
6

Conditional Functional Dependencies
for Capturing Data Inconsistencies

WENFEI FAN

University of Edinburgh and Bell Laboratories

FLORIS GEERTS and XIBEI JIA

University of Edinburgh

and

ANASTASIOS KEMENTSIETSIDIS

IBM T. J. Watson Research Center

We propose a class of integrity constraints for relational databases, referred to as conditional func-
tional dependencies (CFDs), and study their applications in data cleaning. In contrast to traditional
functional dependencies (FDs) that were developed mainly for schema design, CFDs aim at capturing
the consistency of data by enforcing bindings of semantically related values. For static analysis of
CFDs we investigate the consistency problem, which is to determine whether or not there exists a
nonempty database satisfying a given set of CFDs, and the implication problem, which is to decide
whether or not a set of CFDs entails another CFD. We show that while any set of transitional FDs is
trivially consistent, the consistency problem is NP-complete for CFDs, but it is in PTIME when either
the database schema is predefined or no attributes involved in the CFDs have a finite domain. For the
implication analysis of CFDs, we provide an inference system analogous to Armstrong’s axioms for
FDs, and show that the implication problem is coNP-complete for CFDs in contrast to the linear-time
complexity for their traditional counterpart. We also present an algorithm for computing a minimal
cover of a set of CFDs. Since CFDs allow data bindings, in some cases CFDs may be physically large,
complicating the detection of constraint violations. We develop techniques for detecting CFD viola-
tions in SQL as well as novel techniques for checking multiple constraints by a single query. We also
provide incremental methods for checking CFDs in response to changes to the database. We experi-
mentally verify the effectiveness of our CFD-based methods for inconsistency detection. This work
not only yields a constraint theory for CFDs but is also a step toward a practical constraint-based
method for improving data quality.

Categories and Subject Descriptors: H.2.m [Database Management]: Miscellaneous—Data clean-
ing; H.2.1 [Database Management]: Logical Design—Schema and subschema

W. Fan is supported in part by EPSRC GR/S63205/01, EPSRC GR/T27433/01, EP/E029213, and
BB/D006473/1. F. Geerts is supported in part by EPSRC EP/E029213.
Authors’ addresses: W. Fan, F. Geerts, School of Informatics, Laboratory for Foundations of Com-
puter Science, Appleton Tower, Crichton Street, Edinburgh EH8, 9LE, Scotland; email: {wenfei,
fgeerts}@inf.ed.ac.uk; xibei.jia@ed.ac.uk; A. Kementsietsidis, IBM T. J. Watson Research Center,
19 Skyline Drive, Hawthorne, NY 10532; email: akement@us.ibm.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 0362-5915/2008/06-ART6 $5.00 DOI 10.1145/1366102.1366103 http://doi.acm.org/
10.1145/1366102.1366103

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 6, Publication date: June 2008.

6:2 • W. Fan et al.

General Terms: Algorithms, Experimentation, Performance, Theory

Additional Key Words and Phrases: Data cleaning, functional dependency, SQL

ACM Reference Format:
Fan, W., Geerts, F., Jia, X., and Kementsietsidis, A. 2008. Conditional functional dependencies for
capturing data inconsistencies. ACM Trans. Datab. Syst. 33, 2, Article 6 (June 2008), 48 pages.
DOI = 10.1145/1366102.1366103 http://doi.acm.org/10.1145/1366102.1366103

1. INTRODUCTION

Recent statistics reveal that dirty data costs US businesses billions of dollars an-
nually [Eckerson 2002]. It is also estimated that data cleaning, a labor-intensive
and complex process, accounts for 30%–80% of the development time in a typ-
ical data warehouse project [Shilakes and Tylman 1998]. These highlight the
need for data-cleaning tools to automatically detect and effectively remove in-
consistencies and errors in the data.

One of the most important questions in connection with data cleaning is how
to model the consistency of the data, that is, how to specify and determine that
the data is clean? This calls for appropriate application-specific integrity con-
straints [Rahm and Do 2000] to model the fundamental semantics of the data.
However, little previous work has studied this issue. Commercial ETL (extrac-
tion, transformation, loading) tools have little built-in data cleaning capability,
and a significant portion of the cleaning work has still to be done manually
or by low-level programs that are difficult to write and maintain [Rahm and
Do 2000]. A bulk of prior research has focused on the merge-purge problem for
the elimination of approximate duplicates [Winkler 1994; Hernandez and Stolfo
1998; Galhardas et al. 2000; Monge 2000], or on detecting domain discrepancies
and structural conflicts [Raman and Hellerstein 2001].

There has also been recent work on constraint repair [Arenas et al. 2003;
Franconi et al. 2001; Bravo and Bertossi 2003; Cali et al. 2003a, 2003b;
Chomicki and Marcinkowski 2005a; Greco et al. 2003; Wijsen 2005], which
specifies the consistency of data in terms of constraints, and detects inconsis-
tencies in the data as violations of the constraints. However, previous work on
constraint repair is mostly based on traditional dependencies (e.g., functional
and full dependencies, etc), which were developed mainly for schema design,
but are often insufficient to capture the semantics of the data, as illustrated by
the example below.

Example 1.1. Consider a relation schema cust(CC, AC, PN, NM, STR, CT,
ZIP), which specifies a customer in terms of the customer’s phone (country code
(CC), area code (AC), phone number (PN)), name (NM), and address (street
(STR), city (CT), zip code (ZIP)). An instance of cust is shown in Figure 1.

Traditional functional dependencies (FDs) on a cust relation may include:

f1: [CC, AC, PN] → [STR, CT, ZIP]
f2: [CC, AC] → [CT].

Recall the semantics of an FD: f1 requires that customer records with the same
country code, area code and phone number also have the same street, city

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 6, Publication date: June 2008.

Conditional Functional Dependencies for Capturing Data Inconsistencies • 6:3

Fig. 1. An instance of the cust relation.

and zip code. Similarly, f2 requires that two customer records with the same
country- and area codes also have the same city name. Traditional FDs are to
hold on all the tuples in the relation (indeed they do on Figure 1).

In contrast, the following constraint is supposed to hold only when the coun-
try code is 44. That is, for customers in the UK, ZIP determines STR:

φ0: [CC = 44, ZIP] → [STR].

In other words, φ0 is an FD that is to hold on the subset of tuples that satisfies
the pattern “CC = 44”, rather than on the entire cust relation. It is generally
not considered an FD in the standard definition since φ0 includes a pattern with
data values in its specification.

The following constraints are again not considered FDs:

φ1: [CC = 01, AC = 908, PN] → [STR, CT = MH, ZIP]
φ2: [CC = 01, AC = 212, PN] → [STR, CT = NYC, ZIP]
φ3: [CC = 01, AC = 215] → [CT = PHI].

Constraint φ1 assures that only in the US (country code 01) and for area code
908, if two tuples have the same PN, then they must have the same STR and
ZIP and moreover, the city must be MH. Similarly, φ2 assures that if the area
code is 212 then the city must be NYC; and φ3 specifies that for all tuples in the
US and with area code 215, their city must be PHI (irrespective of the values of
the other attributes).

Observe that φ1 and φ2 refine the standard FD f1 given above, while φ3 re-
fines the FD f2. These refinements essentially enforce bindings of semantically
related data values. Indeed, while tuples t1 and t2 in Figure 1 do not violate f1,
they violate its refinement φ1, since the city cannot be NYC if the area code is
908.

In this example, the constraints φ0, φ1, φ2, and φ3 capture a fundamental part
of the semantics of the data. However, they cannot be expressed as standard
FDs. Indeed, in contrast to FDs that express knowledge only at the intensional
(schema) level, these constraints combine intensional and extensional (data-
level) expressions by incorporating constants into FDs and enforcing patterns of
semantically related data values. Further, they hold conditionally, that is, only
on the subset of a relation that satisfies certain patterns, rather than on the
entire relation.

Constraints that hold conditionally may arise in a number of domains. For
example, an employee’s title may determine her pay grade in some parts of

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 6, Publication date: June 2008.

6:4 • W. Fan et al.

an organization but not in others; an individual’s tax rate may be determined
by his address in some countries while in others it may depend on his salary,
etc. Further, dependencies that apply conditionally appear to be particularly
needed when integrating data, since dependencies that hold only in a subset
of sources will hold only conditionally in the integrated data. Indeed, in the
authors’ direct experience with telecommunication service providers, errors and
inconsistencies commonly found in real-life data often emerge as violations of
conditional dependencies; they routinely lead to problems like failure to bill for
provisioned services, delay in repairing network problems, unnecessary leasing
of equipment, and so on, but cannot be detected by schema-level constraints
alone. These call for the study of conditional dependencies, which aim to capture
data inconsistencies at the intentional level (as done in prior work on data
cleaning) and extensional level in a uniform framework. A recent study [Cong
et al. 2007] also demonstrates that conditional dependencies are more effective
than standard FDs in repairing inconsistent data in practice.

There has been work on extending traditional equality-generating and tuple-
generating dependencies (EGDs and TGDs, which subsume functional and inclu-
sion dependencies, respectively) by incorporating constants, that is, combining
intensional and extensional expressions [Bra and Paredaens 1983; Maher and
Srivastava 1996; Maher 1997; Baudinet et al. 1999]. These extensions were pro-
posed for constraint logic programming languages and constraint databases,
but have not been considered in previous work on data cleaning. As will be
seen in Section 7, some of these extensions cannot express the given φ0–φ3, and
for those that can, they incur a complexity higher than that of the conditional
dependencies studied in this article. For data cleaning, one typically needs a
simple extension of traditional FDs that suffices to capture data inconsistencies
commonly found in practice, without incurring unnecessary complexity.

In response to the practical need, this article introduces a novel extension of
traditional FDs, referred to as conditional functional dependencies (CFDs), that
are capable of capturing the notion of “correct data” in these situations. A CFD

extends an FD by incorporating a pattern tableau that enforces binding of se-
mantically related values. Unlike its traditional counterpart, the CFD is required
to hold only on tuples that satisfy a pattern in the pattern tableau, rather than
on the entire relation. For example, all the constraints we have encountered so
far can be expressed as CFDs. A formal framework for modeling CFDs is our first
contribution.

Since CFDs are an extension of standard FDs, it is natural to ask whether we
can still effectively reason about CFDs along the same lines as their FD coun-
terpart. Does a set � of CFDs make sense; that is, are the CFDs consistent (is
there a nonempty database that satisfies �)? Is there an inference system,
analogous to Armstrong’s Axioms for FDs, to effectively determine whether or
not a set of CFDs implies (entails) another CFD? These are the classical consis-
tency and implication problems typically associated with integrity constraints.
These problems are not only fundamental to CFDs, but also important for data
cleaning. Indeed, if an input set � of CFDs is found inconsistent, then there is
no need to check (validate) the CFDs against the data at all. Further, it helps
the user discover errors in CFD specification. When � is consistent, an effective

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 6, Publication date: June 2008.

Conditional Functional Dependencies for Capturing Data Inconsistencies • 6:5

implication analysis would allow us to find a minimal cover �mc of � that is
equivalent to � but contains no redundant CFDs, patterns or attributes; it is
typically more efficient to use �mc instead of � when detecting and removing
inconsistencies from the data.

Our second contribution consists of techniques for the consistency analy-
sis of CFDs. We show that the static analysis of CFDs introduces new chal-
lenges. Indeed, a set of CFDs may be inconsistent, that is, there may not ex-
ist a nonempty database satisfying the CFDs, a problem not encountered when
dealing with traditional FDs. We show that the consistency problem for CFDs is
NP-complete in general, but it is in PTIME when either the database schema is
predefined or no attributes involved in the CFDs have a finite domain. To cope
with the intractability we provide an approximation factor preserving reduc-
tion to the well-studied MAXGSAT problem. This allows us to leverage existing
approximation algorithms for MAXGSAT to check the consistency of CFDs (see
Papadimitriou [1994], Vazirani [2003] for approximation factor preserving
reductions and approximation algorithms for MAXGSAT).

Our third contribution is a sound and complete inference system for the
implication analysis of CFDs, which is analogous to but is more involved than
Armstrong’s Axioms for FDs [Abiteboul et al. 1995]. We show that as opposed to
standard FDs for which the implication problem is in linear-time, the implication
analysis for CFDs is coNP-complete. We also identify a special case when the
implication problem is in PTIME. Based on these we present a technique for
computing a minimal cover of a set of CFDs. These results are not only useful for
data cleaning as an optimization technique by minimizing the input CFDs, but
also yield a CFD theory analogous to the theory of FDs.

Our fourth contribution is the development of SQL techniques for detecting
CFD violations. Since CFDs incorporate data values, they may in some cases
be physically large, and straightforward techniques may lead to a very large
number of detection queries. We develop nontrivial techniques to merge and
efficiently check a set of CFDs even with a very large number of conditions.
These guarantee: (a) a single pair of SQL queries is generated, with a bounded
size independent of the pattern tableaux in the CFDs, and (b) only two passes of
the database are needed. Furthermore, we develop techniques to incrementally
detect CFD violations, as the underlying instance changes due to the insertions
or deletions of tuples.

Our fifth and final contribution is an experimental study of the performance
of our detection techniques as data size and constraint complexity vary. We find
that our techniques allow violations of CFDs with even a large number of con-
ditions to be detected efficiently on large data sets. However, we also find that
care must be taken to present the complicated where clauses generated by our
technique to the optimizer in a way that can be easily optimized. We illustrate
that certain rewritings of our detection queries are more prone to optimiza-
tions than others, by comparing their performance in various settings. More
importantly, in situations where the optimizer is unable to cope with the com-
plexity of the detection queries, we offer alternative relational representations
of our solutions, and we illustrate that these alternatives result in detection
queries that are simpler, easier to optimize, and faster to execute. In addition,

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 6, Publication date: June 2008.

6:6 • W. Fan et al.

we demonstrate that our incremental techniques vastly outperform, in terms of
time, batch algorithms that detect violations starting from scratch in response
to changes to the underlying database.

Our conclusion is that CFDs are a promising tool for improving data quality.
While a facility to detect inconsistencies emerged as CFD violations will logically
become part of the cleaning process supported by data cleaning systems, we are
not aware of analogous functionality in any of the existing systems.

Organization. The remainder of the article is organized as follows. Section 2
formally defines CFDs. This is followed by the static analysis of CFDs: Section 3
studies the consistency analysis of CFDs, and Section 4 provides the inference
system for CFD implication. Section 5 presents our SQL techniques for detecting
and incrementally detecting CFD violations, followed by the experimental study
in Section 6. Section 7 discusses related work, followed by topics for future work
in Section 8.

2. CONDITIONAL FUNCTIONAL DEPENDENCIES

In this section we define conditional functional dependencies (CFDs). Consider
a relation schema R defined over a fixed set of attributes, denoted by attr(R).
For each attribute A ∈ attr(R), its domain is specified in R, denoted as dom(A).

Syntax. A CFD ϕ on R is a pair (R : X → Y , Tp), where (1) X , Y are sets of
attributes in attr(R), (2) X → Y is a standard FD, referred to as the FD embedded
in ϕ; and (3) Tp is a tableau with attributes in X and Y , referred to as the pattern
tableau of ϕ, where for each A in X ∪ Y and each tuple t ∈ Tp, t[A] is either
a constant ‘a’ in dom(A), or an unnamed variable ‘ ’ that draws values from
dom(A).

If A occurs in both X and Y , we use t[AL] and t[AR] to indicate the occurrence
of A in X and Y , respectively, and separate the X and Y attributes in a pattern
tuple with ‘‖’. We write ϕ as (X → Y , Tp) when R is clear from the context,
and denote X as LHS(ϕ) and Y as RHS(ϕ).

Example 2.1. The constraints φ0, f1, φ1, φ2, f2, and φ3 on the cust table
given in, Example 1.1 can be expressed as CFDs ϕ1 (for φ0), ϕ2 (for f1, φ1 and
φ2, one per line, respectively) and ϕ3 (for f2, φ3 and an additional [CC = 44,
AC = 141] → [CT = GLA] to be used in Section 5), as shown in Figure 2.

If we represent both data and constraints in a uniform tableau format, then
at one end of the spectrum are relational tables which consist of data values
without logic variables, and at the other end are traditional constraints which
are defined in terms of logic variables but without data values, while CFDs are
in between.

Semantics. For a pattern tuple tp in Tp, we define an instantiation ρ to be a
mapping from tp to a data tuple with no variables, such that for each attribute
A in X ∪ Y , if tp[A] is ‘ ’, ρ maps tp[A] to a constant in dom(A), and if tp[A] is a
constant ‘a’, ρ maps tp[A] to the same value ‘a’. For example, for tp[A, B] = (a,),
one can define an instantiation ρ such that ρ(tp[A, B]) = (a, b), which maps
tp[A] to itself and tp[B] to a value ‘b’ in dom(B). Obviously, for an attribute

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 6, Publication date: June 2008.

Conditional Functional Dependencies for Capturing Data Inconsistencies • 6:7

Fig. 2. Example CFDs.

A occurring in both X and Y , we require that ρ(tp[AL]) = ρ(tp[AR]). Note
that an instantiation ρ may map different occurrences of ‘ ’ in tp to different
constants; for example, if tp[A, B] = (,), then ρ(tp[A, B]) = (a, b) is well-
defined if a ∈ dom(A) and b ∈ dom(B).

A data tuple t is said to match a pattern tuple tp, denoted by
t � tp, if there is an instantiation ρ such that ρ(tp) = t. For example,
t[A, B] = (a, b) � tp[A, B] = (a,).

An instance I of R satisfies the CFD ϕ, denoted by I |= ϕ, if for each pair of
tuples t1, t2 in the instance I , and for each tuple tp in the pattern tableau Tp
of ϕ, if t1[X] = t2[X] � tp[X], then t1[Y] = t2[Y] � tp[Y]. That is, if t1[X] and
t2[X] are equal and in addition, they both match the pattern tp[X], then t1[Y]
and t2[Y] must also be equal to each other and both match the pattern tp[Y].

Intuitively, each tuple tp in the pattern tableau Tp of ϕ is a constraint defined
on the set I(ϕ,tp) = {t | t ∈ I, t[X] � tp[X]} such that for any t1, t2 ∈ I(ϕ,tp), if
t1[X] = t2[X], then (a) t1[Y] = t2[Y], and (b) t1[Y] � tp[Y]. Here (a) enforces the
semantics of the embedded FD, and (b) assures the binding between constants in
tp[Y] and constants in t1[Y]. Note that this constraint is defined on the subset
I(ϕ,tp) of I identified by tp[X], rather than on the entire instance I .

If � is a set of CFDs, we write I |= � if I |= ϕ for each CFD ϕ ∈ �. If a relation
I |= �, then we say that I is clean with respect to �.

Example 2.2. The cust relation in Figure 1 satisfies ϕ1 and ϕ3 of Figure 2.
However, it does not satisfy ϕ2. Indeed, tuple t1 violates the pattern tuple tp =
(01, 908, ‖ , MH,) in tableau T2 of ϕ2: t1[CC, AC, PN] = t1[CC, AC, PN] �
(01, 908,), but t1[STR, CT, ZIP] �� (, MH,) since t1[CT] is NYC instead of MH;
similarly for t2.

This example tells us that while violations of standard FDs require two tuples,
a single tuple may violate a CFD.

Observe that a standard FD X → Y can be expressed as a CFD (X → Y , Tp)
in which Tp contains a single tuple consisting of ‘ ’ only, without constants. For
example, if we let T3 of ϕ3 in Figure 2 contain only (, ‖), then it is the CFD

representation of the FD f2 given in Example 1.1.

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 6, Publication date: June 2008.

6:8 • W. Fan et al.

To conclude this section we introduce a normal from for CFDs. A CFD ϕ is in
the normal form if ϕ = (R : X → A, {tp}), written as (R : X → A, tp), where A
is a single attribute and the pattern tableau consists of a single pattern tuple
tp only.

We say that two sets �1 and �2 of CFDs are equivalent, denoted by �1 ≡ �2,
if for any instance I of R, I |= �1 if and only if I |= �2.

PROPOSITION 2.3. For any set � of CFDs, there exists a set �nf of CFDs such
that each ϕ in �nf is in the normal form, and � ≡ �nf. Moreover, �nf consists of
at most |attr(R)|‖�‖ many CFDs, where ‖�‖ denotes the total number of pattern
tuples in CFDs in �.

PROOF. Given � we compute �nf as follows. First, for each CFD ϕ = (R : X →
Y , Tp) in �, we associate with ϕ a set �ϕ consisting of |Tp| many CFDs of the form
(R : X → Y , tp) for each tp ∈ Tp. Next, for each CFD ψ ∈ �ϕ , assuming w.l.o.g.
that ψ = (R : Y → [B1, . . . , Bk], tp), we define ψBi = (R : Y → Bi, tp[Y ∪ {Bi}])
for each i ∈ [1, k]. Define �nf to be

⋃
ϕ∈�

⋃
ψ∈�ϕ ,Bi∈RHS(ψ) ψB, which is a set of

CFDs in the normal form. From the semantics of CFDs it is clear that {ψ} ≡⋃
Bi∈RHS(ψ) ψBi , {ϕ} ≡ �ϕ , � ≡ ⋃

ϕ∈� �ϕ , and hence � ≡ �nf.

In the sequel we consider CFDs in the normal form, unless stated otherwise.

3. CONSISTENCY ANALYSIS OF CONDITIONAL
FUNCTIONAL DEPENDENCIES

We now investigate classical decision problems associated with CFDs. We fo-
cus on consistency analysis in this section, and study implication analysis in
Section 4.

3.1 Reasoning about the Consistency of Conditional Functional Dependencies

One can specify any set of standard FDs, without worrying about consistency.
This is no longer the case for CFDs, as illustrated by the example below.

Example 3.1. Consider CFD ψ1 = (R : [A] → [B], T1), where T1 consists of
two pattern tuples (‖ b) and (‖ c). No nonempty instance I of R can possibly
satisfy ψ1. Indeed, for any tuple t in I , while the first pattern tuple says that
t[B] must be b no matter what value t[A] has, the second pattern requires t[B]
to be c.

Now assume that dom(A) is bool. Consider two CFDs ψ2 = (R : [A] → [B], T2)
and ψ3 = (R : [B] → [A], T3), where T2 has two patterns (true ‖ b1), (false ‖ b2),
and T3 contains (b1 ‖ false) and (b2 ‖ true). While ψ2 and ψ3 can be separately
satisfied by a nonempty instance, there exists no nonempty instance I such
that I |= {ψ2, ψ3}. Indeed, for any tuple t in I , no matter what Boolean value
t[A] has, ψ2 and ψ3 together force t[A] to take the other value from the finite
domain bool. This tells us that attributes with a finite domain may complicate
the consistency analysis. Note that if dom(A) contains one extra value, say
maybe, then the instance I = {(maybe, b3)}, for b3 distinct from both b1 and b2,
satisfies both ψ2 and ψ3.

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 6, Publication date: June 2008.

Conditional Functional Dependencies for Capturing Data Inconsistencies • 6:9

Consistency. A set � of CFDs on a schema R is said to be consistent if there exists
a nonempty instance I of R such that I |= �. The consistency problem for CFDs
is to determine, given a set � of CFDs on a schema R, whether � is consistent.

Intuitively, the consistency analysis is to determine whether a given set �

makes sense. One might be tempted to adopt a stronger notion of consistency, as
suggested by the following example. Consider a CFD ψ4 = (R : [A] → [B], T4),
where T4 consists of pattern tuples (a ‖ b) and (a ‖ c) and b �= c. There is
obviously a nonempty instance I of R that satisfy ψ4. However, the conflict
between the pattern tuples in ψ4 becomes evident if I contains a tuple t with
t[A] = a. Indeed, the first pattern tuple forces t[B] to be b while the second
pattern tuple requires t[B] to be c. In light of this one might want to ensure
that every CFD in � does not conflict with the rest of � no matter over what
instances of R. This can be guaranteed by requiring for each CFD ϕ = (R : X →
A, (tp ‖ a)) ∈ � the existence of an instance Iϕ |= � such that Iϕ contains a tuple
t with t[X] � tp. However, this stronger notion of consistency is equivalent to
the “classical” notion of consistency. To see this, we first introduce the notions
of total CFDs and constant attributes.

A total CFD is of the form (R : X → A, (tp ‖ a)), where tp consists of ‘ ’ only.
It assures that all tuples in a relation must take the same value ‘a’ in the A
attribute.

The constant attributes of a CFD ϕ = (R : X → A, (tp ‖ a)) is the set X (c,ϕ) of
all those attributes in X such that for any B ∈ X (c,ϕ), tp[B] is a constant.

One can check the strong consistency of a set � of CFDs as follows. For each
φ ∈ �, define a set � ∪ {(R : [C] → [C], (‖ tp[C])) | C ∈ X (c,φ)}. It is easy to
verify that � is strongly consistent iff all these sets are consistent. For example,
for � = {ψ4}, since � ∪ {(R : [A] → [A], (‖ a))} is not consistent it follows that
� is not strongly consistent. It is thus sufficient to consider the consistency of
CFDs.

Intractability. As opposed to the fact that any set of standard FDs is consistent,
the consistency analysis of CFDs is nontrivial, as shown below.

THEOREM 3.2. The consistency problem for CFDs is NP-complete.

PROOF. We first show that the problem is in NP. Consider a set � of CFDs
defined on a schema R. The consistency problem has the following small model
property: if there exists a nonempty instance I of R such that I |= �, then for
any tuple t ∈ I , It = {t} is an instance of R and It |= �. Thus it suffices to
consider single-tuple instances I = {t} for deciding whether � is consistent.
Assume w.l.o.g. that attr(R) = {A1, . . . , An}. Moreover, for each i ∈ [1, n], let the
active domain adom(Ai) of A consist of all constants of tp[Ai] for all pattern
tuples tp in �, plus at most an extra distinct value from dom(Ai); then it is
easy to verify that � is consistent iff there exists a mapping ν from t[Ai] to
adom(Ai) such that I ′ = {(ν(t[A1]), . . . , ν(t[An]))} and I ′ |= �. Based on these,
we give an NP algorithm for checking the consistency of � as follows: (a) Guess a
single tuple t of R such that t[Ai] ∈ adom(Ai). (b) Check whether or not I = {t}
satisfies �. Obviously step (b) can be done in PTIME in the size |�| of �, and thus
this algorithm is in NP.

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 6, Publication date: June 2008.

6:10 • W. Fan et al.

We next show that the problem is NP-hard by reduction from the nontautology
problem. An instance of the nontautology problem is a well-formed Boolean
formula φ = C1 ∨ · · · ∨ Cn, where all the variables in φ are x1, . . . , xm, Cj is of
the form � j1 ∧ � j2 ∧ � j3 , and �i j is either xs or x̄s, for s ∈ [1, m]. The problem is to
determine whether there is a truth assignment such that φ is false, that is, φ is
not valid. This problem is known to be NP-complete [Garey and Johnson 1979].

Given an instance φ of the nontautology problem, we define an instance of
the consistency problem for CFDs, namely, a relation schema R and a set � of
CFDs on R, such that φ is not a tautology if and only if � is consistent. We define
R to be (X 1, . . . , X m, C), in which all the attributes are Boolean. Intuitively, for
each tuple t in an instance I of R, t[X 1, . . . , X m] encodes a truth assignment
of the variables x1, . . . , xm. We next define a set � of CFDs, and illustrate the C
attribute.

(a) (R : [X 1, . . . , X m] → C, Tp), where for each clause Cj , for j ∈ [1, n], Tp
contains a tuple t j such that t j [C] = 1, and moreover, for each i ∈ [1, m],
t j [X i] = 1 if xi appears in Cj , t j [X i] = 0 if x̄i appears in Cj , and t j [X i] =
otherwise. Hence, any tuple t in an instance I of R that satisfies this CFD must
have t[C] = 1 in case the truth assignment corresponding to t makes at least
one of the clause in φ true.

(b) (R : C → C, {(1 ‖ 0)}). This is to assure that none of the clauses is satisfied,
that is, φ is not a tautology. Indeed, this CFD prevents any tuple t (i.e., truth
assignment) in an instance I of R that satisfies this CFD from having t[C] = 1.

We now show the correctness of this reduction. Clearly, any instance I of R
that satisfies both CFDs provides us with truth assignments of the variables in φ

that make φ false. Thus, φ is not a tautology. Conversely, if φ is not a tautology,
then there is a truth assignment ν such that φ is false. We construct an instance
I of R consisting of a single tuple t such that t[C] = 0, and t[X i] = 1 if ν(xi) = 1
and t[X i] = 0 otherwise. It is easy to verify that I satisfies �.

Putting these together, we have that the consistency problem is NP-
complete.

Tractable Cases and a Consistency Checking Algorithm. In light of the in-
tractability, we identify several tractable special cases of the consistency prob-
lem. We first present two subclasses of CFDs which are always consistent (Propo-
sitions 3.3 and 3.4). These simple syntactic restrictions on CFDs provide suffi-
cient conditions for retaining the trivial consistency analysis of their standard
counterpart. We then show, by giving a consistency checking algorithm, that
when all attributes involved in a set of CFDs have an infinite domain, the con-
sistency analysis is in PTIME (Proposition 3.5). These reveal certain insight of
the intractability: the presence of finite-domain attributes complicates the con-
sistency analysis. Finally, we extend the checking algorithm to arbitrary CFDs,
with finite-domain attributes or not, and identify a PTIME case in the presence
of finite-domain attributes (Proposition 3.6).

We first observe that inconsistencies can only be caused by the presence of
CFDs that have a constant in their RHS. Indeed, let � be a set of CFDs and denote
by �c the set of CFDs in � of the form (R : X → A, (tp ‖ a)) for some constant
a ∈ dom(A). Then � is consistent iff �c is consistent. Indeed, the consistency of

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 6, Publication date: June 2008.

Conditional Functional Dependencies for Capturing Data Inconsistencies • 6:11

� implies the consistency of �c. For the other direction, let I be an instance of R
such that I |= �c. Select a single tuple t ∈ I and define J = {t}. Clearly, J |= �c.
Let �v be the subset of CFDs in � of the form (R : Y → B, (sp ‖)). It suffices to
observe that any ψ ∈ �v is trivially satisfied on single-tuple instances. Hence,
J |= �v and therefore J |= �. From this it follows:

PROPOSITION 3.3. For any set � of CFDs that contain no CFDs with a constant
RHS, � is always consistent.

Therefore, in the sequel we only consider � that solely consists of CFDs with
a constant RHS, that is, CFDs of the form (R : X → A, (tp ‖ a)) with a ∈ dom(A).

Let attr(�) be the set of attributes in attr(R) that appear in some CFDs in �.
Clearly |attr(�)| ≤ |attr(R)|. We first consider the setting in which attr(�) does
not contain any finite domain attributes and � does not contain any total CFDs.

PROPOSITION 3.4. For any set � of CFDs defined on a schema R, if no CFD in �

is total and all attributes in attr(�) have an infinite domain, then � is consistent.

PROOF. By the small model property given in the proof of Theorem 3.2, it
suffices to consider single-tuple relations when checking the consistency of �.
For any instance I = {t} of R, if for each attribute A ∈ attr(R), t[A] is a constant
not appearing in any pattern tuple in �, then I |= �. Indeed, any CFD in � is
of the form ϕ = (R : X → A, (tp ‖ a)) with tp a pattern tuple that contains at
least one constant, since � does not contain total CFDs. Thus by the choice of
constants in t, I does not match the LHS(ϕ) and hence trivially satisfies ϕ, for
any ϕ in �.

The result below shows that the presence of total CFDs makes our lives harder.

PROPOSITION 3.5. For any set � of CFDs defined on a schema R (possibly con-
taining total CFDs), the consistency of � can be determined in O(|�|2|attr(�)|)
time if all attributes in attr(�) have an infinite domain.

PROOF. Again due to the small model property given in the proof of Theo-
rem 3.2, it suffices to consider single-tuple instances I = {t} of R when checking
the consistency of �. In contrast to the proof of Proposition 3.4, the presence of
total CFDs in � does not allow us to choose the constants in t arbitrarily. More-
over, the presence of certain constants in some attributes of t might induce
constants in other attributes as enforced by the CFDs in �. The key observation
for consistency checking is that � is consistent if and only if there exists no
attribute A in attr(R) for which two different constants for t[A] are enforced by
�.

We now give an algorithm, called CONSISTENCY, that checks whether this sit-
uation arises. The algorithm starts with a set S0 of the attribute-value pairs
found in the total CFDs in �, that is, S0 = {(A, a) | ϕ = (R : X → A, (, . . . , ‖
a)), ϕ ∈ �}. Then, at step i, the algorithm expands the current set Si−1 of
attribute-value pairs to Si as follows: for any φ = (R : X → B, (tp ‖ b)) ∈ �, if
for each Aj ∈ X (c,φ), (Aj , tp[Aj]) is already in Si−1, then add (B, b) to Si, where
X (c,φ) is the set of constant attributes of φ. After Si is constructed, CONSISTENCY

checks whether there exist two pairs (A, a1) and (A, a2) in Si with a1 �= a2. If

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 6, Publication date: June 2008.

6:12 • W. Fan et al.

so, the algorithm stops and concludes that � is inconsistent. Otherwise, it pro-
ceeds with step (i + 1). If after some step Si+1 = Si, then the algorithm stops
and concludes that � is consistent.

The worst-case time complexity of the algorithm is O(|�|2|attr(�)|). Indeed,
the number of steps is bounded by |�|, since in each step at least one CFD

in � can be used to induce some new attribute-value pair. Moreover, at each
step |�| many CFDs are checked. Further, checking whether a CFD induces
an attribute-value pair takes at most O(|attr(�)|) time. From this follows the
complexity.

To show the correctness of algorithm CONSISTENCY, first assume that the al-
gorithm concludes that � is consistent. Denote by S the final set of attribute-
value pairs computed by CONSISTENCY. Then we define I = {t} with t[Ai] = ai
for (Ai, ai) ∈ S, and for all other attributes B we set t[B] to a constant
that does not appear in any pattern tuple of CFDs in � (this is doable since
attr(�) contains infinite-domain attributes only). We show that I |= �, that
is, � is indeed consistent. Assume by contradiction that there exists a CFD

ϕ = (R : X → A, (tp ‖ a)) ∈ � such that I �|= ϕ. This necessarily implies
that (Ai, tp[Ai]) ∈ S for all Ai ∈ X (c,ϕ) and tp[Ai] = for all other attributes.
Indeed, tp[Ai] cannot be a constant not in S, since otherwise by the choice of
the constants in t, t does not match the LHS of ϕ and thus I |= ϕ. However, given
the form of ϕ and the rule of the algorithm for adding attribute-value pairs,
CONSISTENCY would have added (A, a) to S and thus t[A] = a. Hence I |= ϕ,
contradicting the assumption.

For the other direction, suppose that � is consistent but that the algorithm
decides otherwise. Let I = {t} such that I |= �. Suppose that the algorithm
detects inconsistency at step i. It is easy to see that t[Aj] = aj for all (Aj , aj) ∈
Si−1. Further, there must exist two CFDs ϕ1 = (R : X → A, (tp ‖ a1)) and
ϕ2 = (R : Y → A, (sp ‖ a2)) in � such that both (A, a1) and (A, a2) are added
to Si but a1 �= a2. Then, in order for I to satisfy � it must be the case that
t[A] = a1 and t[A] = a2, which is clearly impossible. Thus the algorithm could
not have detected an inconsistency and hence will return that � is consistent,
as desired.

Finally, we consider the case when attr(�) contains finite-domain attributes.
Denote by finattr(R) the set of attributes in attr(R) that have a finite domain.
For ease of exposition we assume w.l.o.g. that all attributes in finattr(R) have
the same finite domain fdom.

PROPOSITION 3.6. For any set � of CFDs defined on a schema R, determining
whether � is consistent can be done in O(|fdom||finattr(R)||�|2|attr(�)|) time. If the
schema R is fixed, then the complexity reduces to O(|�|2).

PROOF. For each tuple c ∈ fdomfinattr(R) of possible finite-domain values over
the attributes in finattr(R), we define �(c) to be the union of � with the set
of total CFDs {ϕc

A = (R : A → A, (‖ c)) | A ∈ finattr(R)}. Clearly, for any
instance I = {t} of R, I |= �(c) iff I |= � and t[finattr(R)] = c. Note that
the inclusion of these total CFDs allows us to assume that all attributes have
an infinite domain. More precisely, we give a consistency checking algorithm

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 6, Publication date: June 2008.

Conditional Functional Dependencies for Capturing Data Inconsistencies • 6:13

as follows. For each c ∈ fdomfinattr(R) it applies algorithm CONSISTENCY given in
the proof of Proposition 3.5 to the set �(c) of CFDs. If for some c, CONSISTENCY

establishes the consistency of �(c), then the algorithm concludes that � is
consistent. If for all possible c, CONSISTENCY decides that �(c) is inconsistent,
then it concludes that � is inconsistent.

From the correctness of CONSISTENCY it is easy to show that this algorithm
is correct. The algorithm takes at most O(|fdom||finattr(R)||�|2|attr(�)|) time, no
larger than O(|fdom||finattr(R)||�|2|attr(R)|) by |attr(�)| ≤ |attr(R)|. If R is fixed,
|fdom||finattr(R)| and |attr(R)| are constants, and the time complexity reduces to
O(|�|2).

3.2 Approximation Factor Preserving Reduction to MAXGSAT

The intractability of Theorem 3.2 highlights the need for an approximation
algorithm that, given a set � of CFDs, finds a maximum subset of � that is
consistent. Specifically, given �, the algorithm is to find a consistent subset
�m of � such that card(�m) ≥ (1 − ε) · card(OPTmaxsc(�)), where OPTmaxsc(�)
denotes a maximum consistent subset of �, and ε is a constant referred to as
the approximation factor. The algorithm is referred to as an ε-approximation
algorithm. We refer to the problem of finding a maximal consistent subset of �

as MAXSC.
To develop an approximation algorithm for MAXSC, we capitalize on exist-

ing approximation algorithms for a well-studied NP-complete problem, namely,
the Maximum Generalized Satisfiability (MAXGSAT) problem. Given a set
 =
{φ1, . . . , φn} of Boolean expressions, the MAXGSAT problem is to find a truth as-
signment that satisfies the maximum number of expressions in
. Approxi-
mation algorithms have been developed for MAXGSAT, especially for m-MAXGSAT,
namely, when each φi involves at most m Boolean variables [Papadimitriou
1994]. Thus it suffices to provide an approximation factor preserving reduc-
tion from MAXSC to MAXGSAT (see, e.g., Vazirani [2003] for approximation factor
preserving reductions).

To this end we provide two PTIME functions f and g such that for any set �

of CFDs, (a) f (�) is an instance
� of MAXGSAT, and g (
m) is a consistent subset
of � if
m is the set of satisfied expressions in
� ; (b) card(OPTmax gsat(f (�))) ≥
card(OPTmaxsc(�)); and (c) card(g (
m)) ≥ card(
m), where OPTmax gsat(f (�))
denotes the maximum set of satisfied expressions in
� . That is, g is guaran-
teed to return a feasible MAXSC solution for �. Such a reduction ensures that if
MAXGSAT has an ε-factor approximation algorithm, then so does MAXSC. Indeed,
if card(
m) ≥ (1 − ε) · card(OPTmax gsat(f (�))), then from (b) and (c) above, it
follows that card(g (
m)) ≥ (1 − ε) · card(OPTmaxsc(�)). In particular, if
m is
the optimal solution of MAXGSAT for f (�), then g (
m) is the optimal solution of
MAXSC for �.

Reduction. To give the reduction, we first revise the notation of active domain
introduced in the proof of Theorem 3.2. Assume that � is defined on a relation
schema R, where attr(R) = {A1, . . . , An}. For each i ∈ [1, n], we define adom(Ai)
to be the set consisting of (a) all the data values appearing in some tp[Ai] for tp
in �; (b) a value in dom(Ai) that is not yet in the set, if there exists any; note

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 6, Publication date: June 2008.

6:14 • W. Fan et al.

that if dom(Ai) is a finite domain, there may not exist such a value. Let k denote
the number of constraints in �. Then adom(Ai) has at most k + 1 values.

The function f is defined as follows. For each i ∈ [1, n] and a ∈ adom(Ai),
we introduce a Boolean variable x(i, a) such that x(i, a) = true if and only if
t[Ai] = a. That is, these Boolean variables define a tuple t. In addition, for each
(R : X → A, tp) ∈ �, we define a Boolean expression φ(tp):

φ(tp) =
(∨

B∈X

(t[B] �� tp[B]) ∨ (t[A] � tp[A])

)
∧ �R ,

where t[B] � tp[B] can be written as x(i, a) if B = Ai and tp[B] = a, and as
true if tp[B] = ‘ ’; similarly, t[B] �� tp[B] can be written as x(i, a) if B = Ai and
tp[B] = a, and as false if tp[B] = ‘ ’. The expression �R is defined as follows,
which is to assure that for each i ∈ [1, n], t[Ai] has a unique value:

�R =
∧

i∈[1,n]

∧
a∈adom(Ai)

((
x(i, a) →

∧
b∈adom(Ai) ∧ b�=a

x(i, b)
)

∧
(

x(i, a) →
∨

b∈adom(Ai) ∧ b�=a

x(i, b)
))

.

We define f (�) =
� = {φ(tp) | tp ∈ �}. Note that each expression in
� has
at most n · (k + 1) Boolean variables.

We define the function g as follows. For a truth assignment ρ for
� , let
m
be the set of satisfied expressions in
� by ρ. We instantiate t based on ρ as
follows: t[Ai] = a if and only if ρ(x(i, a)) = true. Then g (
m) is defined to be the
set of CFDs satisfied by t. It is easy to verify that card(
m) = card(g (
m)).

Verification. We next show that the reduction is approximation factor preserv-
ing. First observe that functions f and g can be computed in PTIME in |�| and
n. Second, from the discussion above it follows that card(OPTmax gsat(f (�))) =
card(OPTmaxsc(�)). Third, for any truth assignment ρ for
� , if
m is the set
of satisfied expressions in
� by ρ, then card(
m) = card(g (
m)), for the same
reason given above. Taken together, the reduction is indeed approximation fac-
tor preserving. This allows us to derive approximation algorithms for MAXSC

from existing approximation algorithms for MAXGSAT.

4. IMPLICATION ANALYSIS OF CONDITIONAL
FUNCTIONAL DEPENDENCIES

In this section, we study the implication problem for CFDs. The implication
problem for CFDs is to determine, given a set � of CFDs and a single CFD ϕ on
a relation schema R, whether or not � entails ϕ, denoted by � |= ϕ, that
is, whether or not for all instances I of R, if I |= � then I |= ϕ.

We show that the richer semantics of CFDs complicates the implication analy-
sis: as opposed to standard FDs, the implication problem for CFDs is coNP-complete
in general. We provide a sound and complete inference system for the implica-
tion analysis of CFDs, as a nontrivial extension of Armstrong’s Axioms for FDs.
Based on these we present an algorithm for computing a minimal cover of a set
of CFDs.

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 6, Publication date: June 2008.

Conditional Functional Dependencies for Capturing Data Inconsistencies • 6:15

Fig. 3. Inference Rules for CFDs.

4.1 An Inference System for Conditional Functional Dependencies

Armstrong’s Axioms for FDs are found in almost every database textbook, and
are fundamental to the implication analysis of FDs. Analogous to Armstrong’s
Axioms, we provide an inference system for CFDs, denoted by I, in Figure 3.
Given a finite set � ∪ {ϕ} of CFDs, we use � �I ϕ to denote that ϕ is provable
from � using I.

Example 4.1. Consider the set � of CFDs consisting of ψ1 = (R : [A, B] →
C, (a, b1 ‖ c)), ψ2 = (R : [A, B] → C, (a, b2 ‖ c)), ψ3 = (R : [C, D] → E, (, ‖))
and ψ4 = (R : B → B, (b3 ‖ b2)), where dom(B) = {b1, b2, b3}. Let ϕ = (R :
[A, D] → E, (a, ‖)). Then � �I ϕ can be proved as follows (the notion that
(�, B = b3) is not consistent will be elaborated shortly):
(1) (R : [A, B] → C, (a, b1 ‖ c)) ψ1

(2) (R : [A, B] → C, (a, b2 ‖ c)) ψ2

(3) (R : [A, B] → C, (a, ‖ c)) (1), (2) and FD4; ((�, B = b3) is not consistent)
(4) (R : A → C, (a ‖ c)) (3) and FD3

(5) (R : [A, D] → A, (a, ‖ a)) FD1

(6) (R : [A, D] → D, (a, ‖)) FD1

(7) (R : [A, D] → C, (a, ‖ c)) (4), (5) and FD2

(8) (R : [C, D] → E, (, ‖)) ψ3

(9) (R : [A, D] → E, (a, ‖)) (6), (7), (8) and FD2

While the rules FD1 and FD2 in I are extensions of Armstrong’s Axioms for
FDs, FD3 and FD4 do not find a counterpart in Armstrong’s Axioms. We next
illustrate the inference rules in I and show their soundness. That is, if � �I ϕ

then � |= ϕ.

FD1 and FD2 extend Armstrong’s Axioms of reflexivity and transitivity, respec-
tively. The rule FD1 is self-explanatory and is illustrated on lines 5 and 6 in
Example 4.1.

In contrast, in order for FD2 to cope with pattern tuples which are not found
in FDs, it employs an order relation �, defined as follows. For a pair η1, η2 of
constants or ‘ ’, we say that η1 � η2 if either η1 = η2 = a where a is a constant, or
η2 = ‘ ’. The � relation naturally extends to pattern tuples. For instance, (a, b) �
(, b). Intuitively, the use of � in FD2 assures that (t1[A1], . . . , tk[Ak]) is in the

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 6, Publication date: June 2008.

6:16 • W. Fan et al.

“scope” of tp[A1, . . . , Ak]; that is, the pattern tp[A1, . . . , Ak] is applicable. In
Example 4.1, FD2 can be applied on line 9 because the pattern tuple t1[C, D] =
(c,) obtained from lines 6 and 7, and the pattern tuple t2[C, D] = (,) on the
LHS of ψ3 (line 8), satisfy t1[C, D] � t2[C, D]. To see that FD2 is sound, note that
any tuple t that matches a pattern tuple tp also matches any pattern tuple t ′

p
if tp � t ′

p. More specifically, assume that conditions (1), (2) and (3) of the rule
hold. Let � consist of ϕi = (R : X → Ai, ti), φ = (R : [A1, . . . , Ak] → B, tp)
and ψ = (R : X → B, t ′

p), for i ∈ [1, k]. Assume that � �I ψ by FD2. We
need to show that for any instance I of R, if I |= �, then I |= ψ . Indeed,
for any two tuples s, t ∈ I , if s[X] = t[X] � t ′

p[X], then from condition (1)
and the assumption that t ′

p[X] = t1[X] it follows that s[X] = t[X] � ti[X] and
s[Ai] = t[Ai] � ti[Ai] for i ∈ [1, k]. By condition (3), we have that s[A1, . . . , Ak] =
t[A1, . . . , Ak] � tp[A1, . . . , Ak]. Thus from condition (2) (i.e., I |= φ) it follows
that s[B] = t[B] � tp[B] = t ′

p[B]. Hence I |= ψ , as desired.

FD3 tells us that for a CFD ϕ = (R : [B, X] → A, tp), if tp[B] = ‘ ’ and tp[A]
is a constant ‘a’, then ϕ can be simplified by dropping the B attribute from
the LHS of the embedded FD. To see this, consider an instance I of R such that
I |= ϕ, and any tuple t in I . Note that since tp[B] = ‘ ’, if t[X] � tp[X] then
t[B, X] � tp[B, X] and t[A] has to be ‘a’ regardless of what value t[B] has. Thus
ϕ entails (R : X → A, tp), and I |= (R : X → A, tp). This rule is illustrated on
line 4 in Example 4.1.

FD4 deals with attributes of finite domains, which are not an issue for standard
FDs since FDs have no pattern tuples. They are given w.r.t. a set � of CFDs. More
specifically, to use this rule one needs to determine, given � on a relation schema
R, an attribute B in attr(R) with a finite domain and a constant b ∈ dom(B),
whether or not there exists an instance I of R such that I |= � and moreover,
there is a tuple t in I such that t[B] = b. We say that (�, B = b) is consistent if
and only if such an instance I exists. That is, since the values of B have finitely
many choices, we need to find out for which b ∈ dom(B), � and B = b make
sense when put together. For example, consider the set � = {ψ2, ψ3} given in
Example 3.1, and the bool attribute A. Then neither (�, A = true) nor (�, A =
false) is consistent. FD4 says that for an attribute B of a finite domain and
w.r.t. a given set � of CFDs, if � �I (R : [X , B] → A, ti) when ti[B] ranges over
all b ∈ dom(B) such that (�, B = b) is consistent, then ti[B] can be “upgraded”
to ‘ ’. That is, for any instance I , if I |= �, then I |= (R : [X , B] → A, tp),
where tp[B] = ‘ ’. Indeed, suppose that I |= � but I �|= (R : [X , B] → A, tp).
Suppose that tp[A] = (similarly for the case tp[A] = a ∈ dom(A)). Then there
exist s, t ∈ I such that {s, t} |= �, s[X , B] = t[X , B] � tp[X , B] but s[A] �= t[A].
Let b = s[B] (and hence b = t[B]). Then {s, t} �|= (R : [X , B] → A, ti) where
ti[B] = b. This contradicts the assumption that � �I (R : [X , B] → A, ti) for
ti[B] ranging over all such b ∈ dom(B) for which (�, B = b) is consistent. Thus
I |= (R : [X , B] → A, tp), where tp[B] = ‘ ’.

One might wonder why I has no rule analogous to the augmentation rule
in Armstrong’s Axioms. The reason is that we assume that all our CFDs are in
the normal form and therefore only have a single attribute in their RHS. As a
result, there is no need for augmenting the RHS with attributes. However, if one

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 6, Publication date: June 2008.

Conditional Functional Dependencies for Capturing Data Inconsistencies • 6:17

would lift this assumption then (four) additional rules need to be added to I
that allow to transform any CFD into its normal form and back. These rules are
straightforward (they basically simulate the construction from � to �nf and
back as indicated in the proof of Proposition 2.3) and do not provide any more
insight in the intricacies involved in the implication problem for CFDs. Since
it suffices to show the completeness of I for CFDs in the normal form, we omit
a detailed description of these additional rules and assume, as usual, that all
CFDs in � are in the normal form.

We also remark that I does not generate nontrivial CFDs such that constants
in their LHS are not consistent with �. That is, CFDs ϕ = (R : X → A, (tp ‖ a))
such that there does not exist an instance I of R that satisfies � and moreover,
I contains a tuple t that matches tp. We could add a rule to I that generates all
CFDs that have a LHS that is inconsistent with � (note that in the special case
that � is inconsistent, this rule would generate all possible CFDs), but instead we
opt to disregard such CFDs. Not only are these CFDs uninteresting, that is, they
are never “applied” to any instance that satisfies �, but also the inclusion of
these CFDs could lead to the situation where � implies arbitrary CFDs, something
that is undesirable in practice. We therefore only consider CFDs ϕ of which the
LHS is consistent with �.

From the discussion above it follows that if � �I ϕ then � |= ϕ, or in other
words the set of inference rules I is sound. The theorem below tells us that,
analogous to Armstrong’s Axioms for FDs, the set of inference rules of I is also
complete, that is, if � |= ϕ then � �I ϕ. Hence, I characterizes the implication
analysis for CFDs.

THEOREM 4.2. The inference system I is sound and complete for implication
of CFDs.

PROOF. The soundness of the rules follows from the discussion given above.
We focus on their completeness.

For a set � of CFDs, let �c be the set of all CFDs in � of the form (R : X →
A, (tp ‖ a)) for some constant a ∈ dom(A), and �v be the set of all CFDs in � of
the form (R : X → A, (tp ‖)). We denote by finattr(R) the set of attributes in
attr(R) that have a finite domain fdom, and by attr(�) the set of attributes in
attr(R) that appear in some CFDs in �.

We show the completeness of I in the following steps: (1.a) first, we show
that if � |= ϕ then � �I ϕ when ϕ = (R : X → A, (tp ‖ a)) for some constant
a ∈ dom(A) and when attr(�) does not contain any finite domain attributes; (1.b)
next, while we still assume that ϕ has a constant RHS, we allow finite domain
attributes in attr(�); (2.a) we then show that � |= ϕ implies � �I ϕ when
ϕ = (R : X → A, (tp ‖)) and when attr(�) does not contain any finite domain
attributes; and finally (2.b) we still assume that ϕ has a variable RHS but allow
finite domain attributes in attr(�). All four steps are proven by extending the
standard proof of the completeness of Armstrong’s Axioms for FDs [Abiteboul
et al. 1995]. That is, we first provide an algorithm that computes a so-called
closure set which characterizes when a set of CFDs implies a given CFD; and then
we show that the computation of the closure set can be simulated using rules
in I.

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 6, Publication date: June 2008.

6:18 • W. Fan et al.

Fig. 4. Algorithm c-CLOSURE.

(1.a) Let ϕ = (R : X → A, (tp ‖ a)) for some a ∈ dom(A) and assume that
attr(�) does not have any finite domain attributes. We first observe that � |= ϕ

iff �c |= ϕ. Clearly, since �c ⊆ �, �c |= ϕ implies � |= ϕ. Conversely, assume
that � |= ϕ but that �c �|= ϕ. Then there must exist a single-tuple instance
I = {t} such that I |= �c but I �|= ϕ. However, since single-tuple instances
trivially satisfy any CFD in �v, I |= �v as well. Therefore, I |= � but I �|= ϕ.
This contradicts the assumption that � |= ϕ. Hence, �c |= ϕ implies � |= ϕ. As
a result, it suffices to only consider �c instead of � for the implication problem
for CFDs ϕ with a constant RHS.

Next, we provide an algorithm, called c-CLOSURE, that takes as input �c, X
and tp, and outputs a set of attribute-value pairs, denoted by �∗

c (X , tp). Analo-
gous to the closure set of standard FDs, the set �∗

c (X , tp) satisfies the following
property: (A, a) ∈ �∗

c (X , tp) iff � |= (R : X → A, (tp ‖ a)). As shown in Figure 4,
c-CLOSURE is similar to the algorithm for computing the closure of FDs except
that (i) it takes into account the pattern tuple tp over X ; (ii) it returns a set
of attribute-value pairs instead of attributes only; (iii) result is initialized us-
ing the attributes in X for which tp is a constant; and (iv) it uses a different
“transitivity” rule (lines 4–5).

Before we show that � |= ϕ implies � �I ϕ we establish the key property of
�∗

c (X , tp). That is, (A, a) ∈ �∗
c (X , tp) iff � |= (R : X → A, (tp ‖ a)).

First, suppose that � |= ϕ but (A, a) �∈ �∗
c (X , tp). Consider the single-tuple

instance I = {t} such that t[Ai] = ai for all (Ai, ai) ∈ �∗
c (X , tp) and all other

attributes in t are instantiated with constants not appearing in the attributes
of any pattern tuple in � ∪ {ϕ}. Note that this is possible since we assume that
(�, tp) is consistent and therefore the algorithm c-CLOSURE only adds at most
one pair (B, b) to �∗

c (X , tp) for each attribute B. Moreover, since all attributes in
attr(�) are assumed to have an infinite domain, we can select arbitrary constants
for the remaining attributes.

We now show that I |= � but I �|= ϕ. We clearly have that I |= �v since I
is a single-tuple instance. Moreover, for any ψ = (R : Y → B, (sp ‖ b)) ∈ �c
such that for all Bi ∈ Y either (Bi, sp[Bi]) ∈ �∗

c (X , tp) or sp[Bi] = , we have
that (B, b) ∈ �∗

c (X , tp), and thus I |= ψ for any such ψ . For CFDs ψ ′ that are
not of the above form, it suffices to observe that I does not match LHS(ψ ′) and

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 6, Publication date: June 2008.

Conditional Functional Dependencies for Capturing Data Inconsistencies • 6:19

therefore trivially satisfies ψ ′. Hence, we may conclude that I |= �. However,
since t[A] �= a we have indeed that I �|= ϕ which contradicts the assumption
that � |= ϕ.

Conversely, assume that (A, a) ∈ �∗
c (X , tp) but � �|= ϕ. Then there must exist

a single-tuple instance I = {t} such that I |= �, t[X] � tp but t[A] �= a. However,
from I |= � and t[X] � tp it follows that t[Ai] = ai for all (Ai, ai) ∈ �∗

c (X , tp).
In particular, t[A] must be ‘a’, contradicting the assumption that I �|= ϕ. Thus
� |= ϕ.

We are now ready to show that if � |= ϕ then � �I ϕ. Again, the proof
is similar to its standard FD counterpart. That is, we show that � �I (R :
X → Ai, tp ‖ ai)) for all (Ai, ai) ∈ �∗

c (X , tp). Intuitively, we “verify” algorithm c-
CLOSURE using the inference rules in I. Denote by resulti the content of result
after i iterations of c-CLOSURE on input �, X and tp. More specifically, we denote
by A(i) the set of attributes in resulti and by a(i) the corresponding tuple of
constants associated with these attributes. The set result0 is initialized by line
2 in Figure 4.

We show by induction on i that for each (Aj , aj) ∈ resulti, � �I (R : X →
Aj , tp ‖ aj)). For each (Aj , aj) ∈ result0, we have that � �I (R : X → Aj , (tp ‖
aj)) by FD1. Suppose inductively that we have proofs σ

j
1 , . . . , σ

j
ki

of (R : X →
Aj , (tp ‖ aj)) for all (Aj , aj) ∈ resulti. Suppose that (R : Y → B, (sp ‖ b)) ∈ �

is chosen for the (i + 1)th iteration and that it passes the condition stated
on lines 4–5. In other words, either (Bi, sp[Bi]) ∈ resulti or sp[Bi] = . As a
result, resulti+1 = resulti ∪{(B, b)}. We therefore extend the proof by adding the
following steps:

(1) (R : Y → B, (sp ‖ b)) in �;
(2) (R : Y ′ → B, (sp[Y ′] ‖ b)) by FD3; sp[Y ′] consists of constants only;
(3) (R : A(i) → Bj , (a(i) ‖ sp[Bj])) by FD1; for each Bj ∈ Y ′;
(4) (R : A(i) → B, (a(i) ‖ b)) by (2), (3) and FD2;
(5) (R : X → Aj , (tp ‖ a(i)[Aj])) induction hypothesis; for each Aj ∈ A(i);
(6) (R : X → B, (tp ‖ b)) by (4), (5) and FD2.

From this, we may conclude that we have a proof for (R : X → Aj , (tp ‖ aj)) for
all (Aj , aj) ∈ resulti+1. Proceed in this way until the completion of result, and
then we indeed have a proof for (R : X → Ai, (tp ‖ ai)) for all (Ai, ai) ∈ �∗

c (X , tp).
In particular, since � |= ϕ and therefore (A, a) ∈ �∗

c (X , tp), we have a proof for
(R : X → A, (tp ‖ a)), as desired. We remark that only rules FD1, FD2 and FD3
are needed in this case. Moreover, it is easy to verify that c-CLOSURE provides
an algorithm for deciding � |= ϕ that runs in O(|�|2|attr(�)|) time.

(1.b) Let ϕ = (R : X → A, (tp ‖ a)) for some a ∈ dom(A) and assume that attr(�)
contains finite domain attributes. We first show how c-CLOSURE can be used to
decide � |= ϕ in this case. For a given set X of attributes, let X ′ be X ∪finattr(R).
For a pattern tuple tp over X , let cp be a tuple of constants over finattr(R), that
is, cp ∈ fdomfinattr(R), such that (i) cp and tp have the same constants on the
attributes in finattr(R), and (ii) if we denote by cp � tp the pattern tuple over X ′

that is the same as tp on X and has the same constants as cp on finattr(R), then
(�, cp � tp) is consistent.

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 6, Publication date: June 2008.

6:20 • W. Fan et al.

We can see that (A, a) ∈ ⋂
cp

�∗
c (X ′, cp � tp) iff � |= ϕ. Here cp ranges over

all constant tuples as described above and �∗
c (X ′, cp � tp) is the result of c-

CLOSURE on input �, X ′ and cp � tp. Intuitively, the enumeration of constant
tuples of attributes in finattr(R) allows us to reduce case (1.b) to (1.a). The in-
tersection filters out any attribute-value pair inferred due to the presence of
specific constants in finattr(R). Clearly, the “if”-direction follows from the fact
that if � |= (R : X → A, (tp ‖ a)) then � |= (R : X ′ → A, (cp � tp ‖ a))
for all cp. For the “only if”-direction, suppose that (A, a) is in the intersec-
tion but � �|= ϕ. Then there must exist a single-tuple instance I = {t} such
that I |= � but I �|= ϕ. Let cp = t[finattr(R)] (note that cp � tp and � are
consistent).

Then, I serves as a counterexample for � |= (R : X ′ → A, (cp � tp ‖ a))
and thus (A, a) �∈ �∗

c (X ′, cp � tp). Hence, (A, a) cannot be in
⋂

cp
�∗

c (X ′, cp � tp)
either, contradicting our assumption.

We use the following algorithm to compute
⋂

cp
�∗

c (X ′, cp � tp): (i) for each cp,
execute c-CLOSURE on input �, X ′ and cp � tp; and (ii) take the intersection of all
result sets computed in (i). Given the complexity of c-CLOSURE, this algorithm
runs in O(|fdom||finattr(R)||�|2|attr(�)|) time.

For the completeness of I, we construct proofs for (R : X → Ai, (tp ‖ ai)) for
all (Ai, ai) ∈ ⋂

cp
�∗

c (X ′, cp � tp). That is, for each (Ai, ai) ∈ ⋂
cp

�∗
c (X ′, cp � tp),

we extend the inductive I-proofs given in case (1.a) as follows:

(1) (R : X ′ → Ai, (cp � tp ‖ ai)) for each cp � tp consistent with �; and
by inductive proofs as in case (1.a);

(2) (R : X ′ → Ai, (, . . . , , tp ‖ ai)) by (1) and FD4;
(3) (R : X → Ai, (tp ‖ ai)) by (2) and FD3.

In particular, this shows that � �I (R : X → A, (tp ‖ a)) since � |= (R : X →
A, (tp ‖ a)) implies (A, a) ∈ ⋂

cp
�∗

c (X ′, cp � tp).

(2.a) Let ϕ = (R : X → A, (tp ‖)) and assume that attr(�) does not have
finite domain attributes. In this case we separate the treatment of CFDs in
�c and the treatment of �v, as follows. First, we compute �∗

c (X , tp) as de-
scribed in case (1.a). Note that the attribute-value pairs induced in this phase
are bindings necessarily enforced by �c. Second, leveraging �∗

c (X , tp), we sim-
plify the treatment of �v. More specifically, we expand X and tp to X and
tp by incorporating attributes and constants induced from �∗

c (X , tp), as fol-
lows. Initially, let X be X and tp be tp. For each (Ai, ai) ∈ �∗

c (X , tp), we
add Ai to X and extend tp by letting tp[Ai] = ai. As will be shown shortly,
� |= (R : X → A, (tp ‖)) iff �v |= (R : X → A, (tp ‖)). Therefore, w.l.o.g. we
may assume ϕ = (R : X → A, (tp ‖)) and consider �v only.

We now show that � |= (R : X → A, (tp ‖)) iff �v |= (R : X → A, (tp ‖)).
First assume that � |= (R : X → A, (tp ‖)) but there exists an instance I of
R such that I |= �v but there exist two tuples s, t ∈ I such that s[X] = t[X] �
tp[X], while s[A] �= t[A]. We then construct an instance I ′ = {s′, t ′} such that
I ′ |= � but I ′ �|= (R : X → A, (tp ‖)), and show that it leads to a contradiction
to the assumption. To do this, we transform s and t into s′ and t ′, respectively,
as follows. First, we let s′[X] = s[X] and t ′[X] = t[X]. All other attributes in

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 6, Publication date: June 2008.

Conditional Functional Dependencies for Capturing Data Inconsistencies • 6:21

s′ and t ′ are instantiated with constants not appearing in the attributes of any
pattern tuple in � ∪ ϕ. Moreover, for any attribute B ∈ attr(R) we guarantee
that s′[B] = t ′[B] iff s[B] = t[B]. Clearly, I ′ �|= (R : X → A, (tp ‖)). We now
show that I ′ |= �, contradicting the assumption that � |= (R : X → A, (tp ‖)).
First, consider ψ = (R : Y → B, (sp ‖ b)) ∈ �c. From the definition of X and tp
we know that if for all Bi ∈ Y either (Bi, sp[Bi]) ∈ �∗

c (X , tp) or sp[Bi] = , then
B ∈ X and tp[B] = b. Therefore, I ′ |= ψ for any such ψ in �c. Moreover, for any
other CFD ψ in �c it follows from the choice of constants in s′ and t ′ that I ′ does
not satisfy LHS(ψ) and ψ is therefore trivially satisfied by I ′. Hence, I ′ |= �c. It
remains to show that I ′ |= �v. However, this follows immediately from (i) the
choice of constants in s′ and t ′; (ii) the fact that s′[B] = t ′[B] iff s[B] = t[B] for
all B ∈ attr(R); and (iii) I |= �v. Hence, we have that I ′ |= �v and therefore
I ′ |= �, as desired.

Conversely, assume that �v |= (R : X → A, (tp ‖)) but that there exists an
instance I = {s, t} such that I |= �, s[X] = t[X] � tp[X], while s[A] �= t[A].
However, this implies that I |= (R : X → Ai, (tp ‖ ai)) for all (Ai, ai) ∈ �∗

c (X , tp).
In other words, s[X] = t[X] � tp and hence I serves as a counterexample for
�v |= (R : X → A, (tp ‖)). We may therefore conclude that � |= (R : X →
A, (tp ‖)).

Given this, we present an algorithm, referred to as v-CLOSURE, to compute a
set �∗

v (X , tp) of attributes, such that A ∈ �∗
v (X , tp) iff � |= (R : X → A, (tp ‖)).

Algorithm v-CLOSURE is the same as c-CLOSURE, except the following: (i) it returns
a set of attributes instead of attribute-value pairs; (ii) it takes �v, X and tp as
input; (iii) result is initialized with all attributes in X ; and (iv) the “transitivity”
rule requires all attributes Bi ∈ Y to be in result and that tp � sp[Y]. It is
easy to verify, in exactly the same way as in the standard FD counterpart, that
A ∈ �∗

v (X , tp) iff � |= (R : X → A, (tp ‖)). Moreover, the induction proof
for the completeness of I given for case (1.a) can be extended in exactly the
same way as in the standard FD case. In fact, only FD1 and FD2 are needed. We
remark that v-CLOSURE provides a decision algorithm for � |= ϕ that runs in
O(|�|2|attr(�)|) time.

(2.b) Finally, let ϕ = (R : X → A, (tp ‖)) and assume that attr(�) has
finite domain attributes. As in case (2.a) we expand X and tp to X and tp,
respectively, but by using the attribute-value pairs in

⋂
cp

�∗
c (X ′, cp � tp).

As in the proof above, one can verify that � |= (R : X → A, (tp ‖)) iff
�v |= (R : X → A, (tp ‖)).

Along the same lines as the proof of case (1.b), we reduce case (2.b) to (2.a).
That is, we provide an algorithm for deciding �v |= (R : X → A, (tp ‖)) using
the algorithm v-CLOSURE described in case (2.a). However, in contrast to the
proof of case (1.b), just taking the intersection of �∗

v (X
′
, cp � tp) over all cp

no longer works here. To cope with this, we inductively define the following
sets of attributes. First, we introduce some additional notation. For a set Y of
attributes in attr(R), we denote by Y f the set of attributes Y ∩ finattr(R). We
then define X

(0) = X , and X
(i) = ⋂

cp
�∗

v (X ∪ X
(i−1)
f , cp[X

(i−1)
f] � tp) for i > 0.

As before cp ranges over all tuples of constants over finattr(R) that match tp
and make (�, cp � tp) consistent.

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 6, Publication date: June 2008.

6:22 • W. Fan et al.

We now establish the following two key properties. First, one can verify
that there exists n ≤ |finattr(R)| such that X

(n+1) = X
(n)

. Second, A ∈ X
(n)

iff
� |= (R : X → A, (tp ‖)).

The first property is shown as follows. First observe that X
(i) ⊆ X

(i+1)
for

each i ≥ 0. Moreover, X
(i+1) = X

(i)
if X

(i+1)
f = X

(i)
f . Assume that X (i+1) �= X (i).

Then, in the worst case, X (i+1) \ X (i) contains at most a single finite-domain
attribute. Since there are only |finattr(R)| finite-domain attributes, it takes at
most |finattr(R)| steps in order to get X

(i+1)
f = X

(i)
f . Hence, we know for sure

that X
(n+1) = X

(n)
for some n ≤ |finattr(R)|

The second property, that is, A ∈ X
(n)

iff � |= (R : X → A, (tp ‖)) is shown
as follows. Since � |= (R : X → A, (tp ‖)) implies � |= (R : [X , X

(n)
f] →

A, (cp[X
(n)
f] � tp ‖)) for each cp, the “if”-direction is immediate. For the “only

if”-direction, we show by induction on i that if A ∈ X
(i)

then � |= (R : X →
A, (tp ‖)). For i = 0, this trivially holds. Let i > 0 and let A ∈ X

(i) \ X
(i−1)

.
Assume by contradiction that � �|= (R : X → A, (tp ‖)). Then there must be
an instance I of R such that I = {s, t}, I |= � but I �|= (R : X → A, (tp ‖)).

From the induction hypothesis we know that s[X
(i−1)

] = t[X
(i−1)

]. Let cp be a
tuple of constants such that cp is equal to s (and hence also to t) on X

(i−1)
f . This

implies that I is a counterexample to (R : [X , X
(i−1)
f] → A, (cp[X

(i−1)
f] � tp ‖))

and therefore A �∈ �∗
v (X ∪ X

(i−1)
f , cp[X

(i−1)
f] � tp). Hence, A cannot be in X

(i)

either, contradicting our assumption.
We use the following algorithm to compute X

(n)
. For each i, (i) execute v-

CLOSURE on input �v, X ∪ X
(i−1)
f and cp[X

(i−1)
f] � tp, for all cp’s such that cp � tp

is consistent with �; (ii) take the intersection of the result sets. The algorithm
stops when it reaches X

(n) = X
(n+1)

. It is clear that the algorithm runs in
O(|finattr(R)||fdom||finattr(R)||�|2|attr(�)|) time.

Based on the algorithm above, we extend the inductive proof given in
cases (1.b) and (2.a) for the completeness of I. That is, for all A ∈ X

(n)
, we

construct a proof for (R : X → A, (tp ‖)).
First, in view of the completeness established in case (2.a) and the compu-

tation of X
(i)

in terms of calls to v-CLOSURE, we have for each i ≥ 0 and each cp,
an I-proof for the following:

(1) (R : [X , X
(i)
f] → Aj , (cp[X

(i+1)
f] � tp ‖)) for each Aj ∈ X

(i+1)
;

Similar to case (1.b) we eliminate the dependency on cp using FD4:

(2) (R : X → Aj , (tp ‖)) for Aj ∈ X
(1)

; by (1) and FD4;
(3) (R : [X , X

(1)
f] → Aj , (, . . . , , tp ‖)) for Aj ∈ X

(2)
; by (1) and FD4;

.

(n + 1) (R : [X , X
(n−1)
f] → Aj , (, . . . , , tp ‖)) for Aj ∈ X

(n)
; by (1) and FD4;

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 6, Publication date: June 2008.

Conditional Functional Dependencies for Capturing Data Inconsistencies • 6:23

Finally, we repeatedly apply the transitivity rule FD2:

(n + 2) (R : X → Aj , (tp ‖)) for each Aj ∈ X
(n)

; and
by (2), . . . ,(n + 1) and FD2.

In particular, given that � |= (R : X → A, (tp ‖)) and hence A ∈ X
(n)

, we
have that � �I (R : X → A, (tp ‖)), as desired.

From these one can see that due to the richer semantics of CFDs, I is more com-
plicated than Armstrong’s Axioms. It is thus not surprising that the implication
analysis of CFDs is more intriguing than their standard FD counterpart. Indeed,
the theorem below shows that the implication problem for CFDs is intractable.

THEOREM 4.3. The implication problem for CFDs is coNP-complete.

PROOF. Consider a set � of CFDs and another CFD ϕ on a relation schema R,
where � is consistent. The problem for determining whether or not � |= ϕ is
equivalent to the complement of the problem for determining whether or not
there exists a nonempty instance I of R such that I |= � and I |= ¬ϕ. Thus it
suffices to show that the satisfiability problem for � ∪{¬ϕ} is NP-complete. Note
that in contrast to the proof of Theorem 3.2, here we need to deal with ¬ϕ.

We first show that the satisfiability problem is in NP. Assume that ϕ = (R :
X → Y , tp). Similar to the upper bound proof of Theorem 3.2, it is easy to verify
that if � ∪ {¬ϕ} is satisfiable, then there exists an instance I consisting of two
tuples s, t, such that I |= �, s[X] = t[X] � tp[X], but either s[Y] �= t[Y], or
s[Y] �� tp[Y] (resp. t[Y] �� tp[Y]); note that here for each attribute A ∈ X ∪ Y ,
s[A] ∈ adom(A) and t[A] ∈ adom(A). Then an NP algorithm similar to the one
given in the proof of Theorem 3.2 suffices to check whether not � ∪ {¬ϕ} is
satisfiable.

We next show that the satisfiability analysis of � ∪ {¬ϕ} is NP-hard by re-
duction from the nontautology problem. The proof is similar to the lower bound
proof of Theorem 3.2. Recall the statement of the nontautology problem from
that proof. Given an instance φ of the nontautology problem, we define the same
relation schema R and the same set � of CFDs on R as given in that proof. Fur-
thermore, we define a single CFD ϕ = (C → C, (0 ‖ 1)), which encodes that φ is
false.

To show that the encoding is indeed a reduction, note that if φ is not a
tautology, then it is already shown by the proof of Theorem 3.2 that there exists
a nonempty instance I of R that satisfies �. Moreover, by the definition of �

for any tuple t in I , t[C] = 0. Thus I �|= ϕ, that is, I |= ¬ϕ. Conversely, suppose
that there exists an instance I that satisfies � but I |= ¬ϕ. Then by I |= �

alone, the proof of Theorem 3.2 already shows that φ is not a tautology.
Putting this together, we have that the satisfiability problem is NP-complete

and as a result, that its complement, the implication problem, is coNP-
complete.

The good news is that when the relation schema is predefined as commonly
found in data cleaning applications, the implication analysis of CFDs can be
conducted efficiently, as stated by the next result.

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 6, Publication date: June 2008.

6:24 • W. Fan et al.

COROLLARY 4.4. Given a set � of CFDs and a single CFD ϕ defined on a schema
R, whether or not � |= ϕ can be decided in O(|�|2|attr(�)|) time if no at-
tributes in attr(�) have a finite domain; and it is in O(|�|2) time if the schema is
fixed.

PROOF. This follows immediately from the complexity analyses of the algo-
rithms for deciding � |= ϕ given in the proof of Theorem 4.2.

4.2 Computing Minimal Covers of CFDs

As an application of consistency and implication analyses of CFDs, we present
an algorithm for computing a minimal cover �mc of a set � of CFDs. The cover
�mc is equivalent to � but does not contain redundancies, and thus is often
smaller than �. Since the costs of checking and repairing CFDs are dominated
by the size of the CFDs to be checked along with the size of the relational data, a
nonredundant and smaller �mc typically leads to less validating and repairing
costs. Thus finding a minimal cover of input CFDs serves as an optimization
strategy for data cleaning.

Following its traditional-FD counterpart [Abiteboul et al. 1995], we define a
minimal cover �mc of a set � of CFDs to be a set of CFDs such that (1) �mc ≡ �,
that is, �mc and � are equivalent; (2) no proper subset of �mc implies �mc, that
is, �mc is nonredundant; and (3) each CFD in �mc is of the form (R : X → A, tp)
as mentioned earlier, and moreover, for each (R : X → A, tp) in �mc, there
exists no (R : X ′ → A, tp[X ′ ∪ A]) in �mc such that X ⊂ X ′, that is, �mc
is canonical. Intuitively, conditions (1) and (2) assure that �mc contains no
redundant CFDs, and condition (3) ensures that �mc does not have redundant
attributes or patterns.

Example 4.5. Let � consist of ψ1 = (R : A → B, (‖ b)), ψ2 = (R : B →
C, (‖ c)) and ϕ = (R : A → C, (a ‖)). A minimal cover �mc of � consists of
ψ ′

1 = (∅ → B, (b)) and ψ ′
2 = (∅ → C, (c)). This is because (1) {ψ1, ψ2} |= ϕ, which

can be easily verified; (2) ψ1 can be simplified to ψ ′
1 by removing the redundant

attribute A (by the rule FD3 in I), and (3) similarly, ψ2 can be simplified to ψ ′
2.

We give an algorithm, MINCOVER, for computing a minimal cover in Figure 5.
It is an extension of its standard FD counterpart [Maier 1980]. First, MINCOVER

checks whether or not � is consistent (lines 1–2). If � is consistent, it proceeds
to remove redundant attributes in the CFDs of � (lines 3–6). We use (tp[X \{B}] ‖
tp[A]) to denote the pattern tuple t ′

p such that t ′
p[A] = tp[A] and t ′

p[C] = tp[C]
for each C ∈ X \{B}. Next, it removes redundant CFDs from � (lines 8–10). From
Proposition 3.5 and Corollary 4.4 it follows that MINCOVER is able to compute
a minimal cover efficiently when the schema is predefined, in O(|�|3) time.

5. DETECTING CFD VIOLATIONS

A first step for data cleaning is the efficient detection of constraint violations
in the data. In this section we develop techniques to detect violations of CFDs.
Given an instance I of a relation schema R and a set � of CFDs on R, it is to
find all the violating tuples in I , that is, the tuples that (perhaps together with
other tuples in I) violate some CFD in �. We first provide an SQL technique for

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 6, Publication date: June 2008.

Conditional Functional Dependencies for Capturing Data Inconsistencies • 6:25

Fig. 5. Algorithm MINCOVER.

finding violations of a single CFD, and then generalize it to validate multiple
CFDs. Finally we present an incremental technique for validating CFDs. It is
desirable to use just SQL to find violations: this makes detection feasible in any
standard relational DBMS without requiring any additional functionality on
its behalf.

5.1 Checking a Single CFD with SQL

Consider a CFD ϕ = (R : X → A, Tp). For simplicity, we assume that the
right-hand side of a CFD consists of a single attribute only. Our solutions can be
trivially extended to multiple attributes, as illustrated by examples. Given the
CFD ϕ, the following two SQL queries suffice to find the tuples violating ϕ:

QC
ϕ select * from R t, Tp tp

where t[X] � tp[X] and t[A] �� tp[A]

Q V
ϕ select distinct X from R t, Tp tp

where t[X] � tp[X] and tp[A] = ‘ ’
group by X having count (distinct A)> 1

where for an attribute B ∈ (X ∪ A), t[B] � tp[B] is a shorthand for the SQL

expression (t[B] = tp[B] or tp[B] = ‘ ’), while t[B] �� tp[B] is a shorthand for
(t[B] �= tp[B] and tp[B] �= ‘ ’).

Intuitively, detection is a two-step process, each conducted by a query. Ini-
tially, query QC

ϕ detects single-tuple violations, that is, the tuples t in I that
match some pattern tuple tp ∈ Tp on the X attributes, but t does not match
tp in A since the constant value tp[A] is different from t[A]. That is, QC

ϕ finds
violating tuples based on differences in the constants in the tuples and Tp
patterns.

On the other hand, query Q V
ϕ finds multi-tuple violations, that is, tuples t

in I for which there exists a tuple t ′ in I such that t[X] = t ′[X] and moreover,
both t and t ′ match a pattern tp on the X attributes, tp[A] is a variable, but

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 6, Publication date: June 2008.

6:26 • W. Fan et al.

Fig. 6. SQL queries for checking CFD ϕ2.

t[A] �= t ′[A]. Query Q V
ϕ uses the group by clause to group tuples with the

same value on X and it counts the number of distinct instantiations in tp[A].
If there is more than one instantiation, then there is a violation. Note that
Q V

ϕ returns only the X attributes of violating tuples, to make the output more
concise, since the complete tuples can be easily obtained using an additional
SQL query.

Example 5.1. Recall CFD ϕ2 given in Figure 2. Over a cust instance I , the
SQL queries QC

ϕ2
and Q V

ϕ2
shown in Figure 6 determine whether or not I satisfies

ϕ2. Executing these queries over the instance of Figure 1, it returns tuples t1,
t2 (due to QC

ϕ2
), and t3 and t4 (due to Q V

ϕ2
).

A salient feature of our SQL translation is that tableau Tp is treated an ordi-
nary data table. Therefore, each query is bounded by the size of the embedded
FD X → A in the CFD, and is independent of the (possibly large) tableau Tp.

5.2 Validating Multiple CFDs

A naive way to validate a set � of CFDs is to use one query pair for each CFD

ϕ in �. This approach requires 2 × |�| passes of the underlying relation. We
next present an alternative approach that only requires two passes. The key
idea is to generate a single query pair to check all the constrains in �. The
proposed solution works in two phases. In its first phase, it performs a lin-
ear scan of all the pattern tableaux belonging to CFDs in � and merges them,
generating a single tableau called T� . Intuitively, tableau T� is such that it
captures the constraints expressed by all the tableaux of the CFDs in �. Then
in its second phase, it generates a query pair that finds tuples violating CFDs in
�.

5.2.1 Merging Multiple CFDs. Consider a set � which, w.l.o.g., contains
just two CFDs ϕ and ϕ′ on R, where ϕ = (R : X → A, T) and ϕ′ = (R : X ′ →
A′, T ′). For now, assume that neither A nor A′ belongs to X ∪ X ′. We remove
this assumption later. There are two main challenges for the generation of the
merged tableau T� . The first challenge is that tableaux T and T ′ may not be
union-compatible, that is, X �= X ′ or A �= A′. We thus need to extend tableau T
(resp. T ′) with all the attributes in (X ∪ A)−(X ′ ∪ A′) (resp. (X ′ ∪ A′)−(X ∪ A) for
T ′). For each attribute B in (X ∪ A) − (X ′ ∪ A′) and each tuple tp in the original
tableau T , we set the value of tp[B] to be a special symbol denoted by ‘@’, which
denotes intuitively a don’t care value. After this extension, the resulted tableaux

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 6, Publication date: June 2008.

Conditional Functional Dependencies for Capturing Data Inconsistencies • 6:27

Fig. 7. Merging of CFDs ϕ2 and ϕ3.

Fig. 8. T� for CFDs ϕ3 and ϕ5.

are union-compatible. Then tableau T� is defined to be their union. Figure 7
shows how the CFDs ϕ2 and ϕ3 of Figure 2 can be made union-compatible.

Given the presence of ‘@’, we need to reformulate CFD satisfaction. Let Z =
X ∪ X ′ and W = A∪ A′. Consider a tuple tp[Z , W] in tableau T� which includes
‘@’. We use Z free

tp
and W free

tp
to denote the subset of Z and W attributes of tp that

is ‘@’-free, that is, it has no ‘@’ symbol. A relation I of R satisfies the CFD ϕ�

whose tableau is T� , denoted by I |= ϕ� , if for each pair of tuples t1, t2 in the
relation I , and for each tuple tp in the pattern tableau T� of ϕ� , if t1[Z free

tp
] =

t2[Z free
tp

] � tp[Z free
tp

] then t1[W free
tp

] = t2[W free
tp

] � tp[W free
tp

].
For the second challenge, consider the detection of violations of a single

CFD using SQL. Note that when writing the SQL queries, we assume implicit
knowledge of whether an attribute is part of the left-hand or right-hand side
of the CFD. Now consider two simple CFDs on R: ϕ = (R : A → B, T) and
ϕ′ = (R : B → A, T ′). Suppose that we have made the tableaux of the CFDs
union-compatible. One might want to take the union of these two tableaux to
generate T� . Note that we cannot directly use the method given in the previous
section. Attribute A is in the left-hand side, for tuples coming from ϕ, while
it is part of the right-hand side, for tuples coming from ϕ′. Thus it seems that
we need to distinguish the two sets of tuples and treat each set separately,
something that counters the benefits of CFD merging.

We address this by splitting the tableau T of each CFD ϕ = (R : X → A, T)
into two parts, namely, T X and T A, one tableau for X and one for A attributes
of ϕ. Then tableau T Z

� (and similarly T W
�) is generated by making all the T X

tableaux in � union-compatible (similarly for the T A tableau). Note that an
attribute can appear in both T Z

� and T W
� . To be able to restore pattern tuples

from T Z
� and T W

� , we create a distinct tuple id tp[id] for each pattern tuple tp,
and associates it with the corresponding tuples in T Z

� and T W
� . For example,

consider CFD ϕ3 shown in Figure 2 and ϕ5 = (R : [CT] → [AC], T5), where
T5 consists of a single tuple (‖). Figure 8 shows their merged T Z

� and T W
�

tableaux. Note that attributes CT and AC appear in both tableaux.

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 6, Publication date: June 2008.

6:28 • W. Fan et al.

5.2.2 Query Generation. During the second phase of our approach, we
generate a single pair of SQL queries for T� . This query generation, how-
ever, introduces new challenges. Recall that query Q V

ϕ for some CFD ϕ =
(R : X → A, T) requires a group by clause over all the X at-
tributes. Now consider tableau T Z

� in Figure 8. It is not hard to see that
if we use the group by clause over all the attributes in T Z

� , we are
not going to detect all (if any) violations since, for example, for the first
three tuples in T Z

� the ‘@’ in attribute CT indicates that, while detecting vi-
olations, we should only group by the first two attributes and ignore the value
of attribute CT. Similarly for the last tuple in T Z

� , the ‘@’ in attributes CC and
AC indicates that we should only consider the value of CT. The example sug-
gests that our SQL query should change the set of group by attributes, based
on the contents of each tuple. We next show how this can be achieved while still
keeping the query size bounded by the size of the embedded FD Z → W in the
merged tableau, and independent of the size of the merged tableau. Central to
our approach is the use of the case clause of SQL (supported by popular DBMS

like DB2, Oracle, MySQL).
Consider the merged tableaux T Z

� and T W
� from a set � of CFDs over a relation

schema R and let I be an instance of R. Then the following two SQL queries can
be used to detect tuples of I violating ϕ:

QC
� select * from R t, T Z

� tZ
p , T W

� tW
p

where tZ
p [id] = tW

p [id] and t[Z] � tZ
p [Z] and t[W] �� tW

p [W]

Q V
� select distinct Z from Macro tM

group by Z having count (distinct W)> 1

where Macro is:

select (case tZ
p [Bi] when ‘@’ then ‘@’ else t[Bi] end) as Bi · · ·

(case tW
p [Cj] when ‘@’ then ‘@’ else t[Cj] end) as Cj · · ·

from R t, T Z
� tZ

p , T W
� tW

p
where tZ

p [id] = tW
p [id] and t[Z] � tZ

p [Z] and (tW
p [C1] = ‘ ’ or · · · or tW

p [Cn]
= ‘ ’)

Here for each attribute Bi ∈ Z , t[B] � tp[B] now accounts for ‘@’ and is a short-
hand for (t[Bi] = tp[Bi] or tp[Bi] = ‘ ’ or tp[Bi] = ‘@’), and for each Cj ∈ W ,
t[Cj] �� tp[Cj] stands for (t[Cj] �= tp[Cj] and tp[Cj] �= ‘ ’ and tp[Cj] �= ‘@’).

Note that query QC
� is similar in spirit to the SQL query that checks for

violations of constants between the relation and the tableau, for a single CFD.
The only difference is that now the query has to account for the presence of the
‘@’ symbol in the tableau. Now consider relation Macro which is of the same
sort as T Z

� and T W
� (we rename attributes that appear in both tableaux so as

not to appear twice). Relation Macro is essentially the join on Z of relation I
with the result of the join on tuple id tp[id] of the two tableaux. The value of
each attribute, for each tuple tM in Macro, is determined by the case clause.
Indeed, for each attribute B ∈ Z , tM [B] is set to be ‘@’ if tZ

p [B] is ‘@’, and is
t[B] otherwise; similarly for each C ∈ W and tM [C]. Note that relation I is not
joined on W with the tableaux. Thus if for some tuple t with t[Z] � tZ

p [Z], there

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 6, Publication date: June 2008.

Conditional Functional Dependencies for Capturing Data Inconsistencies • 6:29

Fig. 9. Macro relation instance.

exists an attribute C with tW
p [C] a constant and t[C] �= tW

p [C] (i.e., t violates
the merged tableau) then tM [C] is set to be t[C]. This creates no problems since
this violating tuple is already detected by QC

� .
Intuitively, Macro considers each tuple in the tableau, and uses it as a mask

over the tuples of the relation. If the tableau tuple indicates a don’t care value
for an attribute, all the (possibly different) attribute values in the relation
tuples are masked and replaced by an ‘@’ in Macro. Figure 9 shows the result
of joining the fourth tuple of tableaux T Z

� and T W
� in Figure 8 with the cust

relation of Figure 1. Note that the query masks the attributes values of CC
and AC. This masking allows the subsequent group by over X to essentially
consider, for each tuple, only the subset of Z that does not have any don’t care
values. Note that although Z = {CC, AC, CT}, the group by by query Q V

�

essentially performs a group by over only attribute CT. The query returns
the NYC tuples which violate ϕ5.

In this way we generate a single pair of SQL queries to validate a set � of CFDs,
while guaranteeing that the queries are bounded by the size of the embedded
FDs in �, independent of the size of the tableaux in �. Furthermore, to validate
� only two passes of the database is required.

5.3 Incremental CFD Detection

Consider an instance I of a relation schema R. For simplicity, consider a single
CFD ϕ = (R : X → A, Tp) (the incremental technique we will present can be
extended to deal with multiple CFDs, along the same lines as Section 5.2). Given
the methodology presented thus far, we can check for violations of ϕ by issuing
the pair of queries QC

ϕ and Q V
ϕ over I . An interesting question is then what

happens if the instance I changes? As tuples are inserted into or deleted from
I , resulting a new instance Inew, a naive solution would be a batch approach
that re-issues queries QC

ϕ and Q V
ϕ over Inew, starting from scratch in response

to updates, something that requires two passes of the entire instance each time
the queries are reissued.

Intuitively, however, one expects that a tuple insertion leaves a large portion
of instance I unaffected when CFD violations are concerned. An inserted tuple
t might introduce new violations, but only with tuples that are already in the
instance and which match t in the X attributes. Therefore, it makes sense to
only access these tuples and only detect the possible newly introduced violations
due to the inserted tuple. Thus, incremental detection can potentially save a
large number of disk accesses, since instead of performing two passes of the
underlying data on each tuple insertion (naive method), we only need to access
the tuples that match the inserted tuple t in the X attributes. Similarly in

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 6, Publication date: June 2008.

6:30 • W. Fan et al.

the case of deletion, by deleting a tuple t we might inadvertibly repair some
of the violations in I that the deleted tuple was causing (again with tuples
matching t in the X attributes). Therefore, it makes sense to only detect which
of the existing violations concerning the deleted tuple are affected. The following
example better illustrates the above.

Example 5.2. Recall from Example 5.1 that tuples t1 to t4 in Figure 1 vio-
late CFD ϕ2. Now consider inserting the tuple t7 : (01, 215, 3333333, Bill, Main
Rd. PHI, 02394) in the relation of the figure. It is easy to check that tuples t5
and t7 violate ϕ2 (due to Q V

ϕ2
). Still, the newly inserted tuple does not affect

the violations detected between the first four tuples. Note that an incremen-
tal detection would require that we only access tuple t5, instead of the whole
relation.

Now consider again the instance in Figure 1 and assume that we delete tuple
t4 from it. Then tuple t3 no longer violates ϕ2 since the deletion of t4 inadvertibly
repaired the violation caused by tuples t3 and t4. Such a deletion only requires
accessing tuple t3 and does not affect the violation caused by tuples t1 and t2.

We next present a method to incrementally detect CFD violations, given a set
of insertions and deletions to an instance I . Although the incremental method
has the same worst-case performance as the naive method (two passes of the
underlying instance), its expected performance is that only a small number of
tuples are accessed, which will be verified in the next section by our experi-
ments.

5.3.1 Logging of Violations. The incremental detection requires us to ex-
tend the schema R of an instance relation I to record which tuples violate which
CFDs in a given set �. In more detail, for each CFD ϕ ∈ � we add two Boolean
attributes βC

ϕ and βV
ϕ to the schema of R. We use Rlog to denote the new schema.

For each tuple t ∈ I , we create a tuple t ′ in Rlog such that t ′[attr(R)] = t[attr(R)].
Furthermore, in attribute t ′[βC

ϕ] (resp. t ′[βV
ϕ]) we record whether or not t vio-

lates CFD ϕ due to QC
ϕ (resp. Q V

ϕ). Note that our logging mechanism imposes
minimum overhead since for each tuple and each CFD only two additional bits
are required.

We assume that, initially, we execute queries QC
ϕ and Q V

ϕ and we use the
result of the two queries to initialize the values of attributes βC

ϕ and βV
ϕ , through

a simple SQL update statement of the following form for βC
ϕ (similarly for βV

ϕ):

UC
ϕ update Rlog t ′ set t ′[βC

ϕ] = 1
where t ′[attr(R)] in (QC

ϕ)

One needs only to select all those tuples with both βC
ϕ and βV

ϕ equal to false,
for each ϕ ∈ �, and then project on attr(R), in order to retrieve from Rlog the
tuples that do not violate any of the CFDs. Figure 10 shows the instance of
Figure 1 after its schema has been extended appropriately to log violations for
CFD ϕ2.

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 6, Publication date: June 2008.

Conditional Functional Dependencies for Capturing Data Inconsistencies • 6:31

Fig. 10. The cust relation instance with logging information.

5.3.2 Handling Tuple Deletions. Consider a CFD ϕ = (R : X → A, Tp) and
an instance Ilog whose schema Rlog includes attributes βC

ϕ and βV
ϕ . In response

to deletion of tuple t from Ilog , the incremental detection of violations has two
steps.

Step 1: delete from Rlog t ′ where t ′ = t

Step 2: update Rlog t ′ set t ′[βV
ϕ] = 0

where t ′[βV
ϕ] = 1 and t ′[X] = t[X] and

1 = (select count (distinct A) from Rlog t ′′

where t ′′[X] = t[X])

In more detail, the SQL query in the first step simply deletes from Rlog the
tuple corresponding to t. The second step checks for tuples that (a) violate ϕ

(t ′[βV
ϕ] = 1), (b) have the same values on the X attributes with t, and (c) all

these identified tuples have the same A attribute value. It is easy to see that
if a set of tuples satisfies the above three conditions, then each of the tuples
in the set violated ϕ only due to t. Since we delete t, each of the tuples now
satisfies ϕ. Therefore, we set t ′[βV

ϕ] to false. Note that a tuple deletion only
affects violations that are caused by the presence of ‘ ’ in the tableau, hence
we focus only on the βV

ϕ attribute. Also note that the above procedure need not
access the pattern tableau Tp of ϕ, resulting in additional savings in terms of
execution time.

Example 5.3. Consider the instance in Figure 10 and assume that we delete
tuple t4. Then the second step of our incremental detection will select tuple t3
and set t3[βV

ϕ2
] to false since there is no other tuple in the instance that has the

same values on the CC, AC and PN attributes as t3 but differs from t3 in STR,
CT or ZIP. Hence tuple t3 no longer violates ϕ2. Note that our incremental detec-
tion, using appropriate indexes, only accesses tuple t3. Contrast this with the
nonincremental detection, which requires us to access the whole relation twice.

A question is what happens when we want to do batch deletion, that is, delete
a set of tuples. Obviously, we could execute the above two steps once for each
tuple in the set. We can actually do better than that since it suffices to execute
the above steps once for each distinct value of X attributes that is deleted. So,
if for example we delete both tuples t3 and t4 from the instance in Figure 10,
we only need to execute the two steps once since the two tuples have the same
value on the X attributes.

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 6, Publication date: June 2008.

6:32 • W. Fan et al.

5.3.3 Handling Tuple Insertions. Assume that we want to insert a tuple t
into Ilog . Then the incremental detection of violations has the following three
steps.

Step 1: insert into Rlog values t

Step 2: update Rlog t ′ set t ′[βC
ϕ] = 1

where t ′ = t and
exists (select * from Tp

where tp[X] � t ′[X] and tp[A] �� t ′[A])

Step 3: update Rlog t ′ set t[βV
ϕ] = 1, t ′[βV

ϕ] = 1
where t ′[X] = t[X] and t ′[A] �= t[A] and

exists (select * from Tp tp
where tp[X] � t[X] and tp[A] = ‘ ’)

The first step simply inserts the tuple t into relation Rlog , where we assume
that both the βC

ϕ and βV
ϕ attributes are set to false, for each newly inserted tuple.

Similar to QC
ϕ , the second step checks for violations in the constants between

the newly inserted tuple and the pattern tableau Tp. If such violations exist, it
sets the value of βC

ϕ in the inserted tuple to true. Similar to Q V
ϕ , the final step

checks for tuples that (a) have the same values on the X attributes with t, (b)
differ from t on the A attribute, and (c) the inserted tuple t satisfies ϕ by itself.
If these conditions are satisfied, each identified tuple and t, when put together,
violate ϕ, and we set the value of the βV

ϕ attribute of each such tuple to true.
We slightly abuse notation in the last step to also set, with the same statement,
the βV

ϕ attribute of t to true.
We now consider batch insertions involving a set of tuples, say �Ilog .

Obviously, one might consider executing the above steps once for each tuple
in �Ilog . An alternative strategy is to treat �Ilog as an independent instance
whose tuples we need to merge with the ones in Ilog . We distinguish five
different steps here:
Step 1: update �Rlog t ′ set t ′[βC

ϕ] = 1
where t ′[attr(R)] in (QC

ϕ)

Step 2: update Rlog t ′ set t ′[βV
ϕ] = 1

where t ′[βC
ϕ] = 0 and t ′[βV

ϕ] = 0 and
exists (select * from Tp tp

where tp[X] � t[X] and tp[A] = ‘ ’) and
exists (select * from �Rlog t ′′

where t ′′[X] = t ′[X] and t ′′[A] �= t ′[A]) and

Step 3: update �Rlog t ′ set t ′[βV
ϕ] = 1

where exists (select * from Rlog t ′′

where t ′′[X] = t ′[X] and t ′′[βV
ϕ] = 1)

Step 4: update �Rlog t ′ set t ′[βV
ϕ] = 1

where t ′[βC
ϕ] = 0 and t ′[βV

ϕ] = 0 and
t ′[X] in (select X from �Rlog t ′′, Tp tp

where t ′′[βC
ϕ] = 0 and t ′′[βV

ϕ] = 0 and t ′′[X] � tp[X]
tp[A] = ‘ ’

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 6, Publication date: June 2008.

Conditional Functional Dependencies for Capturing Data Inconsistencies • 6:33

Fig. 11. An instance �I log used for batch insertion.

group by X
having count (distinct A)> 1)

Step 5: insert into Rlog values (select * from �Rlog)

where �Rlog denotes the schema of �Ilog , which is identical to Rlog . During
the first step, we focus on the newly inserted tuples and we identify which
tuples independently violate ϕ due to QC

ϕ . This is an unavoidable step whose
cost cannot be reduced since we have to consider each inserted tuple in
isolation. However, by executing QC

ϕ only over �Rlog , we avoid re-detecting
such violations over Rlog .

The second step looks for tuples in Rlog that were clean before the insertion
but will now violate ϕ, once the tuples in �Rlog are inserted. The tuples in
Rlog that are affected by the insertion are such that they have the same values
on the X attributes with some tuple in �Rlog but their values differ on the A
attribute.

The third step attempts to leverage the knowledge of violations in Rlog in
order to detect violations in �Rlog . If a tuple t ′ in �Rlog has the same values
on the X attributes with some tuple t ′′ in Rlog whose βV

ϕ is true, then t ′ must
also have βV

ϕ set to true. This is because we already know for the tuples in Rlog

with specific values on the X attributes whether more than one values on the
A attribute exist.

Finally, there is only one more case to consider, namely, whether there are any
clean tuples in �Rlog (with both βC

ϕ and βV
ϕ equal to false) that together with

some other clean tuples in �Rlog violate ϕ. The last step detects such tuples
by checking whether any tuples have the same values on the X attributes but
different values on the A attribute. For all the detected tuples, the value of βV

ϕ

is set to true.
In last step, we simply insert the tuples in �Rlog into Rlog .

Example 5.4. Consider the instance in Figure 11 and assume that we want
to insert its tuples into the instance in Figure 10. Then the first step above will
set t7[βC

ϕ2
] to true, since the value of t7[CT] is CHI instead of NYC. The second

step will set t6[βV
ϕ2

] to true, since tuples t6 and t9 violate ϕ2. The third step will
set t9[βV

ϕ2
] also to true, while none of the remaining steps will alter any tuples.

6. EXPERIMENTAL STUDY

In this section we present our findings about the performance of our techniques
for (incrementally) detecting CFD violations over a variety of data sizes, and
number and complexity of CFDs. We distinguish four sets of experiments. After
identifying a number of parameters that influence the detection of violations,

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 6, Publication date: June 2008.

6:34 • W. Fan et al.

in the first set of experiments we vary these parameters, and investigate the
effects of each parameter combination on the execution time of the SQL detection
queries. In the second experiments, we focus on the detection of multiple CFDs
and study the benefits of merging multiple CFDs in a single tableau. In the first
two sets of experiments we only report the time to execute the SQL detection
queries and omit the time to report (or mark) the violating tuples. This omission
does not affect the validity of our results since, for the first two experiments,
marking the violating tuples only adds a constant to each reported time of each
figure. In the third set of experiments we compare the effectiveness of CFDs
in detecting dirty tuples versus its FD counterpart, as well as their running
time. In the fourth set of experiments we focus on incremental detection and
its benefits w.r.t. the non-incremental one. In the last two sets of experiments
we report the sum of the time to execute the SQL detection query plus the time
to mark the violating tuples.

6.1 Experimental Setup

—Hardware: For the experiments, we used DB2 on an Apple Xserve with 2.3GHz
PowerPC dual CPU and 4GB of RAM.

—Data: Our experiments used an extension of the relation in Figure 1. Specif-
ically, the relation models individual’s tax records and includes 8 additional
attributes, namely, the state ST where a person resides, her marital status
MR, whether she has dependents CH, her salary SA, tax rate TX on her salary,
and 3 attributes recording tax exemptions, based on marital status and the
existence of dependents.

To populate the relation we collected real-life data: the zip and area codes
for major cities and towns for all US states. Further, we collected the tax
rates, tax and income brackets, and exemptions for each state. Using these
data, we wrote a program that generates synthetic tax records.

We vary two parameters of the data instance in our experiments, denoted
by SZ and NOISE. SZ determines the tuple number in the tax-records relation
and NOISE the percentage of dirty tuples. As the data is generated, with prob-
ability NOISE, an attribute on the RHS of a CFD is changed from a correct to
incorrect value (e.g., a tax record for a NYC resident with a Chicago area
code).

—CFDs: We used CFDs to model real-world semantics such as (a) zip codes de-
termine states, (b) zip and cities determine states, and (c) states and salary
brackets determine tax rates (a tax rate depends on both the state and em-
ployee salary), etc. We varied our CFDs using the following parameters: NUM-
CFDs determines the number of CFDs considered in an experimental setup,
NUMATTRs the (max) attribute number in the CFDs, TABSZ the (max) tuple num-
ber in the CFDs, and NUMCONSTs the percentage of tuples with constants vs. tu-
ples with variables in each CFD.

6.2 Detecting CFD Violations

There are two alternative evaluation strategies for the SQL detection queries
of Section 5. Key distinction between these two strategies is how we evaluate

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 6, Publication date: June 2008.

Conditional Functional Dependencies for Capturing Data Inconsistencies • 6:35

the where clause in each detection query. Specifically, note that the where
clause of our SQL detection queries is in the conjunctive normal form (CNF). It is
known that database systems do not efficiently execute queries in CNF since the
presence of the OR operator leads the optimizer to select inefficient plans that
do not leverage the available indexes. A solution to this problem is to convert
conditions in the where clause into the disjunctive normal form (DNF). This
conversion might cause an exponential blow-up in the number of conjuncts, but
in this case, the blow-up is w.r.t. the number of attributes in the CFD, which is
usually very small.

—CNF vs. DNF: In this experiment, we considered both evaluation strategies,
under various settings, to determine the most efficient one. In more detail,
we considered relations with SZ from 10K to 100K tuples in 10K increments,
and 5% NOISE. We considered two representative CFDs, each with NUMATTRs 3,
where the first CFD had NUMCONSTs 100% (tuples with only constant) while
the second had NUMCONSTs 50% (half the tuples had variables). In terms of
CFD size, we set TABSZ to 1K (note that each tuple in the CFDs is a constraint
itself). Figures 12(a) and 12(b) show the evaluation times for both evaluation
strategies, for each of the two CFDs. As both graphs show, irrespective of data
size and the presence of constants or variables, the DNF strategy clearly out-
performs the CNF one. Furthermore, the figures illustrate the scalability of
our detection queries SZ.

— QC
ϕ vs. Q V

ϕ : We investigated how the detection time is split between the QC
ϕ

and Q V
ϕ queries. We considered relations with SZ from 10K to 100K tuples in

10K increments, and 5% NOISE. For the CFD, we consider one with NUMATTRs
equal to 3, TABSZ to 1K and NUMCONSTs 100% (we had similar results for other
values of NUMCONSTs). Figure 12(c) shows the evaluation times for each query
in isolation and shows that both queries have similar loads and follow the
same execution trend.

—Scalability in TABSZ: We studied the scalability of the detection queries with
respect to TABSZ. In more detail, we fixed SZ to 500K with 5% NOISE. We con-
sidered two CFDs whose sizes varied from 1K to 10K, in 1K increments. The
NUMATTRs was 3 for the first, and 4 for the second CFD considered. For all CFDs,
NUMCONSTs was 50%. Figure 12(d) shows the detection times for the 2 CFDs.
As is obvious from the figure, TABSZ has little impact on the detection times
and dominant factors here are (a) the size of the relation, which is much
larger than the tableaux, and (b) the number of attributes in the tableau,
since these result in more complicated join conditions in the detection
queries.

—Scalability in NUMCONSTs: We studied the impact of variables on the detection
times. Fixing a relation with SZ 100K and NOISE 5% and a CFDs with TABSZ 1K,
and NUMATTRs = 3, we varied NUMCONSTs between 100% (all constants) and 10%
and measured the detection times over the relation. Figure 12(e) shows that
variables do affect detection times and (not shown in the figure) moreover, as
we increased both the percentage of variables and the number of attributes
with variables, detection times increased noticeably. This is apparent, given

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 6, Publication date: June 2008.

6:36 • W. Fan et al.

Fig. 12. Experimental results.

that variables restrict the use of indexes while joining the relation with the
tableau.

—Scalability in NOISE: We varied NOISE between 0% and 9% in a relation with
SZ 100K, and considered a CFD with TABSZ 30K (we used all possible zip to
state pairs, so as not to miss a violation), NUMATTRs 2, and NUMCONSTs 100%.
As shown in Figure 12(f), the level of NOISE has negligible effects on detection
times.

—On the representation of variables: One practical consideration was the repre-
sentation of the unnamed variables ‘ ’. Initially, we experimented by actually
using the character ‘ ’ as an attribute value, to code variables. The perfor-
mance of the SQL detection queries was satisfactory but we noticed that as the

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 6, Publication date: June 2008.

Conditional Functional Dependencies for Capturing Data Inconsistencies • 6:37

number of variables in a CFD increased, there was a corresponding increase in
the detection times (as was already shown in Figure 12(e)). As an alternative,
we considered using the null value in a CFD to represent variables.

Our SQL detection queries were affected since the term (tp[X i] = ‘ ’) was now
changed to (tp[X i] is null). Performance-wise, there was a 10%-20% improve-
ment on detection times. Although an increase on the number of variables in
a CFD still resulted in an increase on times, detection times scaled much more
gracefully with null than when the ‘ ’ character was used.

6.3 Comparing CFDs and FDs

We now compare the effectiveness and efficiency of CFDs in inconsistency detec-
tion, versus their FD counterpart, in terms of both detection time and the quality
of dirty data that they detect. In this set of experiments, we used CFDs with all
constant pattern tuples (NUMCONSTs = 100%) while for the FDs NUMCONSTs = 0%.
In terms of the relation, we varied SZ from 10K to 100K tuples while NOISE was
fixed at 5%. We set NUMATTRs to 2 and TABSZ to 33K. We kept a copy of clean data
before adding any noise. In this way we can tell whether a tuple detected by
CFDs (resp. FDs) is a true dirty tuple or a false dirty tuple.

Figure 13(a) shows the number of true dirty tuples detected by both CFDs and
FDs vs. the number of those detected by CFDs alone. Clearly FDs missed a number
of true dirty tuples that were caught by CFDs because a single true dirty tuple
does not violate an FD while it may violate a CFD. From Figure 13(a) it is clear
that when the dataset gets larger, the chance is higher that a dirty tuple may
incur conflict with some other tuples, and as a result, can be caught by FDs.

Figure 13(b) gives the number of tuples that FDs detected as dirty vs. the
number of those detected by both CFDs and FDs. Clearly FDs marked a large
number of false dirty tuples, because given a pair of tuples that violate an FD,
the FD cannot distinguish which of the two tuples is dirty and which is clean.
Therefore, the FD returns both tuples as dirty. On the other hand, a CFD with
constants at RHS is able to distinguish between the two. The figure shows that
rate of false tuples caught by FDs grows with the data size.

Finally, Figure 13(c) reports the detection time of using FDs vs. CFDs. As ex-
pected, since the size of the pattern tableaux in the CFDs is larger than that of
FDs (all pattern tuples are wildcards), the CFD detection is slower on small-sized
instances. However, when the instance size grows, the higher selectivity of the
pattern tableaux in the CFDs makes CFD detection faster than FD detection. More-
over, for smaller TABSZ, our experiments (not shown) demonstrated an earlier
crossing point (less than 20K tuples) and bigger performance gain (half time
for 100K tuples).

6.4 Detecting Multiple CFD Violations

In general, the performance of the merged scheme is hampered by the diffi-
culty faced by optimizers when handling where clauses in CNF. The conver-
sion to DNF is not an option here, because each disjunct in CNF consists of 3
terms, and thus the translation of CNF to DNF results in a where clause with
3k conjuncts, where k is the number of attributes in the CFD. In practice this is

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 6, Publication date: June 2008.

6:38 • W. Fan et al.

Fig. 13. CFDs versus FDs.

much worse than the 2k increase that results from translating QC
ϕ or Q V

ϕ into
DNF.

Given the blowup, and lacking an efficient optimizer for CNF queries, we
devised with an implementation strategy for the merged scheme. In more detail,
we reduced the number of disjuncts in the representation of t[Bi] � tp[Bi] from
three to just two. This was done by replacing in T Z

� (and similarly in T W
�) all

occurrences of the ‘ ’ and “@” with the null symbol. Given a null value for some
attribute tZ

p [Bi] in T Z
� , we needed to distinguish whether the null stands for a

‘ ’ or “@”. To this end, we introduced an additional Boolean column βN
i for each

attribute Bi in T Z
� . The value of tZ

p [βN
i] was set to true if the null stands for a ‘ ’,

and to false if the null stands for a “@”. Given this encoding, t[Bi] � tp[Bi] now
accounts for (t[Bi] = tp[Bi] or tp[Bi] is null), that is, it only has two terms. We
also had to change the case statement in Macro, to account for the new Boolean
attribute βN

i , as follows:

(case tZ
p [βN

i] when 0 then “@” else t[Bi] end) as Bi

Figure 14 shows the sum of detection times for two CFDs: ϕ = (R : [AC, CT] →
[ST], Tp) and ϕ′ = (R : [AC] → [ST], T ′

p), with TABSZ 500 and 200, respec-
tively. The underlying relation has SZ that ranges from 10K to 100K, in 10K
increments, and NOISE 5%. The merged CFD has TABSZ 700 and its detection

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 6, Publication date: June 2008.

Conditional Functional Dependencies for Capturing Data Inconsistencies • 6:39

Fig. 14. Merging CFDs.

time is plotted. The benefit of merged CFD is noticeable versus the two individ-
ual CFDs. Our experiments indicate that CFD merging is mainly beneficial for
highly-related CFDs, that is, CFDs for which there is a substantial overlap on the
attributes they involve.

6.5 Incremental Detection

For our third set of experiments, we used a relation with SZ 100K, and NOISE

5%. In terms of the CFD, TABSZ was 500 and NUMATTRs was 3.

—Single tuple deletions: In this experiment, we consider sets of tuples ranging
from 10 to 100 tuples, in 10 tuple increments. For each set, we delete its tuples
one-by-one, and after each deletion we use incremental detection to discover
violations. So, for the set of 10 tuples, we call incremental detection 10 times,
once for each deleted tuple. In Figure 15(a), we report the cumulative time
of incremental detection, after all the tuples in the set have been deleted,
that is, the reported time is the sum of running 10 times the incremental
detection. At the same time, we also report the time for full (nonincremental)
detection, where full detection is performed only once, after all the tuples in
the set have been deleted. So, while incremental detection is called after
each tuple deletion, full detection is only called at the end of deleting all
tuples. Note in the figure that the line for incremental detection falls on the
x-axis and is not visible. On the other hand, full detection is an order of a
magnitude slower, proving clearly the gains of the former method over the
latter.

—Batch tuple deletions: We now consider deleting sets of tuples ranging from
1,000 to 10,000 tuples, in 1,000 increments. For each set, we perform batch
deletion, use incremental detection, and measure its running time. Similarly,
after each batch deletion we also use full detection, and measure its running
time also. In Figure 15(b), we report the measured times, for each set. As
expected, the more tuples we delete, the faster full detection becomes since
it has to consider less tuples after the deletion. At the same time, the larger
the batch of tuples we delete, the more time incremental detection takes.
This is because in Step 2 of the incremental detection during deletion, we

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 6, Publication date: June 2008.

6:40 • W. Fan et al.

Fig. 15. Experimental results.

have to consider an increasing number of tuples to incrementally detect.
The crossing point is around 9,000 tuples. Given our initial relation of 100K
tuples, even if we delete around 10% of this relation, a considerable portion
by any standard, incremental detection is still a better choice than doing a
full detection. In general one can achieve optimal detection times through a
simple algorithm that considers the size of the base relation and the number
of tuples to be deleted and it chooses between executing an incremental or a
full detection.

—Single tuple insertions: Similar to single tuple deletions, we consider insert-
ing sets of tuples ranging from 10 to 100 tuples, in 10 tuple increments. We
also used the same experimental strategy as single tuple deletions by mea-
suring the cumulative incremental detection time, for all the tuples in the
set, versus the full detection time after all the tuples have been deleted. Fig-
ure 15(c) shows that for any reasonable number of insertions, incremental
detection does better than periodically doing full detection. In the worst case,
incremental detection is twice as fast as full detection, while for a few tuples
it is almost an order of magnitude faster.

—Batch tuple insertions: Similar to batch tuple deletions, we consider batch
tuple insertions. As expected, Figure 15(d) shows that as the number of tuples
inserted increases, so does the time to execute a full detection. A similar

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 6, Publication date: June 2008.

Conditional Functional Dependencies for Capturing Data Inconsistencies • 6:41

increase is noticed in the multi-step incremental detection and unlike batch
deletions, there is no crossing point here even when a considerable number
of new tuples are inserted. So, incremental detection is a clear winner, for
batch tuple insertions.

7. RELATED WORK

The authors introduced CFDs in earlier work [Bohannon et al. 2007]. This paper
extends Bohannon et al. [2007] by including (a) proofs for all the theorems;
some of the proofs are nontrivial and the techniques are interesting in their
own right; (b) an algorithm for checking the consistency of a set of CFDs, which
is in PTIME when either the database schema is predefined or no attributes
involved in the CFDs have a finite domain (Section 3.1); (c) an approximation
factor preserving reduction to MAXGSAT (Section 3.2); (d) a more concise sound
and complete inference system with less axioms (Section 4); (e) incremental
techniques for detecting CFD violations in response to changes to the underly-
ing database (Section 5.3); and (f) an extensive experimental study compared to
the preliminary study of Bohannon et al. [2007] (Section 6). Finally, we remark
that CFDs can be extended by adding disjunction and negation to the pattern
tuples, without increasing the complexity of the consistency and implication
problems [Bravo et al. 2008]. Moreover, the results of Section 3.2 (approxima-
tion) and Section 5 (SQL-detection) are shown to extend to this larger class of
constraints. No inference system is provided in Bravo et al. [2008].

We next discuss previous work on data cleaning and compare the study of
CFDs with related work on various extensions of FDs.

Related work on data cleaning. Prior work on constraint-based data cleaning
has mostly focused on two topics, both introduced in Arenas et al. [2003]: repair-
ing is to find another database that is consistent and minimally differs from
the original database [Arenas et al. 2003; Chomicki and Marcinkowski 2005a;
Franconi et al. 2001]; and consistent query answering is to find an answer to a
given query in every repair of the original database [Arenas et al. 2003; Wijsen
2005].

Most earlier work (except Franconi et al. [2001] and Wijsen [2005]) con-
siders traditional full (subsuming functional) dependencies and denial con-
straints. In these settings, complexity results [Arenas et al. 2003; Cali et al.
2003a; Chomicki and Marcinkowski 2005a; Greco et al. 2003; Wijsen 2005],
algorithms [Arenas et al. 2003; Cali et al. 2003a, 2003b; Chomicki and
Marcinkowski 2005a; Wijsen 2005], constraint rewriting techniques [Greco
et al. 2003], representations of all repairs with logic programming [Bravo and
Bertossi 2003; Franconi et al. 2001] or tableau [Wijsen 2005], and constraint re-
pair based on techniques from model-based diagnosis [Gertz and Lipeck 1995]
were developed, for single databases [Arenas et al. 2003; Cali et al. 2003a;
Chomicki and Marcinkowski 2005a; Franconi et al. 2001; Greco et al. 2003; Wi-
jsen 2005] and integration systems [Bravo and Bertossi 2003; Cali et al. 2003b;
Greco et al. 2003] (see recent surveys on consistent query answering [Bertossi
and Chomicki 2003] and on constraint repair [Chomicki and Marcinkowski
2005b]). As remarked earlier, full and denial constraints differ from CFDs in

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 6, Publication date: June 2008.

6:42 • W. Fan et al.

that they do not allow patterns with data values and cannot detect inconsis-
tencies in semantically related data values that CFDs aim to capture.

Closer to CFDs is the tableau representation of dependencies [Wijsen 2005].
This work represents full dependencies by tableaux that also allow data values.
It differs from this work in that it focuses on condensed representations of
repairs and consistent query answers. It does not address the issues of context
patterns, inference system, or effective techniques for detecting inconsistencies.

Beyond dependencies, error detection has been studied for cleaning cen-
sus/survey data [Fellegi and Holt 1976; Garfinkel et al. 1986; Winkler 2004,
1997; Bruni and Sassano 2001]. In that setting, data inconsistencies are spec-
ified in terms of a set of editing rules. As opposed to FDs and CFDs, the editing
rules do not detect inconsistencies among different tuples; instead, they aim
to catch discrepancies and errors in a single tuple. The intractability of the
editing-based census data repair problem is established in Fellegi and Holt
[1976], which also provides a heuristic repairing algorithm. Various improved
algorithms have been developed [Garfinkel et al. 1986; Winkler 2004, 1997;
Bruni and Sassano 2001], which adopt, among other things, a technique anal-
ogous to computing minimal cover of CFDs that is to “localize” errors. Statistical
and mining methods have also been used for detecting inconsistencies, for ex-
ample, outlier detection (see Maletic and Marcus [2000] for a survey).

A host of work on data cleaning has focused on the merge/purge problem, also
known as record linkage, entity reconciliation or duplicate removal [Fellegi and
Sunter 1969; Galhardas et al. 2000; Hernandez and Stolfo 1998; Monge 2000;
Winkler 1994]. That is the problem of linking pairs of records that refer to
the same real-world entity in different data sets. It is commonly applied to
household information in census data, mailing lists or medical records as well
as many other uses. Most work in this line of research has focused on clustering
methods for grouping similar records, and is different from this work. On the
other hand, there are in fact connections between record linkage and CFDs.
Indeed, duplicate records are typically identified by a set of equational axioms.
An example axiom is that in the US, two people with the same SSN but different
names should be identified as the same person and thus should be assigned
the same “key.” Certain equational axioms can actually be expressed as CFDs;
e.g., the CFD (person: country, SSN → key, (01, ‖)) specifies the example axiom
given above. An interesting topic for future research is to extend CFDs to express
equational axioms across different relations, and to explore applications of such
CFDs to record linkage.

Data cleaning systems reported in the research literature include the AJAX
system [Galhardas et al. 2001], which provides users with a declarative lan-
guage for specifying data cleaning programs, and the Potter’s Wheel system
[Raman and Hellerstein 2001] that extracts structure for attribute values and
uses these to flag discrepancies in the data. Most commercial ETL tools for
data warehouses have little built-in data cleaning capabilities, covering mainly
data transformation needs such as data type conversions, string functions, etc.
Rahm and Do [2000] present a comprehensive survey of commercial data clean-
ing tools, as well as a taxonomy of current approaches to data cleaning. While
a constraint repair facility will logically become part of the cleaning process

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 6, Publication date: June 2008.

Conditional Functional Dependencies for Capturing Data Inconsistencies • 6:43

Table I. Complexity Bounds for Static Analyses of CFDs vs. Their FD

Counterparts

Problem CFDs FDs
Consistency NP-complete (Th. 3.2) O(1)
Consistency (fixed R) O(|�|2) (Prop. 3.6) O(1)
Consistency (|finattr(R)| = 0) O(|�|2|attr(�)|) (Prop. 3.5) O(1)
Implication coNP-complete (Th. 4.3) O(|�|)
Implication (fixed R) O(|�|2) (Cor. 4.4) O(|�|)
Implication (|finattr(R)| = 0) O(|�|2|attr(�)|) (Cor. 4.4) O(|�|)
Finite Axiomatizability yes (Th. 4.2) yes

supported by these systems, we are not aware of analogous functionality cur-
rently in any of the systems mentioned.

The work in Bohannon et al. [2005] is complimentary to ours: it focuses
on repairing inconsistencies based on standard FDs and inclusion dependen-
cies, that is, to edit the instance via minimal value modification such that the
updated instance satisfies the constraints, while our work focuses on static
analyses of CFDs and techniques for detecting inconsistencies. Since CFDs are
more expressive than FDs, not all of the detected CFD violations can be repaired
by the algorithm of Bohannon et al. [2005]. A recent extension of Bohannon
et al. [2005] studies repairing inconsistent databases based on CFDs [Cong et al.
2007]. Compared to the results of Bohannon et al. [2005], it has been demon-
strated in Cong et al. [2007] that CFDs are more effective than traditional FDs in
identifying and repairing real-life inconsistent data.

Related work on extensions of FDs. Functional dependencies were first intro-
duced by Codd [1972] while their axiomatization is due to Armstrong [1974].
The implication of functional dependencies is studied in both Beeri and Bern-
stein [1979] and Maier [1980], where in the latter it is shown that the mini-
mal cover for a set of functional dependencies can be computed in polynomial
time. Table I compares the main results for static analyses of CFDs with their
FD counterparts, namely, the consistency and implication analyses in general,
with a predefined schema (fixed R) and without attributes with a finite domain
(|finattr(R)| = 0), as well as finite axiomatizability. Here R is a relation schema,
� is a set of CFDs (resp. FDs), and ϕ is a single CFD (resp. FD) in its normal form
(R : X → A, tp) (resp. R : X → A), where X is a set of attributes and A is a
single attribute.

A variety of extensions to FDs have been proposed for specifying constraint
databases and constraint logic programs [Baudinet et al. 1999; Bra and
Paredaens 1983; Maher 1997; Maher and Srivastava 1996]. Constraints of Bra
and Paredaens [1983], also referred to as conditional functional dependencies,
are of the form (X → Y) → (Z → W), where X → Y and Z → W are stan-
dard FDs. Constrained dependencies of Maher [1997] extend Bra and Paredaens
[1983] by allowing ξ → (Z → W), where ξ is an arbitrary constraint that is
not necessarily an FD. In a nutshell, these dependencies are “conditional” since
they are to apply the FD Z → W only to the subset of a relation that satisfies
X → Y or ξ . These dependencies cannot express CFDs since Z → W does not
allow patterns with constants as found in CFDs. As a result, consistency is not

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 6, Publication date: June 2008.

6:44 • W. Fan et al.

an issue for such constraints, as indicated in Section 3. For constrained depen-
dencies with the independence of negative constraints property (i.e., when for
any ξ and ξi ’s, ξ → ξ1 ∨ . . . ∨ ξk ≡ ξ → ξi for some i), a sound and complete
inference system is developed for their implication analysis; in addition, the
implication problem is shown to be in PTIME for constrained dependencies with
this property, and coNP-hard for those without this property. The results of [Bra
and Paredaens 1983; Maher 1997] are not applicable to CFDs and the proofs
presented there are quite different from their CFD counterparts.

More expressive are constraint-generating dependencies (CGDs) of Baudinet
et al. [1999] and constrained tuple-generating dependencies (CTGDs) of Maher
and Srivastava [1996], both subsuming CFDs. A CGD is of the form ∀x̄(R1(x̄) ∧
. . . ∧ Rk(x̄) ∧ ξ (x̄) → ξ ′(x̄)), where Ri ’s are relation symbols, and ξ, ξ ′ are
arbitrary constraints that may allow constants. As noted in Baudinet et al.
[1999], it is necessary to study the consistency problem for CGDs. When ξ

and ξ ′ are conjunctions or disjunctions of atomic formulas defined in terms
of ‘=, �=’ or ‘<, ≤’, it is shown that the implication problem for CGDs is already
coNP-complete even when all involved attributes have an infinite domain, and
that the consistency problem is NP-complete. Compared to this work, Baudinet
et al. [1999] present stronger results for the upper bounds for the implica-
tion and consistency analyses, while this work gives stronger lower bounds.
Indeed, the proofs for the lower bounds of Baudinet et al. [1999] make use
of disjunctions of atomic formulas and inequality, and thus do not work for
CFDs. Finite axiomatizability and techniques for (incrementally) detecting in-
consistencies are not studied in Baudinet et al. [1999]. A CTGD is of the form
∀x̄(R1(x̄)∧. . . Rk(x̄)∧ξ → ∃ ȳ(R ′

1(x̄, ȳ)∧. . .∧R ′
s(x̄, ȳ)∧ξ ′(x̄, ȳ)). Since CTGDs sub-

sume full-fledged TGDs, their implication analysis is already undecidable even
in the absence of constants and ξ, ξ ′. Chase procedures are presented in Maher
and Srivastava [1996] for the implication analysis of CTGDs, but the consistency
problem, inference rules, inconsistency detection techniques are not considered
there. While CGDs and CTGDs can express CFDs, the increased expressive power
comes with the price of a higher complexity. Moreover, we are not aware of any
applications of these constraints in data cleaning.

A class of instance-level FDs (ILFDs) is studied in [Lim et al. 1996]. ILFDs are
a special case of CFDs of the form (X → Y , Tp), where Tp contains a single
tuple consisting of only constants. ILFDs are used in entity identification: given
an entity (tuple) E in a relation R, a set of ILFDs is used to compute the values of
an extended key (identifier) for E. Extended keys are also computed, through
ILFDs, for each entity E ′ in a second relation S. If the extended keys of E and
E ′ are equivalent, then E is considered identical to E ′. Analyses of consistency
and implication and inconsistency detection are not considered for ILFDs [Lim
et al. 1996].

Tableau Representations of Dependencies. Pattern tableaux are used in tem-
plate dependencies (TDs) [Sadri and Ullman 1982], their generalization of tuple-
generating dependencies (TGDs) [Beeri and Vardi 1984], and equality-generating
dependencies (EGDs) [Sadri 1980; Beeri and Vardi 1984] (See also Maier [1983]
for an historical account of these formalisms). A TD is of the form (T, w), where

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 6, Publication date: June 2008.

Conditional Functional Dependencies for Capturing Data Inconsistencies • 6:45

all pattern tuples in T and w consist of named variables only. An instance I
satisfies (T, w) if for all valuations ρ such that ρ(T) ⊆ I , ρ can be extended
such that ρ(w) ∈ I . When w is a tableau T ′ itself, one gets TGDs. Again neither
T nor T ′ contains constants. It is clear that TGDs (and therefore also TDs) cannot
express FDs. Moreover, the absence of constants prevents it also from express-
ing CFDs with a constant RHS. Conversely, TDs and TGDs cannot be expressed by
CFDs. On the other hand, an EGD is of the form (T, x = y) where, as before, T
consists of a pattern tuples consisting of named variables only. An instance I
satisfies (T, x = y) if for every valuation ρ such that ρ(T) ⊆ I it is the case that
ρ(x) = ρ(y). Although FDs can be expressed by EGDs, the absence of constants in
the pattern tuples prevents it form expressing CFDs. Conversely, not all gener-
alized FDs can be expressed by CFDs either. More recently Wijsen [2005] studied
EGDs and full TGDs that allow constants in the pattern tuples. As a consequence,
these extensions can express CFDs with a variable and constant RHS, respectively.
However, as mentioned above, the focus of Wijsen [2005] is different from ours.

In the context of incomplete information [Imieliński and Lipski Jr 1984;
Grahne 1991] one finds pattern tableaux in the form of Codd tables, v-tables
and conditional (c-) tables. The most expressive formalism is that of c-tables.
A c-table is of the form (T,
T , {ϕt | t ∈ T }), where T is a set of pattern tuples
consisting of named variables and constants,
T is a global condition defined as
a conjunction of atomic equality and inequality constraints on the variables and
constants, and ϕt is a condition that only applies to individual pattern tuple t in
T . Now, every valuation of T that satisfies the conditions results in a different
relation instance. That is, every pattern tuple is mapped onto a single instance
tuple, and the cardinality of the instance is bounded by the number of pattern
tuples in T . In short, each of these table formalisms is used as a representation
of a (possibly infinite) set of relation instances, one instance for each valuation
of the variables in the table. No instance represented by these table formalisms
can include two tuples that result from two different valuations of the same
pattern tuple. In contrast, all pattern tuples in the pattern tableau in a CFD are
constraints on a single relation instance. This single instance can contain any
number of tuples that are all instantiations of the same pattern tuple. Hence,
the use of tableaux in the context of incomplete information entirely differs
from pattern tableaux in CFDs.

8. CONCLUSIONS

We have introduced CFDs as an extension of FDs, and shown that CFDs are ca-
pable of capturing inconsistencies beyond what traditional FDs can detect. We
have provided complexity results and techniques for reasoning about CFDs. More
specifically, we have shown that the consistency problem for CFDs is NP-complete,
as opposed to the trivial consistency analysis of traditional FDs, and that the
implication problem for CFDs is coNP-complete, in contrast to the linear-time
complexity of their traditional counterpart. In practical data-cleaning settings,
the relational schema is often predefined, and these problems become decid-
able in low PTIME. Furthermore, we have developed an approximation-factor
preserving reduction from the consistency problem for CFDs to MAXGSAT, and

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 6, Publication date: June 2008.

6:46 • W. Fan et al.

a sound and complete inference system for the implication analysis of CFDs.
For applications of CFDs in data cleaning, we have proposed (incremental) SQL-
based techniques for detecting violations of CFDs. We have also experimentally
evaluated our detection techniques. These results establish a constraint theory
for CFDs and are also promising in developing a practical constraint-based tool
for data cleaning.

There is naturally much more to be done. First, to clean data, constraints
beyond CFDs are certainly needed. There has been recent work on conditional
inclusion dependencies, denoted by CINDs, which are defined along the same
lines as CFDs and are demonstrated useful in data cleaning and schema match-
ing Bravo et al. [2007]. The static analysis of these conditional dependencies
becomes, however, more intriguing. In particular, the consistency and impli-
cation problems for CFDs and CINDs together become undecidable. To cope with
this it is necessary to find effective and efficient heuristic algorithms for the
consistency and implication analyses of these conditional constraints. Second,
automated methods for discovering CFDs and CINDs are certainly an interest-
ing topic. It is nontrivial to identify all sensible pattern tuples without over-
populating pattern tableaux. Third, another important issue concerns how to
effectively remove inconsistencies from data after inconsistencies are detected
in a database I based on a set � of conditional constraints. This, referred to
as constraint repair [Arenas et al. 2003], aims to find a database that satis-
fies � and minimally differs from I . While there has been recent preliminary
work on this issue based on CFDs alone [Cong et al. 2007], it deserves further
investigation in the presence of both CFDs and CINDs.

ACKNOWLEDGMENTS

We thank Philip Bohannon for helpful discussions on the conference ver-
sion [Bohannon et al. 2007] of this article.

REFERENCES

ABITEBOUL, S., HULL, R., AND VIANU, V. 1995. Foundations of Databases. Addison-Wesley.
ARENAS, M., BERTOSSI, L. E., AND CHOMICKI, J. 2003. Consistent query answers in inconsistent

databases. Theory Pract. Logic Program. 3, 4-5, 393–424.
ARMSTRONG, W. W. 1974. Dependency structures of data base relationships. In Proceedings of the

IFIP World Computer Congress. 580–583.
BAUDINET, M., CHOMICKI, J., AND WOLPER, P. 1999. Constraint-generating dependencies. J. Com-

put. Syst. Sci. 59, 1, 94–115.
BEERI, C. AND BERNSTEIN, P. A. 1979. Computational problems related to the design of normal

form relational schemas. ACM Trans. Data. Syst. 4, 1, 30–59.
BEERI, C. AND VARDI, M. 1984. A proof procedure for data dependencies. J. ACM 31, 4, 718–

741.
BERTOSSI, L. AND CHOMICKI, J. 2003. Query answering in inconsistent databases. In Logics for

Emerging Applications of Databases. 43–83.
BOHANNON, P., FAN, W., FLASTER, M., AND RASTOGI, R. 2005. A cost-based model and effective heuris-

tic for repairing constraints by value modification. In Proceedings of the International Conference
on Management of Data (SIGMOD). 143–154.

BOHANNON, P., FAN, W., GEERTS, F., JIA, X., AND KEMENTSIETSIDIS, A. 2007. Conditional functional de-
pendencies for data cleaning. In Proceedings of the International Conference on Data Engineering
(ICDE). 746–755.

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 6, Publication date: June 2008.

Conditional Functional Dependencies for Capturing Data Inconsistencies • 6:47

BRA, P. D. AND PAREDAENS, J. 1983. Conditional dependencies for horizontal decompositions. In
Colloquium on Automata, Languages and Programming. 67–82.

BRAVO, L. AND BERTOSSI, L. 2003. Logic programs for consistently querying data integration
systems. In Proceedings of the International Joint Conference on Artificial Intelligence. 10–
15.

BRAVO, L., FAN, W., GEERTS, F., AND MA, S. 2008. Increasing the expressivity of conditional func-
tional dependencies without extra complexity. In Proceedings of the International Conference on
Data Engineering (ICDE).

BRAVO, L., FAN, W., AND MA, S. 2007. Extending dependencies with conditions. In Proceedings of
the International Conference on Very Large Databases (VLDB). 243–254.

BRUNI, R. AND SASSANO, A. 2001. Errors detection and correction in large scale data collecting.
In Proceedings of the International Conference on Advances in Intelligent Data Analysis (IDA).
84–94.

CALI, A., LEMBO, D., AND ROSATI, R. 2003a. On the decidability and complexity of query answering
over inconsistent and incomplete databases. In Proceedings of the Symposium on Principles of
Database Systems (PODS). 260–271.

CALI, A., LEMBO, D., AND ROSATI, R. 2003b. Query rewriting and answering under constraints
in data integration systems. In Proceedings of the International Joint Conference on Artificial
Intelligence. 16–21.

CHOMICKI, J. AND MARCINKOWSKI, J. 2005a. Minimal-change integrity maintenance using tuple
deletions. Inform. Comput. 197, 1-2, 90–121.

CHOMICKI, J. AND MARCINKOWSKI, J. 2005b. On the computational complexity of minimal-change
integrity maintenance in relational databases. In Inconsistency Tolerance. 119–150.

CODD, E. F. 1972. Relational completeness of data base sublanguages. In Database Systems:
Courant Computer Science Symposia Series 6. Prentice-Hall, 65–98.

CONG, G., FAN, W., GEERTS, F., JIA, X., AND MA, S. 2007. Improving data quality: Consistency
and accuracy. In Proceedings of the International Conference on Very Large Databases (VLDB).
315–326.

ECKERSON, W. W. 2002. Data quality and the bottom line: Achieving business success through
a commitment to high quality data. Tech. rep., The Data Warehousing Institute. http://www.
tdwi.org/research/display.aspx?ID=6064.

FELLEGI, I. AND HOLT, D. 1976. A systematic approach to automatic edit and imputation. J. Amer.
Statist. Assn. 71, 353, 17–35.

FELLEGI, I. P. AND SUNTER, A. B. 1969. A theory for record linkage. J. Amer. Statist. Assn. 64, 328,
1183–1210.

FRANCONI, E., PALMA, A. L., LEONE, N., PERRI, S., AND SCARCELLO, F. 2001. Census data repair: a chal-
lenging application of disjunctive logic programming. In Proceedings of the Artificial Intelligence
on Logic for Programming (LPAR). 561–578.

GALHARDAS, H., FLORESCU, D., SHASHA, D., AND SIMON, E. 2000. AJAX: An extensible data clean-
ing tool. In Proceedings of the International Conference on Management of Data (SIGMOD).
590.

GALHARDAS, H., FLORESCU, D., SHASHA, D., SIMON, E., AND SAITA, C.-A. 2001. Declarative data clean-
ing: Language, model and algorithms. In Proceedings of the International Conference on Very
Large Databases (VLDB). 371–380.

GAREY, M. AND JOHNSON, D. 1979. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman and Company.

GARFINKEL, R. S., KUNNATHUR, A. S., AND LIEPINS, G. E. 1986. Optimal imputation of erroneous
data: Categorical data, general edits. Operat. Resear. 34, 5, 744–751.

GERTZ, M. AND LIPECK, U. 1995. A diagnostic approach to repairing constraint violations in
databases. In Proceedings of the International Workshop on Principles of Diagnosis (DX). 65–
72.

GRAHNE, G. 1991. The Problem of Incomplete Information in Relational Databases. Springer.
GRECO, G., GRECO, S., AND ZUMPANO, E. 2003. A logical framework for querying and repairing

inconsistent databases. IEEE Trans. Knowl. Data Engin. 15, 6, 1389–1408.
HERNANDEZ, M. A. AND STOLFO, S. 1998. Real-world data is dirty: Data cleansing and the

merge/purge problem. Data Min. Knowl. Discov. 2, 1, 9–37.

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 6, Publication date: June 2008.

6:48 • W. Fan et al.

IMIELIŃSKI, T. AND LIPSKI JR, W. 1984. Incomplete information in relational databases. J.
ACM 31, 4, 761–791.

LIM, E.-P., SRIVASTAVA, J., PRABHAKAR, S., AND RICHARDSON, J. 1996. Entity identification in database
integration. Inform. Sci. 89, 1-2, 1–38.

MAHER, M. J. 1997. Constrained dependencies. Theor. Comput. Sci. 173, 1, 113–149.
MAHER, M. J. AND SRIVASTAVA, D. 1996. Chasing constrained tuple-generating dependencies. In

Proceedings of the Symposium on Principles of Database Systems (PODS). 128–138.
MAIER, D. 1980. Minimum covers in relational database model. J. ACM 27, 4, 664–674.
MAIER, D. 1983. The Theory of Relational Databases. Computer Science Press.
MALETIC, J. I. AND MARCUS, A. 2000. Data cleansing: Beyond integrity analysis. In Proceedings of

the Conference on Information Quality (IQ). 200–209.
MONGE, A. E. 2000. Matching algorithms within a duplicate detection system. IEEE Data Eng.

Bull. 23, 4, 14–20.
PAPADIMITRIOU, C. H. 1994. Computational Complexity. Addison Wesley.
RAHM, E. AND DO, H. H. 2000. Data cleaning: Problems and current approaches. IEEE Data Eng.

Bull. 23, 4, 3–13.
RAMAN, V. AND HELLERSTEIN, J. M. 2001. Potter’s wheel: An interactive data cleaning system. In

Proceedings of the International Conference on Very Large Databases (VLDB). 381–390.
SADRI, F. 1980. Data dependencies in the relational model of data: A generalization. PhD thesis,

Princeton University.
SADRI, F. AND ULLMAN, J. 1982. Template dependencies: A large class of dependencies in relational

databases and its complete axiomatization. J. ACM 29, 2, 363–372.
SHILAKES, C. C. AND TYLMAN, J. 1998. Enterprise information portals. Tech. rep., Merrill Lynch,

Inc., New York, NY.
VAZIRANI, V. V. 2003. Approximation Algorithms. Springer.
WIJSEN, J. 2005. Database repairing using updates. ACM Trans. Datab. Syst. 30, 3, 722–768.
WINKLER, W. E. 1994. Advanced methods for record linkage. Tech. rep., Statistical Research

Division, U.S. Bureau of the Census.
WINKLER, W. E. 1997. Set-covering and editing discrete data. In Proceedings of the American

Statistical Association. Section on Survey Research Methods. 564–569.
WINKLER, W. E. 2004. Methods for evaluating and creating data quality. Infor. Syst. 29, 7, 531–

550.

Received February 2007; revised September 2007; accepted December 2007

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 6, Publication date: June 2008.

