = yz + v and states that s̄p can be obtained either by joining together the tuples in R̄5 and R̄6 identified
by y and z or by simply using the tuple in R̄6 identified by v . On the contrary, the tuple s̄m = (Montefalco,grappa) can only
be obtained by joining together the tuples identified by y and z. Clearly, Kprov-relations provide more information about
the provenance of tuples than Klin-relations.



180 F. Geerts, A. Poggi / Journal of Applied Logic 8 (2010) 173–185
R9 =
drink kind origin

Pinot wine France 2
Ardbeg whiskey Scotland 1

R10 =

drink kind

Stella beer 4
Montefalco wine 1
Montefalco grappa 1
Pinot wine 3
Pinot grappa 1
Ardbeg whiskey 1

Fig. 4. The factorization property for RA+
K .

A nice property of the provenance semiring is that for any semiring K, to evaluate queries in RA+
K on K-relations it

is sufficient to know how to evaluate these queries over Kprov-relations [12]. This property, called the factorization property
for RA+

K , crucially relies on the existence of a universal object in the class of semirings which in this case is precisely the
provenance semiring Kprov = (N[X],+,×, 0,1). More formally, let K be a semiring, R a K-relation and Q ∈ RA+

K . Suppose
that supp(R) = {t̄1, . . . , t̄k} and let X = {x1, . . . , xk} be a set of tuple ids for the tuples in supp(R). That is, xi is the tuple
id for tuple t̄i for i = 1, . . . ,k. Let R̄ be the abstractly tagged version of R , obtained by letting R̄(t̄i) = xi for t̄i ∈ supp(R) and
R̄(t̄) = 0 otherwise. Let ν : X → K be the valuation that maps xi to R(t̄i).

Because Kprov = (N[X],+,×, 0,1) is the free semiring generated by X , we have the property that there exists a unique
semiring homomorphism Evalν : N[X] → K such that for one-variable monomials we have that Evalν(x) = ν(x). Combined
with the homomorphism property for RA+

K (see Section 2.3) and observing that Evalν(R̄) = R , we recall from [12] that

Q (R) = Evalν ◦ Q (R̄).

In other words, the semantics of queries in RA+
K over arbitrary semirings factors through its semantics in the provenance

semiring.

Example 8. Consider the Klin-relations R5 and R6 shown in Fig. 2. Their respective abstractly tagged versions R̄5 and R̄6
are shown in Fig. 3. Consider again the query Q of Example 6. Then, the Kprov-relation R8 is the query result Q (R̄5, R̄6).
Let ν be the valuation that maps η to {η}, for η ∈ {x, y, z, v, w}. The factorization property then tells us that the Klin-
relation R7, shown in Fig. 2, is equal to Evalν(R8). Indeed, consider the tuple s̄p = (Pinot,grappa) annotated with yz + v .
Then, Evalν(yz + v) = (ν(y) ∪ ν(z)) ∪ ν(v) = {y, z, v}, as desired. Similarly, consider the KN-relations R2 shown in Fig. 1
and R9 shown in Fig. 4. Their abstractly tagged versions R̄2 and R̄9 are identical to R̄5 and R̄6, respectively. Let ν be the
valuation that maps x and v to 2 and y, z and w to 1. Then the factorization property tells that Q (R2, R9) = R10, shown
in Fig. 4, is equal to Evalν(R8). Indeed, consider again the tuple s̄p associated with yz + v . In this case we have that
Evalν(yz + v) = (ν(y) × ν(z)) + ν(v) = 1 + 2 = 3, as desired.

4.3. The provenance semiring with monus

We next describe how to represent and compute why and how provenance in the presence of difference. It is easily
verified that both Klin and Kprov can be extended to m-semirings:

Example 9. In the case of Klin the monus operator simply coincides with set difference. For the provenance semiring, let
X = {x1, . . . , xn} be the set of variables and for α ∈ N

n , denote by xα the monomial xα1
1 xα2

2 · · · xαn
n , where by definition

x0
i = 1. Let I be a finite subset of N

n and let f [X] = ∑
α∈I fαxα and g[X] = ∑

α∈I gαxα be two polynomials in N[X]. Then
it is easily verified that f [X] � g[X] = ∑

α∈I ( fα −̇ gα)xα , where −̇ denotes the truncated minus on N.

Unfortunately, the m-semiring Kprov′ = (N[X],+,×,�,0,1) is not the universal object in the variety of all m-semirings
and as a consequence it does not satisfy the factorization property for RA+

K(\):

Example 10. Let R2 be the KN-relation shown in Fig. 1 and consider the query

Q ′(R) = (R � R) − R.

It is easily verified that Q ′(R2) is the KN-relation R11 shown in Fig. 5. The straightforward generalization of the factorization
property to RA+

K(\) and using Kprov′ as factoring m-semiring would imply that Q ′(R2) can be obtained from the query
evaluation Q ′(R̄2) on the abstractly tagged version of R2 (now interpreted as a Kprov′ -relation) and from the valuation
ν that maps x to 2, and y, z to 1. The Kprov′ -relation Q ′(R̄2) is shown as relation R12 in Fig. 5. Here, each tuple is
associated with η2 � η = (0 · η + 1 · η2) � (1 · η + 0 · η2) = (0 −̇ 1) · η + (1 −̇ 0) · η2 = η2, for some id η ∈ {x, y, z}. Then,
Q ′(R2) = R11 �= Evalν(R12) = R13. It is easily verified that a similar counterexample works when we consider the KB-
relation R1 shown in Fig. 1 and query Q ′ . Indeed, in this case Q ′(R1) returns the empty relation, i.e., all tuples are associated
with false. On the contrary, if we consider the valuation ν maps x and y to true, then we have that Evalν(Q ′(R̄1)) contains
two tuples associated with ν(x2) = ν(x) ∧ ν(x) = true and ν(y2) = ν(y) ∧ ν(y) = true, respectively.
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R11 =
drink kind origin

Stella beer Belgium 2
Montefalco wine Italy 0
Pinot grappa Italy 0

R12 =
drink kind origin

Stella beer Belgium x2

Montefalco wine Italy y2

Pinot grappa Italy z2

R13 =
drink kind origin

Stella beer Belgium 4
Montefalco wine Italy 1
Pinot grappa Italy 1

Fig. 5. The failure of the factorization property for RA+
K(\) and Kprov′ .

We next show how a factorization property for RA+
K(\) can be obtained. Indeed, from universal algebra it follows that

there exists a unique free m-semiring. We next describe the construction of this semiring and then show how it can be
used to represent and compute provenance for RA+

K(\).
First, we observe that the class of m-semirings is an equational variety. Indeed, an algebraic structure (K,⊕,⊗,�,0,1)

is an m-semiring iff it satisfies (i) the defining equations of (K,⊕,⊗,0,1) being a semiring; and (ii) the defining equations
of (K,⊕,�,0) being a commutative monoid with monus [3]. Hence, by Birkhoff’s Theorem, the class of m-semirings is
indeed a variety and furthermore admits free objects [7].

We recall the standard universal algebra construction for the unique free object T [X] generated by X = {x1, . . . , xn} in the
equational variety of m-semirings [7]. In a nutshell, elements of T [X] consist of terms constructed inductively as follows:
xi , 1 and 0 are terms; and moreover, if t and s are terms then so are (t ⊕ s), (t � s) and (t ⊗ s); and finally, nothing else is
a term.

We next need the notion of congruence relation. A congruence relation C over T [X] is an equivalence relation over T [X]
that is compatible with ⊕, ⊗ and �, i.e., if C(s1, t1) and C(s2, t2) then also C(s1 op s2, t1 op t2) for op ∈ {⊕,⊗,�}. We next
specialize C to correspond to the congruence relation that identifies terms based on the equations of m-semirings. It is
then easily verified that the quotient structure T [X]/C that consists of expressions in T [X] in which any two equivalent
expressions are identified (as specified by C ), is indeed an m-semiring. Furthermore, it follows that T [X]/C is the free
m-semiring generated by X [7]. Hence, for any m-semiring K and any valuation ν : X → K, we have that ν can be lifted to
an m-semiring homomorphism Evalν : T [X]/C → K that coincides with ν on X . We denote by Kdprov the free m-semiring
(T [X]/C,⊕,⊗,�,0,1) obtained in this way.

The following example illustrates Kdprov and its corresponding factorization property.

Example 11. Consider again the relation R̄2 (which is equal to R̄5 shown in Fig. 3). This can obviously be seen as a Kdprov

relation. Let Q ′ be the query of Example 10. It is easily verified that the Kdprov-relation Q ′(R̄2) is similar to the relation
R12 shown in Fig. 5, except that each tuple is now associated with (η ⊗ η) � η for η ∈ {x, y, z}. If we consider the valuation
ν that maps x to 2 and y, z to 1 and extend ν to an m-homomorphism Evalν : T [X]/C → N in the natural way, then
Q ′(R2) = R11 = Evalν(Q ′(R̄2)). Indeed, this follows from the fact that Evalν((η ⊗ η) � η) = (ν(η) × ν(η)) −̇ν(η). Similarly,
if we consider the valuation ν that maps x and y to true and let Evalν : T [X]/C → B, then Q ′(R1) = Evalν(Q ′(R̄1)). This
follows again from the fact that Evalν((η ⊗ η) � η) = (ν(η) ∧ ν(η)) � ν(η) = ν(η) ∧ ν̄(η) = false, for η ∈ {x, y}.

The following proposition is an immediate consequence of Proposition 1 and the fact that Kdprov is a free m-semiring
over X :

Proposition 4. Let K be an m-semiring. For any query Q ∈ RA+
K(\) and any K-relation R with tuple id set X , Q (R) = Evalν ◦ Q (R̄),

where R̄ denotes the Kdprov-relation obtained by tagging each tuple in R with its own tuple id.

4.4. The provenance semiring with monus and constant annotations

We can easily extend the construction of the provenance m-semiring Kdprov to obtain an extended provenance
m-semiring for RA+

K(\, δ) for which a factorization property holds. We first note that the provenance semirings discussed
in this and other papers [12,11] are all finitely generated. Similarly for the extended provenance m-semiring described next.

In a nutshell, this m-semiring is constructed in the same way as Kdprov, with the proviso that if t is a term of the
m-semiring, then so are δyi (t) for yi ∈ Y . Here, Y is a set of variables disjoint from X . Intuitively, the factorization property
holds also for RA+

K(\, δ), after extending the valuation also to variables in Y . Formally, let K be a finitely generated
m-semiring with Gen(K) = {k1, . . . ,kn}. Let R be K-relation and Q be a query in RA+

K(\, δ). Let Y be a set of n fresh
variables yi , one for each generator in K, and let ν be the valuation of X ∪ Y that maps, as before, xi to R(t̄i) and yi to ki .
Furthermore, we define Q ′ to be Q in which each occurrence of δki is replaced by δyi . Then, Q (R) = Evalν ◦ Q ′(R̄) where
R̄ is viewed as an extended provenance m-semiring relation.
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S1 =
A B

a a 2
b b 2

S2 =
A B

a a 1
b b 2

S3 = A B

b b 2
S4 =

A B

a a 1
b b 1

S5 =
A B

a a 2
b b 1

Fig. 6. Example KN-relations.

5. BP-completeness for K-relations

In this section, we initiate our study of the completeness of query languages over K-relations in the sense of Bancilhon
and Paredaens [4,18]. First, recall that Codd qualified a query language on standard relational databases as complete if its
expressive power is at least that of the relational calculus [8]. Bancilhon [4] and Paredaens [18] independently provided a
language-independent characterization of completeness. This characterization, now known as BP-completeness, can be stated
as follows: a relation T is the result of a generic relational algebra query applied to a database S if and only if (i) the
active domain of T is included in the domain of S; and (ii) every automorphism of S is also an automorphism of T . In
fact, Paredaens [18] observed that once inequality conditions are allowed in the selection predicate, one does not require
difference in the relational algebra for it to be BP-complete.

Recall that a generic query is one which is oblivious to the constants appearing in the relation, i.e., for any permutation
τ of the domain D, we have that Q (τ (R)) = τ (Q (R)). Furthermore, an automorphism of a relation R is a permutation τ of
D that leaves R invariant, i.e., for any t̄ ∈ R , τ (t̄) ∈ R . Hence, intuitively, the set of automorphisms of a relation R , denoted
by Aut(R), allows to identify values that are “indistinguishable” for the relation, i.e. values that can be switched without
changing the relation itself.

In order to study BP-completeness in the setting of K-relations, we first need to define the notion of automorphism
of a K-relation. Given that K-relations are annotated relations, by analogy to the case of standard relations, K-relations
should allow to identify values in the support that can be switched without changing neither the tuples, nor the respective
tuples annotations. That is, apart from being an automorphism of the underlying relational database, an automorphism
of a K-relation should additionally preserve the semiring values associated with the tuples. Hence, formally, the set of
automorphisms of R , denoted by AutK(R), is defined as

AutK(R) = {
τ

∣∣ τ ∈ Aut
(
supp(R)

)
and R

(
τ (t̄)

) = R(t̄), ∀t̄ ∈ D
n}.

Example 12. Consider the relations given in Fig. 6 and assume that D = {a,b}. When considering the underlying standard
relations, i.e., ignoring the annotations, we have that Aut(S1) = Aut(S2) = Aut(S4) = Aut(S5) = {(a �→ a,b �→ b), (a �→ b,b �→
a)} and Aut(S3) = {(a �→ a,b �→ b)}. When viewed as KN-relations, however, with the multiplicities of each tuple shown
in the last column, we have that AutK(S1) = AutK(S4) = {(a �→ a,b �→ b), (a �→ b,b �→ a)} and AutK(S2) = AutK(S5) =
AutK(S3) = {(a �→ a,b �→ b)}.

The set of K-relations that are preserved by AutK(R), denoted by InvD(R), is defined as:

InvD(R) = {
S

∣∣ adom(S) ⊆ adom(R),AutK(R) ⊆ AutK(S)
}
.

Example 13. Consider again the relations given in Fig. 6. From the definition above, it follows that InvD(S1) = InvD(S4) ⊆
InvD(S2) = InvD(S5) and moreover, InvD(S3) ⊆ InvD(Si) for i ∈ {2,5}. In particular, S3 ∈ InvD(Si) for i ∈ {2,5}.

Finally, the expressiveness of a query language can be described in terms of the “information” that can be deduced from
a K-relation using queries in that query language. Following Paredaens [18] we define: Let Q be a query language and R a
K-relation, then the basic information of R with respect to Q is the set of K-relations:

BI(R, Q) = {
S

∣∣ Q (R) = S for some generic query Q ∈ Q
}
.

Finally, BP-completeness links the notions of basic information and invariant relations together:

Definition 2. A query language Q is BP-complete if BI(R, Q) = InvD(R) for all K-relations R .

It is worth noting that the above definitions coincide with the standard notions in the relational setting under the set
semantics, i.e., when considering K = KB .

We first study BP-completeness for RA+
K . A straightforward induction on the structure of queries in RA+

K shows that
the inclusion of BI(R, RA+

K) ⊆ InvD(R) holds for any semiring K and K-relation R:

Lemma 1. For any semiring K, any (generic) Q ∈ RA+
K and any K-relation R, we have that

(i) adom(Q (R)) ⊆ adom(R) and
(ii) AutK(R) ⊆ AutK(Q (R)).
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The other direction, i.e., whether InvD(R) ⊆ BI(R, RA+
K) holds for any semiring K and K-relation R , is not true. Indeed,

a counterexample can be found for the semiring KN .

Proposition 5. There exists a semiring K such that RA+
K is not BP-complete on K-relations.

Proof. Let K be the semiring KN and consider the relations S1 and S4 in Fig. 6. From Example 13 we know that S4 ∈
InvD(S1). However, it is easily verified, by induction on the structure of queries, that for every generic query Q ∈ RA+

K ,
Q (S1) is either: (i) empty, or (ii) the empty tuple, or (iii) such that it contains only tuples having even multiplicity. In other
words, S4 cannot be the result of a generic query in RA+

K , i.e. S4 /∈ BI(S1, RA+
K). �

In fact, the counterexample in the previous proof shows that more expressive power is needed to make RA+
K

BP-complete for the semiring KN . It is easy to see that considering the language RA+
K(δ) obtained by adding con-

stant annotation operators to RA+
K , resolves the previous counterexample for KN . Indeed, S4 = δ1(S1) and therefore

S4 ∈ BI(S1, RA+
K(δ)) for KN . It turns out, however, that the query language RA+

K(δ) is still not BP-complete for arbitrary
finitely generated semirings.

Proposition 6. There exists a finitely generated semiring K such that RA+
K(δ) is not BP-complete on K-relations.

Proof. Let K be the semiring KN and consider the relations S2 and S5 in Fig. 6. From Example 13 we know that S5 ∈
InvD(S2). It is easily verified, however, that for any generic query Q ∈ RA+

K(δ), the query result Q (S2) satisfies the property
that for any two tuples t̄1 and t̄2 in Q (S2), t̄1 occurs with less or equal multiplicity than t̄2 if and only if t̄1 contains a less
or equal number of b’s than t̄2. Hence, S5 /∈ BI(S2, RA+

K(δ)). �
The counterexample in the previous proof can, however, be resolved when considering RA+

K(\, δ) instead of RA+
K(δ).

Indeed, it is easily verified that for the m-semiring KN = (N,+,×, −̇, 0,1),

S5 = ((
δ1(S2) ∪ δ1(S2)

) \ S2
) ∪ δ1(S2).

In other words, in this case, we have that S5 ∈ BI(S2, RA+
K(\, δ)).

At this point, one may wonder whether the extension of RA+
K with difference alone, i.e., RA+

K(\) results in a BP-
complete language over arbitrary m-semirings. The proof of Proposition 5, however, carries through for RA+

K(\). Hence,
RA+

K(\) is not BP-complete for arbitrary m-semirings.
We next show that the fact RA+

K(\, δ) resolves both counterexamples given in the proofs of Propositions 5 and 6 is not
a coincidence.

Theorem 1. The query language RA+
K(\, δ) is BP-complete on K-relations for all finitely generated m-semirings K.

Proof. We first observe that Lemma 1 extends to RA+
K(\, δ) for any finitely generated m-semiring K and any K-relation

R . Indeed, a straightforward induction on the queries in RA+
K(\, δ) shows that BI(R, RA+

K(\, δ)) ⊆ InvD(R) for any K-
relation R .

For the opposite direction, i.e., given a K-relation R , whether InvD(R) ⊆ BI(R, RA+
K(\, δ)) holds, we show that for any

K-relation S ∈ InvD(R), there exists a generic query Q ∈ RA+
K(\, δ) such that Q (R) = S . In other words, we show that

S ∈ BI(R, RA+
K(\, δ)).

Let R and S be K-relations and assume that S ∈ InvD(R). The desired query Q ∈ RA+
K(\, δ) such that Q (R) = S is

constructed in a number of steps:
First, we define a query Q Aut ∈ RA+

K(\, δ) such that Q Aut(R) = AutK(R). Strictly speaking, Q Aut(R) returns permutations
of adom(R) instead of permutation of D. This, however, is sufficient for our purpose since adom(S) ⊆ adom(R). More
specifically, let (a1, . . . ,an) be a tuple that represents all values in adom(R). Then Q Aut(R) consists of all tuples (b1, . . . ,bn) ∈
adom(R)n such that the mapping τ (ai) = bi , for i = 1, . . . ,n, is an automorphism of R , i.e., τ ∈ AutK(R). Observe that
(a1, . . . ,an) is always present in Q Aut(R) since it corresponds to the trivial automorphism of R . The query Q Aut(R) is
constructed as follows. Assume that supp(R) = {t̄1, . . . , t̄ p} and denote the corresponding K-values by i = R(t̄i), for i =
1, . . . , p. For i = 1, . . . , p, we construct the following queries:

• Q i : A query such that Q i (R)(t̄) = i for all t̄ ∈ supp(R) and Q i (R)(t̄) = 0 otherwise. This query can be expressed in
RA+

K(\, δ) using the constant annotation operators; indeed, these operators allow to generate arbitrary K-values and
assign them to tuples in a relation. In particular, one can assign each tuple in R the constant value i .

• Q =i : A query such that Q =i (R)(t̄) = i if R(t̄) = i and Q =i (R)(t̄) = 0 otherwise. That is, this query extracts all tuples
t̄ from R that satisfy R(t̄) = i . This query is expressible in RA+

K(\, δ). Indeed, we claim that Q =i = (R \ Q i ��) \ Q ��i ,
where Q i �� = R � Q 1(Q i (R) \ R) and Q ��i = R � Q 1(R \ Q i (R)). Here, Q i is the query previously constructed and
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Q 1 is a similar query except that it replaces all semiring values of the tuples with the unit value 1 in K instead of with
i . To show the correctness of this query we first observe that R(t̄) = i iff both R(t̄) � i and i � R(t̄). This follows
from the fact we consider m-semirings for which the natural order � is, by assumption, a partial order. Consider
first the query Q i �� . It is easily verified that Q i ��(R)(t̄) = R(t̄) if i ��R(t̄) and Q i ��(R)(t̄) = 0 otherwise. Similarly,
Q ��i (R)(t̄) = R(t̄) if R(t̄)��i and Q ��i (R)(t̄) = 0 otherwise. As a consequence, (R \ Q i ��)(t̄) = R(t̄) if i � R(t̄) and
(R \ Q �i )(t̄) = 0 otherwise. From this and the definition of Q ��i the correctness of Q =i then follows.

• Q s
Aut: A query that computes the automorphisms of domain values in adom(R) of a K-relation in which each tuple is

assigned the same K-value. Observe that for such K-relations T , AutK(T ) = Aut(supp(T )). As a consequence, the query
Q s

Aut can be expressed in the same way as for the classical relational case [18].

Finally, we obtain Q Aut(R) by taking the intersection of Q s
Aut(Q =i (R)) for i = 1, . . . , p. That is,

Q Aut(R) = Q s
Aut

(
Q =1(R)

) � · · · � Q s
Aut

(
Q =p (R)

)
.

It is easily verified that Q Aut(R) = AutK(R), as desired.
We next proceed as follows. First we define a query Q s in RA+

K(\, δ) such that supp(Q s(R)) = supp(S), i.e., Q s(R) and
S agree as standard relations. Second, we show how Q s can be modified into a query Q in RA+

K(\, δ) such that Q (R) = S ,
i.e., Q (R) and S also agree as K-relations.

• By assumption we have that adom(S) ⊆ adom(R). Furthermore, recall that AutK(R) contains a tuple (a1, . . . ,an) that
represents all values in adom(R). Let s̄ ∈ supp(S). It is clear that s̄ ∈ supp(π̃s̄(Q Aut(R))), where π̃s̄ stands for an appro-
priate generalized projection. Recall that a generalized projection is a projection in which the same attribute can be re-
peated several times. This operator can be simulated using the standard projection and join operator and therefore does
not add to the expressive power of RA+

K(\, δ). For instance, suppose that adom(R) = {a,b, c} is represented by the tuple
(a,b, c) in AutK(R). Furthermore, assume that s̄ = (a,b,b). Then s̄ ∈ supp(π̃1,2,2(Q Aut(R))). By assumption we also have
that AutK(R) ⊆ AutK(S). As a consequence, for each s̄ ∈ supp(S) we have that supp(π̃s̄(Q Aut(R))) ⊆ supp(S). In other
words, supp(S) = ⋃

s̄∈S supp(π̃s̄(Q Aut(R))). Finally, we observe that for any two tuples s̄, t̄ ∈ S , if s̄ ∈ supp(π̃t̄(Q Aut(R)))

then supp(π̃t̄(Q Aut(R))) = supp(π̃s̄(Q Aut(R))). As a consequence, supp(S) can be partitioned as

supp(S) = supp
(
π̃s̄1

(
Q Aut(R)

)) � · · · � supp
(
π̃s̄r

(
Q Aut(R)

))
,

for some tuples s̄i ∈ supp(S), i = 1, . . . , r. We define Q s = ⋃r
i=1 π̃s̄i (Q Aut(R)). Clearly this query satisfies supp(S) =

supp(Q s(R)).
• We next show how to modify Q s into Q such that S = Q (R). Observe that it only remains to correctly set the

K-values of the tuples in Q s(R). For this, we observe that since AutK(R) ⊆ AutK(S), we have that for each i = 1, . . . , r,
all tuples in supp(π̃s̄i (Q Aut(R))) have the same K-value in S , say μi . We therefore use the constant annotation opera-
tors in RA+

K(\, δ) to set, for each i = 1, . . . , r, the K-value of the tuples in π̃s̄i (Q Aut(R))) to μi . It is now easily verified
that the query Q = Q μ1 (π̃s̄i (Q Aut(R))) ∪ · · · ∪ Q μr (π̃s̄r (Q Aut(R))) satisfies Q (R) = S , i.e., Q is the desired query. �

It is interesting to observe that in case of KB = (B,∨,∧,�, false, true), i.e., when considering the standard relational alge-
bra with the set semantics, the construction of Q in the previous proof reduces to the construction given by Paredaens [18].
More specifically, neither difference nor duplicate elimination are needed in this case to obtain BP-completeness, in accor-
dance with the results in [18].

Example 14. Consider the relations S3 and S5 given in Fig. 6. When viewed as KN-relations, Theorem 1 guarantees the
existence of a query Q in RA+

K(\, δ) such that Q (S5) = S3. Although the query constructed in the proof of Theorem 1 is
such a query, this query is by no means the unique (and most elegant) query with this property. Indeed, it is easily verified
that S3 = ((δ1(S5) ∪ δ1(S5)) \ S5) ∪ ((δ1(S5) ∪ δ1(S5)) \ S5).

6. Conclusion

In view of the lack of expressive power of RA+
K , we extended RA+

K with a difference operator, resulting in the query
language RA+

K(\), constant annotation operators δ, resulting in the query language RA+
K(δ), and both operators resulting

in RA+
K(\, δ). We proposed extended provenance semirings for RA+

K(\) and RA+
K(\, δ) and established crucial properties

of the newly defined query languages, in particular the factorization property. This naturally extends previous work on the
positive relational algebra. Finally, we initiated the study of BP-completeness of query languages on K-relations. In particular,
we showed that for some semirings K, RA+

K is not BP-complete. Our main result is that RA+
K(\, δ) is BP-complete on

K-relations for a general class of semirings K. More specifically, RA+
K(\, δ) is BP-complete for semirings that can be

extended with a monus operator and that are finitely generated. This class of semirings covers most of the semirings
considered in the database literature so far. We also showed that neither the difference nor duplicate elimination can be
omitted while still retaining BP-completeness.
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In future work, we plan to find an exact characterization of when two K-relations are related by means of a query in
RA+

K and establish the complexity of deciding this problem. Also, it is interesting to study the semantics of RA+
K(\, δ) for

provenance models different than the why- and how-provenance. Finally, in the spirit of Codd, it is challenging to find a
characterization of the completeness of RA+

K and extensions thereof in terms of first-order logic.
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