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When transforming data one often wants certain information in the data source to be

preserved, i.e.,we identify parts of the source data and require these parts to be

when transformations are specified as a view V (a set of queries), and source

information is selected by a query Q. We investigate the problem for determining

whether transformations V preserve the information selected by Q. (1) We show that

the notion of invertibility coincides with view determinacy studied for query rewriting.

(2) We establish the undecidability of the problem when either Q or V is in DATALOG or

first-order logic, for invertibility and query preservation. (3) When Q and V are

conjunctive queries (CQ), the problem is as hard as view determinacy for CQ queries

and CQ views, an open problem. Nevertheless, we provide complexity bounds of the

problem, either in PTIME or NP-complete, when V ranges over subclasses of CQ (i.e., SP, SC,

PC), and when Q is assumed to be a minimal CQ query or not. (4) We show that CQ is

complete for L-to-CQ rewriting when L is SP, SC or PC, i.e.,every CQ query can be

rewritten in terms of SP, SC or PC views using a query in CQ.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

When transforming data from a data source to a target
database in practice, we often want to preserve certain
information in the data source. That is, we identify certain
parts of the source data and require the parts to be
transformed without loss of information. For example, to
migrate a customer database D from one platform to
another, we may want the transformation to ensure that
the entire set of customers in D can be retrieved from the
target database. When exchanging the data with a database
of domestic customers, on the other hand, we may want the
transformation to warrant that all conjunctive queries about
ll rights reserved.

. Zheng).
domestic customers in D can still be answered by using
conjunctive queries posed on the target data.

The practical need gives rise to the following questions.
How should we model the preservation of selected infor-
mation in data transformations? Can we effectively deter-
mine whether a given transformation preserves the
information selected?

To answer these questions, this paper introduces a
characterization of selected information preservation,
investigates its fundamental problems and establishes
their complexity bounds.

Information preservation: We propose two criteria to
specify the preservation of selected information. Consider
the setting in which data transformations are specified in
terms of a view V (a set of queries) from source to target,
and the selected information is identified by a query Q

defined on the data source.
We say that V is invertible relative to Q if there exists

a query Q�1 such that for every source database D,
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Q ðDÞ ¼ Q�1ðVðDÞÞ. Intuitively, it says that source data Q(D)
selected by Q can be effectively reconstructed from the
target data VðDÞ. In other words, when Q(D) is concerned,
the transformation V does not lose any information.

Consider a query language Lq. We say that V is query

preserving relative to Q and Lq if there exists a computable
function F : Lq-Lq such that for any query Q 0 2 Lq and
source database D, Q 0ðQ ðDÞÞ ¼ FðQ 0ÞðVðDÞÞ. Intuitively, for
any Q 0 in Lq that can be answered in Q(D), the same
answer can also be found in the target VðDÞ by using a
query in the same Lq; i.e.,when queries in someone’s
favorite languages are concerned, no information in Q(D)
is lost in the transformation.

Observe that when Q is the identity query, Q(D) selects
the entire data source D, and invertibility and query pre-
servation aim to preserve the information of the entire D.

We investigate the connection between invertibility
and query preservation. These two notions are not equiva-
lent. The former asks for the ability to restore the selected
source data Q(D), while the latter concerns the information
in Q(D) that can be retrieved using queries in a particular
language Lq. We show that when Lq contains the identity
query as found in most sensible relational query lan-
guages, query preservation is a stronger notion. Indeed, if
V is query preserving relative to Q and Lq, then V is
invertible relative to Q. In contrast, there exist V,Q and Lq

such that V is invertible relative to Q but V is not query
preserving relative to Q and Lq. In addition, we identify
sufficient conditions for the two notions to coincide.

Connection with view determinacy: There is also an
intimate connection between invertibility and the notion
of view determinacy introduced in [1]. A view V is said to
determine a query Q iff for all databases D1 and D2, if
VðD1Þ ¼VðD2Þ then Q ðD1Þ ¼Q ðD2Þ. That is, V provides
enough information to uniquely determine the answer to
Q. The notion of view determinacy has proved useful in a
variety of applications such as query rewriting using
views, semantic caching, security and privacy [1–7].

We show that invertibility and view determinacy coin-
cide: for any view V and query Q, V is invertible relative to
Q iff V determines Q. Among other things, this tells us that
the study of view determinacy also finds applications in
preserving selected information in data transformations,
and vice versa.

Complexity results: We study two problems for deter-
mining whether a transformation preserves selected
information.

The invertability problem is to decide, given a view V
and a query Q, whether V is invertible relative to Q.

The query preservation problem is to determine, given V,
Q and a query language Lq, whether V is query preserving
relative to Q and Lq.

We parametrize the problems with various Ls and Lv, the
query languages in which selection queries Q are expressed
and in which views V are defined, respectively. We consider
the following Ls and Lv: DATALOG, first-order queries (FO),
and conjunctive queries (CQ). We also consider SP, PC and
SC, subclasses of CQ denoted by listing the operators
supported (selection, projection and Cartesian product).

We show that both problems are undecidable when
one of Ls and Lv is CQ while the other is either DATALOG
or FO. These results carry over to the problem for deciding
whether V determines Q. While it is known that the view
determinacy problem is undecidable when V or Q is in FO
[5], the results on DATALOG are new additions to the study
of view determinacy.

When both Ls and Lv are CQ, the invertibility problem
is as hard as the view determinacy problem when V and Q

are in CQ, which remains open [5]. We focus on special
cases when Q is a CQ query and views V are defined in SP,
SC or PC. We show that the invertibility problem is in PTIME

for PC views, but it becomes NP-complete for SP and SC
views. Moreover, we show that the problem is also in PTIME

for SP views when Q is a minimal CQ query (see, e.g., [8] for
minimal CQ queries). These complexity bounds remain
intact for their view determinacy counterparts. In addition,
we show that these results carry over to the query
preservation problem when Lq is CQ.

Complete rewriting: Another notion introduced in [1]
concerns the completeness of a rewriting language. In a
query language L, a query Q can be rewritten using a view
V iff there exists a query Q�1 in L such that
Q ðDÞ ¼Q�1ðVðDÞÞ for all databases D [1]. That is, the
inverse Q�1 of Q is definable in L. Clearly, if Q can be
rewritten using a view V with a query Q�1 in a language L,
then V determines Q, while the converse may not be true.
The language L is said to be complete for Lv-to-Ls rewrit-
ings if L can be used to rewrite a query Q in Ls using V in
Lv whenever V determines Q. That is, L is expressive
enough to capture rewritings of Ls queries using Lv views
as long as the views determine those queries.

It is known that CQ is not complete for CQ-to-CQ
rewritings [1]. Nevertheless, we show that CQ is complete
for L-to-CQ rewritings when L ranges over SP, PC and SC.

This work is a first step towards characterizing the
preservation of selected information in data transforma-
tions. Our results reveal the connection and differences
between the two notions for information preservation,
namely, invertibility and query preservation. In addition,
the complexity results of the paper are of interest to both
the study of data transformations and research on query
rewriting using views. A variety of techniques are used to
prove the results, including characterizations of CQ sub-
classes, reductions and constructive proofs with algorithms.

Related work: Closest to this work is the study of view
determinacy, introduced in [1]. A number of results have
been developed for the view determinacy problem and the
completeness of rewriting languages, briefly summarized
as follows [4,5,1]. (1) The view determinacy problem is
undecidable when either queries or views are in FO.
Furthermore, FO is not complete for FO-to-FO rewritings.
In fact, it has been shown that any language that is
complete for FO-to-FO rewritings must be Turing-com-
plete. (2) The problem remains undecidable for UCQ
queries and UCQ views, and moreover, UCQ is not com-
plete for UCQ-to-UCQ rewritings. Indeed, no monotonic
language is complete for CQ-to-CQ rewriting. (3) It
remains unknown whether the view determinacy problem
is decidable when the view and queries are in CQ [5].

In light of the practical interests in CQ queries, view
determinacy has been studied for a variety of special
classes of CQ queries and views in [4,5,1]. It has been
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shown there that the problem is decidable and that CQ is
complete for rewritings in the following cases: (1) arbi-
trary CQ queries and Boolean CQ views; (2) arbitrary CQ
queries and monadic CQ views (i.e., CQ views with only
one free variable); and (3) arbitrary CQ queries and a
single path CQ view, which is defined over a single binary
relation and has the form Q ðx,yÞ ¼ (x1, . . . ,xkðRðx,x1Þ4
Rðx1,x2Þ 4 � � �4Rðxk�1,xkÞ4Rðxk,yÞÞ.

Special cases of the view determinacy problem for CQ
have also been studied in [2,3,6,7]. (1) The packed frag-
ment of FO (PFO) was considered in [3], which is a
generalization of the guarded fragment of FO. It was
shown that PFO is complete for PFO-to-PFO rewritings,
and the determinacy problem for PFO queries and PFO
views is decidable in 2EXPTIME. Moreover, for the packed
fragment of conjunctive queries (PCQ), PCQ is complete
for PCQ-to-PCQ rewritings and thus the determinacy
problem is decidable. These results also extend to unions
of PCQs. (2) Chain CQ queries, denoted as CQ chain, were
studied in [2], which extend path CQ queries by allowing
multiple binary relations. It was shown there that deter-
minacy is decidable for chain queries and chain views, and
that FO is complete for CQ chain-to-CQ chain rewritings.
(3) These results were extended in [6] to connected graph
CQ queries, denoted by CQ cgraph, which are binary CQ
queries whose body, if viewed as an undirected graph, is
connected. It was reported there that FO is complete for
CQ chain-to-CQ cgraph rewritings. (4) Ref. [7] studied CQ
queries that are defined over unary database schemas, in
which each relation has only one attribute. It was shown
that for this class of queries and views, determinacy is
decidable in PTIME and CQ is complete for rewritings.
Nevertheless, none of these results transfers to the cases
we consider.

As observed in [5], view determinacy (invertibility) is
equivalent to the notion of lossless views under the exact
view assumption, which has been studied for regular path
queries [9,10]. Also related is the large amount of work on
equivalent rewritings of queries using views (e.g., [11,12]).
It was shown that it is NP-complete to decide whether a
given CQ query has an equivalent rewriting using a given
set of CQ views [11], and several of its special PTIME cases
were identified in [12].

As we shall show shortly, invertibility and view deter-
minacy are equivalent. Therefore, all of our results on
invertibility carry over to view determinacy. In particular,
this work shows that the view determinacy problem is
undecidable when either queries or views are in DATALOG.
In addition, we provide the complexity of the problem for
queries in CQ and for views in SP, PC or SC, either
NP-complete or in PTIME. We also show that CQ is complete
for L-to-CQ rewritings when L ranges over subclasses SP,
PC and SC of CQ. On the other hand, previous results on
view determinacy also transfer to invertibility. In addition,
when invertibility (view determinacy) and query preserva-
tion coincide as we shall elaborate, prior results on view
determinacy also remain intact on query preservation, and
vice versa.

The notions of invertibility and query preservation are
also related to the notions of dominance and calculus
dominance, which were proposed in [13] to specify
relative information capacity, and were studied for data
integration [14–16]. A schema S is said to dominate

another schema T if there exist schema mappings V and
V�1 from S to T and from T to S, respectively, such that for
any source instance D of S, D¼ V�1ðVðDÞÞ. Schema S

calculously dominates T if S dominates T with ðV ,V�1Þ and
moreover, both V and V�1 are expressible in relational
calculus. Clearly, dominance is a special case of invert-
ibility when selection query Q is the identity query, and
calculus dominance is the special case when Q is the
identity and views are in FO. These notions were also
considered in the XML settings in [17,18]. No previous
results on (calculus) dominance can carry over to the cases
studied in this work.

Organization: Section 2 presents the notions of query
preservation, invertability and view determinism, and
investigates their connections. Section 3 states the deci-
sion problems studied in this paper. Section 4 provides the
undecidability results for DATALOG and FO, followed by
the decidable cases for subclasses of CQ in Section 5.
Finally, Section 6 summarizes the main results of the
paper and identifies open questions.

2. Selected information preservation

In this section, we first introduce the notions of query
preservation, invertability and view determinism. We then
investigate the connections between these concepts.

A database schema R¼ ðR1, . . . ,RkÞ consists of a finite
set of relation symbols Ri, each of which is associated with
an arity niZ0. Let dom be an infinite set of values.
A (database) instance D¼ ðI1, . . . ,IkÞ of R associates with
each symbol Ri a relation Ii consisting of ni-ary tuples over
dom. In this paper, we only consider finite instances. We
denote by I ðRÞ the set of all instances ofR that take values
from dom. The active domain of a relation I, denoted by
adomðIÞ, is the set of values in dom that occur in I.
Similarly, for D¼ ðI1, . . . ,IkÞwe define adomðDÞ as the union
of adomðIiÞ for i 2 ½1,k�.

A query Q over R is defined as a computable (generic)
mapping from I ðRÞ to I ðRÞ, for some output relation R. Let
R¼ ðR1, . . . ,RkÞ and V ¼ ðV1, . . . ,V‘Þ be two database sche-
mas. A view V from R to V is a set of queries Qi from I ðRÞ
to I ðViÞ, one for each i 2 ½1,‘�. For a query language Lv, we
say that V is a view in Lv if Qi is in Lv for each i 2 ½1,‘�. We
refer to R and V as the input and output schema of V,
respectively.

2.1. Invertibility and query preservation

Let Q be a query over source schema R and let V be a
view from R to V. We say that V is invertible relative to Q if
there exists a query Q�1 over V such that for every instance
D of R, Q ðDÞ ¼Q�1ðVðDÞÞ. Intuitively, invertibility says that
the selected part of source data, identified by Q, can be
recovered from the view. It does not say, however, whether
the inverse Q�1 belongs to a certain query language or
whether the inverse can be computed efficiently.

Let Lq be a query language. We say that a view V is
query preserving relative to Q and Lq if there exists a
computable function F : Lq-Lq such that for any query
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Q 0 2 Lq and any instance D of R, Q 0ðQ ðDÞÞ ¼ FðQ 0ÞðVðDÞÞ.
Intuitively, any query (in a specific query language Lq)
imposed on the selected part of source data can be
effectively answered using the view.

We say that a view V is information preserving relative
to a query Q and a query language Lq if V is both invertible
and query preserving relative to Q and Lq.

We next reveal the connection and differences between
invertibility and query preservation. We start with suffi-
cient conditions for the two notions to be equivalent,
which extend an observation of [18] for special cases of
these two notions in the context of semi-structured data
and query languages.

Proposition 1. Let Q be a query, V a view and Lq a query

language.
�
 If V is query preserving relative to Q and Lq, and the

identity query id is expressible in Lq, then V is invertible

relative to Q, and moreover, Q�1 is a query in Lq as well.

�
 If V is invertible relative to Q, the inverse Q�1 is expres-

sible in Lq, and Lq is closed under composition, then V is

query preserving relative to Q and Lq.
Here a query language Lq is closed under composition if for

any Q1, Q2 in Lq, Q1JQ2 (if defined) is also in Lq.

Proof. Suppose that V is query preserving relative to Q

and Lq. Then there exists a computable function F : Lq-Lq

such that for any query Q 0 2 Lq and any instance D,
Q 0ðQ ðDÞÞ ¼ FðQ 0ÞðVðDÞÞ. By assumption, id is expressible in
Lq and thus Q ðDÞ ¼ idðQ ðDÞÞ ¼ FðidÞðVðDÞÞ for any instance
D. That is, Q�1 ¼ FðidÞ. Hence V is invertible relative to Q

and moreover, the inverse Q�1 is a query in Lq.
Suppose that V is invertible relative to Q and the inverse

Q�1 is in Lq. By assumption, Lq is closed under composi-
tion and therefore, we can define a function F : Lq-Lq as
FðQ 0Þ ¼Q 0JQ�1 for any Q 0 2 Lq. Clearly, for any Q 0 2 Lq and
any instance D, Q 0ðQ ðDÞÞ ¼Q 0JQ�1ðVðDÞÞ ¼ FðQ 0ÞðVðDÞÞ.
That is, V is query preserving relative to Q and Lq. &

Observe that id is definable in all commonly used
relational query languages. In the sequel we consider
w.l.o.g. only query languages in which id is definable.
Hence, the notion of query preservation is generally
stronger than invertibility. This is verified by the separa-
tion result below, which we shall prove shortly.

Proposition 2. There exist a CQ query Q and a view V in CQ
such that (1) V is invertible relative to Q, but (2) V is not

query preserving relative to Q and CQ.

2.2. View determinacy

It turns out that the notion of invertibility coincides
with the notion of view determinacy [5], which we recall
next. Let Q be a query over source schema R and let V be a
view from R to V. A view V determines Q, denoted by
V7Q , iff for all instances D1, D2 of R, if VðD1Þ ¼VðD2Þ then
Q ðD1Þ ¼Q ðD2Þ.
Lemma 1. Let Q be a query and V a view. Then V is invertible

relative to Q iff V determines Q.

Proof. Suppose that V is invertible relative to Q. Then for
any pair of instances D1 and D2 we have that Q ðD1Þ ¼

Q�1ðVðD1ÞÞ and Q ðD2Þ ¼ Q�1ðVðD2ÞÞ. Thus if VðD1Þ ¼VðD2Þ

then clearly Q ðD1Þ ¼ Q ðD2Þ, and hence V7Q .
Conversely, suppose that V7Q . Let s be the mapping

that associates VðDÞ with the corresponding value of Q(D),
for every instance D. It is easily verified (see e.g., [1]) that s
is generic, computable and furthermore can be taken as the
inverse Q�1. Hence, V is indeed invertible relative to Q. &

The completeness of rewriting languages has also been
studied in [5]. We say that a query Q can be rewritten using
V in a language L iff there exists some query Q�1 2 L over
the schema V such that Q ðDÞ ¼ Q�1ðVðDÞÞ for all instances
D of R. We denote this by Q)VQ�1. Observe that if
Q)VQ�1 for a query Q�1 in some query language L, then
obviously V7Q . The converse is, however, generally
not true.

Given a view language Lv and a query language Ls, we
say that a query language L is a complete rewriting

language for Lv-to-Ls rewritings if for all query Q 2 Ls and
view V in Lv, L can be used to rewrite Q using V whenever
V7Q .

It is known that CQ is not complete for CQ-to-CQ
rewritings [5]. Capitalizing on this, we give a proof of
Proposition 2.

Proof of Proposition 2. It is known that there exist a CQ
query Q and a CQ view V such that V7Q , but the inverse
Q�1 is not definable in CQ. Such concrete examples can be
found in [2,5]. Let Q and V be such a pair. By Lemma 1, V is
invertible relative to Q. Hence to prove Proposition 2, it
suffices to show that V is not query preserving relative to Q

and CQ.

Assume by contradiction that V is query preserving
relative to Q and CQ. Then there exists a computable
function F : CQ-CQ such that for any query Q 0 2 CQ
and any instance D, Q 0ðQ ðDÞÞ ¼ FðQ 0ÞðVðDÞÞ. Let Q 0 be id,
then Q ðDÞ ¼ FðidÞðVðDÞÞ, i.e., Q)VFðidÞ, and FðidÞ is a CQ
query. This contradicts the fact that Q�1 is not definable
in CQ. &
3. Problem statements

We investigate the following decision problems. Let Ls,
Lv and Lq be query languages. The first problem is referred
to as the invertibility problem, stated as follows.
PROBLEM:
 VDetðLs ,LvÞ
INPUT:
 A query Q 2 Ls , a view V¼ fQ1 , . . . ,Q‘g defined in terms

of queries in Lv.
QUESTION:
 Is V invertible relative to Q?
By Lemma 1, VDetðLs,LvÞ can be equivalently stated as the
view determinacy problem for ðLs,LvÞ. It is the problem to
determine, given Q 2 Ls and V¼ fQ1, . . . ,Q‘g such that Qi 2

Lv for i 2 ½1,‘�, whether V determines Q. We shall use these
two statements interchangeably in the sequel.
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We shall also consider the query preservation problem:
PROBLEM:
 QPreðLs ,Lv ,LqÞ
INPUT:
 A query Q 2 Ls , a view V¼ fQ1 , . . . ,Q‘g defined in terms

of queries in Lv , and a query language Lq .
QUESTION:
 Is V query preserving relative to Q and Lq?
Query languages used in this paper range over: (1) CQ,
the class of conjunctive queries built up from relation
atoms, by closing under conjunction 4 and existential
quantification (; (2) FO, first-order logic queries built from
atomic formulas using 4, disjunction 3, negation :, ( and
universal quantification 8; and (3) DATALOG, datalog
queries defined as a collection of rules pðxÞ: � p1ðx1Þ, . . . ,
pnðxnÞ, where each pi is either an atomic formula (a relation
atom in R, or equality ¼), or an IDB predicate. That is,
DATALOG is an extension of union of conjunctive queries
with an inflational fixpoint operator. We refer to [8] for
more details concerning these languages.

Recall that the class of conjunctive queries, CQ, is the
class of SPC queries built up from the relational algebra
operators: selection (S), projection (P) and Cartesian pro-
duct (C). We also consider fragments of CQ, denoted by
listing the operators allowed in the fragment. In particular,
we consider the following three classes of CQ queries:
�
 SP: the fragment defined with S and P operators only;

�
 PC: the fragment defined with P and C operators only;

�
 SC: the fragment defined with S and C operators only.

4. Undecidability results

In this section we study VDetðLs,LvÞ and QPreðLs,Lv,LqÞ

when Ls or Lv is either FO or DATALOG. The main results are
negative: both problems are undecidable in these settings.

We first consider the invertibility problem for DATALOG.
It is known that the view determinacy problem is undecid-
able when either Ls or Lv is FO, and when both Ls and Lv are
UCQ [5]. By Lemma 1, the undecidability results carry over to
VDetðLs,LvÞ. We next show that VDetðLs,LvÞ (and hence
view determinacy) is also undecidable when Ls is DATALOG
and Lv is CQ, and when Ls is CQ and Lv is DATALOG.

Theorem 1. VDetðLs,Lv) is undecidable when
(1)
 Ls is DATALOG and Lv is CQ, or
(2)
 Ls is CQ and Lv is DATALOG. &
Proof. Both proofs are by reduction from the containment
problem for DATALOG, which is to determine, given two
DATALOG queries Q1 and Q2, whether Q1ðDÞDQ2ðDÞ for every
instance D. This problem is known to be undecidable [19].

(1) VDetðDATALOG,CQ Þ. Let Q1 and Q2 be two DATALOG
queries defined over schema R, with answer predicates
ans1ðxÞ and ans2ðxÞ, respectively. Let N be a nullary relation
symbol not appearing in R. We define a DATALOG query Q

over ðR,NÞ consisting of the rules of Q1 and Q2 together
with

Q ðxÞ: � ans1ðxÞ,NðÞ
Q ðxÞ: �ans2ðxÞ

The CQ view V over ðR,NÞ is defined such that for any
instance ðD,INÞ of ðR,NÞ, VðD,INÞ ¼D. We next show that
Q1DQ2 iff V7Q . Suppose that Q1DQ2. Then Q is equiva-
lent to Q2. Since V simply copies the instance D of R we
have that Q)VQ2, from which V7Q follows. Conversely, if
Q1JQ2, then there exists an instance D of R such that
Q1ðDÞ [ Q2ðDÞaQ2ðDÞ. Given such D, we define two data-
base instances D1 ¼ ðD,fðÞgÞ and D2 ¼ ðD,|Þ of ðR,NÞ. Because
VðD1Þ ¼VðD2Þ ¼D but Q ðD1ÞaQ ðD2Þ, we can conclude that
V does not determine Q.

(2) VDetðCQ ,DATALOGÞ. Let Q1 and Q2 be two DATALOG
queries defined over relational schema R, with answer
predicates ans1ðxÞ and ans2ðxÞ, respectively. Let R1, R2 be
two relation symbols not appearing in R, which have the
same arity as ans1 and ans2. We define the DATALOG view
V over ðR,R1,R2Þ as V¼ fV1,V2,V3g, where

V1ðxÞ: �R1ðxÞ,ans2ðyÞ,R2ðyÞ

V2ðxÞ: �R1ðxÞ

V2ðxÞ: �ans1ðxÞ,R2ðxÞ

V3ðxÞ: �ans2ðxÞ,R2ðxÞ

We define the CQ query Q such that for any instance
D0 ¼ ðD,I1,I2Þ over fR,R1,R2g, Q ðD0Þ ¼ I1. We next show that
Q1DQ2 iff V7Q . Suppose that Q1DQ2. We can define the
inverse Q�1 in FO as follows:

Q�1ðxÞ ¼ (yððV1ðxÞ4V3ðyÞÞ3ðV2ðxÞ4:V3ðyÞÞÞ

Indeed, for any database instance D0 ¼ ðD,I1,I2Þ of schema
ðR,R1,R2Þ, if V3ðD

0Þ is nonempty, then V1ðD
0Þ returns I1. If

V3ðD
0Þ ¼ |, which means that Q2ðDÞ \ I2 ¼ |, then from

Q1DQ2 we can conclude that Q1ðDÞ \ I2 ¼ | and hence
V2ðD

0Þ returns I1. That is, Q)VQ�1 and hence V7Q .
Conversely, suppose that Q1JQ2. Then there exists an
instance D of relational schema R and a tuple t such that
t 2 Q1ðDÞ and t=2Q2ðDÞ. Given such D and t , we define two
instances D0 ¼ ðD,ftg,ftgÞ and D00 ¼ ðD,|,ftgÞ. It is easy to see
that VðD0Þ ¼VðD00Þ ¼ ð|,ftg,|Þ but Q ðD0Þ ¼ ftgaQ ðD00Þ ¼ |.
Thus V does not determine Q. &

When it comes to QPreðLs,Lv,LqÞ, the query preserva-
tion problem, we show that it is also beyond reach in
practice when any of Ls and Lv is either FO or DATALOG.

Theorem 2. QPreðLs,Lv,LqÞ is undecidable when
(1)
 Ls is FO, and Lv and Lq are CQ ,

(2)
 Ls is CQ, Lv is FO and Lq is CQ ,

(3)
 Ls is DATALOG, Lv is CQ and Lq is DATALOG, or
(4)
 Ls is CQ, Lv is DATALOG and Lq is FO. &
Proof. We show the undecidability of (1) and (2) by
reduction from the satisfiability problem of FO, which is
known to be undecidable [8]. The undecidability of (3) and
(4) follows from the proofs of Theorem 1.

(1) Let Q0ðyÞ be an FO query over a relation schema R and
let N1 and N2 be two nullary relations. Let R¼ ðR,N1,N2Þ.
We define the view V and query Q over schema R. Let
VðxÞ ¼ RðxÞ4N1 and Q ðyÞ ¼Q0ðyÞ4N2. We show that V is
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query preserving relative to Q and CQ iff Q0 is not
satisfiable.

First assume that Q0 is not satisfiable. Then for any
instance D¼ ðIR,I1,I2Þ of R, Q ðDÞ ¼ |. Moreover, for any Q 0 2

CQ we have that Q 0ð|Þ ¼ |. Hence FðQ 0Þ :¼ | satisfies the
desired properties. Hence V is query preserving relative to
Q and V.

Conversely, assume that Q0 is satisfiable. That is, there
exists an instance I0 of R such that Q0ðI0Þa|. By Proposition
1, it suffices to show that V does not determine Q. For if it
holds, then by id 2 CQ, no function F can exist that makes
V query preserving. We distinguish between the following
two cases: (a) Q0ð|Þ ¼ | and (b) Q0ð|Þa|. For case (a),
consider instances D1 ¼ ð|,|,ðÞÞ and D2 ¼ ðI0,|,ðÞÞ, where
Q0ðI0Þa| as assumed above. We have that Q ðD1Þ ¼ | and
Q ðD2Þ ¼Q0ðI0Þa| whereas VðD1Þ ¼ VðD2Þ ¼ |. For case (b),
consider instances D1 ¼ ð|,|,ðÞÞ and D2 ¼ ðI,|,|Þ, where I is
arbitrary. Then Q ðD1Þa| and Q ðD2Þ ¼ |, whereas VðD1Þ ¼

VðD2Þ ¼ |. Hence, V does not determine Q.
(2) Let Q0ðyÞ be an FO query over a single relation

schema R. Consider the schema R¼ ðR,R0Þ, where R0 is a
copy of R. Let Q ðxÞ ¼ RðxÞ and let VðxÞ ¼ RðxÞ4ð:(yQ0ðyÞÞ4
:ð:(xR0ðxÞ4(yQ0

0
ðyÞÞ, where Q 00 is equal to Q0 but with R

replaced by R0. We show that V is query preserving relative
to Q and CQ iff Q0 is not satisfiable.

When Q0 is not satisfiable, then F can be taken as the
identity mapping. One can readily verify that V is query
preserving relative to Q and CQ with such a query rewrit-
ing function.

On the other hand, if Q0 is satisfiable, it suffices to show
that V does not determine Q. For if it holds, then by id 2 CQ,
no function F can exist that makes V query preserving
relative to Q and CQ by Proposition 1. Again we distinguish
between the following two cases: (a) Q0ð|Þ ¼ | and (b)
Q0ð|Þa|. For case (a), consider the instances D1 ¼ ð|,|Þ and
D2 ¼ ðI,|Þ, where Ia| and Q0ðIÞa|. Since Q0 is satisfiable,
there must exist such an instance I of R. Then VðD1Þ ¼

VðD2Þ ¼ |, whereas Q ðD1Þ ¼ |aI¼Q ðD2Þ. For case (b), con-
sider D1 ¼ ð|,|Þ and D2 ¼ ðI,|Þ, where I is an arbitrary none-
mpty instance of R. Then again VðD1Þ ¼ VðD2Þ ¼ |, whereas
Q ðD1Þ ¼ |aI¼Q ðD2Þ. In both cases, V does not determine Q.

(3) Consider the view V and query Q as described in the
proof of Theorem 1(1). It is easily verified that when Q1DQ2

then FðQ 0Þ can be defined as the composition of Q with Q 0.
When Q1JQ2, it follows from the proof of Theorem 1(1) that
V does not determine Q and hence, by Proposition 1, V is not
query preserving relative to Q and DATALOG.

(4) Consider V and Q defined in the proof of Theorem 1(2).
It is easily verified that when Q1DQ2 then FðQ 0Þ can be
defined as the composition of Q�1 with Q 0. Since Q�1 is in FO,
FðQ 0Þ is in FO as well. When Q1JQ2, it follows from the proof
of Theorem 1(2) that V does not determine Q. By Proposition
1, V is not query preserving relative to Q and FO. &

5. Decidable Cases for CQ queries

We next study VDetðLs,LvÞ and QPreðLs,Lv,LqÞ when
Ls, Lv and Lq are conjunctive queries (CQ). In general, it is
unknown whether the view determinacy problem is
decidable for conjunctive queries [5]. We focus on special
cases VDetðCQ ,LÞ and QPreðCQ ,L,CQ Þ, for selection queries
Q in CQ and views V in a fragment L of CQ, where L is SP,
PC or SC. We show that these problems are either NP-
complete or in PTIME (Theorems 3, 4, Corollaries 2 and 3),
and that CQ is complete L-to-CQ rewritings (Corollary 1).

The proofs of Theorems 3 and 4 are nontrivial. To
simplify the discussion, we first present some notations
and lemmas that will be used throughout the proofs
(Section 5.1). We then study VDet and QPre for the special
case when selection queries Q are minimal CQ queries
(Section 5.2). Finally we extend the results to general CQ
queries (Section 5.3).
5.1. Preliminaries

We use R¼ ðR1, . . . ,RkÞ and V ¼ ðV1, . . . ,V‘Þ to denote the
source and target schema, respectively. Let var be an
infinite set of variables that are disjoint from dom. Let
Q ðxÞ be a CQ query over R with free variables x.

We consider instances over the extended domain
dom [ var. More specifically, we associate with each CQ
query Q an instance over this extended domain in the
usual way. That is, the frozen body of Q, denoted by [Q], is
the instance over R such that ðx1, . . . ,xnÞ belongs to the
relation in [Q] corresponding to Ri iff Riðx1, . . . ,xnÞ is an
atom in Q. Note that ðx1, . . . ,xnÞmay contain both constants
(from dom) and variables (from var). Similarly, for a set V
of CQ queries, we use ½V� to denote the union of the frozen
bodies [Q] for all Q in V.

Consider a mapping h from variables to variables and
constants. Let t be a tuple over dom [ var. Then hðtÞ is
defined in the usual way by applying h to each component
of t . Similarly, we denote by hð½Q �Þ the instance obtained
by taking the union of hðtÞ for t 2 ½Q �. A homomorphism h

from an instance I to an instance J over the extended
domain, denoted as h : I-J, is a standard homomorphism
that is identity on dom. More specifically, hðIÞD J. Recall
that for a CQ query Q ðxÞ and an instance D, a tuple t is in
Q ðDÞ iff there exists a homomorphism h from [Q] to D such
that hðxÞ ¼ t .

A query Q1 is contained in a query Q2, denoted as
Q1DQ2, if for any instance D, Q1ðDÞDQ2ðDÞ. Two queries
are equivalent, denoted as Q1 �Q2, if Q1DQ2 and Q2DQ1.

A classical result in the theory of conjunctive queries is
the following Homomorphism Theorem [20]: Let Q1ðx1Þ

and Q2ðx2Þ be two CQ queries over the same schema R
with free variables x1 and x2, respectively. Then Q1DQ2 iff
there exists a homomorphism h from ½Q2� to ½Q1� such that
hðx2Þ ¼ x1, or in other words, Q1DQ2 iff x1 2 Q2ð½Q1�Þ.

The following proposition (slightly modified) from [2]
states some observations.

Proposition 3. Let Q ðxÞ be a CQ query with free variables x

and let V be a set of CQ views. If V7Q then (i) Vð½Q �Þa|;
and (ii) all the relation symbols appearing in Q also appear in

some query in V.

Our results make use of the following results on view
determinacy for conjunctive queries [1,5]. Let Q ðxÞ be a CQ
query and V¼ fV1ðx1Þ, . . . ,V‘ðx‘Þg be a set of views in CQ.
Let S ¼ ðS1, . . . ,S‘Þ ¼Vð½Q �Þ. We construct an instance D

over R from S as follows: For each i 2 ½1,‘� and for every
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tuple t belonging to Si, we include in D the tuples of hð½Vi�Þ

with hðxiÞ ¼ t , where h maps every variable in ½Vi� not in xi

to some new distinct value. We call this instance the
V-inverse of S, denoted as V�1

ðSÞ. Let QVðxÞ be the CQ
query over V with free variables x and frozen body
½QV� ¼ S. The instance V�1

ðSÞ is actually obtained from
½QV� by unfolding view definitions, with bound variables in
view definitions renamed to new distinct variables. That is,
V�1
ðSÞ ¼ ½QVJV�. The following proposition (slightly mod-

ified) is from [1,5].

Proposition 4. Let Q ðxÞ be a CQ query and V be a set of CQ
views. Let S ¼ Vð½Q �Þ and QVðxÞ be the CQ query with

½QV� ¼ S. We have the following: (i) if x 2 Q ðV�1
ðSÞÞ, then

QV is a rewriting of Q in terms of V, and thus V7Q . (ii) if Q

has a CQ rewriting in terms of V, then QV is such a rewriting.

5.2. Minimal CQ queries

We first consider the invertibility problem in which
selection queries Q are minimal conjunctive queries. Recall
that a conjunctive query Q is minimal if removing any of
the rows from [Q] leads to an nonequivalent conjunctive
query [8]. For minimal CQ queries, we show the following:

Theorem 3. When the queries in Ls are minimal CQ queries,
VDetðLs,LvÞ is
(1)
 in PTIME when Lv is PC,

(2)
 in PTIME when Lv is SP,

(3)
 NP-complete when Lv is SC. &
The proof is a little involved, and consists of several
parts. The PTIME results are shown by leveraging
Proposition 4(i). More specifically, for both cases a number
of conditions on the query Q and view V are identified such
that (1) when satisfied, the conditions imply that x 2

Q ðV�1
ðSÞÞ and thus V determines Q; and (2) when the

conditions are not satisfied, the view does not determine
the query. Furthermore, these conditions can be verified in
PTIME. The intractability of VDetðCQ ,SCÞ is shown in two
steps: First, NP-hardness is established by reduction from
the graph 3-colorability problem; and second, the NP upper
bound is shown to hold even when queries in Ls are not
minimal. The upper bound proof is deferred to Section 5.3.

Before giving the details of the proof, we elaborate the
impact of the minimality assumption for CQ queries in Ls.
As previously described, the PTIME results rely on the
identification of necessary and sufficient conditions for
view determinacy. In order to show that these conditions
are necessary, we show that if the conditions fail to hold,
then there exist two instances D1 and D2 such that
VðD1Þ ¼VðD2Þ but Q ðD1ÞaQ ðD2Þ. We show next that if Q

is minimal, then there is a principled way to find (in PTIME)
two instances D1 and D2 such that Q ðD1ÞaQ ðD2Þ. We shall
show in the proof of Theorem 3 that these instances can
further be taken such that VðD1Þ ¼VðD2Þ.

More formally, given a CQ query Q ðxÞ and a tuple
t 2 ½Q �, we call a set D of tuples critical for t and Q if the
CQ queries Q1ðxÞ and Q2ðxÞ with frozen bodies ½Q1� ¼ ½Q � [

D and ½Q2� ¼ ð½Q �\ftgÞ [D, respectively, satisfy the following
two properties: (1) Q1 �Q , or in other words, adding D
does not change the query Q; and (2) QD! Q2, that is,
replacing t with D results in a query strictly more general
than Q. Critical sets of tuples allow us to construct
instances on which Q differs:

Lemma 2. Let Q ðxÞ be a CQ query, t 2 ½Q � and D be a set of

critical tuples for t and Q. Then for D1 ¼ ½Q � [ D and

D2 ¼ ð½Q �\ftgÞ [ D we have that Q ðD1ÞaQ ðD2Þ.

Proof. Let Q1ðxÞ and Q2ðxÞ be the CQ queries with frozen
bodies ½Q1� ¼D1 and ½Q2� ¼D2, respectively. Assume by
contradiction that Q ðD1Þ ¼Q ðD2Þ. By assumption, Q1 � Q ,
and hence, we also have that Q1ð½Q1�Þ¼Q1ðD1Þ¼Q1ðD2Þ¼

Q1ð½Q2�Þ. Furthermore, x 2 Q1ð½Q1�Þ and thus also x 2

Q1ð½Q2�Þ. By the Homomorphism Theorem, Q2DQ1. From
the assumption that Q DQ2, and hence Q1DQ2, we can
then conclude that Q � Q2. This contradicts the fact that
QD! Q2 and therefore, Q ðD1ÞaQ ðD2Þ. &

The crucial observation is that when Q ðxÞ is a minimal
query, one can construct critical sets of tuples easily. More
precisely, let t 2 ½Q � and let s be a tuple obtained from t by
replacing some occurrences of (i) a constant; or (ii) a
variable that appears in multiple rows in [Q]; or (iii) a
variable that appears in x, with a distinct new variable; or
(iv) replacing some occurrences of a variable that appears
multiple times but only in t , with a distinct new variable
while keeping the other occurrences of this variable
unchanged. We then have the following:

Lemma 3. Let Q ðxÞ be a minimal CQ query, t 2 ½Q � and D be

a set of tuples obtained from t as described in (i)–(iv). Then D
is critical for t and Q.

Proof. We need to show that for Q1ðxÞ with ½Q1� ¼ ½Q � [ D
and Q2ðxÞ with ½Q2� ¼ ð½Q �\ftgÞ [ D, we have that (a) Q �Q1

and (b) QD! Q2. For (a) it suffices to observe that ½Q �D ½Q1�

and therefore, Q1DQ . Furthermore, the trivial homo-
morphism h : ½Q �-½Q � can be extended to a homomorph-
ism h0 : ½Q1�-½Q � since, by construction, every tuple s 2 D
is equal to t except that some occurrences of a constant or
variable are replaced by a new variable that does not
introduce additional equality constraints. Hence,
h0ð½Q1�ÞD ½Q �, h0ðxÞ ¼ x and therefore, Q DQ1. We can thus
conclude that Q �Q1, as desired.

For (b) we first observe that ½Q2�D ½Q1� and thus Q1DQ2.
From (a) we can also infer that Q DQ2. Assume by contra-
diction that Q � Q2. Since 9½Q2�9¼ 9½Q1�9�1Z9½Q �9 and Q is
minimal, there exists a subset T of ½Q2� such that Q 02ðxÞ

with ½Q 02� ¼ T is equivalent to Q, and 9½Q 02�9¼ 9½Q �9. We
consider the following cases: (i) ½Q �\ftgD ½Q 02� and (ii)
½Q �\ftgJ½Q 02�.

Case (i): Note that ½Q 02� consists of all the tuples of ½Q �\ftg
plus a newly constructed tuple s 2 D. Since Q 02 and Q are
minimal and equivalent, the tableaux ð½Q 02�,xÞ and ð½Q �,xÞ
are the same up to renaming of variables (cf. [8,
Proposition 6.2.9]). This is impossible, however, by the
construction of tuples in D.

Case (ii): Observe that there exists a tuple u 2 ½Q �\ftg

such that u=2½Q 02�. Let Q 0ðxÞ be the CQ query with
½Q 0� ¼ ½Q �\fug. It is easily verified that there exists a homo-
morphism h1 : ½Q

0
2�-½Q

0�with h1ðxÞ ¼ x. On the other hand,
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Q �Q 02 and there exists a homomorphism h2 : ½Q �-½Q
0
2�

with h2ðxÞ ¼ x. Thus there exists a homomorphism
h¼ h1Jh2 : ½Q �-½Q

0� with hðxÞ ¼ x and hence, Q 0DQ .
Furthermore, from ½Q 0�D ½Q � we infer that Q DQ 0. Hence,
Q 0 �Q . This, however, contradicts the assumption that Q is
minimal and therefore, QcQ2. &

Proof of Theorem 3. We are now ready to prove Theorem 3.
(1) VDetðCQ ,PCÞ. We first consider the case when V

consists of a single view V. We then show the result for
general views.

Single PC view: Let Q ðxQ Þ be a minimal CQ query and
VðxV Þ be a PC view defined over relational schema
R¼ ðR1, . . . ,RkÞ. Since V is a PC query, ½V � contains no
constants and each variable in ½V � appears only once. This
implies that for any pair of tuples tV 2 ½V � and tQ 2 ½Q � over
the same relation in R, there is a unique homomorphism h

from tV to tQ .
We show that V determines Q iff the following condi-

tions are satisfied: (1) the relation symbols appearing in Q

are exactly the same as those appearing in V; (2) for each
tuple tQ 2 ½Q � there exists a tuple tV 2 ½V � over the same
relation in R such that for each variable x in tV and for the
homomorphism h from tV to tQ , if (a) h(x) is a constant; or
(b) h(x) appears more than once in [Q]; or (c) h(x) appears
in xQ , then x must appear in xV . These conditions can be
easily checked in PTIME.

We first show that if these conditions hold then V7Q .
More specifically, we show that the conditions imply that
xQ 2 Q ðV�1ðSÞÞ. Let S¼ Vð½Q �Þ. By condition (1), Sa|, and
one can construct the instance V�1ðSÞ from S. Consider an
arbitrary tuple tQ 2 ½Q � and let tV be a tuple ½V � that
satisfies condition (2). Let h be the homomorphism from
tV to tQ . Since V is a PC query, we can extend h to be a
homomorphism h from ½V � to [Q]. Moreover, by the
construction of V�1ðSÞ, there is a tuple t 2 V�1ðSÞ such that
t ¼ h0ðtV Þ, where h0ðxÞ ¼ hðxÞ ¼ hðxÞ if x appears in xV , and
h0ðxÞ is a new distinct variable otherwise. Now consider
tuples tQ and t . By conditions (2a) and (2b), tQ and t are
isomorphic, and the homomorphism h00 from tQ to t is
identity on variables that appear more than once in [Q]. By
gathering all homomorphism h00 between tuples tQ in [Q]
and tuples t 2 V�1ðSÞ, constructed as above from tuples tV

that satisfy condition (2), we thus obtain a homomorphism
h
00

from [Q] to V�1ðSÞ. By condition (2c), h
00

is identity on
variables that appear in xQ , and thus h

00
ðxQ Þ ¼ xQ and

xQ 2 Q ðV�1ðSÞÞ. From Proposition 4(i) it follows that V7Q .
We next show that the conditions are also necessary. We

first consider condition (1). Suppose that Q has less
relation symbols than V. In this case, Vð½Q �Þ ¼ | and by
Proposition 3(i), V does not determine Q. If Q has more
relation symbols than Q, then by Proposition 3(ii), V cannot
determine Q either. In other words, condition (1) needs to
be satisfied.

Next, consider condition (2). Suppose that there exists a
tuple tQ 2 ½Q � such that for any tuple tV 2 ½V � over the
same relation as tQ , one of the conditions (2a)–(2c) is not
satisfied. Let t ¼ tQ . For each tuple tV 2 ½V � over the same
relation as t , we construct a tuple s from t as follows. Let h

be the unique homomorphism from tV to t . Let x be the
variable in tV that does not occur in xV but either (a) h(x) is
a constant; (b) h(x) occurs multiple times in [Q]; or (c) h(x)
appears in xQ . We then construct s from t by replacing
each h(x) in t with a new distinct variable. For each tV we
put the resulting tuple s in the set D. Lemma 3 implies that
D is critical for t and Q, and Lemma 2 tells us that
Q ðD1ÞaQ ðD2Þ for D1 ¼ ½Q � [D and D2 ¼ ð½Q �\ftgÞ [ D. Hence
if VðD1Þ ¼ VðD2Þ, then V does not determine Q.

We now verify that VðD1Þ ¼ VðD2Þ. Since D2DD1, we have
that VðD2ÞDVðD1Þ. Hence, we need to show that
VðD1ÞDVðD2Þ. Let u 2 VðD1Þ and let h0 : ½V �-D1 such that
h0ðxV Þ ¼ u. Then for the tuple tV 2 ½V � such that h0ðtV Þ ¼ t , we
have a tuple s 2 D that coincides with t on variables in tV

that occur in xV but may be different on some other
attributes. Since V is a PC query, however, we can define h00 :
½V �-D2 such that h00 ¼ h0 on ½V �\ftV g and h00ðtV Þ ¼ s. Clearly,
h00ðxV Þ ¼ u, and since this argument works for every tuple in
VðD1Þ, we have that VðD1ÞDVðD2Þ. Hence VðD1Þ ¼ VðD2Þ.

Multiple PC views: We next consider VDetðCQ ,PCÞ when
V consists of multiple views fV1ðx1Þ, . . . ,V‘ðx‘Þg. We show
that VDetðCQ ,PCÞ is in PTIME by reducing the multiple view
case to the single-view case.

The reduction is given as follows. First, we divide V into
two sets: V1 is the set of views Vi 2 V such that Vi contains
more relation symbols than Q, and V2 ¼V\V1. Next, we
consider the product query V� of the views in V2. Here we
assume that the variables in the Vi’s are all distinct and
consider V� ¼�Vi2V2

Vi in which the free variables in V� is
the union of the free variables in the Vi’s. We show that
V7Q iff V2a| and V�7Q . Note that both conditions can
be checked in PTIME.

Suppose first that the conditions hold. Consider two
instances D1 and D2 such that VðD1Þ ¼VðD2Þ. This implies
that V�ðD1Þ ¼V�ðD2Þ. Because V�7Q , we can then con-
clude that Q ðD1Þ ¼Q ðD2Þ. In other words, V7Q .

Conversely, suppose that one of the conditions does not
hold. Clearly, when all views Vi in V address more relation
symbols than Q, then Við½Q �Þ ¼ | for i 2 ½1,‘� and hence
Vð½Q �Þ ¼ |. Proposition 3(i) then tells us that V cannot
determine Q. In other words, V2 must be nonempty. Suppose
next that V� does not determine Q. Since V� is a single view,
this implies that the conditions for the single view case (as
stated in the proof above) do not hold. As a consequence, we
can construct the two instances D1 and D2, as in the proof for
single PC views, which have the property that V�ðD1Þ ¼V�
ðD2Þ but Q ðD1ÞaQ ðD2Þ. Furthermore, observe that V�ðD1Þ ¼

V�ðD2Þa| and therefore VðD1Þ ¼ VðD2Þ for any D 2 V2. Since
D1 and D2 are constructed from [Q], these instances are
empty for all relations not addressed by Q. As a result
VðD1Þ ¼ VðD2Þ ¼ | for any V 2 V1. Putting these together,
VðD1Þ ¼ VðD2Þ but Q ðD1ÞaQ ðD2Þ. Hence V does not deter-
mine Q.

(2) VDetðCQ ,SPÞ. We first consider the case when V
consists of a single view V, and then extend the result to
general views.

Single SP view: Let Q ðxQ Þ be a minimal CQ query and
VðxV Þ be an SP view defined over relational schema
R¼ ðR1, . . . ,RkÞ. Since V is an SP query, ½V � consists of a
single tuple tV over some relation R in R.

We provide necessary and sufficient conditions on V and
Q to decide whether V determines Q or not. More specifi-
cally, we show that V7Q iff (1) Q only contains the
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relation symbol R; (2) for each tuple tQ 2 ½Q �, there exists a
homomorphism h from tV to tQ and furthermore, for each
variable x in tV , if (a) h(x) is a constant; or (b) there exists a
variable y in tV such that xay but hðxÞ ¼ hðyÞ; or (c) h(x)
appears in multiple tuples in [Q]; or finally, (d) if h(x)
appears in xQ , then x must appear in xV . These conditions
can easily be checked in PTIME.

We first show that if the conditions above hold then
V7Q , by showing that the conditions imply that
xQ 2 Q ðV�1ðSÞÞ. Let us consider S¼ Vð½Q �Þ in more detail.
Suppose that [Q] consists of m tuples t1, . . . ,tm. Since V

contains only one tuple tV , one can easily verify that S is
the projection of fhiðtV Þ9i 2 ½1,m�g on the attributes corre-
sponding to xV , where hi is the homomorphism from tV to
t i for each t i 2 ½Q �. Consequently, we also have an explicit
description of V�1ðSÞ. Indeed, V�1ðSÞ ¼ fh0iðtV Þ9i 2 ½1,m�g,
where h0iðxÞ ¼ hiðxÞ if x is a variable in xV , and h0iðxÞ ¼ x0

otherwise, and x0 is a distinct new variable not appearing
anywhere else. We next show that the conditions imply
that xQ 2 Q ðV�1ðSÞÞ and hence by Proposition 4(i), that
V7Q .

We show that xQ 2 Q ðV�1ðSÞÞ by constructing a homo-
morphism h : ½Q �-V�1ðSÞ such that hðxQ Þ ¼ xQ . Let t i 2 ½Q �

and consider the tuple si ¼ h0iðtV Þ 2 V�1ðSÞ. Let u be a
variable or constant in t i and let h�1

i ðuÞ ¼ fx9hiðxÞ ¼ ug.
Observe that conditions (2a) and (2b) imply that
h�1

i ðuÞDxV or h�1
i ðuÞ \ xV ¼ |. Furthermore, in the latter

case, h�1
i ðuÞ consists of a single element. We define h00i :

t i-si as follows: hi
00
ðuÞ ¼ u in case that h�1

i ðuÞDxV , and
hi
00
ðuÞ ¼ h0iðh

�1
i ðuÞÞ in case that h�1

i ðuÞ \ xV ¼ |. By the con-
struction of V�1ðSÞ, the mapping hi

00 is an isomorphism
from t i to si. Furthermore, condition (2c) guarantees that
the union of all h00i , for i 2 ½1,m� is a homomorphism h

00

from [Q] to V�1ðSÞ which is, by condition (2d), ensured to
be identity on variables in xQ . In other words, h

00
ðxQ Þ ¼ xQ

and therefore, xQ 2 Q ðV�1ðSÞÞ.
We next show that the conditions above are also

necessary. The necessity of condition (1) follows immedi-
ately from Proposition 3(ii). We next consider condition
(2) and show that if this condition does not hold, then V

does not determine Q.
First suppose that there exists a tuple t 2 ½Q � such that

there exists no homomorphism from tV to t . In this case,
the instances D1 ¼ ½Q �\ftg and D2 ¼ ½Q � provide a counter-
example for view determinacy. Indeed, the lack of homo-
morphism implies that Vð½Q �Þ ¼ VðD1Þ. The minimality of Q,
however, implies that Q ð½Q �ÞaQ ðD1Þ. Hence, we may
assume that for any tuple t 2 ½Q � there exists a homo-
morphism h from tV to t .

Suppose, however, that there exist a tuple tQ 2 ½Q � and a
variable x in tV such that x does not occur in xV , but for the
homomorphism h from tV to tQ , either h(x) is a constant, or
h(x) appears in multiple tuples in [Q], or h(x) appears in xQ ;
or there exists another variable y with hðxÞ ¼ hðyÞ. Let
t ¼ tQ . We construct a tuple s from t by replacing each
occurrence of h(x) in t that corresponds to each occurrence
of x in tV with a new distinct variable. Note that the
replacement does not affect the existence of a homo-
morphism from tV to s. Since x does not appear in xV , we
have that VðftgÞ ¼ VðfsgÞ. Let D1 ¼ ½Q � [ fsg and let
D2 ¼ ð½Q �\ftgÞ [ fsg. Since V is an SP query we may conclude
that VðD1Þ ¼ VðD2Þ. From Lemma 3 we know that D¼ fsg is
critical for t and [Q], and hence Lemma 2 implies that
Q ðD1ÞaQ ðD2Þ. In other words, V does not determine Q.

Multiple SP views: We next consider the case when V
consists of a number of SP views. Let Q be a CQ query and
V be a set of SP views. For each view V 2 V, ½V � consists of
one tuple tV over some relation in R. We show that V7Q

iff for each tuple tQ 2 ½Q �, there exist a tuple tV 2 ½V� over
the same relation as tQ and a homomorphism h from tV to
tQ such that the conditions (2a)–(2d) described above are
satisfied for tQ, tV and h. As before, these conditions can be
checked in PTIME.

Along the same lines as in the proof for single SP views,
one can readily verify that the conditions are sufficient to
determine whether V7Q . We next show their necessity.

Suppose that there exists a tuple tQ 2 ½Q � for which no
tuple tV 2 ½V� can be found that can be mapped onto tQ . In
this case, deleting tQ from [Q] results in Vð½Q �Þ ¼Vð½Q �\ftQ gÞ.
The minimality of Q, however, implies that Q ð½Q �Þa
Q ð½Q �\ftQ gÞ. Hence, V does not determine Q.

Next, suppose that there exists a tuple tQ 2 ½Q � such that,
for each tuple tV 2 ½V� for which there exists a homo-
morphism to tQ , but one of the conditions (2a)–(2d) do not
hold. Let t ¼ tQ . For each such tuple tV we construct a row
s from t , similar to the construction in the proof for single
SP views. Let D be the set of all the constructed tuples. Let
D1 ¼ ½Q � [D and D2 ¼ ð½Q �\ftgÞ [D. It is readily verified that
VðD1Þ ¼VðD2Þ, D is critical for t and [Q] and hence, Q ðD1Þa
Q ðD2Þ. In other words, V does not determine Q.

(3) VDetðCQ ,SCÞ. We show that VDetðCQ ,SCÞ is NP-hard
by reduction from the graph 3-colorability problem, which
is known to be NP-complete (cf. [21]). The NP upper bound
holds even when queries in Ls are not minimal, which will
be verified in the proof of Theorem 4(2).

The reduction is constructed as follows. Given a graph
G¼ ðV ,EÞ, we define a (minimal) CQ query Q and an SC
view W such that W7Q iff G is 3-colorable. More
specifically, let C be a set of three variables disjoint from
the set of vertices V, and R be a binary relation. We
construct a CQ query Q ðxÞ such that

½Q � ¼ fðc1,c2Þ9c1,c2 2 C,c1ac2g

and an SC view Wðx,yÞ such that

½W � ¼ fðv1,v2Þ9ðv1,v2Þ 2 Eg [ fðc1,c2Þ9c1,c2 2 C,c1ac2g:

The free variables in Q are given by x ¼ ðc1,c2,c1,c3,c2,
c1,c2,c3,c3,c1,c3,c2Þ. The free variables of W are ðx,yÞ, where
x is as in Q and y consists of all edges in E.

We show that W determines Q iff G is 3-colorable.
Suppose that G is 3-colorable and let g : V-C be a 3
coloring of V. Consider the view W 0 ¼ ð½W �,xÞ. Then, h :

½W �-½Q � defined as hðviÞ ¼ gðviÞ and hðciÞ ¼ ci is a homo-
morphism from ½W � to [Q] such that hðxÞ ¼ x. Indeed, since
g is a 3-coloring of V, we have that hððv,wÞÞ ¼ ðgðvÞ,
gðwÞÞ 2 ½Q �. Hence, Q DW 0. Since W 0DQ we then have that
Q ¼ px ðWÞ. This in turn implies that W7Q . On the other
hand, suppose that G is not 3-colorable. Then there exists
no homomorphism from ½W � to [Q] and thus Wð½Q �Þ ¼ |.
From Proposition 3(i) we can conclude that W does not
determine Q. &
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The proof of Theorem 3 also tells us that CQ is complete
for rewriting CQ queries using SC, SP or PC views.

Corollary 1. The class of conjunctive queries is complete for

L-to-CQ rewritings when L is SC, SP, or PC. &

Proof. The cases when Lv is SP or PC follow immediately
from the proofs of Theorem 3(1) and (2), respectively.
Indeed, in those proofs it has been shown that if V7Q

then Q�1 is given by a CQ query. Observe that the
statement remains intact for selection queries in Ls that
are not necessarily minimal. Indeed, for a CQ query Q,
V7Q iff V7Qmin, where Qmin is a minimal CQ query
equivalent to Q. Moreover, if there exists a query Q�1 such
that Q�1 is a CQ rewriting of Qmin using V, then Q�1 is also
a CQ rewriting of Q using V, and vice versa.

The case when Lv is SC follows from Theorem 1 in [2] in
which the completeness of CQ is shown for views that do
not contain non-distinguishable variables. &

Corollary 1 and Proposition 1, when taken together, tell us
that QPreðCQ ,Lv,LqÞ is equivalent to VDetðCQ ,LvÞ when the
language Lq subsumes CQ. Hence, from Theorem 3 we obtain:

Corollary 2. When queries in Ls are minimal CQ queries,
QPreðLs,Lv,CQ Þ is
(1)
 in PTIME when Lv is PC or SP, and
(2)
 NP-complete when Lv is SC. &
5.3. Arbitrary CQ queries

We next turn our attention to the general case, that is,
when the queries in Ls are not necessarily minimal. We
first consider the invertibility problem. While general CQ
queries do not make our lives harder when views are PC
queries, they do complicate the invertibility analysis for SP
views. Indeed, the invertibility problem becomes intract-
able for SP views, in contrast to PTIME when queries in Ls

are minimal (Theorem 3(2)).

Theorem 4. VDetðCQ ,Lv) is
(1)
 PTIME when Lv is PC, and
(2)
 NP-complete when Lv is SP or SC. &
Table 1
Undecidability results. Bold entries are new results shown in this paper.

Problem Complexity

VDet(FO, CQ) Undecidable [5, Corollary 2.2]

VDet(CQ, FO) Undecidable [5, Corollary 2.2]

VDet(DATALOG, CQ) Undecidable (Theorem 1(1))
VDet(CQ, DATALOG) Undecidable (Theorem 1(2))
VDet(UCQ, UCQ) Undecidable [5, Theorem 4.1]
Proof. We first show that VDet is in PTIME for PC views. We
then show the intractability of the problem for SP and
SC views.

(1) VDetðCQ ,PCÞ. We need the following notation. Given
a CQ query Q ðxQ Þ and a variable x in [Q], we call x typed if x

appears only in one column over a single relation table in
[Q]. For a typed variable x, let Qx be the set of tuples in [Q]
that contain x. If Qx can be mapped to a single tuple via a
homomorphism, we call x single typed. Checking whether a
variable is typed or single typed can be done in PTIME.

We first consider a single PC view VðxV Þ. We show that
V7Q iff the following conditions are satisfied: (10) the
relation symbols appearing in Q are exactly the same as
those appearing in V; and (20) for each row tQ 2 ½Q �, there
exists a row tV 2 ½V � over the same relation such that the
following conditions are satisfied for each variable x in tV

and for the (unique) homomorphism h from tV to tQ : x

must appear in xV (a) if h(x) is a constant; or (b) if h(x) is
not typed; or (c) h(x) is typed but not single typed; or (d) if
h(x) appears in xQ .

We show that these conditions on Q and V translate to
the conditions described in the proof of Theorem 3(1)
when considering a minimal query Q 0 equivalent to Q and
the same view V. From this, the PTIME result follows. More
specifically, let Q 0ðxQ Þ be the minimal CQ query equivalent
to Q such that ½Q 0�D ½Q �. Clearly, Q 0 and Q access the same
set of relation symbols and thus condition (10) is equiva-
lent to condition (1) in the proof of Theorem 3(1).

We next verify this for condition (20). Since Q 0 �Q , there
exists a homomorphism h : ½Q �-½Q 0� with hðxQ Þ ¼ xQ . Let
tQ 2 ½Q � and tV 2 ½V � be two tuples over the same relation.
Let tQ 0 ¼ hðtQ Þ. Consider the homomorphisms h1 : tV-tQ

and h2 : tV-tQ 0 . It is clear that h2 ¼ hJh1. Let x be a
variable in tV . We distinguish between the following cases,
depending on the conditions stated above: (20a) If h1ðxÞ is a
constant, then h2ðxÞ is the same constant; (20b) If h1ðxÞ is
not typed or (20c) if h1ðxÞ is typed but not single typed,
then h2ðxÞ ¼ hðh1ðxÞÞ appearsmultiple times in ½Q 0�; (20d) if
h1ðxÞ occurs in xQ , then h2ðxÞ ¼ hðh1ðxÞÞ ¼ h1ðxÞ also occurs
in xQ . Therefore the conditions (20a)–(20d) for general CQ
queries correspond to the conditions (2a)–(2c) for minimal
CQ queries in the proof of Theorem 3(1).

When V consists of multiple PC views, we can verify the
statement by reduction to the single-view case, along the
same lines as the proof for the multiple view case for
minimal CQ queries. We omit the details here to avoid
repetition.

(2) VDetðCQ ,SPÞ and VDetðCQ ,SCÞ: From Theorem 3(3) we
already know that VDetðCQ ,SCÞ is NP-hard when queries in
Ls are minimal. This lower bound trivially carries over to
the general case. We therefore only need to show that
VDetðCQ ,SPÞ is NP-hard for general queries and establish a
matching NP upper bound for VDetðCQ ,SPÞ and VDetðCQ ,SCÞ.

For the lower bound, we show a stronger result. That is,
we show that VDet(CQ,S) is already NP-hard by reduction
from the containment problem for CQ queries, which is
known to be NP-complete (cf. [8]). Let Q1ðxÞ and Q2ðxÞ be
two CQ queries over the same n-ary relation R. We
construct a CQ query Q and an S view V¼ fVg such that
V7Q iff Q1DQ2.

More specifically, let R0 be an (nþ1)-ary relation
obtained from R by adding an extra attribute A. We define
Q ðxÞ as a CQ query over R0 such that ½Q � ¼ ðf0g � ½Q1�Þ[

ðfug � ½Q2�Þ, where u is a variable not appearing anywhere
else and x denotes the free variables in Q1 and Q2,
respectively. Let VðzÞ be the S-query over R0 with



Table 2
Decidability results for view determinacy and conjunctive queries.

Minimal queries General queries

Problem Complexity Problem Complexity

VDet(SPC, SPC) Open VDET(SPC, SPC) Open

VDet(SPC, PC) PTIME (Theorem 3(1)) VDET(SPC, PC) PTIME (Theorem 4(1))

VDet(SPC, SP) PTIME (Theorem 3(2)) VDET(SPC, SP) NP-complete (Theorem 4(2))

VDet(SPC,SC) NP-complete (Theorem 3(3)) VDET(SPC,SC) NP-complete (Theorem 4(2))
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½V � ¼ ð0,z1,z2, . . . ,znÞ. We know from Corollary 1 that CQ is
complete for S-to-CQ rewritings and by Proposition 4(i)
and (ii) that V7Q iff x 2 Q ðV�1ðSÞÞ.

Observe that for the S-view V and query Q we have that
Vð½Q �Þ ¼ f0g � ½Q1� ¼ V�1ðSÞ. We next show that there exists
a homomorphism h : ½Q �-V�1ðSÞ such that hðxÞ ¼ x iff
Q1DQ2. Suppose that Q1ðxÞDQ2ðxÞ. Then there is a homo-
morphism h0 : ½Q2�-½Q1� such that hðxÞ ¼ x. Clearly, we can
extend h0 to a homomorphism from [Q] to f0g � ½Q1� by
setting h¼ h0 for variables in ½Q2� and hðuÞ ¼ 0, and by
letting h be the identity for variables in Q1. Then clearly
hðxÞ ¼ x. Conversely, suppose that h : ½Q �-f0g � ½Q1� is a
homomorphism such that hðxÞ ¼ ðxÞ. Then h induces a
homomorphism h0 from Q2 to Q1 such that h0ðxÞ ¼ x, hereby
showing that Q1DQ2.

To see that VDet(CQ, SP) and VDet(CQ, SC) are in NP, observe
that by Corollary 1, V7Q iff the inverse is a CQ query and
moreover, this query is an equivalent rewriting of Q using V.
In other words, testing determinacy reduces to testing for an
equivalent CQ rewriting, which is known to be in NP [11]. &

Along the same lines as Corollary 2, we can readily get
the following for the query preservation problem.

Corollary 3. QPreðCQ ,Lv,CQ Þ is
(1)
 in PTIME when Lv is PC, and
(2)
 NP-complete when Lv is SP or SC. &
6. Conclusion

We have introduced the notions of query preservation
and invertibility to specify the preservation of selected
information in data transformations. We have shown that
invertibility coincides view determinacy, establishing the
connection between selected information preservation and
query rewriting using views. We have also investigated
two important problems associated with selected informa-
tion preservation, namely, VDetðLs,LvÞ and QPreðLs,Lv,LqÞ,
and provided their complexity bounds for a variety of
query languages for expressing selection queries (Ls),
views (Lv) and user queries (Lq). We expect that these
results will help practitioners determine whether their
data transformations are lossless w.r.t. important informa-
tion. In addition, the results are new additions to the study
of view determinacy and complete rewriting languages.

We summarize the main complexity results for invert-
ibility (view determinacy) in Tables 1 and 2, annotated
with their corresponding theorems. All the results in
Table 2 and the highlighted results in Table 1 have not
appeared in the literature.

The study of selected information preservation is still
preliminary. One open problem is to establish the complexity
of VDetðCQ ,CQ Þ and QPreðCQ ,CQ ,CQ Þ. However, these are by
no means trivial: for example, VDetðCQ ,CQ Þ is equivalent to
the view determinacy problem for CQ queries and CQ views,
whose decidability remains unknown [5]. Another issue is to
study VDetðL,CQ Þ and QPreðL,CQ ,CQ Þ, for CQ views and
selection queries Q in L ranging over SP, PC and SC. A third
topic is to identify practical cases of VDetðCQ ,CQ Þ and
QPreðCQ ,CQ ,CQ Þ that are tractable. In particular, our con-
jecture is that the analysis would become simpler for key
preserving CQ views, i.e.,views that retain the keys of base
relations involved [22]. Data transformations in practice are
either key preserving or can be naturally extended to
preserve keys.
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