
Relative Information Completeness

Wenfei Fan
University of Edinburgh &

Bell Labs
wenfei@inf.ed.ac.uk

Floris Geerts
School of Informatics

University of Edinburgh

fgeerts@inf.ed.ac.uk

Abstract
The paper investigates the question of whether a partially
closed database has complete information to answer a query.
In practice an enterprise often maintains master data Dm, a
closed-world database. We say that a database D is partially
closed if it satisfies a set V of containment constraints of the
form q(D) ⊆ p(Dm), where q is a query in a language LC
and p is a projection query. The part of D not constrained
by (Dm, V) is open, from which some tuples may be missing.
The database D is said to be complete for a query Q relative
to (Dm, V) if for all partially closed extensions D′ of D,
Q(D′) = Q(D), i.e., adding tuples to D either violates some
constraints in V or does not change the answer to Q.

We first show that the proposed model can also capture
the consistency of data, in addition to its relative complete-
ness. Indeed, integrity constraints studied for consistency
can be expressed as containment constraints. We then study
two problems. One is to decide, given Dm, V , a query Q in
a language LQ and a partially closed database D, whether
D is complete for Q relative to (Dm, V). The other is to
determine, given Dm, V and Q, whether there exists a par-
tially closed database that is complete for Q relative to
(Dm, V). We establish matching lower and upper bounds
on these problems for a variety of languages LQ and LC .
We also provide characterizations for a database to be rela-
tively complete, and for a query to allow a relatively com-
plete database, when LQ and LC are conjunctive queries.

Categories and Subject Descriptors: H.2.3 [Informa-
tion Systems]: Database Management – Languages; F.4.1
[Mathematical Logic and Formal Languages]: Math-
ematical Logic — Computational Logic
General Terms: Languages, Theory, Design.

1. Introduction
One of the issues central to data quality concerns incom-

plete information. Given a database D and a query Q, we
want to know whether Q can be answered by using the data
in D. If the information in D is incomplete, one can hardly
expect its answer to Q to be accurate. Incomplete infor-
mation introduces serious problems to enterprises: it rou-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’09, June 29–July 2, 2009, Providence, Rhode Island, USA.
Copyright 2009 ACM 978-1-60558-553-6 /09/06 ...$5.00.

tinely leads to misleading analytical results and biased de-
cisions, and accounts for loss of revenues, credibility and
customers [4].

The study of incomplete information is almost as old as
the relational model itself. There has been a host of work on
missing values, under the Closed World Assumption (CWA).
That is, all the tuples representing real-world entities are
assumed already in place, but the values of some fields in
these tuples are missing. As a result, facts that are not in
the database are assumed to be false. To this end, a number
of approaches have been proposed, notably representation
systems for a set of possible worlds (e.g., v-tables, c-tables,
OR-object databases, e.g., [16, 17]) and disjunctive logic
programming (see [27] for a comprehensive survey).

Equally important to data quality is how to handle miss-
ing tuples, under the Open World Assumption (OWA). That
is, a database may only be a proper subset of the set of tu-
ples that represent real-world entities. While there has also
been work on missing tuples (e.g., [15, 18, 22, 28]), this issue
has received relatively less attention. Under OWA, one can
often expect few sensible queries to find complete answers.

In several emerging applications, however, neither CWA

nor OWA is quite appropriate. This is evident in, e.g., Mas-
ter Data Management (MDM [11, 24, 21]), one of the fastest
growing software markets. An enterprise nowadays typically
maintains master data (a.k.a. reference data), a single repos-
itory of high-quality data that provides various applications
with a synchronized, consistent view of the core business
entities of the enterprise. The master data contains com-
plete information about the enterprise in certain categories,
e.g., employees, departments and projects.

Master data can be regarded as a closed-world database.
Meanwhile a number of other databases may be in use in
the enterprise for, e.g., sales, project control and customer
support. On one hand, these databases may not be com-
plete, e.g., some sale transactions may be missing. On the
other hand, certain parts of the databases are constrained
by the master data, e.g., employees and projects. In other
words, these databases are neither entirely closed-world, nor
entirely open-world. It becomes more interesting to decide
whether the information available in these databases is com-
plete to answer a query.

Example 1.1: Consider a company that maintains a master
data relation Proj(emp, proj), which keeps track of people
working on projects of a set C0 of clients, including al. The
company also has a database Work on(emp, proj, cli) in which
a tuple (e, p, c) indicates that employee e works on project
p of client c. Work on is not part of the master data.

Consider a query Q1 posed on Work on to find all em-
ployees who work on project p0. The query may not get
a complete answer since some tuples may be missing from

97

Work on. However, if we know that p0 is a project of client
al and if all tuples of Proj(e, p0) can be extracted from
Work on, then we can safely conclude that query Q1 can
find a complete answer from Work on. That is, there is no
need to add more tuples to Work on in order to answer Q1.

Alternatively, suppose that there is a constraint which
asserts that for any project, at most k people can work on
it. Then if the answer to Q1 in Work on returns k employees,
we can also conclude that the answer is complete.

As another example, suppose that the master data con-
tains a relation Managem(emp1, emp2), in which each tuple
(e1, e2) indicates that employee e2 directly reports to e1.
There is another relation Manage(emp1, emp2) that is not
part of master data, but it contains all tuples in Managem.
Consider query Q2 on Manage to find all the people above
e0 in the management hierarchy, i.e., the people to whom e0
reports, directly or indirectly. Note that if Q2 is in, e.g., dat-
alog, then we may expect the answer to Q2 to be complete.
In contrast, if Q2 is a conjunctive query, then the answer
to Q2 is incomplete unless Manage contains the transitive
closure of Managem. This tells us that the completeness of
information is also relative to the query language in use. 2

In this context several natural questions have to be an-
swered. Given a query Q posed on a database D that is
partially constrained by master data Dm, can we find com-
plete information from D to answer Q? Does there exist a
database D at all that has complete information to answer
Q? These questions are not only of theoretical interest, but
are also important in practice. Indeed, the ability to answer
these questions not only helps us determine whether a query
can find a complete answer from a particular database, but
also provides guidance for what data should be collected in
order to answer a query. The increasing demand for MDM

highlights the need for a full treatment of the completeness
of information relative to master data and queries.

Relative completeness. In response to the need, we pro-
pose a notion of relative information completeness.

To characterize databases D that are partially constrained
by master data Dm, we specify a set V of containment con-
straints. A containment constraint is of the form q(D) ⊆
p(Dm), where q is a query in a language LC posed on D,
and p is a simple projection query on Dm. Intuitively, the
part of D that is constrained by V is bounded by Dm, while
the rest is open-world. We refer to a database D that satis-
fies V as a partially closed database w.r.t. (Dm, V).

For a query Q in a language LQ, a partially closed
database D is said to be complete w.r.t. (Dm, V) if for all
partially closed extensions D′ of D w.r.t. (Dm, V), Q(D′) =
Q(D). That is, there is no need for adding new tuples to D,
since it either violates the containment constraints, or does
not change the answer to Q. In other words, D already has
complete information necessary for answering Q.

To simplify the discussion, we focus on missing tuples in
this paper. As will be addressed in Section 5, the notion of
relatively complete information can be extended to accom-
modate missing values as well, by capitalizing on represen-
tation systems for possible worlds [16, 17].

Completeness and consistency. Another critical issue
to data quality is the consistency of the data. To answer a
query using a database D, one naturally wants the informa-
tion in D to be both complete and consistent.

To capture inconsistencies one typically makes use of in-

tegrity constraints (e.g., [3, 5, 6, 14], see [8, 13] for recent
surveys). That is, inconsistencies and errors in the data are
detected as violations of the constraints. In light of this one
might be tempted to extend the notion of partially closed
databases by incorporating integrity constraints.

The good news is that there is no need to overburden
the notion with a set of integrity constraints. We show that
constraints studied for ensuring data consistency, such as de-
nial constraints [3], conditional functional dependencies [14]
and conditional inclusion dependencies [5], are expressible
as simple containment constraints. As a result, we can as-
sure that only consistent and partially closed databases are
considered, by enforcing containment constraints. That is,
in a uniform framework we can deal with both relative in-
formation completeness and consistency.

Main results. We investigate two important decision prob-
lems associated with the relative completeness of informa-
tion, and establish their complexity bounds. We also provide
characterizations for a database to be relatively complete
and for a query to allow a relatively complete database, in
certain cases when the decision problems are decidable.

Determining relatively complete databases. One of the two
problems, referred to as the relatively complete database
problem, is to determine, given a query Q, master data Dm,
a set V of containment constraints, and a partially closed
database D w.r.t. (Dm, V), whether or not D is complete
for Q relatively to (Dm, V). That is to decide, when Q is
posed on D, whether the answer of D to Q is complete.

We parameterize the problem with various LQ and LC ,
the query languages in which the queries are expressed and
in which the containment constraints are defined, respec-
tively. We consider the following LQ and LC , all with equal-
ity ‘=’ and inequality ‘ 6=’:

• conjunctive queries (CQ),
• union of conjunctive queries (UCQ),
• positive existential FO queries (∃FO+),
• first-order queries (FO), and
• datalog (FP).

We establish lower and upper bounds for the problem
w.r.t. all these languages, all matching, either Πp

2-complete
or undecidable. The complexity bounds are rather robust:
the lower bounds remain intact even when Dm and V are
predefined and fixed. The problem is already Πp

2-complete
for CQ queries and containment constraints defined as in-
clusion dependencies (INDs), when Dm and V are fixed.

Determining relatively complete queries. The other prob-
lem, referred to as the relatively complete query problem,
is to determine, given Q, Dm and V , whether there exists a
partially closed database D that is complete for Q relatively
to (Dm, V). It is to decide for Q whether it is possible to find
a relatively complete database D at all. If such a D exists,
Q is said to be a query relatively complete w.r.t. (Dm, V).

We present complexity bounds for the problem when LQ
and LC range over CQ, UCQ, ∃FO+, FO and FP. The lower
and upper bounds are again all matching: conp-complete,
nexptime-complete, or undecidable. In contrast to its coun-
terpart for relative complete databases, fixed Dm and V
make our lives easier: the problem becomes Σp3-complete as
opposed to nexptime-complete in certain cases.

Characterizations. When LQ and LC are CQ, we present
sufficient and necessary conditions for (a) a partially closed

98

databaseD to be complete for a queryQ relative to (Dm, V),
and (b) a query to be relatively complete w.r.t. (Dm, V).
As remarked earlier, the characterizations tell us what data
should be collected in D in order to answer a query, and
whether a query can find a complete answer at all. The
characterizations can be extended to UCQ and ∃FO+.

To the best of our knowledge, this work is among the first
efforts to study the completeness of information in emerging
applications such as MDM. Our results provide a compre-
hensive picture of complexity bounds for important decision
problems associated with relatively complete information.
Moreover, the results provide guidance for how to make a
database relatively complete. A variety of techniques are
used to prove the results, including a wide range of reduc-
tions and constructive proofs with algorithms.

Related work. Several approaches have been proposed to
represent or query databases with missing tuples. In [28], a
complete and consistent extension of an incomplete database
D is defined to be a database Dc such that D ⊆ πL(Dc) and
Dc |= Σ, where π is the projection operator, L is the set
of attributes in D, and Σ is a set of integrity constraints.
Complexity bounds for computing the set of complete and
consistent extensions of D w.r.t. Σ are established there. A
notion of open null is introduced in [15] to model locally con-
trolled open-world databases: parts of a database D, values
or tuples, can be marked with open null and are assumed
open-world, while the rest is closed. Relational operators are
extended to tables with open null. In contrast to [15], this
work aims to model databases partially constrained by mas-
ter data Dm and consistency specifications, both via con-
tainment constraints. In addition, we study decision prob-
lems that are not considered in [15].

Partially complete databases D have also been studied
in [22], which assumes a virtual database Dc with “complete
information”, and assumes that part of D is known as a view
of Dc. It investigates the query answer completeness prob-
lem, the problem for determining whether a query posed on
Dc can be answered by an equivalent query onD. In this set-
ting, the problem can be reduced to query answering using
views. Along the same lines, [18] assumes that D contains
some CQ views of Dc. It reduces the query answer com-
pleteness problem to the independence problem for deciding
the independence of queries from updates [19]. As opposed
to [18, 22], we assume neither Dc with complete information
nor that an incomplete database D contains some views of
Dc. Instead, we consider Dm as an “upper bound” of certain
information in D. Moreover, the decision problems studied
here can be reduced to neither the query rewriting problem
nor the independence problem (see below).

There has also been work on modeling negative informa-
tion via logic programming (see [27]), which considers nei-
ther partially complete databases nor the decision problems
studied in this work.

We now clarify the difference between our decision prob-
lems and the independence problem (e.g., [12, 19]). The
latter is to determine whether a query Q is independent of
updates generated by another query Qu, such that for all
databases D, Q(D) = Q(D ⊕∆), where ∆ denotes updates
generated by Qu. In contrast, we consider relatively com-
plete queries Q, such that there exists a database D com-
plete for Q relative to master data Dm and containment con-
straints V , where D and Dm satisfy V . We want to decide

(a) whether for a query Q there exists a relatively complete
database D, and (b) whether a given D that satisfies V is
a witness for Q to be relatively complete. Due to the dif-
ference between the problems, results for the independence
problem do not carry over to ours, and vice versa.

One may think of an incomplete database as a “view” of a
database with complete information. There has been a large
body of work on answering queries using views (e.g., [1, 7,
20, 25]), to determine certain answers [1], compute complete
answers from views with limited access patterns [10, 20], or
to decide whether views determine queries [25] or are loss-
less [7]. This work differs from that line of research in that
one may not find a definable view to characterize a relatively
complete database D in terms of the database with complete
information. Indeed, D is only partially constrained by mas-
ter data Dm, while Dm itself may not contain the complete
information that D intends to represent.

There has also been recent work on consistent query an-
swering (e.g., [3, 6, 8]). That is to decide whether a tuple
is in the answer to a query in every repair of a database
D, where a repair is a database that satisfies a given set of
integrity constraints and moreover, minimally differs from
the original D w.r.t. some repair model. Master data Dm
is not considered there, and we do not consider repairs in
this paper. Note that most containment constraints are not
expressible as integrity constraints studied for consistency.

Organization. In Section 2 we define relatively complete
databases and queries, state the decision problems, and show
that integrity constraints for capturing inconsistencies can
be expressed as containment constraints. We provide com-
plexity bounds and characterizations for determining rela-
tively complete databases in Section 3, and for deciding rel-
atively complete queries in Section 4. Section 5 summarizes
the main results of the paper and identifies open problems.

2. Relatively Complete Databases and Queries
In this section we first present the notion of relative com-

pleteness of data. We then show that the consistency of the
data can be characterized in the uniform framework.

2.1 Relative Completeness

We start with specifications of databases and master data.

Databases and master data. A database is specified by
a relational schema R, which consists of a collection of rela-
tion schemas (R1, . . . , Rn). Each schema Ri is defined over
a fixed set of attributes. For each attribute A, its domain
is specified in R, denoted as dom(A). To simplify the dis-
cussion we consider two domains: a countably infinite set d
and a finite set df with at least two elements. We assume
that dom(A) is either infinite (d) or finite (df).

We say that an instance D = (I1, . . . , In) ofR is contained
in another instance D′ = (I ′1, . . . , I

′
n) of R, denoted by D ⊆

D′, if Ij ⊆ I ′j for all j ∈ [1, n].
Master data (a.k.a. reference data) is a closed-world

database Dm, specified by a relational schema Rm. As
remarked earlier, an enterprise typically maintains master
data that is assumed consistent and complete about certain
information of the enterprise [11, 24, 21]. We do not impose
any restriction on the relational schemas R and Rm.

Containment constraints. Let LC be a query language.
A containment constraint (CC) φv in LC is of the form

qv(R) ⊆ p(Rm), where qv is a query in LC defined over

99

schema R, and p is a projection query over schema Rm. An
instance D of R and master data instance Dm of Rm satisfy
φv, denoted by (D,Dm) |= φv, if qv(D) ⊆ p(Dm).

We say that D and Dm satisfy a set V of CCs, denoted
by (D,Dm) |= V , if for each φv ∈ V , (D,Dm) |= φv.

Intuitively, φv assures that Dm is an “upper bound” of
the information extracted by qv(D). In other words, CWA

is asserted for Dm that constrains the part of data identified
by qv(D) from D. That is, while this part of D can be
extended, the expansion cannot go beyond the information
already in Dm. On the other hand, OWA is assumed for the
part of D that is not constrained by φv.

We write qv(R) ⊆ p(Rm) as qv ⊆ p when R and Rm are
clear in the context. We write qv ⊆ p as qv ⊆ ∅ if p is a
projection on an empty master relation.

Example 2.1: Recall Work on from Example 1.1. We can
write a CC φ0 = q(Work on) ⊆ Proj(e, p) in the language of
union of conjunctive queries, where

q(e, p) = ∃c
`W

c∈C0
Work on(e, p, c)

´
,

and C0 is the set of clients described in Example 1.1.
Another CC φ1 in conjunctive queries is q ⊆ ∅, where

q(p) = ∃e1, . . . , ek+1

`V
i∈[1,k+1] Work on(ei, p)

∧
V
i,j∈[1,k+1],i6=j(ei 6= ej)

´
.

It asserts that at most k people can work on a project. 2

A database D is referred to as a partially closed database
w.r.t. (Dm, V) if (D,Dm) |= V .

Observe that a CC qv(R) ⊆ p(Rm) is an inclusion de-
pendency (IND) when qv is also a projection query. In the
sequel we simply refer to such CCs as INDs.

Relative completeness. Let LQ be a query language, not
necessarily the same as LC . Let Q be a query in LQ.

Consider a partially closed database D w.r.t. master data
Dm and a set V of CCs. We say that D is complete for query
Q relative to (Dm, V) if for all instances D′ of R, if D ⊆ D′
and (D′, Dm) |= V , then Q(D) = Q(D′).

That is, D is complete for Q relative to (Dm, V) if (a) D
is partially closed w.r.t. (Dm, V), and (b) for any partially
closed extension D′ of D, Q(D) = Q(D′).

Observe that if D is complete for Q relative to (Dm, V)
then no matter how D is expanded by including new tu-
ples, as long as the extension does not violate V , the answer
to query Q remains unchanged. That is, D has complete
information for answering Q. The notion is relative to the
master data Dm and CCs in V : the extensions of D should
not violate the CCs in V , i.e., (D′, Dm) |= V . That is, CWA

for Dm is observed.
Given Dm, V and a query Q in LQ, we define the set

of complete databases for Q w.r.t. (Dm, V), denoted by
RCQ(Q,Dm, V), to be the set of all complete databases for
Q relative to (Dm, V).

When RCQ(Q,Dm, V) is nonempty, Q is called a relatively
complete query w.r.t. (Dm, V).

Intuitively, Q is relatively complete if it is possible to find
a database D such that the answer to Q in D is complete.

Example 2.2: Relation Work on described in Example 1.1
is complete for query Q1 w.r.t. Proj and the CC φ0 of Ex-
ample 2.1. Since Work on is in RCQ(Q1,Proj, φ0), Q1 is
relatively complete w.r.t. (Proj, φ0).

On the other hand, relation Manage of Example 1.1 is not
complete for the CQ query Q2. However, Q2 is relatively

complete w.r.t. Managem: one can make Manage complete
for Q2 by including the transitive closure of Managem. 2

Decision problems. In this paper we study two decision
problems. One is the relatively complete database problem
for LQ and LC , denoted by RCDP(LQ,LC) and stated as:

PROBLEM: RCDP(LQ,LC)
INPUT: A query Q ∈ LQ, master data Dm, a set

V of CCs in LC , and a partially closed
database D w.r.t. (Dm, V).

QUESTION: Is D in RCQ(Q,Dm, V)? That is, is D
complete for Q relative to (Dm, V)?

The other one is the relatively complete query problem for
LQ and LC , denoted by RCQP(LQ,LC) and stated as:

PROBLEM: RCQP(LQ,LC)
INPUT: A query Q ∈ LQ, master data Dm, and

a set V of CCs in LC .

QUESTION: Is RCQ(Q,Dm, V) nonempty? That is,
does there exist a database that is com-
plete for Q relative to (Dm, V)?

Intuitively, RCDP is to decide whether a database has
complete information to answer a query, and RCQP is to
decide whether there exists a database complete for a query.

Query languages. We consider LQ and LC ranging over:

(a) conjunctive queries (CQ), built up from atomic formulas
with constants and variables, i.e., relation atoms in database
schema R, equality (=) and inequality (6=), by closing under
conjunction ∧ and existential quantification ∃;
(b) union of conjunctive queries (UCQ) of the form Q1∪· · ·∪
Qk, where for each i ∈ [1, k], Qi is in CQ;

(c) positive existential FO queries (∃FO+), built from atomic
formulas by closing under ∧, disjunction ∨ and ∃;
(d) first-order logic queries (FO) built from atomic formulas
using ∧, ∨, negation ¬, ∃ and universal quantification ∀; and

(f) datalog queries (FP), defined as a collection of rules
p(x̄)← p1(x̄1), . . . , pn(x̄n), where each pi is either an atomic
formula (a relation atom inR, =, 6=) or an IDB predicate. In
other words, FP is an extension of ∃FO+with an inflational
fixpoint operator. We refer the reader to, e.g., [2], about the
details of these languages.

2.2 Relative Completeness and Consistency

Real life data often contains errors, inconsistencies and
conflicts [4]. To capture inconsistencies in the data, it is
typical to use integrity constraints. That is, a set Σ of in-
tegrity constraints is imposed on a database D such that
errors in D are detected as violations of one or more con-
straints in Σ.

Several classes of integrity constraints have been proposed
for capturing inconsistencies in relational data (see, e.g., [8,
13] for recent surveys). Below we review three classes re-
cently studied for the consistency of data.

(a) Denial constraints [3, 8] are universally quantified FO

sentences of the form:

∀x̄1 . . . x̄m ¬
`
R1(x̄1) ∧ · · · ∧Rm(x̄m) ∧ ϕ(x̄1, . . . , x̄m)

´
,

where Ri is a relation atom for i ∈ [1,m], and ϕ is a con-
junction of built-in predicates = and 6=.

100

(b) Conditional functional dependencies (CFDs) [14] are an
extension of functional dependencies (FDs) of the form:

∀x̄1x̄2 ȳ1ȳ2 z̄1z̄2
`
R(x̄1, z̄1, ȳ1) ∧R(x̄2, z̄2, ȳ2) ∧ φ(x̄1)

∧ φ(x̄2) ∧ x̄1 = x̄2 → ȳ1 = ȳ2 ∧ ψ(ȳ1) ∧ ψ(ȳ2)
´

where R is a relation atom, φ(x̄) is a conjunction of the form
xi1 = c1 ∧ · · · ∧ xik = ck; here {xij | j ∈ [1, k]} is a subset of
x̄, and cj is a constant; ψ(ȳ) is defined similarly.

Intuitively, a CFD extends a traditional FD X → Y by
incorporating patterns of semantically related values, where
X and Y are the attributes denoted by x̄ and ȳ in R(x̄, z̄, ȳ)
above, respectively. That is, for any R tuples t1 and t2, if
t1[X] = t2[X] and in addition, t1[X] and t2[X] have a cer-
tain constant pattern specified by φ(x̄), then t1[Y] = t2[Y]
and moreover, t1[Y] and t2[Y] have the constant pattern
specified by ψ(ȳ). Observe that in the absence of φ(x̄) and
ψ(ȳ), the CFD is a traditional FD.

As an example, recall from Example 1.1 that for any tuple
(e, p, c) in Work on, if project p is p0, then the client c is
al. This can be expressed as a CFD that extends the FD

proj→ cli, such that if proj = p0 then cli = al.

(c) Conditional inclusion dependencies (CINDs) [5] are an
extension of inclusion dependencies (INDs) of the form:

∀x̄ ȳ1z̄1
`
R1(x̄, ȳ1, z̄1)∧φ(ȳ1)→ ∃ȳ2z̄2 (R2(x̄, ȳ2, z̄2)∧ψ(ȳ2))

´
where R1, R2 are relation atoms, φ(z̄) and ψ(z̄) are defined
as above. Similarly to CFDs, a CIND extends a traditional
IND R1[X] ⊆ R2[Y] by incorporating constant patterns
specified by φ(ȳ1) and ψ(ȳ2), for constraining R1 tuples
and R2 tuples, respectively. Note that traditional INDs are
a special case of CINDs, in the absence of φ(ȳ1) and ψ(ȳ2).

It should be remarked that integrity constraints are posed
on databases D regardless of master data Dm. In contrast,
containment constraints are defined on (D,Dm).

From the proposition below it follows that by using con-
tainment constraints we can enforce both the relative com-
pleteness and the consistency of the data.

Proposition 2.1: (a) Denial constraints and CFDs can be
expressed as containment constraints in CQ. (b) CINDs can
be expressed as containment constraints in FO. 2

Proof. The proofs for denial constraints and CINDs are
straightforward. Below we give the proof for CFDs. A CFD

is equivalent to two sets of CCs in CQ. For each pair (y1, y2)
of variables in (ȳ1, ȳ2), the first set contains a CC: q ⊆ ∅,
where q(x̄1, z̄1, ȳ1, x̄2, z̄2, ȳ2) is

R(x̄1, z̄1, ȳ1)∧ R(x̄2, z̄2, ȳ2) ∧ φ(x̄1) ∧ φ(x̄2)
∧ x̄1 = x̄2 ∧ y1 6= y2,

assuring that the CFD is not violated by two distinct tuples.
The second set contains a CC of the form q′ ⊆ ∅ for each

variable y in ȳ such that y = c is in ψ(ȳ), where q′ is

q′(x̄, z̄, ȳ) = R(x̄, z̄, ȳ) ∧ φ(x̄) ∧ y 6= c.

These CCs ensure that the CFD is not violated by a single
tuple that does not observe the constant patterns. 2

3. Deciding Relatively Complete Databases
In this section we focus on RCDP(LQ,LC), the relatively

complete database problem. Given a query Q in LQ, master
data Dm, a set V of containment constraints (CCs) in LC ,
and a partially closed database D w.r.t. (Dm, V), we want

to determine whether or not D has complete information to
answer Q, i.e., whether or not D ∈ RCQ(Q,Dm, V).

We first establish matching lower and upper bounds for
RCDP(LQ,LC) for all the query languages LQ and LC de-
scribed in Section 2, as well as for a special case where CCs

are INDs. We then present characterizations of databases in
RCQ(Q,Dm, V) when CCs and queries are in CQ, to provide
insight into what makes a database relatively complete. The
characterizations readily extend to the settings where CCs

are INDs or CQ, and queries are in CQ or UCQ.

3.1 Complexity Bounds for RCDP

We start with a negative result: when either LQ or LC is
FO or FP, it is infeasible to determine whether a database
D is relatively complete for a query Q w.r.t. (Dm, V). This
tells us that both LQ and LC may impact the complexity
of RCDP(LQ,LC). Worse still, the undecidability remains
intact even when Dm and V are predefined and fixed.

Theorem 3.1: RCDP(LQ,LC) is undecidable when

1. LQ is FO and LC is CQ,
2. LC is FO and LQ is CQ,
3. LQ is FP and LC is CQ, or
4. LC is FP and LQ consists of a fixed query in FP.

If LQ is FO or FP, the problem remains undecidable for fixed
master data and fixed containment constraints. 2

Proof. (1) When LQ is FO, the undecidability is proved
by reduction from the satisfiability problem for FO queries,
which is undecidable (cf. [2]). In the reduction the master
data Dm and the set V of CCs are both fixed: Dm is an
empty relation, and V is an empty set.

(2) When LC is FO, it is also verified by reduction from the
satisfiability problem for FO queries.

(3) When LQ is FP, the proof is more involved. It is veri-
fied by reduction from the emptiness problem for determin-
istic finite 2-head automata (2-head DFA), which is unde-
cidable [26]. Given a 2-head DFA A, we use a database
to encode a string, positions in the string and a successor
function. A fixed set of CCs in CQ is used to ensure that
these are well-formed. A query in FP is used to encode the
non-emptiness of A. The reduction only needs fixed Dm.

(4) When LC is FP, the proof is again by reduction from
the emptiness problem for 2-head DFA. In the reduction,
the query Q is a fixed FP query, and V is a set of CCs in
FP, which are not fixed.

When LQ is FO or FP, it remains undecidable if Dm and V
are fixed, since those are what the proofs use. 2

In light of the undecidability results, below we focus on
query languages that support neither negation nor recur-
sion. We show that the absence of negation and recursion
makes our lives easier: RCDP(LQ,LC) is in the polynomial
hierarchy when LQ and LC are CQ, UCQ or ∃FO+.

To simplify the discussion we assume in the rest of the
section that LQ and LC are the same language, unless ex-
plicitly stated otherwise. This does not lose generality: if
users are allowed to define CCs in a query language, there is
no reason for not allowing them to issue queries in the same
language. In addition, the proofs for the results below ac-
tually show that the complexity bounds remain unchanged
when LQ is CQ and LC is ∃FO+, or the other way around.

Nevertheless, we also consider a special case where CCs are
INDs, i.e., CCs of the form qv ⊆ p when both qv and p are

101

projection queries, on D and Dm, respectively. We consider
V consisting of INDs, as commonly found in practice, while
the user queries are expressed in CQ, UCQ or ∃FO+.

The next results tell us that the complexity bounds are
rather robust: the problem is Πp

2-complete when LQ and LC
are ∃FO+, and it remains Πp

2-complete when LQ is CQ and
LC is the class of INDs.

Theorem 3.2: RCDP(LQ,LC) is Πp
2-complete when

1. LC is the class of INDs and LQ is CQ, UCQ or ∃FO+,
2. LQ and LC are CQ,
3. LQ and LC are UCQ, or
4. LQ and LC are ∃FO+. 2

Proof. It suffices to show (1) and (2) below.

(1) RCDP(LQ,LC) is Πp
2-hard when LC is the class of INDs

and LQ is CQ. The lower bound is verified by reduction from
∀∗∃∗3sat-problem, which is Πp

2-complete (cf. [23]). Given
a ∀∗∃∗3sat sentence ϕ, we construct master data Dm con-
sisting of six fixed relations, and a set V of CCs consisting
of six fixed INDs, to encode “disjunction” and “negation”
of propositional variables, and to ensure that truth assign-
ments to variables in ϕ are valid. We then define a query
Q in CQ and a database D to encode ϕ, such that ϕ is
satisfiable iff D is complete for Q relative to (Dm, V).

(2) RCDP(LQ,LC) is in Πp
2 when LC and LQ are both ∃FO+.

The upper bound is shown by providing an algorithm that
checks whether a database D is not complete for a given Q
w.r.t. (Dm, V), by using a non-deterministic ptime Turing
machine with an np oracle. This suffices. Indeed, since
the algorithm is in Σp2, the problem for deciding whether
D ∈ RCQ(Q,Dm, V) is in Πp

2.
The algorithm is based on a small model property: if D is

not complete for Q, then there exists a set ∆ of tuples such
that (a) D′ = D ∪∆ is partially closed w.r.t. (Dm, V), (b)
there exists a tuple s such that s ∈ Q(D′) but s 6∈ Q(D),
by the monotonicity of ∃FO+queries; (c) the size of ∆ is
bounded by the size |Q| of Q; and (d) the active domain of
∆ consists of the values inD andDm, constants inQ or V , as
well as a set New of distinct values such that its cardinality
is bounded by |Q| and V . Capitalizing on this property, the
algorithm first guesses a set ∆ of no more than |Q| tuples,
and then checks whether (D′, Dm) |= V and Q(D) 6= Q(D′)
by using an np oracle, where D′ = D ∪∆. 2

In practice, master data Dm and containment constraints
V are often predefined and fixed, and only databases and
user queries vary. One might be tempted to think that fixed
Dm and V would lower the complexity bounds.

Unfortunately, the next result tells us that the lower
bound of Theorem 3.2 remains unchanged when Dm and
V are fixed, even when V is a fixed set of INDs.

Corollary 3.3: RCDP(LQ,LC) remains Πp
2-complete when

master data Dm and the set V of containment constraints
are fixed, and when (a) LC is the class of INDs and LQ is
CQ, UCQ or ∃FO+; (b) LQ and LC are CQ; (c) LQ and LC
are UCQ; or (d) LQ and LC are ∃FO+. 2

Proof. The result follows immediately from the proof
for Theorem 3.2. The upper bound of Theorem 3.2 carries
over to fixed Dm and V . For the lower bound, the proof for
Theorem 3.2 shows that the problem is Πp

2-hard when V is
a fixed set of INDs, and when Q is a CQ query. 2

We have also seen from Theorem 3.1 that the problem

remains undecidable for queries in FO or FP when Dm and V
are fixed. Putting these together, we can conclude that fixed
Dm and V do not lower the complexity of RCDP(LQ,LC).
In contrast, as will be seen in the next section, fixed Dm
and V simplify the analysis of RCQP(LQ,LC), the problem
for deciding whether a query is relatively complete.

3.2 Characterizations of Complete Databases

We next provide characterizations of relatively complete
databases D for a query Q for certain decidable cases of
RCDP(LQ,LC). That is, we identify sufficient and necessary
conditions for D to be included in RCQ(Q,Dm, V). These
conditions provide a guidance for what data should be col-
lected by D in order to correctly answer query Q.

We first present characterizations when LQ and LC are
CQ. We then adjust the conditions to characterize relatively
complete databases when LQ is CQ and LC is the class of
INDs, and when LQ and LC are UCQ. Along the same lines
conditions can be developed when LQ and LC are ∃FO+,
which are not included due to the lack of space.

When LQ and LC are CQ. Consider a CQ query Q, mas-
ter database Dm, a set V of CCs in CQ, and a partially
closed database D w.r.t. (Dm, V). Assume w.l.o.g. that Q
is satisfiable, since otherwise D is trivially complete for Q
w.r.t. any Dm and V as long as (D,Dm) |= V .

We start with basic notations to express the conditions.

Tableau queries and valuations. To simplify the discussion,
in the sequel we focus on CQ queries over a single relation.
It does not lose generality since the characterization results
also hold for CQ queries over databases involving more than
one relation. Indeed, the following can be easily verified. For
any relational schema R, there exist a single relation schema
R, a linear-time computable function fD from instances of
R to instances of R, and a linear-time computable function
fQ: CQ → CQ such that for any instance D of R and any
CQ query Q over R, Q(D) = fQ(Q)(fD(D)).

In light of this, we represent the given CQ query Q as a
tableau query (TQ, uQ), where TQ denotes formulas in Q and
uQ is the output summary (see e.g., [2] for details). For each
variable x in Q, we use eq(x) to denote the set of variables
y in Q such that x = y is induced from equality in Q. In
TQ, we represent atomic formula x = y by assigning the
same distinct variable to eq(x), and x = ‘c’ by substituting
constant ‘c’ for each occurrence of y in eq(x). This is well
defined when Q is satisfiable. Note that the size of TQ and
the number of variables in TQ are bounded by the size of Q.

We denote by Adom the set consisting of (a) all constants
that appear in D,Dm, Q or V , and (b) a set New of distinct
values not in D,Dm, Q and V , one for each variable that is
in either TQ or in the tableau representations of the queries
in V ; when there are more variables with finite domain
than values in df (recall df from Section 2), df ⊆ Adom.

For each variable y in TQ, we define its active domain,
denoted by adom(y). If y appears in some column A in TQ
such that dom(A) is finite df , then adom(y) is df ∩ Adom.
Otherwise adom(y) is Adom.

A valuation µ for variables in TQ is said to be valid if
(a) for each variable y in TQ, µ(y) is a value from adom(y),
and (b) Q(µ(TQ)) is nonempty, i.e., µ observes inequality
formulas x 6= y and x 6= ‘b’ specified in Q.

Characterizations. To illustrate the conditions, let us first
examine some examples of relatively complete databases.

102

Example 3.1: Recall the CC φ1 from Example 2.1, which
enforces any database to contain no more than k tuples.
Consider a database D1 of k tuples. Then adding any new
tuple to D1 violates φ1. Thus D1 is in RCQ(Q,Dm, {φ1}).

As another example, consider a schema R(A,B,C), on
which an FD A → B,C imposed. By Proposition 2.1, we
can express the FD as two CCs in CQ, denoted by Σ2, using
Dm that has an empty relation. Consider a CQ query Q3

to find all tuples t with t[A] = ‘a’. Let D2 be an instance
of R that contains a tuple t = (a, b, c). Then Q3(D2) = {t}
and D2 is in RCQ(Q3, Dm,Σ2). Indeed, adding tuples to D2

either violates Σ2 or does not change the answer to Q3. 2

These examples tell us that there are intriguing inter-
actions of Q, V and the data already in D. While it
is hard to characterize the interactions syntactically, we
provide sufficient and necessary conditions for D to be in
RCQ(Q,Dm, V). These conditions are expressed in terms of
a notion of bounded databases given as follows.

A database D is said to be bounded by (Dm, V) for Q if
for any valid valuation µ for variables in TQ, either (D ∪
µ(TQ), Dm) 6|= V or µ(uQ) ∈ Q(D). More specifically,

• when Q(D) = ∅, then (D ∪ µ(TQ), Dm) 6|= V ;
• when Q(D) 6= ∅, if (D ∪ µ(TQ), Dm) |= V , then
µ(uQ) ∈ Q(D).

That is, for any tuples ∆, if Q(D) 6= Q(D ∪∆), then (D ∪
∆, Dm) 6|= V . In other words, adding tuples to D either
violates V or does not change Q(D). While there may exist
infinitely many ∆’s, it suffices to inspect ∆ constructed with
values in Adom only (the small model property).

Proposition 3.4: For any query Q in CQ, master data
Dm, any set V of containment constraints in CQ, and any
partially closed D w.r.t. (Dm, V), D is in RCQ(Q,Dm, V)
iff D is bounded by (Dm, V) for Q. 2

Proof. Suppose that Q(D) 6= ∅. If D is relatively com-
plete, then it is easy to see that the condition holds. Con-
versely, assume that D is not relatively complete but by
contradiction, the condition holds. Then there must ex-
ist an extension D′ of D and a valuation µ of TQ draw-
ing values from D′, such that (D ∪ µ(TQ), Dm) |= V and
µ(uQ) 6∈ Q(D), by the monotonicity of CQ queries. Define
a valuation µ′ such that for each variable x in TQ, µ′(x) is
a distinct value in New if µ(x) is not in Adom \ New, and
µ′(x) = µ(x) otherwise. Then it is easy to verify that µ′ is a
valid validation, (D ∪ µ′(TQ), Dm) |= V but µ(uQ) 6∈ Q(D),
which contradicts the assumption that the condition holds.

The proof for Q(D) = ∅ is similar. 2

When LC is the class of INDs. If V is a set of INDs,
the notion of bounded databases is simpler. More specifi-
cally, in this setting a database D is said to be bounded by
(Dm, V) for Q if for each valid valuation µ of TQ, either
(µ(TQ), Dm) 6|= V or µ(uQ) ∈ Q(D).

When V is a set of INDs, Proposition 3.4 holds using the
revised notion of bounded databases.

When LQ and LC are UCQ. Consider a query in UCQ:
Q = Q1 ∪ · · · ∪Qk, where Qi is in CQ for each i ∈ [1, k]. We
represent Qi as a tableau query (Ti, ui). Then a valuation
µ for Q is (µ1, . . . , µk) such that for each i ∈ [1, k], µi is a
valuation for variables in Ti and moreover, for each variable
y in Ti, µi(y) ∈ adom(y). The valuation is valid if there
exists some j ∈ [1, k] such that Qj (µi(Tj)) is nonempty.

A database D is said to be bounded by (Dm, V) for Q
if for each valid valuation µ = (µ1, . . . , µk) for Q, either
(D ∪ ∆, Dm) 6|= V , or for each i ∈ [1, k], µ(ui) ∈ Q(D),
where ∆ denotes µ1(T1) ∪ · · · ∪ µk(Tk).

One can easily verify that Proposition 3.4 remains intact
using this revised notion when LQ and LC are UCQ.

4. Determining Relatively Complete Queries
We next investigate RCQP(LQ,LC), the relatively com-

plete query problem. Given a query Q in LQ, master data
Dm and a set V of CCs in LC , we want to decide whether
there exists a database D that is complete for Q relative to
(Dm, V), i.e., whether RCQ(Q,Dm, V) is nonempty.

We first provide lower and upper bounds, all matching,
for RCQP(LQ,LC), when LQ and LC range over the query
languages given in Section 2, and for a special case where
CCs are INDs. Compared to their RCDP(LQ,LC) counter-
parts (Section 3), the complexity bounds of RCQP(LQ,LC)
are relatively more diverse; furthermore, fixed master data
and containment constraints simplify the analysis, to some
extent. We then characterize relatively complete queries in
CQ or UCQ, when LC ranges from INDs to UCQ.

4.1 Complexity Bounds for RCQP

Recall from Theorem 3.1 that it is undecidable to deter-
mine whether a database is in RCQ(Q,Dm, V) when either
LQ or LC is FO or FP. It is no better for RCQP(LQ,LC): in
these settings RCQP(LQ,LC) is also undecidable. Moreover,
the undecidability is rather robust: the problem is already
beyond reach in practice when master data and containment
constraints are predefined and fixed.

Theorem 4.1: RCQP(LQ,LC) is undecidable when

1. LQ is FO and LC consists of fixed queries in FO,

2. LC is FO and LQ is CQ,

3. LQ is FP and LC consists of fixed queries in FP, or

4. LC is FP and LQ is CQ.

When LQ is FO or FP, it remains undecidable for fixed mas-
ter data and fixed containment constraints. 2

Proof. (1) When LQ is FO, the proof is not as simple
as one might have expected. The undecidability is verified
by reduction from the emptiness problem for 2-head DFA.
Given a 2-head DFA A, we construct a database schema
R consisting of several relations, which intend to encode a
string, positions in the string, a successor relation, transi-
tions of A, as well as the transitive closure of the transi-
tions. We define a set V of CCs using fixed FO queries, to
help assure that instances of R encode a valid run of A. We
also define an FO query to inspect whether a run is valid
and whether there is a valid run of A that accepts a string.
Fixed master data Dm is used. Using these, we show that
A accepts some strings iff RCQ(Q,Dm, V) is nonempty.

(2) When LC is FO, the proof is easier. The undecidability
is verified by reduction from the satisfiability problem for
FO queries. The reduction uses a set V of CCs in FO.

(3) When LQ is FP, the proof is by reduction from the empti-
ness problem for 2-head DFA. In contrast to (1), recursion
in FP is used to verify the existence of a valid run of a given
2-head DFA. The reduction uses a fixed set V of CCs in FP,
and a query Q in FP. The master data Dm is also fixed.

(4) When LC is FP, the proof is similar to (3), but the

103

reduction uses a fixed query Q in CQ and a set V of CCs

in FP instead, where the CCs are not fixed, i.e., they are
defined based on the instance of 2-head DFA.

The proofs only use fixed (Dm, V) if LQ is FO or FP, and
thus verify the undecidability for fixed Dm and V . 2

We have seen from Theorem 3.2 that the absence of nega-
tion and recursion in LQ and LC simplifies the analysis of
RCDP(LQ,LC). Below we show that this is also the case
for RCQP(LQ,LC), which is settled in positive in these set-
tings. In contrast to Theorem 3.2, the complexity bounds for
RCQP(LQ,LC) are no longer the same when LC is ∃FO+and
when LC is the class of INDs. In addition, when LQ and
LC are CQ, RCQP(LQ,LC) becomes nexptime-complete,
i.e., the analysis is harder than its RCDP(LQ,LC) counter-
part. On the other hand, when LQ is the class of INDs,
the complexity is down to conp-complete, better than its
Πp

2-complete counterpart for RCDP(LQ,LC).

Theorem 4.2: RCQP(LQ,LC) is

1. conp-complete when LC is the class of INDs and LQ is
CQ, UCQ or ∃FO+; and

2. nexptime-complete when

(a) LQ and LC are CQ,
(b) LQ and LC are UCQ, or
(c) LQ and LC are ∃FO+. 2

Proof. (1) Lower bounds. The conp lower bound is veri-
fied by reduction from 3sat to the complement of RCQP(CQ,
INDs). Given a 3sat instance φ, we define fixed master data
Dm, a set V of fixed INDs and a CQ query Q such that φ is
satisfiable iff RCQ(Q,Dm, V) is empty.

When LC and LQ are CQ, we verify the nexptime lower
bound by reduction from the tiling problem for 2n × 2n

square, which is nexptime-complete (see, e.g., [9]). Given
an instance of the tiling problem, we construct a database
schema R consisting relations R1, . . . , Rn such that Ri en-
codes a 2i×2i square of tiles for i ∈ [1, n]. We define master
data Dm and a set V of CCs in CQ to assure the vertical
and horizontal compatibility of the tiling. Finally we de-
fine a CQ query Q such that RCQ(Q,Dm, V) is nonempty
iff there exists a valid tiling of the given instance.

(2) Upper bounds. We show the upper bounds by giving con-
structive proofs. We develop sufficient and necessary condi-
tions for RCQ(Q,Dm, V) to be nonempty.

Given master data Dm, a set V of INDs and a query Q
in ∃FO+, we show that it suffices to check whether for any
set ∆ of tuples, either (∆, Dm) 6|= V or certain syntactic
conditions on Q and V hold (see Section 4.2 for details).
Better still, it suffices to inspect “bounded” ∆: its size is no
larger than that of Q, and its active domain is determined by
Dm, Q and V . Based on this, an np algorithm is developed
to check whether RCQ(Q,Dm, V) is empty. It guesses a set
∆ of tuples, and then checks the conditions in ptime.

When LQ and LC are ∃FO+, we prove a small model
property: given Dm, a query Q in ∃FO+and a set V of
CCs in ∃FO+, RCQ(Q,Dm, V) is nonempty iff there exists
a partially closed database D such that (a) the size of D is
bounded by an exponential in the sizes of Q,V and Dm;
(b) for any partial extension D′ = D ∪ ∆ of D, either
Q(D′) = Q(D) or (D′, Dm) 6|= V ; and furthermore, (c) it
suffices to inspect increments ∆ that are bounded as de-
scribed above. The small model property is established by

leveraging the monotonicity of ∃FO+queries. Based on this
property, an nexptime algorithm can be readily developed
for checking whether RCQ(Q,Dm, V) is nonempty. 2

As remarked earlier, master data Dm and containment
constraints V are often predefined and fixed in practice.
Recall from Corollary 3.3 that fixed Dm and V have no
impact on the complexity of RCDP(LQ,LC). In contrast,
we show below that fixed Dm and V do make our lives eas-
ier, to some extent. (a) When LQ and LC are CQ, UCQ

or ∃FO+, RCQP(LQ,LC) becomes Σp3-complete, down from
nexptime-complete. (b) On the other hand, when LQ is
CQ and LC is the class of INDs, the problem remains conp-
complete. (c) Fixed Dm and V do not help when either LQ
or LC is FO or FP, as we have seen in Theorem 4.1.

Corollary 4.3: When master data and containment con-
straints are fixed, RCQP(LQ,LC) is

1. conp-complete LC is the class of INDs and LQ is CQ,
UCQ or ∃FO+, and

2. Σp3-complete if LQ and LC are CQ, UCQ or ∃FO+. 2

Proof. It suffices to show the following.

(1) RCQP(LQ,LC) is conp-hard when LQ is CQ and LC is
the class of INDs. This follows from the proof for the conp
lower bound of Theorem 4.2 (1), in which only fixed master
data Dm and a set V of fixed INDs are used. The coNP
upper bound carries over when Dm and V are fixed.

(2) We show that RCQP(LQ,LC) is Σp3-hard when LQ and
LC are CQ, by reduction from ∃∗∀∗∃∗3sat-problem, which
is Σp3-complete (cf. [23]). Given an instance ϕ of the latter
problem, we construct fixed master data Dm, a set V of fixed
CCs in CQ, and a CQ query Q to encode ϕ and to ensure
that truth assignments to variables in ϕ are well defined.
We show ϕ is satisfiable iff RCQ(Q,Dm, V) is nonempty.

Recall the proof for RCQP(∃FO+, ∃FO+) given for Theo-
rem 4.2 (2). When V and Dm are fixed, it suffices to inspect
“small models” D of a polynomial size. Based on this, we
develop an algorithm to check whether RCQ(Q,Dm, V) is
nonempty. The algorithm uses a non-deterministic ptime
Turing machine with a Πp

2 oracle to inspect whether the
conditions given in the proof of Theorem 4.2 (2) hold. 2

4.2 Characterizations of Complete Queries

We next characterize relatively complete queries for cer-
tain decidable cases of RCQP(LQ,LC). Given master data
Dm, a set V of CCs and a query Q, we provide sufficient and
necessary conditions for RCQ(Q,Dm, V) to be nonempty.

We first present conditions for Q and V in CQ. We then
extend the conditions to characterize relatively complete Q
when LC consists of INDs, and when LQ and LC are UCQ.
Similar conditions can also be developed when LQ and LC
are ∃FO+, which are not included due to the lack of space.

When LQ and LC are CQ. To get insight into the condi-
tions, let us first look at some example complete queries.

Example 4.1: Consider a schema R(A,B,C) on which an
FD A → C imposed. The FD can be expressed as a CC φ3

in CQ. Consider a query Q4 in CQ that is to find all tuples t
such that t[A] = ‘a’ and t[C] = ‘c’. Let master data Dm be
an empty relation. Then Q4 is relatively complete. Indeed,
a database D− is complete for Q4 relative to Dm and φ3,
where D− consists of a single tuple t− = (a, b, d), c 6= d.
Note that Q4(D−) = ∅, and D− prevents any tuples ∆ from
being added to it as long as Q4(∆) is nonempty.

104

Now consider query Q3 of Example 3.1, which is to find
all tuples t with t[A] = ‘a’. Assume that dom(B) is infinite.
Then Q3 is not complete w.r.t. Dm and φ3. Indeed, no
matter what database D we consider, we can always add a
new tuple t′ to D such that t′[B] is a value not in D, and
Q3(D) 6= Q3(D ∪ {t′}). Contrast this with Example 3.1,
which shows that if the FD is A → B,C (expressed as CCs

Σ2), then Q3 is relatively complete. As we have seen there,
a database complete for Q3 is D+, which consists of t+ =
(a, b, c). Indeed, for any tuples ∆, if Q3(∆) 6= ∅ and (D+ ∪
∆, Dm) |= Σ2, then for any t′ in ∆, D+ enforces t′[B] to take
‘b’ as its value. That is, the values of t′[B] are bounded. 2

As suggested by the example, a query Q is relatively
complete iff one of the following two conditions holds. (a)
There exists a set D− of tuples such that (D−, Dm) |= V ,
Q(D−) = ∅ and moreover, D− prevents those tuples ∆ from
being added to D− if Q(∆) is nonempty. That is, there ex-
ist no tuples ∆ such that both (D− ∪ ∆, Dm) |= V and
Q(∆) 6= ∅. (b) There exists a set D+ of tuples such that
Q(D+) 6= ∅, (D+, Dm) |= V , and moreover, D+ “bounds”
all those variables y in Q with an infinite domain, via
Dm and V . That is, for any such y and any tuples ∆,
if Q(∆) is nonempty, then either (D+ ∪ ∆, Dm) 6|= V or
Q(∆) ⊆ Q(D+), where y is instantiated to a value in Dm.

To formalize the intuition, we use the following notations.

(a) We revise the notion of Adom introduced in Section 3.2,
such that it consists of constants in Dm, V,Q or New. Along
the same lines as Section 3.2, we represent CQ query Q as a
tableau query (TQ, uQ), and define valid valuations of TQ.

For each variable y in TQ, we say that the domain of y,
denoted by dom(y), is finite if y appears in some column A
in TQ such that dom(A) is df , and it is infinite otherwise.

(b) Assume that V consists of qi ⊆ pi for i ∈ [1, n], where qi
is a CQ query. We represent qi as a tableau query (Ti, ui). A
valuation ν of V is (ν1, . . . , νn) such that νi is a valuation for
variables in Ti with values in Adom. We use Dν to denoteS
i∈[1,n] νi(Ti). For a set V of valuations of V , we use DV to

denote
S
ν∈V Dν . In particular, when V is empty, so is DV .

Proposition 4.4: For any CQ query Q = (TQ, uQ), mas-
ter data Dm, and any set V of CCs in CQ, RCQ(Q,Dm, V)
is nonempty iff either all variables in uQ have a finite do-
main, or there exists a set V of valuations of V such that
(a) (DV , Dm) |= V , and (b) for any valid valuation µ of TQ,
either (DV ∪ µ(TQ), Dm) 6|= V or µ(uQ) ∈ Q(DV). 2

Proof. When all variables in uQ have a finite domain,
Q is trivially relatively complete w.r.t. (Dm, V). Below we
assume that for some y in uQ, dom(y) is infinite.

Suppose that there exists a set V of valuations of V sat-
isfying the conditions given in the proposition. Then one
can verify the following. (a) If Q(DV) = ∅, then DV is a set
D− of tuples with the properties mentioned above. (b) If
Q(DV) 6= ∅, then there must exist a set D+ of tuples as men-
tioned above. In both cases, RCQ(Q,Dm, V) is nonempty.

Conversely, suppose that RCQ(Q,Dm, V) contains a
database D. We show the following. (a) If Q(D) = ∅, then
there is a set V of valuations of V such that (DV , Dm) |= V
and for any valid valuation µ of TQ, (DV ∪µ(TQ), Dm) 6|= V .
(b) If Q(D) 6= ∅, then there exists a set V of valuations of
V such that (DV , Dm) |= V , and for any valid valuation µ
of TQ, if (DV ∪ µ(TQ), Dm) 6|= V then µ(TQ) ∈ Q(DV). 2

RCDP(LQ,LC) Complexity

(FO, CQ) (Th. 3.1(1)) undecidable
(CQ, FO) (Th. 3.1(2)) undecidable
(FP, CQ) (Th. 3.1(3)) undecidable

(fixed(FP), FP) (Th. 3.1(4)) undecidable
(CQ, INDs), (∃FO+, INDs) (Th. 3.2(1)) Πp

2-complete
(CQ, CQ) (Th. 3.2(2)) Πp

2-complete
(UCQ, UCQ) (Th. 3.2(3)) Πp

2-complete
(∃FO+, ∃FO+) (Th. 3.2(4)) Πp

2-complete

Table 1: Complexity of RCDP(LQ,LC)

The conditions can be equivalently expressed as follows.
For a database D and a variable y in uQ, let val(D, y) denote
the set of µ(y)’s when µ ranges over all valuations of TQ such
that Q(µ(TQ)) 6= ∅ and (D ∪ µ(TQ), Dm) |= V (µ may draw
values beyond Adom). Then RCQ(Q,Dm, V) is nonempty iff
there is a set V of valuations of V such that (DV , Dm) |= V
and val(DV , y) is finite for all variables y in uQ.

Observe that the size of any set V of valuations of V is at
most exponential in the sizes of Q,V and Dm, and that each
valid valuation µ of TQ is no larger than Q. These yield
the small model property used in the proof of Theorem 4.2.

When LC is the class of INDs. In this setting, there is
a syntactic characterization for relatively complete queries,
which leads to the conp upper bound of Theorem 4.2(1).

We say that (Dm, V) bounds a CQ query Q = (TQ, uQ) if
for all variables y in uQ, either (a) dom(y) is finite, or (b)
there exists an IND π(A,...) ⊆ p in V such that y appears in
column A in TQ, where π is the projection operator.

Proposition 4.5: For any CQ query Q = (TQ, uQ), mas-
ter data Dm, and any set V of INDs, RCQ(Q,Dm, V) is
nonempty iff (Dm, V) bounds Q as long as there exists a
valid valuation µ of TQ such that (µ(TQ), Dm) |= V . 2

Proof. If for all valuations µ of TQ, (µ(TQ), Dm) 6|= V ,
then the empty database D is in RCQ(Q,Dm, V).

Suppose that there exists a valid valuation µ of TQ such
that (µ(TQ), Dm) |= V . If (Dm, V) bounds Q, then one
can construct a complete database D+ for Q relatively to
(Dm, V). Conversely, if RCQ(Q,Dm, V) is nonempty, then
one can prove by contradiction that (Dm, V) bounds Q. 2

When LQ and LC are UCQ. A containment constraint in
UCQ is of the form (q1 ∪ · · · ∪ qm) ⊆ p, and is equivalent to
a set of CCs in CQ, consisting of qj ⊆ p for each j ∈ [1,m].
Thus the notions of valuations of V and DV for a set V of
valuations of V are also well defined in this setting.

Consider a query Q = Q1 ∪ · · · ∪Qk in UCQ, where Qi is
represented as a tableau query (Ti, ui). Recall the notion of
valid valuations of Q from Section 3.2.

Then Proposition 4.4 remains intact: RCQ(Q,Dm, V) is
nonempty iff for all i ∈ [1, n], either all variables in ui have
a finite domain, or there is a set V of valuations of V such
that (DV , Dm) |= V , and for any valid valuation µ of Q,
either µ(ui) ∈ Q(DV) or (DV ∪

S
i∈[1,n] µ(Ti), Dm) 6|= V .

5. Conclusions
We have proposed the notion of the relative completeness

of information to capture incomplete information in emerg-
ing applications such as Master Data Management. We have
also introduced and studied two important decision prob-
lems associated with this notion, namely, RCDP(LQ,LC)

105

RCQP(LQ,LC) Complexity

(FO, fixed(FO)) (Th. 4.1(1)) undecidable
(CQ, FO) (Th. 4.1(2)) undecidable

(FP, fixed(FP)) (Th. 4.1(3)) undecidable
(CQ, FP) (Th. 4.1(4)) undecidable

(CQ, INDs) (Th. 4.2(1)) conp-complete
(∃FO+, INDs) (Th. 4.2(1)) conp-complete
(CQ, CQ) (Th. 4.2(2.a)) nexptime-complete

(UCQ, UCQ) (Th. 4.2(2.b)) nexptime-complete
(∃FO+, ∃FO+) (Th. 4.2(2.c)) nexptime-complete

When Dm and V are fixed

(CQ, CQ) (Cor. 4.3(2)) Σp3-complete
(UCQ, UCQ) (Cor. 4.3(2)) Σp3-complete

(∃FO+, ∃FO+) (Cor. 4.3(2)) Σp3-complete

Table 2: Complexity of RCQP(LQ,LC)

and RCQP(LQ,LC). For a variety of query languages
for expressing queries (LQ) and containment constraints
(LC), we have provided a comprehensive picture of lower
and upper bounds for these problems, all matching. We
have also presented sufficient and necessary conditions for a
database or a query to be relatively complete w.r.t. master
data and containment constraints, when RCDP(LQ,LC) and
RCQP(LQ,LC) are decidable. We expect that these results
will help users determine whether a database has complete
information to answer a query, whether a query can find a
complete answer at all, and what data should be collected
by a database in order to yield a complete answer to a query.

We summarize the main results for RCDP(LQ,LC) and
RCQP(LQ,LC) in Tables 1 and 2, respectively, annotated
with their corresponding theorems, where fixed(L) indicates
a set of fixed queries in L. When master data and contain-
ment constraints are fixed, we only show complexity bounds
that differ from their counterparts in the general settings.

The study of relatively complete information is still pre-
liminary. An open issue is about how to incorporate miss-
ing values, together with missing tuples, into the frame-
work. To this end, we expect to use presentation systems
for possible worlds (e.g., v-tables, c-tables [16, 17]) instead
of traditional relations. Another open issue concerns clean
syntactic characterizations for relatively complete databases
or queries, in certain cases. A third interesting topic is to
identify tractable (ptime) special cases for RCDP(LQ,LC)
and RCQP(LQ,LC). Finally, although the containment con-
straints proposed in this work are fairly general, in certain
applications one might want to formulate containment con-
straints not only from databases to master data, but also
from the master data to the databases. We defer the treat-
ment of this richer class of constraints to future work.

Acknowledgements. Fan and Geerts are supported in
part by epsrc ep/e029213/1. Fan is a Yangtze River Scholar
at Harbin Institute of Technology.

6. References

[1] S. Abiteboul and O. M. Duschka. Complexity of answer-
ing queries using materialized views. In PODS, 1998.

[2] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[3] M. Arenas, L. Bertossi, and J. Chomicki. Consistent
query answers in inconsistent databases. In PODS, 1999.

[4] C. Batini and M. Scannapieco. Data Quality: Concepts,
Methodologies and Techniques. Springer, 2006.

[5] L. Bravo, W. Fan, and S. Ma. Extending dependencies
with conditions. In VLDB, 2007.

[6] A. Cali, D. Lembo, and R. Rosati. On the decidabil-
ity and complexity of query answering over inconsistent
and incomplete databases. In PODS, 2003.

[7] D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Y.
Vardi. View-based query processing: On the relation-
ship between rewriting, answering and losslessness.
TCS, 371(3), 2007.

[8] J. Chomicki. Consistent query answering: Five easy
pieces. In ICDT, 2007.

[9] E. Dantsin and A. Voronkov. Complexity of query
answering in logic databases with complex values. In
LFCS, 2007.

[10] A. Deutsch, B. Ludäscher, and A. Nash. Rewriting
queries using views with access patterns under integrity
constraints. TCS, 371(3), 2007.

[11] A. Dreibelbis, E. Hechler, B. Mathews, M. Oberhofer,
and G. Sauter. Master data management architecture
patterns. IBM, 2007.

[12] C. Elkan. Independence of logic database queries and
updates. In PODS, 1990.

[13] W. Fan. Dependencies revisited for improving data
quality. In PODS, 2008.

[14] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. Con-
ditional functional dependencies for capturing data in-
consistencies. TODS, 33(1), 2008.

[15] G. Gottlob and R. Zicari. Closed world databases
opened through null values. In VLDB, 1988.

[16] G. Grahne. The Problem of Incomplete Information in
Relational Databases. Springer, 1991.

[17] T. Imieliński and W. Lipski, Jr. Incomplete information
in relational databases. JACM, 31(4), 1984.

[18] A. Y. Levy. Obtaining complete answers from incom-
plete databases. In VLDB, 1996.

[19] A. Y. Levy and Y. Sagiv. Queries independent of up-
dates. In VLDB, 1993.

[20] C. Li. Computing complete answers to queries in the
presence of limited access patterns. VLDB J., 12(3),
2003.

[21] D. Loshin. Master Data Management. Knowledge In-
tegrity, Inc., 2009.

[22] A. Motro. Integrity = validity + completeness. TODS,
14(4), 1989.

[23] C. H. Papadimitriou. Computational Complexity.
Addison-Wesley, 1994.

[24] J. Radcliffe and A. White. Key issues for master data
management. Gartner, 2008.

[25] L. Segoufin and V. Vianu. Views and queries: determi-
nacy and rewriting. In PODS, 2005.

[26] M. Spielmann. Abstract state machines: Verification
problems and complexity. PhD thesis, RWTH Aachen,
2000.

[27] R. van der Meyden. Logical approaches to incomplete
information: A survey. In J. Chomicki and G. Saake,
editors, Logics for Databases and Information Systems.
Kluwer, 1998.

[28] M. Vardi. On the integrity of databases with incomplete
information. In PODS, 1986.

106

