
Capturing Missing Tuples and Missing Values

Wenfei Fan
University of Edinburgh &

Harbin Institute of Technology

wenfei@inf.ed.ac.uk

Floris Geerts
School of Informatics

University of Edinburgh

fgeerts@inf.ed.ac.uk

Abstract
Databases in real life are often neither entirely closed-world
nor entirely open-world. Indeed, databases in an enterprise
are typically partially closed, in which a part of the data is
constrained by master data that contains complete informa-
tion about the enterprise in certain aspects [21]. It has been
shown that despite missing tuples, such a database may turn
out to have complete information for answering a query [9].

This paper studies partially closed databases from which
both tuples and values may be missing. We specify such a
database in terms of conditional tables constrained by mas-
ter data, referred to as c-instances. We first propose three
models to characterize whether a c-instance T is complete
for a query Q relative to master data. That is, depending
on how missing values in T are instantiated, the answer to
Q in T remains unchanged when new tuples are added. We
then investigate four problems, to determine (a) whether a
given c-instance is complete for a query Q, (b) whether there
exists a c-instance that is complete for Q relative to mas-
ter data available, (c) whether a c-instance is a minimal-size
database that is complete for Q, and (d) whether there exists
a c-instance of a bounded size that is complete for Q. We
establish matching lower and upper bounds on these prob-
lems for queries expressed in a variety of languages, in each
of the three models for specifying relative completeness.

Categories and Subject Descriptors: H.2.3 [Informa-
tion Systems]: Database Management – Languages; F.4.1
[Mathematical Logic and Formal Languages]: Math-
ematical Logic — Computational Logic
General Terms: Languages, Theory, Design.

1. Introduction
Incomplete information has been a longstanding issue.

The scale of the problem is such that it is common to find
critical information missing from databases. For instance,
it is estimated that pieces of information perceived as being
needed for clinical decisions were missing from 13.6% to 81%
of the time [23]. Traditional work on this issue adopts either
the Closed World Assumption (CWA) or the Open World
Assumption (OWA). The CWA assumes that a database has
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name str city zip YoB cond
t1: John 3 Elm Edi EH8 9AB 2000
t2: x y Edi EH8 9AB z (x 6= John)
t3: Mary 5 Mayfield w u 2000 (w 6= Edi)

Figure 1: A c-table of Patient.

collected all the tuples representing real-world entities, but
the values of some attributes in those tuples are possibly
missing. The OWA assumes that some tuples that repre-
sent real-world entities may also be missing (see [2, 30] for
surveys).

Real-life databases are, however, often neither entirely
closed-world nor entirely open-world. This is particularly
evident in Master Data Management (MDM), one of the
fastest growing software markets [22, 27]. Master data is a
single repository of high-quality data that provides various
applications with a synchronized, consistent view of the core
business entities of an enterprise [21]. It is a closed-world
database about the enterprise in certain aspects, e.g., em-
ployees and customers. In the presence of master data,
databases of the enterprise are typically partially closed [9].
While parts of their data are constrained by the master
data, e.g., employees and customers, the other parts of the
databases are open-world, e.g., sale transactions and service
records.

Partially closed databases have recently been studied in
[9], in the absence of missing values. Certain information
in a partially closed database I is bounded by master data
Dm, specified by a set V of containment constraints (CCs)
from I to Dm. Relative to Dm, I is said to be complete for a
query Q if Q(I) = Q(I′) for every partially closed extension
I′ of I, i.e., I′ ⊃ I such that (I′, Dm) satisfies V . That
is, adding new tuples to I either does not change the query
answer or violates the CCs. It is shown in [9] that despite
missing tuples, a partially closed database may still have
complete information for answering queries.

The work of [9] has focused on ground instances, namely,
database instances from which tuples are possibly missing,
but all the values of the existing tuples are in place. In prac-
tice, however, both tuples and values are commonly found
missing from a database. This introduces new challenges to
characterizing and determining whether a database is com-
plete for a query relative to master data.

Example 1.1: Consider a database D of uk patients, spec-
ified by schema Patient(name, str, city, zip,YoB). Consider a
query Q1 to find the streets of those patients who live in
Edi with zip = ‘EH8 9AB’ and were born in 2000. One can
hardly trust the answer Q1(D) since tuples may be missing
from D, even when no values of the tuples in D are missing.

Not all is lost. Indeed, suppose that master data Dm is
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available, specified by schema Patientm(name, str, zip,YoB),
which maintains a complete record of those patients living in
Edi and born after 1990. Then we can conclude thatQ1 finds
a complete answer in D if Q1(D) returns the streets of all
patients p in Dm with p[zip]=‘EH8 9AB’ and p[YoB]=2000.
Indeed, there is not need to add new tuples to D in order
to answer Q1. Relative to master data Dm, the seemingly
incomplete database D turns out to be complete for Q1.

In practice, values may also be missing. Following [13,
14], we use a conditional table (c-table) T to represent such
a database, as shown in Fig. 1. In “tuple” t2 of T , the values
of t2[name], t2[str] and t2[YoB] are missing, and the condition
t2[cond] tells us that t2[name] is not John; similarly for t3.

To characterize whether T is complete for Q1, we have to
decide how to fill in the missing values in T .

(1) One may want T to be strongly complete for Q1, i.e., for
each valuation µ of the variables in T , µ(T ) is complete for
Q1 relative to Dm. In other words, T has complete infor-
mation for answering Q1 despite missing tuples and values.

(2) One may also want T to be weakly complete, i.e., all the
certain answers to the query Q1 can already be found in T .

(3) Alternatively, one may want T to be completable, when
there exists a valuation µ of T such that µ(T ) is complete
for Q1 relative to Dm. That is, when the missing values
are correctly instantiated, T has complete information to
answer query Q1. 2

These suggest that relatively complete databases have to
accommodate not only missing tuples but also missing val-
ues. In addition, there are several fundamental questions
that are not only of theoretical interest, but are also impor-
tant to database users and developers. For instance, a user
may naturally ask whether a database in use is complete for
a query relative to master data. A developer may want to
know what is a minimal amount of information one has col-
lect to build a relatively complete database, and moreover,
whether the database has a bounded size. These practical
needs call for a full treatment of relative information com-
pleteness.

Relative information completeness. To capture missing
values and missing tuples, we extend the notion of partially
closed databases [9] to c-instances. A c-instance is a collec-
tion of c-tables [13, 14] in which certain parts are bounded
by master data, via a set of containment constraints (CCs).

Models. We propose three models to specify whether a c-
instance T is complete for a query Q relative to master data
Dm. As illustrated in Example 1.1, T is (1) strongly com-
plete if each valuation of T yields a ground instance that is
complete for Q relative to Dm; (2) weakly complete if one can
find in T the certain answers to Q over all partially closed
extensions of valuations of T ; and (3) completable if there
exists a valuation of T that leads to a relatively complete
database for Q. A user may choose a model that best serves
her need.

Data consistency. We are interested in databases that are
both relatively complete and consistent. The consistency of
data is typically specified by integrity constraints, such that
errors and conflicts in the data can be detected as violations
of the constraints [4, 6]. We investigate the impact of in-
tegrity constraints on the analysis of relative completeness.
In addition, instead of using a separate language of integrity

constraints, we adopt a class of CCs that is also capable of
expressing constraints commonly used in data cleaning.

Analysis of c-instances. We provide complexity bounds on
basic issues in connection with c-instances. These problems
are to decide, given a c-instance T , (a) whether T makes
sense, i.e., whether there is any partially closed database
represented by T , and (b) whether T is extensible, i.e.,
whether there exists any partially closed extension of T .

Main complexity results. We identify four fundamental
problems associated with relative information completeness,
denoted by RCDP,RCQP,MinP and BdnP. Given a query
Q and master data Dm, (a) RCDP is to decide whether a
database is complete for Q relative to Dm, (b) RCQP asks
whether it is possible to build a database complete for Q
relative to Dm, (c) MinP is to determine whether a database
has a minimal size among those complete for Q relative to
Dm, and (d) BdnP asks whether there exists a database of
a bounded size that is complete for Q relative to Dm.

We investigate these problems w.r.t. several dichotomies:

• LQ: the query language in which Q is expressed,
ranging over conjunctive queries, (CQ), union of con-
junctive queries (UCQ), positive existential FO queries
(∃FO+), first-order queries (FO), and FP, all with in-
equality ( 6=);

• c-instances vs. ground instances, i.e., in the presence
or in the absence of missing values; and

• different models of relative completeness, i.e., when a
c-instance is required to be strongly complete, weakly
complete or completable for Q, relative to Dm.

We provide a comprehensive picture of these problems with
different combinations of these factors. We establish their
lower and upper bounds, all matching, ranging over O(1),
coDP, Πp

2, ∆p
3, Σp

3, Πp
3, Σp

4, nexptime, conexptime, and
undecidable.

Our main conclusions are as follows.

(a) These problems are decidable for CQ, UCQ and ∃FO+,
but are mostly undecidable for FO and FP. However, they
are decidable for FP in the weak completeness model. Some
problems for CQ and UCQ behave differently.

(b) The presence of missing values makes our lives harder
when RCDP and MinP are concerned. For example, MinP
for CQ is ∆p

3-complete for ground instances in the strong
model, while it is Πp

3-complete for c-instances. In contrast,
it does not complicate the analyses of RCQP and BdnP.

(c) These problems have rather diverse complexity in dif-
ferent models of relative completeness. For instance, RCQP
for FP is undecidable in the strong model, but is trivially
decidable for weakly complete c-instances. On the other
hand, MinP for UCQ is Πp

3-complete for strongly complete
c-instances but it becomes Σp

4-complete in the weak model.

To our knowledge, this work is a first treatment of rel-
atively complete databases in the presence of both miss-
ing values and missing tuples. We identify important prob-
lems associated with partially closed c-instances, and pro-
vide matching complexity bounds on these problems. A va-
riety of techniques are used to prove these results, including
finite-model theoretic constructions, characterizations of rel-
atively complete databases and a wide range of reductions.

Related work. This work extends [9] by dealing with miss-
ing values and providing a variety of complexity bounds for

170



new decision problems. We propose three models for rel-
atively complete c-instances, which were not considered in
[9]. For ground instances in the strong model, RCDP and
RCQP have been studied in [9], with several cases left open
there. However, none of RCDP,RCQP, MinP and BdnP has
been studied either for c-instances or for weakly complete
databases (ground or not). Furthermore, no previous work
has studied MinP and BdnP, even for ground instances.

There has been a host of work on incomplete informa-
tion, notably representation systems (see [2, 30] for surveys,
and more recently, [25]). This work adopts c-tables [13,
14] to represent databases with missing values. Our weak
model for relative completeness is based on the certain an-
swer semantics [14], and the strong model has a resemblance
to strong representation systems. In contrast, completable
c-instances do not find a counterpart in [13, 14]. The ba-
sic issues for c-instances (see Section 3) are similar to the
problems studied in [3], but with master data. As opposed
to prior work in this area, we aim to model partially closed
databases commonly found in MDM, and to settle their asso-
ciated decision problems that have not been studied before.

Several approaches have been proposed to modeling
databases with missing tuples (e.g., [12, 18, 24, 31]). A
notion of open null was introduced in [12] to model locally
controlled open-world databases, in which tuples or values
can be marked with open null, while the rest of the data
is closed-world. Complete and consistent extensions of an
incomplete database were studied in [31]. There has also
been work on modeling negative information via logic pro-
gramming (see [30]). Neither master data nor the decision
problems studied in this work have been considered there.

Closer to this work are partially complete databases stud-
ied in [18, 24], which assume a virtual database Dc that
contains complete information in all relevant aspects, and
assume that any database D either contains or is defined
as views of Dc. A notion of answer completeness was pro-
posed there, for deciding whether a query posed on Dc can
be answered in D. We assume neither the existence of Dc

with entire complete information nor views that define D in
terms of Dc. Furthermore, neither missing values nor the
problems studied here were considered in [18, 24].

Certain answers have also been studied in data integra-
tion and data exchange. In data integration, for a query Q
posed on a global database DG, one wants to find the cer-
tain answers to Q over all data sources that are consistent
with DG w.r.t. view definitions (see e.g., [1, 17]). In data
exchange, one wants to find the certain answers to a query
over all target databases transformed from data sources via
schema mapping (see [15, 5]). The decision problems studied
here are not considered in data exchange or data integration.
There has also been work on answering queries using views
to decide, e.g., whether views determine queries [28]. Our
decision problems cannot be reduced to the problems stud-
ied there, and vice versa, because in MDM, one often cannot
characterize databases as views of master data.

The study of query equivalence under constraints is quite
different from this work. Indeed, the former is to determine
the equivalence of different queries on all instances. In con-
trast, relative information completeness requires that the
answer to the same query remains unchanged over partially
closed extensions and possible valuations of missing values.

There has also been work on consistent query answering
(e.g., [4, 6]), to find certain answers to a query over all

repairs of a database. Master data is not considered there,
and we do not consider database repairs in this work.

Except for [9] as remarked above, we are not aware of
any previous work on RCQP,MinP or BdnP. For ground in-
stances in the strong model, RCDP is similar to the problem
of query independence from updates [7, 20]. A revision of
RCDP was recently studied in [11] for data exchange. None
of the results of [7, 20, 11] carries over to our setting.

Organization. Section 2 presents three models for speci-
fying relatively complete c-instances. Section 3 investigates
the impact of integrity constraints and basic issues in con-
nection with c-instances. Problems RCDP,RCQP,MinP and
BdnP are studied in Sections 4, 5 and 6 for strongly com-
plete, weakly complete and completable c-instances, respec-
tively. Section 7 summarizes the main results and identifies
open problems.

2. Relative Information Completeness Revis-
ited

In this section we first review relatively complete ground
instances [9]. We then present three models to characterize
relatively complete c-instances. Finally we state the decision
problems associated with relative information completeness.

2.1 Relatively Complete Ground Instances

A relational schema R is a collection (R1, . . . , Rn) of re-
lation schemas. Each Ri is defined over a set of attributes.
This set of attributes is also denoted by Ri. For each at-
tribute A in Ri, its (finite or infinite) domain is a set of
constants, denoted as dom(A).

Ground instances and master data. A ground instance
I of R is of the form (I1, . . . , In), where for each i ∈ [1, n],
Ii is an instance of Ri without missing values. That is, for
each t ∈ Ii and each A ∈ Ri, t[A] is a constant in dom(A).

Master data Dm is a ground instance of a relational
schema Rm. It is a consistent and closed-world database.

Partially closed databases. We specify the relationship
between a database and master data in terms of containment
constraints (CCs). A CC ψ is of the form q(R) ⊆ p(Rm),
where q is a conjunctive query (CQ) defined over schema R,
and p is a projection query over schema Rm.

A ground instance I of R and master data Dm of Rm

satisfy ψ, denoted by (I, Dm) |= ψ, if q(I) ⊆ p(Dm).
Intuitively, CWA is asserted for Dm, which imposes an

upper bound on the information extracted by q(I) from the
database I. On the other hand, OWA is assumed on the
part of I that is not constrained by CCs.

Example 2.1: Recall the database D and master data Dm

described in Example 1.1. We specify a set V of CCs such
that for each y in [1991, 2009], V includes qy(Patient) ⊆ Dm,
where qy(n, s, z, d) is Patient(n, s, c, z, y) ∧ c = ‘Edi’. These
CCs assure that Dm is an upper bound on the information
in D about patients living in Edi and born after 1990.

As will be seen in Section 3, certain integrity constraints
can also be expressed as CCs. For example, consider a func-
tional dependency (FD) φ: (zip → city, str), i.e., in the uk,
zip code determines the city and street. Assume that master
data contains an empty relation D∅. Then φ can be written
as two CCs included in V : qcity ⊆ D∅ and qstr ⊆ D∅, where

qcity = ∃z n1n2 s1s2 c1c2 d1d2(Patient(n1, s1, c1, z, d1)
∧ Patient(n2, s2, c2, z, d2) ∧ c1 6= c2),
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which detects violations of zip→ city; similarly for qstr. Note
that we allow inequalities in CQ and hence, in CCs. 2

We say that (I, Dm) satisfies a set V of CCs, denoted by
(I, Dm) |= V , if (I, Dm) |= ψ for each ψ ∈ V .

A ground instance I of R is said to be partially closed
w.r.t. (Dm, V ) if (I, Dm) |= V . That is, the information in
I is partially bounded by Dm via the CCs in V .

Relatively complete ground instances. Consider
ground instances I = (I1, . . . , In) and I′ = (I ′1, . . . , I

′
n) of

R. We say that I′ extends I, denoted by I ⊂ I′, if for all
i ∈ [1, n], Ii ⊆ I ′i, and there is j ∈ [1, n] such that Ij ⊂ I ′j .

The set of partially closed extensions of I is defined as:

Ext(I, Dm, V ) = {I′ | I ⊂ I′, (I′, Dm) |= V },
i.e., for each I′ in the set, (a) I′ expands I by including
new tuples, and (b) I′ is partially closed w.r.t. (Dm, V ).
We write Ext(I, Dm, V ) as Ext(I) when Dm and V are clear
from the context.

A ground instance I is said to be complete for a query Q
relative to (Dm, V ) if for each I′ ∈ Ext(I), Q(I) = Q(I′).

That is, the answer to Q in I remains unchanged no mat-
ter what new tuples are added to I. Intuitively, I already
has complete information for answering Q. The complete-
ness is relative to (Dm, V ): the extensions must satisfy V .

Example 2.2: Recall D,Dm and Q1 from Example 1.1,
and V from Example 2.1. Then as shown in Example 1.1,
D is complete for Q1 relative to (Dm, V ).

Consider a query Q2 to find the streets of all patients born
after 2000 and having zip code EH1 3CD. Suppose that there
are such patient records in Dm, but Q2(D) is empty. Then
D is not complete forQ2. However, we can makeD complete
for Q2 by adding to D a single tuple t with t[zip] = ‘EH1

3CD’. Indeed, V includes the CCs coding the FD φ, assuring
that there exists at most one street with this zip. Thus the
expanded D is complete for Q2 relative to (Dm, V ).

In contrast, consider Q3 to find the names of all patients
born in 2000. Then Dm does not help: it has no information
about patients living in cities other than Edi. In this case
we cannot make D complete for Q3 relative to (Dm, V ). 2

2.2 Accommodating Missing Values

To specify databases with missing values, we adopt con-
ditional tables (c-tables) [13, 14] with variables and local
conditions. To define c-tables, for each relation schema Ri

and each attribute A in Ri, we assume a countably infinite
set var(A) of variables such that var(A) ∩ dom(A) = ∅, and
var(A) ∩ var(B) = ∅ for any attribute B distinct from A.

Partially closed c-instances. A c-table of Ri is a pair
(T, ξ), where (a) T is a tableau in which for each tuple t and
each attribute A in Ri, t[A] is a constant in dom(A) or a
variable in var(A); and (b) ξ associates a condition ξ(t) with
each tuple t in T . The condition ξ(t) is built up from atoms
x = y, x 6= y, x = c, x 6= c, by closing under conjunction ∧,
where x, y are variables and c is a constant.

For example, a c-table is shown in Fig. 1.
A valuation µ of (T, ξ) is a mapping such that for each

tuple t in T and each attribute A in R, µ(t[A]) is a constant
in dom(A) if t[A] is a variable, and µ(t[A]) = t[A] if t[A] is a
constant. Let µ(t) be the tuple of R obtained by substituting
µ(x) for each occurrence of x in t. Then we define

µ(T ) = {µ(t) | t ∈ T, µ satisfies ξ(t)},
i.e., µ(t) is included in µ(T ) iff ξ(µ(t)) evaluates true. Here

µ(T ) is a ground instance, without variables or conditions.
That is, (T, ξ) represents a set of possible worlds µ(T ) when
µ ranges over all valuations of (T, ξ). We write (T, ξ) simply
as T when ξ is clear from the context.

A c-instance T of R is of the form (T1, . . . , Tn), where for
each i ∈ [1, n], Ti is a c-table of Ri. A valuation µ of T is
(µ1, . . . , µn), where µi is a valuation of Ti. We use µ(T ) to
denote the ground instance (µ1(T1), . . . , µn(Tn)) of R.

A partially closed c-instance T represents a set of partially
closed ground instances, denoted by Mod(T , Dm, V ):

{µ(T ) | µ is a valuation, (µ(T ), Dm) |= V }.

We write Mod(T , Dm, V ) as Mod(T ) when Dm and V are
clear from the context.

In the sequel we consider only c-instances T for which
Mod(T ) is nonempty. As will be seen in Section 3, it is
decidable to determine whether Mod(T ) is empty.

Databases under the CWA or the OWA are special cases
of partially closed c-instances. A c-instance T is open-world
in the absence of master data and CCs. It is closed-world if
master data is a possible world represented by T .

Relative completeness. Relative to (Dm, V ), a partially
closed c-instance T is said to be

• strongly complete for Q if for each I ∈ Mod(T ) and
for each I′ ∈ Ext(I), Q(I) = Q(I′);
• weakly complete for Q if

\
I∈Mod(T )

Q(I) =
\

I∈Mod(T ),I′∈Ext(I)
Q(I′),

or for all I ∈ Mod(T ), Ext(I) = ∅; and

• completable for Q if there exists I ∈ Mod(T ) such that
for each I′ ∈ Ext(I), Q(I) = Q(I′).

Intuitively, (a) T is strongly complete if no matter how
missing values in T are filled in, it yields a ground instance
relatively complete for Q; (b) T is weakly complete if the
certain answer to Q over all partially closed extensions of T
can be found in T ; and (c) T is completable if there exists a
way to instantiate missing values in T and make it a ground
instance relatively complete for Q.

Example 2.3: Consider the c-instance T of Fig. 1, Dm and
Q1 of Example 1.1 and the set V of CCs of Example 2.1.
Then T is strongly complete for Q1 relative to (Dm, V ).
Indeed, by the FD φ encoded as CCs in V , for any valuation
µ of T , Q1(µ(T )) returns a single tuple (str = ‘3 Elm’), and
the answer does not change for any instance in Ext(µ(T )).

Now consider query Q4 to find the names of Edi patients
born in 2000. Suppose that t1m and t2m are the only patients
in Dm born in 2000, where t1m = (John, 3 Elm, EH8 9AB,

2000) and t2m = (Bob, 3 Elm, EH8 9AB, 2000). Then relative
to (Dm, V ), T is completable for Q4, since there exists a
valuation µ of T such that µ(T ) is complete, i.e., when µ(x)
= Bob and µ(z) = 2000. It is also weakly complete, since
the certain answer (name = ‘John’) can already be found
over Mod(T ). However, T is not strongly complete for Q4.
Indeed, consider µ′(T ) with µ′(x) = John and µ′(z) = 2000,
and µ(T ) defined as before. Then, clearly, µ′(T ) ⊆ µ(T ) and
moreover, Q4(µ′(T )) only returns John whereas Q4(µ(T ))
returns both John and Bob. 2

Observe the following. (a) If T is strongly complete, then
it is both weakly complete and completable. (b) A ground
instance I is a c-instance without variables and conditions.
It is strongly complete and completable for a query Q iff I is
relatively complete for Q as defined in Section 2.1. However,
I may be weakly complete but not relatively complete.
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We use RCQ(Q,Dm, V ) to denote the set of all strongly
complete c-instances of R for Q w.r.t. (Dm, V ) (resp. com-
pletable, weakly complete when it is clear from the context).
Since R is always clear from the context, we do not include
it as a parameter for RCQ.

Minimal complete databases. To decide what data
should be collected in a database to answer a query Q, we
want to identify a minimal amount of information that is
complete for Q. For this, we use a notion of minimality.

A ground instance I is a minimal instance complete for a
query Q relative to (Dm, V ) if it is in RCQ(Q,Dm, V ) and
moreover, for any I′ ⊂ I, I′ is not in RCQ(Q,Dm, V ).

A c-instance T is a minimal c-instance completable (resp.
strongly complete) for Q relative to (Dm, V ) if there exists
I ∈ Mod(T ) (resp. for all I ∈ Mod(T )) such that I is a
minimal instance complete for a query Q.

To define minimal instances in the weak model, we write
(T, ξ) ⊂ (T ′, ξ′) if T ⊂ T ′ and ξ is the restriction of ξ′ on
T . For T = (T1, . . . , Tn) and T ′ = (T ′1, . . . , T

′
n), we write

T ⊂ T ′ if Ti ⊆ T ′i for all i ∈ [1, n], and Tj ⊂ T ′j for some j.
A database T is a minimal instance weakly complete for

Q relative to (Dm, V ) if T is in RCQ(Q,Dm, V ) and there
exists no T ′ ⊂ T such that T ′ is in RCQ(Q,Dm, V ). Note
that T ′ can be either a c-instance or a ground instance.

Example 2.4: Recall Dm, V and Q2 from Example 2.2.
Then as argued there, a ground instance D is minimally
strongly complete for Q2 as long as D consists of a single
tuple t with t[zip] = ‘EH1 3CD’. This tells us that minimal
complete instances may not be unique. In contrast, D is a
minimal instance weakly complete for Q2 if D is empty.

As shown in Example 2.3, the c-instance T of Fig. 1 is
strongly complete for Q1. However, it is not minimal: re-
moving t2, t3 from T yields a smaller complete database. 2

2.3 Deciding Relative Completeness

We study four problems associated with relative complete
databases, parametrized with a query language LQ.

RCDP(LQ): The relatively complete database problem.
INPUT: A query Q in LQ, master data Dm, a set

V of CCs, and a partially closed c-instance
T w.r.t. (Dm, V ).

QUESTION: Is T in RCQ(Q,Dm, V )?

That is, does T have complete information to answer Q?

RCQP(LQ): The relatively complete query problem.
INPUT: Q,Dm and V as in RCDP.
QUESTION: Is RCQ(Q,Dm, V ) nonempty?

It is to determine whether there exists a c-instance with
complete information to answer Q.

MinP(LQ): The minimality problem.
INPUT: Q,Dm, V and T as in RCDP.
QUESTION: Is T a minimal c-instance complete for Q

relative to (Dm, V )?

This asks whether T is a minimal-size database complete
for Q, i.e., removing any tuple from T makes it incomplete.

BdnP(LQ): The boundedness problem.
INPUT: A number K, and Q,Dm, V as in RCDP.
QUESTION: Does there exist a c-instance T such that

T is in RCQ(Q,Dm, V ) and |T | ≤ k?

Here |T | denotes the cardinality of T , i.e., the number of tu-

ple templates in T . This problem asks whether there exists
a database of a bounded size, i.e., with at most K tuples,
that carries complete information to answer a query.

We study these problems when LQ ranges over the follow-
ing query languages (see, e.g., [2], for the details):

• CQ, the class of conjunctive queries built up from
atomic formulas, i.e., relation atoms in the schema
R, equality (=) and inequality ( 6=), by closing under
conjunction ∧ and existential quantification ∃;
• UCQ, union of conjunctive queries of the form Q1 ∪
· · · ∪Qk, where for each i ∈ [1, k], Qi is in CQ;
• ∃FO+, first-order logic (FO) queries built from atomic

formulas, by closing under ∧, disjunction ∨ and ∃;
• FO queries built from atomic formulas using ∧, ∨,

negation ¬, ∃ and universal quantification ∀; and
• FP, an extension of ∃FO+with an inflational fixpoint

operator, i.e., queries defined as a collection of rules
p(~x)← p1(~x1), . . . , pm(~xm), where each pi is either an
atomic formula or an IDB predicate.

We also investigate the special case for ground instances.
In this setting, RCQP(LQ) is to decide, given Q in LQ,
Dm and V , whether there exists a ground instance in
RCQ(Q,Dm, V ). Similarly RCDP(LQ), MinP(LQ) and
BdnP(LQ) can be stated for ground instances.

We study these problems when RCQ(Q,Dm, V ) denotes
the set of instances that are strongly complete, weakly com-
plete or completable, in Sections 4, 5 and 6, respectively.

3. Analysis of Partially Closed Databases
Before we study the decision problems for relative com-

pleteness, we investigate some basic problems in connection
with integrity constraints and partially closed databases.

The impact of integrity constraints. Several classes of
constraints have been used to specify data consistency, no-
tably denial constraints and conditional functional depen-
dencies (CFDs) (see [6, 8] for surveys). As shown in [9],
denial constraints and CFDs can be expressed as CCs of Sec-
tion 2. Hence we can enforce both relative information com-
pleteness and data consistency using those CCs.

One might want a more powerful class C of constraints
to specify the consistency. More specifically, one may want
to require a partially closed database I to satisfy a set Θ
of constraints in C, in addition to being bounded by master
data Dm via a set V of CCs. Similarly, partially closed
extensions of I are also required to satisfy the additional Θ.

However, the choice of constraints has an immediate im-
pact on the analysis of relative completeness. When C con-
sists of, e.g.,FDs and inclusion dependencies (INDs), both
RCDP(LQ) and RCQP(LQ) are beyond reach in practice for
any language LQ, even in the absence of missing values,
when the relative completeness of Section 2.1 is concerned.

Proposition 3.1: In the presence of FDs and INDs, RCDP
and RCQP for ground instances are undecidable for CQ. 2

Proof. The undecidability is verified by reduction from
the implication problem for INDs and FDs taken together,
which is known to be undecidable (cf. [2]). It is undecidable
even when only keys and foreign keys are considered, for
which the implication problem is undecidable [10]. 2

This suggests that we consider integrity constraints that
are expressible as CCs, to focus on the complexity incurred
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by the analysis of relative completeness rather than by in-
tegrity constraints. As remarked earlier, the CCs are power-
ful enough to express constraints often used in data cleaning.

Reasoning about c-instances. As remarked earlier, the
analysis of relative completeness requires decision proce-
dures for determining some basic problems in connection
with partially closed c-instances, which are stated as follows.

• The consistency problem is to determine, given master
data Dm, a set V of CCs and a c-instance T , whether
Mod(T , Dm, V ) is nonempty, i.e., whether T makes sense.

• The extensibility problem is to determine, given Dm, V and
a ground instance I, whether Ext(I, Dm, V ) is nonempty,
i.e., whether I can be expanded without violating V .

Proposition 3.2: The consistency and extensibility prob-
lems are both Σp

2-complete. The complexity is unchanged
even in the absence of local conditions in c-instances. 2

Proof. The upper bound for consistency (resp. extensi-
bility) is proved by giving a Σp

2 algorithm for checking the
non-emptiness of Mod(T ) (resp. Ext(I)).

The Σp
2 lower bounds are verified by reduction from the

∃∗∀∗3SAT problem, which is Σp
2-complete (cf. [26]). The

problems are already Σp
2-hard for c-instances (or ground)

with a fixed number of tuples, without local conditions. 2

We should remark that these problems do not increase the
complexity bounds on RCDP,RCQP,MinP and BdnP.

4. Strong Relative Information Completeness
We now study RCDP, RCQP, MinP and BdnP for strongly

relatively complete databases. In the strong completeness
model, we focus on databases in which neither missing val-
ues nor missing tuples prevent them from having complete
information for answering queries relative to master data.

We establish complexity bounds on these problems for
c-instances. For ground instances, we provide complexity
results not given in [9], i.e., for MinP(LQ) and BdnP(LQ),
and for the cases of RCQP(LQ) left open in [9].

Our main conclusion about the strong model is that miss-
ing values make our lives harder, but not too much.

(1) RCDP(LQ). This problem is to decide whether a given

database is relatively complete for a query. It is known [9]
that for ground instances, RCDP(LQ) is undecidable when
LQ is FO or FP, and it is Πp

2-complete when LQ ranges over
CQ, UCQ and ∃FO+. The result below tells us that the
presence of missing values complicates the analysis: even
RCDP(CQ) becomes Πp

3-complete for c-instances.
In practice, master dataDm and the set V of CCs are often

predefined and fixed, and only databases and user queries
vary. One might think that RCDP would become simpler in
this setting. Unfortunately, this is not the case: the com-
plexity bounds remain intact when Dm and V are fixed.

Theorem 4.1: In the strong model, RCDP(LQ) is

• undecidable when LQ is either FO or FP, and

• Πp
3-complete when LQ is CQ, UCQ or ∃FO+,

for c-instances. The complexity bounds remain unchanged
when master data Dm and the set V of CCs are fixed. 2

Proof. (1) Note that RCDP(FO) and RCDP(FP) are un-
decidable for ground instances [9], which are also c-instances.

We provide an alternative proof of the undecidability of
RCDP(FP) by reduction from the satisfiability problem for
FP in the presence of FDs. Given a FP query p and a set
Θ of FDs, it is to decide whether there exists a database
D such that D |= Θ and p(D) 6= ∅. The undecidability
of the problem was claimed in [19]. We show a stronger
result: the problem is already undecidable when the set of
FDs is fixed. This is verified by reduction from the emptiness
problem for deterministic finite 2-head automata, which is
undecidable [29].

(2) For the Πp
3-completeness, we first show that RCDP(CQ)

is already Πp
3-hard for c-instances, by reduction from

∀∗∃∗∀∗3SAT, a Πp
3-complete problem (cf. [26]). We then

show that RCDP(∃FO+) is in Πp
3, by providing a Σp

3 algo-
rithm for deciding whether a c-instance is not relatively com-
plete for an ∃FO+query. The algorithm is based on a small
model property on such c-instances, which is in turn estab-
lished by developing a characterization of such c-instances.

The lower bound proofs require fixed Dm and V only. 2

(2) RCQP(LQ). This is to determine whether a given query
can find a relatively complete database at all. When it comes
to RCQP(LQ), one does not have to worry about missing val-
ues in the strong model. Indeed, RCQP(LQ) for c-instances
and its counterpart for ground instances coincide.

Lemma 4.2: In the strong model, for any schema R, query
Q, master data Dm, any set V of CCs and any number K,
there exists a c-instance T of R such that |T | ≤ K and
T ∈ RCQ(Q,Dm, V ) iff there exists a ground instance I of
R such that |I| ≤ K and I ∈ RCQ(Q,Dm, V ). 2

As a result one only needs to consider RCQP(LQ) for
ground instances. Nevertheless, the complexity bounds on
RCQP(LQ) were left open in [9] when LQ is FO or FP, for
ground instances. Indeed, RCQP(LQ) was shown undecid-
able there by using CCs expressed as fixed FO or FP queries.
Below we settle these cases.

Corollary 4.3: In the strong model, RCQP(LQ) is

• undecidable when LQ is FO or FP; and

• nexptime-complete when LQ is CQ, UCQ or ∃FO+,

for c-instances. The complexity bounds remain unchanged
when Dm and V are fixed. 2

Proof. (1) We show that RCQP(FO) is undecidable by
reduction from the satisfiability problem for FO queries,
which is undecidable (cf. [2]). For FP, the undecidability
is proved by reduction from the satisfiability problem for
FP in the presence of fixed FDs, for which the undecidability
was shown in the proof of Theorem 4.1.

(2) It is known [9] that RCQP(∃FO+) is in nexptime and
RCQP(CQ) is nexptime-hard for ground instances. By
Lemma 4.2 these results remain intact for c-instances.

The proofs use fixed Dm and V for the lower bounds. 2

(3) MinP(LQ). This is to decide whether a database is rel-
atively complete and moreover, does not contain excessive
data. The lemma below tells us how to check this.

Lemma 4.4: In the strong model, for any ground instance
I, query Q, master data Dm, and any set V of CCs, (a) if
(I,Dm) |= V then for any I ′ ⊂ I, (I ′, Dm) |= V , and (b) if
I is in RCQ(Q,Dm, V ), then I is not minimal iff there exists
a tuple t ∈ I such that I \ {t} ∈ RCQ(Q,Dm, V ). 2
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Proof. The lemma can be readily verified based on the
monotonicity of CQ queries that define CCs, and by the def-
inition of relative strong completeness. 2

Capitalizing on this lemma, below we provide complexity
bounds on MinP(LQ), both for c-instances and for ground
instances. Here the presence of missing values again makes
the problem a little harder: MinP(CQ) is ∆p

3-complete for
ground instances, but it is Πp

3-complete for c-instances.

Theorem 4.5: In the strong model,

• when LQ is FO or FP, MinP(LQ) is undecidable both
for ground instances and for c-instances;

• when LQ is CQ, UCQ or ∃FO+, MinP(LQ) is

– Πp
3-complete for c-instances, and

– ∆p
3-complete for ground instances.

The complexity is unchanged when Dm and V are fixed. 2

Proof. (1) The undecidability for FO and FP is veri-
fied by extending the proofs for their counterparts in Corol-
lary 4.3 and Theorem 4.1, respectively.

(2) For c-instances, we first show that MinP(CQ) is Πp
3-hard

by reduction from ∀∗∃∗∀∗3SAT. We then show that MinP
is in Πp

3 for ∃FO+, by giving a Σp
3 algorithm for checking

whether a c-instance is not minimally complete. It leverages
Lemma 4.4 and the characterization of relatively complete
c-instances given in the proof of Theorem 4.1.

(3) For ground instances, we first show that MinP(CQ) is ∆p
3-

hard by reduction from the msa(∃∗∀∗3SAT) problem, which
is shown ∆p

3-complete [16] by its connection with a polyno-
mial 2-alternating Turing machine with the max and min op-
erators. We then prove that MinP(∃FO+) is in ∆p

3 by giving
a decision procedure that invokes a Σp

2 oracle polynomially
many times, taking advantage of Lemma 4.4.

The lower-bound proofs only use fixed Dm and V . 2

(4) BdnP(LQ). Given a number K and a query Q, this
problem is to decide whether there exists a database that
consists of at most K tuples and is relatively complete for
Q. We give its complexity bounds below, which tell us that
the bounds on the problem for c-instances are the same as
their counterparts for ground instances, for any K and Q.

In contrast to the results given above, there are subtle
differences between CQ and UCQ in the minimality analysis.
It takes a single tuple (K ≥ 1) to show that BdnP(UCQ) is
Σp

3-hard, while it requires 14 tuples (K ≥ 14) for BdnP(CQ).

Theorem 4.6: In the strong model, BdnP(LQ) is

• undecidable if LQ is FO or FP, for any K ≥ 0,

• Σp
3-complete when LQ is CQ for any K ≥ 14, and

• Σp
3-complete if LQ is UCQ or ∃FO+, for any K ≥ 1,

both for c-instances and for ground instances. 2

Proof. From Lemma 4.2 it follows that BdnP(LQ) for
c-instances and BdnP(LQ) for ground instances coincide.
Hence it suffices to focus on ground instances.

(1) For FO and FP, the undecidability is verified by reduction
from FO satisfiability and the satisfiability of FP queries in
the presence of fixed FDs, respectively.

(2) We show that BdnP(CQ) is Σp
3-hard by reduction from

the ∃∗∀∗∃∗3SAT problem, which is Σp
3-complete (cf. [26]).

The reduction needs 14 tuples to encode disjunction and
negation, which are not supported by CQ. With disjunction

in UCQ, BdnP(UCQ) is verified Σp
3-hard by a different re-

duction from ∃∗∀∗∃∗3SAT, which requires one tuple only.
We then show that BdnP(∃FO+) is in Σp

3 by giving a Σp
3

algorithm. The algorithm first guesses a ground instance
I of at most K tuples (by Lemma 4.2), and then calls an
oracle to check whether I is not relatively complete. The
latter can be done in Σp

2 [9]. Compared to RCQP, BdnP has
a significantly lower complexity because for BdnP, we only
need to inspect instances with a bounded size. 2

5. Weak Relative Information Completeness
We next investigate RCDP, RCQP, MinP and BdnP for

weakly complete databases, i.e., databases from which one
can find the certain answers to a query over their partially
closed extensions. In the weak completeness model, none
of these problems has been studied, for either c-instances or
ground instances. We provide their complexity bounds here.

Compared to their counterparts in the strong model, the
complexity results in the weak model are more diverse. On
one hand, the certain-answer semantics simplifies the anal-
ysis of some problems, e.g., all these problems become de-
cidable for FP, in contrast to their undecidability in the
strong model. On the other hand, it makes certain prob-
lems harder, e.g., MinP becomes Πp

4-complete for UCQ, as
opposed to Πp

3. In addition, some problems even have dif-
ferent bounds for CQ and UCQ, e.g., MinP and BdnP.

(1) RCDP(LQ). As opposed to Theorem 4.1, in the weak
completeness model RCDP is decidable for FP. In addition,
RCDP for c-instances and RCDP for ground instances are
both Π3

p-complete when LQ is CQ, UCQ or ∃FO+, while their
counterparts in the strong model are Π3

p-complete (Theo-
rem 4.1) and Π2

p-complete [9], respectively.

Theorem 5.1: In the weak model, RCDP(LQ) is

• undecidable when LQ is FO,

• conexptime-complete when LQ is FP, and

• Π3
p-complete when LQ is CQ, UCQ or ∃FO+,

for c-instances and for ground instances. The complexity
bounds remain unchanged when Dm and V are fixed. 2

Proof. (1) We show that it is already undecidable to
decide whether an empty database is weakly complete for
FO queries, by reduction from the FO satisfiability problem.

(2) For FP, we show that RCDP is conexptime-hard for
ground instances by reduction from the succinct-taut
problem, the complement of succinct-circuit-sat that is
nexptime-complete (cf. [26]). We then provide an nexp-
time algorithm to check whether a c-instance is not weakly
complete, by leveraging the certain-answer semantics and
the monotonicity of FP. Hence it is conexptime-complete
for c-instances and for ground instances.

(3) We show the Π3
p-hardness of RCDP(CQ) for ground in-

stances by reduction from ∀∗∃∗∀∗3SAT, and give a Σ3
p algo-

rithm to check whether a c-instance is not weakly complete
for an ∃FO+query. The reduction uses fixed Dm and V . 2

(2) RCQP(LQ). Recall that in the strong model, RCQP for
c-instances is equivalent to RCQP for ground instances, as
verified by Lemma 4.2. However, the example below tells us
that it is no longer the case in the weak completeness model.

Example 5.1: Consider an FO query Q defined on a pair
of relations: Q(I1, I2) = {(a)} if I1 ⊆ I2, and it is {(b)}
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otherwise, where a and b are distinct. For empty Dm and V ,
no ground instances are in RCQ(Q,Dm, V ) since Q(I1, I2) 6=
∅ for all (I1, I2) while

T
I′∈Ext(I1,I2)Q(I′) = ∅. In contrast,

there exists a c-instance T = (T1, T2) in RCQ(Q,Dm, V ),
where T1 and T2 are singleton c-tables without conditions,
each having a tuple with variables only. Indeed, Q(T ) =T
I∈Mod(T )Q(I) = ∅ =

T
I∈Mod(T ),I′∈Ext(I)Q(I′). 2

This tells us that from the undecidability of RCQP(FO)
for ground instances we cannot conclude the undecidability
for c-instances. Nevertheless, RCQP(LQ) becomes trivially
decidable when LQ is FP, CQ, UCQ or ∃FO+, for c-instances
and for ground instances, in contrast to Theorem 4.3.

Theorem 5.2: In the weak model, RCQP(LQ) is

• undecidable for ground instances if LQ is FO, and

• decidable in O(1)-time for c-instances and for ground
instances when LQ is FP, CQ, UCQ or ∃FO+.

The complexity is unchanged when Dm and V are fixed. 2

Proof. (1) The undecidability of RCQP(FO) is verified
for ground instances by reduction from the satisfiability
problem for FO. The reduction uses neither Dm nor V .

(2) We show that for any query Q in FP, master data Dm

and any set V of CCs, RCQ(Q,Dm, V ) 6= ∅. Indeed, we
can always construct a ground instance (and hence, a c-
instance) weakly complete for Q relative to (Dm, V ). The
construction leverages the monotonicity of FP. 2

(3) MinP(LQ). Lemma 4.4 no longer holds in the weak com-
pleteness model, i.e., to decide whether an instance I is
minimal, it does not suffice to inspect I \ {t} only.

Example 5.2: Consider a CQ query Q defined on a pair of
unary relations (R1, R2): Q(x) = (R1(y) ∧ R2(z) ∧ x = a).
That is, on an instance (I1, I2) of (R1, R2), Q returns {(a)}
if I1 and I2 are both nonempty. Consider an instance I0 =
({(0)}, {(1)}), an empty set V of CCs and any master data
Dm. Then I0 is weakly complete for Q relative to (Dm, V ).
Nevertheless, it is not minimal: the empty instance (∅, ∅) of
(R1, R2) is also in RCQ(Q,Dm, V ). However, removing one
tuple from I0 does not make it a weakly complete instance,
i.e., a counterexample to the minimality of I0 cannot be
found by removing only one tuple from I0. 2

In the weak model, the minimality analysis is quite differ-
ent from its counterpart in the strong model (Theorem 4.5).
(a) The absence of missing values does not simplify the anal-
ysis, as opposed to their counterparts in the strong model
(∆p

3 for ground instances vs. Πp
3 for c-instances). (b) It is

much easier to check MinP(CQ) than MinP(UCQ) (coDP-
complete vs. Π4

p-complete), whereas in the strong model,
MinP(CQ) and MinP(UCQ) have the same complexity.

Theorem 5.3: In the weak model, MinP(LQ) is

• undecidable when LQ is FO,

• conexptime-complete when LQ is FP,

• Π4
p-complete when LQ is UCQ or ∃FO+, and

• coDP-complete when LQ is CQ,

both for c-instances and for ground instances. 2

Proof. (1) We show that MinP(FO) is already undecid-
able for fixed ground instances, as for Theorem 5.1 (1).

(2) We show that MinP(FP) is conexptime-hard for ground

instances again by reduction from the succinct-taut prob-
lem. For the upper bound, we develop an nexptime algo-
rithm that, given a c-instance T , a FP query Q, master data
Dm and CCs V , returns true if either T is not weakly com-
plete for Q relative to (Dm, V ), or there exists a c-instance
smaller than T that is in RCQ(Q,Dm, V ).

(3) We first show that MinP(UCQ) is Π4
p-hard for ground

instances, by reduction from the ∀∗∃∗∀∗∃∗3SAT problem,
which is known to be Π4

p-complete (cf. [26]). The reduction
makes heavy use of disjunction in UCQ. We then provide a
Σ4

p algorithm for determining whether a c-instance is not a
minimal instance weakly complete for ∃FO+queries, calling
a Σ3

p oracle for completeness checking (Theorem 5.1).

(4) For CQ queries in the weak completeness model, mini-
mally complete instances are rather restrictive. This is ver-
ified by the following lemma. For any CQ query Q, master
data Dm and any set V of CCs, (a) there always exists a
minimal c-instance T in RCQ(Q,Dm, V ) such that either T
is the empty instance T∅, or T is a singleton set; and (b)
if T∅ is not in RCQ(Q,Dm, V ), then any singleton T ′ (with
nonempty Mod(T ′, Dm, V )) is in RCQ(Q,Dm, V ).

By this lemma we only need to consider those c-instances
T such that either T = ∅ or |T | = 1. Moreover, when |T | ≤
1, the problem for determining whether T is a relatively
complete minimal instance is reduced to the problem for
deciding whether T∅ is in RCQ(Q,Dm, V ). We give a coDP

algorithm to check the latter. From this it follows that the
minimality analysis for CQ is in coDP in the weak model.

For the lower bound, we show that it is already coDP-
hard to decide whether T∅ is in RCQ(Q,Dm, V ), and hence
is minimally complete. This is verified by reduction from
the complement of the sat-unsat problem. The latter is
to decide whether for a pair (φ, φ′) of 3sat instances, φ is
satisfiable and φ′ is not, which is DP-complete (cf. [26]). 2

(4) BdnP(LQ). Compared to Theorem 4.6, the impact of the
certain query-answer semantics is also apparent on BdnP.

Theorem 5.4: In the weak model, BdnP(LQ) is

• undecidable for FO and any K ≥ 0,

• conexptime-complete for FP and any K ≥ 1,

• Σp
4-complete for UCQ, ∃FO+and any K ≥ 1, and

• coDP-complete for CQ and any K ≥ 0,

both for c-instances and for ground instances. 2

Proof. (1) We show that for any K ≥ 0, BdnP is unde-
cidable for FO by reduction from FO satisfiability.

(2) For FP and any K ≥ 1, we show that BdnP is
conexptime-hard by reduction from the succinct-taut
problem. We then give an algorithm that inspects c-
instances of at most K tuples, and invokes a conexptime
oracle to check whether such instances are weakly complete
for a FP query. The number of such instances is bounded by
an exponential number, based on a small model property.

Note that the proof of Theorem 5.2 (2) given above does
not guarantee that the complete instances constructed have
a bounded size. More checking is required for deciding the
existence of a complete instance with a given size, and hence,
the higher complexity on BdnP than on RCQP.

(3) For ground instances and any K ≥ 1, we show that
BdnP(UCQ) is Σ4

p-hard by reduction from ∃∗∀∗∃∗∀∗3SAT, a
known Σ4

p-complete problem (cf. [26]). We then give a Σ4
p
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algorithm for deciding whether there exists a weakly com-
plete c-instance of size at most K. This invokes a Σ3

p oracle
to check various c-instances of size at most K, and hence,
has a higher complexity than RCDP.

(4) The lemma given in the proof of Theorem 5.3 (4) tells
us that for any K ≥ 1 the answer to BdnP(CQ) is positive.
When K = 0, BdnP(CQ) is equivalent to deciding whether
the empty instance is relatively complete, which is coDP-
complete as verified by the proof of Theorem 5.3 (4). 2

6. Relatively Completable Databases

Finally we investigate RCDP, RCQP, MinP and BdnP for
completable c-instances, i.e., databases that can be made
relatively complete when their missing values are correctly
instantiated. In this model we provide complexity results
on these problems, for various query languages. The results
tell us that missing values complicate the analysis of these
problems, to an extent. As opposed to their counterparts in
the weak model, the complexity bounds are not very diverse.

(1) RCDP(LQ). In contrast to Theorem 4.1, RCDP(CQ)

for completable c-instances is Σp
3-complete rather than Πp

3-
complete. Here RCDP(FP) remains undecidable, as opposed
its counterpart in the weak model (Theorem 5.1).

Theorem 6.1: For completable c-instances, RCDP(LQ) is

• undecidable when LQ is FO or FP, and

• Σp
3-complete when LQ is CQ, UCQ or ∃FO+.

The complexity is unchanged when Dm and V are fixed. 2

Proof. (1) For FO and FP, RCDP is already undecid-
able for ground instances, as shown in the proof of Theo-
rem 4.1. It remains undecidable for c-instances since com-
pletable ground instances are c-instances themselves.

(2) We first show that RCDP(CQ) is Σp
3-hard, by reduction

from the ∃∗∀∗∃∗3SAT problem. We then provide a Σp
3 al-

gorithm for checking whether a c-instance is completable
for an ∃FO+query, by detecting whether there exists a rela-
tively complete ground instance. The algorithm makes use
of a characterization of relatively completable c-instances.

The lower bound proofs use only fixed Dm and V . 2

(2) RCQP(LQ). In contrast to Theorem 5.1, RCQP(LQ) is
no longer trivial for completable c-instances when LQ is FP.
One can verify that the analogy of Lemma 4.2 still holds in
this setting. As a result, RCQP for relatively completable
c-instances coincides with RCQP for ground instances. For
the latter, the complexity results are already established by
Theorem 4.3. From these the corollary below follows.

Corollary 6.2: For completable c-instances, RCQP(LQ) is

• undecidable when LQ is FO or FP, and

• nexptime-complete when LQ is CQ, UCQ or ∃FO+.

The complexity is unchanged when Dm and V are fixed. 2

(3) MinP(LQ). For completable c-instances, MinP(LQ) be-

comes Σp
3-complete when LQ is CQ, UCQ or ∃FO+, rather

than Πp
3-complete as in the strong model. The complexity

bound is rather robust: it is the same for CQ, UCQ and
∃FO+, as opposed to their counterparts in the weak model.

Corollary 6.3: MinP(LQ) is

• undecidable for completable c-instances and for ground
instances when LQ is FO or FP, and

• Σp
3-complete for c-instances and ∆p

3-complete for
ground instances, when LQ is CQ, UCQ or ∃FO+.

The complexity is unchanged when Dm and V are fixed. 2

Proof. (1) For FO or FP, the proofs of the undecidabil-
ity of MinP for completable instances are the same as their
counterpart of Theorem 4.5 in the strong model.

(2) For c-instances, we first show that MinP(CQ) is Σp
3-hard

by reduction from ∃∗∀∗∃∗3SAT. The reduction uses fixed
Dm and V only. We then show that MinP(∃FO+) is in Σp

3

by giving a Σp
3 algorithm to decide whether a c-instance is

minimally completable. For ground instances, the notions
of completable and strongly complete coincide, and hence,
the ∆p

3-completeness of Theorem 4.5 carries over here. 2

(4) BdnP(LQ). As remarked above, the analogy of
Lemma 4.2 holds on completable c-instances. Hence in this
setting BdnP for c-instances and BdnP for ground instances
are equivalent. Moreover, as observed in Section 2.2 the
notions of strongly complete and completable coincide on
ground instances. For ground instances BdnP has been set-
tled by Theorem 4.6. As a result, we have the following.

Corollary 6.4: BdnP(LQ) is

• undecidable for FO and FP, when K ≥ 0,

• Σp
3-complete for CQ when K ≥ 14, and for UCQ and

∃FO+when K ≥ 1,

for both completable ground instances and c-instances. 2

7. Conclusions
We have proposed three models to specify the relative

information completeness of databases from which both tu-
ples and values may be missing. We have studied the in-
teraction between the analysis of relative completeness and
the analysis of data consistency. We have also identified
four fundamental problems associated with relative com-
pleteness, namely, RCQP, RCDP, MinP and BdnP. For a
variety of query languages, we have established upper and
lower bounds on these problems, all matching, in each of
the three completeness models, both for c-instances and for
ground instances. We expect that these results will help
database users decide whether their queries can find com-
plete answers in a database, and moreover, help developers
of MDM or databases identify a minimal amount of informa-
tion to collect in order to answer queries commonly issued.

We summarize the main complexity results in Table 1,
annotated with their corresponding theorems. We show
the complexity bounds for ground instances (enclosed in
parentheses) when they differ from their counterparts for
c-instances. From the table we can see that different com-
binations of query languages, completeness models, and the
presence and the absence of missing values lead to a spec-
trum of decision problems with different complexity bounds.

The study of relative information completeness is still in
its infancy. An open issue is about the complexity of RCQP
for FO in the weak model. We only know that it is undecid-
able for ground instances, and our conjecture is that it is also
undecidable for c-instances. (Recall that in the weak model
the existence of complete c-instances does not imply the ex-
istence of complete ground instances.) Another open issue
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LQ RCDP(LQ) RCQP(LQ) MinP(LQ) BdnP(LQ)

Strong model Theorem 4.1 Corollary. 4.3 Theorem 4.5 Theorem 4.6
FO, FP undecidable undecidable undecidable undecidable

CQ, UCQ, ∃FO+ Πp
3-complete (Πp

2-complete [9]) nexptime-complete [9] Πp
3-complete (∆p

3-complete) Σp
3-complete

Weak model Theorem 5.1 Theorem 5.2 Theorem 5.3 Theorem 5.4
FO undecidable ? (undecidable) undecidable undecidable
FP conexptime-complete O(1) conexptime-complete conexptime-complete

UCQ, ∃FO+ Πp
3-complete O(1) Πp

4-complete Σp
4-complete

CQ Πp
3-complete O(1) coDP-complete coDP-complete

Completable model Theorem 6.1 Corollary 6.2 Corollary 6.3 Corollary 6.4
FO, FP undecidable undecidable undecidable undecidable

CQ, UCQ, ∃FO+ Σp
3-complete (Πp

2-complete [9]) nexptime-complete [9] Σp
3-complete (∆p

3-complete) Σp
3-complete

Table 1: Complexity results in connection with relative completeness

concerns whether the complexity bounds remain intact when
master data and CCs are fixed. While we have answered the
question in positive in most cases, some cases are open, espe-
cially for BdnP. A third issue is about the data complexity
of RCDP and MinP, in terms of the sizes of databases and
master data. A fourth topic is to develop representation sys-
tems for relatively complete databases, which we have not
addressed. Finally, we want to identify tractable special yet
practical cases of the decision problems, consider more ex-
pressive CCs, and develop efficient heuristic algorithms for
the problems with certain performance guarantees.
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