
JID:IJA AID:7961 /FLA [m3G; v1.190; Prn:14/11/2016; 10:55] P.1 (1-19)

International Journal of Approximate Reasoning ••• (••••) •••–•••
Contents lists available at ScienceDirect

International Journal of Approximate Reasoning

www.elsevier.com/locate/ijar

First-order under-approximations of consistent

query answers ✩

Floris Geerts a, Fabian Pijcke b, Jef Wijsen b,∗
a University of Antwerp, Dept. of Mathematics and Computer Science, Middelheimlaan 1, B-2020 Antwerpen, Belgium
b Université de Mons, 20 Place du Parc, B-7000 Mons, Belgium

a r t i c l e i n f o a b s t r a c t

Article history:
Received 19 February 2016
Received in revised form 23 September
2016
Accepted 19 October 2016
Available online xxxx

Keywords:
Conjunctive queries
Consistent query answering
Primary key

Consistent Query Answering (CQA) is a principled approach for answering queries on
inconsistent databases. The consistent answer to a query q on an inconsistent database
db is the intersection of the answers to q on all repairs, where a repair is any consistent
database that is maximally close to db. Unfortunately, computing consistent answers
under primary key constraints has already exponential data complexity for very simple
conjunctive queries, and is therefore completely impracticable.
In this paper, we propose a new framework for divulging an inconsistent database to end
users, which adopts two postulates. The first postulate complies with CQA and states that
inconsistencies should never be divulged to end users. Therefore, end users should only
get consistent query answers. The second postulate states that only those queries can be
answered whose consistent answers can be obtained with low data complexity (i.e., by a
polynomial-time algorithm or even a first-order logic query). User queries that exhibit a
higher data complexity will be rejected.
A significant problem in this framework is as follows: given a rejected query, find other
queries, called under-approximations, that are accepted and whose consistent answers are
contained in those of the rejected query. We provide solutions to this problem for the
special case where the constraints are primary keys and the queries are self-join-free
conjunctive queries.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Inconsistent, incomplete and uncertain data is widespread in the internet and social media era. This has given rise to
a new paradigm for query answering, called Consistent Query Answering (CQA) [2]. This paradigm starts with the notion of
repair, which is a new consistent database that minimally differs from the original inconsistent database. In general, an
inconsistent database can have many repairs. In this respect, database repairing is different from data cleaning which aims
at a unique cleaned database.

In this paper, we assume that the only constraints are primary keys, one per relation. A repair of an inconsistent database
db is a maximal subset of db that satisfies all primary key constraints. Primary keys will be underlined. For example, the
database of Fig. 1 stores ages and cities of residence of male and female persons. For simplicity, assume that persons have

✩ A short version of this article was published in the conference proceedings of SUM 2015 [1].

* Corresponding author.
E-mail addresses: floris.geerts@ua.ac.be (F. Geerts), fabian.pijcke@umons.ac.be (F. Pijcke), jef.wijsen@umons.ac.be (J. Wijsen).
http://dx.doi.org/10.1016/j.ijar.2016.10.005
0888-613X/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.ijar.2016.10.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ijar
mailto:floris.geerts@ua.ac.be
mailto:fabian.pijcke@umons.ac.be
mailto:jef.wijsen@umons.ac.be
http://dx.doi.org/10.1016/j.ijar.2016.10.005

JID:IJA AID:7961 /FLA [m3G; v1.190; Prn:14/11/2016; 10:55] P.2 (1-19)

2 F. Geerts et al. / International Journal of Approximate Reasoning ••• (••••) •••–•••
M N A C

Ed 48 Mons
Ed 48 Paris

Dirk 29 Mons

F N A C

An 37 Mons
Iris 37 Paris

Fig. 1. Example database with primary key violations.

unique names (attribute N). Every person has exactly one age (attribute A) and city (attribute C). However, distinct tuples
may agree on the primary key N , because there can be uncertainty about ages and cities. In the database of Fig. 1, there
is uncertainty about the city of Ed (it can be Mons or Paris). The database can be repaired in two ways: delete either
M(Ed, 48, Mons) or M(Ed, 48, Paris). A maximal set of tuples that agree on their primary key will be called a block; in
Fig. 1, blocks are separated by dashed lines.

When database repairing results in multiple repairs, CQA shifts from standard semantics to certainty semantics. Given a
query, the consistent answer (also called certain answer) is defined as the intersection of the answers on all repairs. That is,
for a query q on an inconsistent database db, CQA replaces the standard query answer q(db) with the consistent answer,
defined by the following intersection:⋂{

q(r) | r is a repair of db
}
. (1)

Thus, the certainty semantics exclusively returns answers that hold true in every repair. Given a query q, we will denote by
�q� the query that maps a database to the consistent answer defined by (1).

A practical obstacle to CQA is that the shift to certainty semantics involves a significant increase in complexity. When
we refer to complexity in this paper, we mean data complexity, i.e., the complexity in terms of the size of the database (for
a fixed query) [3, p. 422]. It is known for long [4] that there exist conjunctive queries q that join two relations such that
the data complexity of �q� is already coNP-hard. If this happens, CQA is completely impracticable.

This paper investigates ways to circumvent the high data complexity of CQA in a realistic setting, which is based on the
following assumptions:

• If a query returns an answer to a user, then every tuple in that answer should belong to the consistent answer. In
Libkin’s terminology [5], query answers must not contain false positives, i.e., tuples that do not belong to the consistent
answer.

• The only queries that can be executed in practice are those with data complexity in FP or, even better, in FO. Here, FO
refers to the descriptive complexity class that captures all queries expressible in relational calculus [6]. FP is the class
of function problems solvable in polynomial time.

Therefore, if the data complexity of a query �q� is not in FP, then the best we can go for is an approximation without false
positives (also called under-approximation), computable in polynomial time. The term strategy will be used for queries that
compute such approximations. Intuitively, a strategy can be regarded as a two-step process in which one starts by issuing a
number of well-behaved queries �qi�, for i ∈ {1, . . . , �}, which can then be subject to a post-processing step. In this paper,
well-behaved queries are those that are accepted by a query interface, e.g., self-join-free conjunctive queries qi such that
�qi� is in FO, and post-processing is formalized as queries built-up from the �qi�’s.

We next illustrate our setting by an example. Consider the following scenario with two persons, called Bob and Alice. The
person called Bob owns a database that is publicly accessible only via a query interface which restricts the syntax of the
queries that can be asked. Our main results concern the case where the interface is restricted to self-join-free conjunctive
queries. The database schema including all primary key constraints is publicly available. However, Bob is aware that his
database contains many mistakes which should not be divulged. Therefore, whenever some end user asks a query q, Bob
will actually execute the query �q�. That is, end users will get exclusively consistent answers. But, for feasibility reasons,
Bob will reject any query q for which the data complexity of �q� is too high. In this paper, we assume that Bob considers
that data complexity is too high when it is not in FO. The person called Alice interrogates Bob’s database, and she will be
happy to get exclusively consistent answers. Unfortunately, her query q will be rejected by Bob if the data complexity of �q�
is too high (i.e., not in FO). If this happens, Alice has to change strategy. Instead of asking q, she can ask a finite number
of queries q1, q2, . . . , q� such that for every i ∈ {1, . . . , �}, the data complexity of �qi� is in FO, and hence the query qi will
be accepted by Bob. No restriction is imposed on the number � of queries that can be asked. The best Alice can hope for
is that she can compute herself the answer to �q� (or even to q) from Bob’s answers to �q1�, . . . , �q�� by means of some
post-processing. The question addressed in this paper is: Given that Alice wants to answer q, what queries should she ask
to Bob?

Here is a concrete example. Assume Bob owns the database of Fig. 1. Interested in stable couples,1 Alice submits the
query q1 which asks “Get pairs of ages of men and women living in the same city”:

q1 = {
y, w | ∃x∃u∃z

(
M(x, y, z) ∧ F (u, w, z)

)}
.

1 According to [7], marital stability is higher when the wife is 5+ years younger than her husband.

JID:IJA AID:7961 /FLA [m3G; v1.190; Prn:14/11/2016; 10:55] P.3 (1-19)

F. Geerts et al. / International Journal of Approximate Reasoning ••• (••••) •••–••• 3
The consistent answer is {(48, 37), (29, 37)}. However, the query �q1� that returns the consistent answer is known to have
coNP-hard data complexity [8]. Therefore, Bob will reject q1. Alice changes strategy and submits the query q2 which asks
“Get pairs of ages and city of men and women living in the same city”:

q2 = {
y, w, z | ∃x∃u

(
M(x, y, z) ∧ F (u, w, z)

)}
. (2)

Since the data complexity of �q2� is known to be in FO [8], Bob will execute �q2�. The query q2 returns {(29, 37, Mons),
(48, 37, Mons)} on one repair, and {(29, 37, Mons), (48, 37, Paris)} on the other repair, so the consistent answer is {(29, 37,

Mons)}. This in turn allows Alice to derive a consistent answer to the original query: since (29, 37, Mons) belongs to the
answer to �q2�, it is correct to conclude that (29, 37) belongs to the answer to �q1�. An interesting question is whether
Alice has a better strategy that divulges even more answers to �q1�.

The technical contributions of this paper are as follows. We first show that the following problem is undecidable: Given
a relational calculus query q, is �q� in FO? In view of this undecidability result, we then limit our attention to strategies
that are first-order combinations (using disjunction and existential quantification) of queries �q� that are known to be in
FO. We show how to build optimal strategies under such syntax restrictions.

This paper is organized as follows. Section 2 discusses related work. Section 3 provides some mathematical definitions.
Section 4 introduces our new framework for studying consistent query answering under primary key constraints, and in-
troduces the problem OPTSTRATEGY. Intuitively, OPTSTRATEGY asks, given a query q, to find a new query q′ that gets
the largest subset of consistent answers while still obeying the restrictions imposed by our framework. Section 5 provides
ways to solve OPTSTRATEGY in restricted settings. Section 6 studies a novel query containment problem that is intimately
related to the simplification of strategies. Finally, Section 7 concludes the paper.

2. Related work

Consistent query answering (CQA) was proposed in [2] as a principled approach to handle data quality problems that
arise from violations of integrity constraints. We refer to the textbooks [9] and [10] for comprehensive overviews of these
domains.

Fuxman and Miller [11] were the first ones to focus on CQA under the restrictions that consistency is only with respect to
primary keys and that queries are self-join-free conjunctive queries. A survey on consistent query answering to conjunctive
queries under primary key constraints is given in [12]. Some recent results not covered by this survey can be found in [8,13].

Instead of returning the query answers true in every repair, one could return the query answers true in, e.g., a majority
of repairs. This leads to the counting variant of CQA, which has been studied in [14,15]. As observed in [16], the counting
variant of CQA under primary key constraints is closely related to query answering in block-independent-disjoint (BID)
probabilistic databases [17,18]. Counting the fraction of repairs that satisfy a query has also been studied by Greco et al. [19].
The constraints in that work are functional dependencies, and the repairs are obtained by updates. Greco et al. present an
approach for computing approximate probabilistic answers in polynomial time.

In the past, the paradigm of CQA has been implemented in expressive formalisms, such as Disjunctive Logic Program-
ming [20] and Binary Integer Programming (BIP) [21]. In these formalisms, it is relatively easy to express an algorithm that
computes consistent answers to conjunctive queries under primary key constraints. The drawback is that these algorithms
may, in the worst case, take exponential time in cases where, in theory, certain answers are computable in polynomial
time or expressible in first-order logic. In the latter case, the consistent answer can be computed by a single SQL query
using standard database technology, including query optimization. In [10, page 38], the author mentions that logic programs
for CQA cannot compete with solutions in first-order logic when they exist. Likewise, in an experimental comparison of
EQUIP [21] and ConQuer [22], the authors of the former system found that BIP never outperformed solutions in SQL.

For (unions of) conjunctive queries, under-approximations of consistent answers can be obtained by executing the queries
on the intersection of all repairs (instead of intersecting query answers). This is called the Intersection ABox Repair (IAR)
semantics [23,24]. In our setting, the intersection of all repairs can be computed in FO, by selecting from the database all
blocks that contain only one tuple.

Our work can also be regarded as querying “consistent views,” in the sense that Bob returns exclusively consistent an-
swers. It has been observed long ago [25] that consistent views are not closed under relational calculus. In other words, the
position of the �·� construct in a query does matter. For example, for the database of Fig. 1, the query

{
x | ∃y∃z �M(x, y, z)�}

returns only Dirk, while �{x | ∃y∃z M(x, y, z)
}� returns both Ed and Dirk. Bertossi and Li [26] have used views to protect the

secrecy of data in a database. In our setting, the query answers that are to be hidden from end users are those that are not
true in every repair.

3. Preliminaries

We assume disjoint sets of variables and constants. A term is a constant or a variable. If 	t is a sequence of terms, then
vars(t) denotes the set of variables that occur in 	t . A valuation over a set U of variables is a total mapping θ from U to
the set of constants. At several places, it is implicitly understood that such a valuation θ is extended to be the identity on
constants and on variables not in U .

JID:IJA AID:7961 /FLA [m3G; v1.190; Prn:14/11/2016; 10:55] P.4 (1-19)

4 F. Geerts et al. / International Journal of Approximate Reasoning ••• (••••) •••–•••
Atoms and key-equal facts. Each relation name R of arity n, n ≥ 1, has a unique primary key which is a set {1, 2, . . . , k}
where 1 ≤ k ≤ n. We say that R has signature [n, k] if R has arity n and primary key {1, 2, . . . , k}. We say that R is all-key if
n = k. For all positive integers n, k such that 1 ≤ k ≤ n, we assume denumerably many relation names with signature [n, k].

If R is a relation name with signature [n, k], then R(t1, . . . , tn) is called an R-atom (or simply atom), where each ti is a
term (1 ≤ i ≤ n). Such an atom is commonly written as R(x, 	y) where the primary-key value 	x = t1, . . . , tk is underlined and
	y = tk+1, . . . , tn . An R-fact (or simply fact) is an R-atom in which no variable occurs. Two facts R1(a1, 	b1) and R2(a2, 	b2)

are key-equal if R1 = R2 and 	a1 = 	a2.
We will use letters F , G, H for atoms. For an atom F = R(x, 	y), we denote by key(F) the set of variables that occur in 	x,

and by vars(F) the set of variables that occur in F , that is, key(F) = vars(x) and vars(F) = vars(x) ∪ vars(y).

Uncertain databases, blocks, and repairs. A database schema is a finite set of relation names. All constructs that follow
are defined relative to a fixed database schema.

A database is a finite set db of facts using only the relation names of the schema. We often refer to databases as
“uncertain databases” to stress that such databases can violate primary key constraints.

A block of db is a maximal set of key-equal facts of db. The term R-block refers to a block of R-facts, i.e., facts with
relation name R . An uncertain database db is consistent if no two distinct facts are key-equal (i.e., if every block of db is a
singleton). A repair of db is a maximal (with respect to set containment) consistent subset of db. We write rset(db) for the
set of repairs of db.

Queries and consistent query answering. We assume that the reader is familiar with relational calculus [3, Chapter 5] and
with the notion of queries [27, Definition 2.7]. By FO, we denote the descriptive complexity class that contains the queries
expressible in relational calculus.

For every m-ary (m ≥ 0) relational calculus query q, we define �q� as the m-ary query that maps every database db to ⋂{
q(r) | r ∈ rset(db)

}
. Clearly, if db is a consistent database, then �q�(db) = q(db).

Given two m-ary queries q1 and q2, we say that q1 is contained in q2, denoted by q1
 q2 if for every database db,
q1(db) ⊆ q2(db). We write q1 � q2, if q1
 q2 and q2 �
 q1. We say that q1 and q2 are equivalent, denoted by q1 ≡ q2, if
q1
 q2 and q2
 q1.

A 0-ary query is called Boolean. If q is a Boolean query, then q maps any database to either {〈〉} or {}, corresponding to
true and false respectively.

A conjunctive query is a relational calculus query of the form
{	z | ∃	y B

}
where B is a conjunction of atoms. The conjunc-

tion B and the query are said to be self-join-free if no relation name occurs more than once in B . We write vars(B) for the
set of variables that occur in B . By a slight abuse of notation, we denote by B also the set of conjuncts that occur in B .
For example, if B1 = R(x) ∧ R(y) and B2 = R(x) ∧ R(y) ∧ R(z), then we may write B1 ⊆ B2. Finally, if q is a self-join-free
conjunctive query with an R-atom, then, by an abuse of notation, we write R to mean the R-atom of q.

If q is a conjunctive query, 	x = 〈x1, . . . , x�〉 is a sequence of distinct variables in vars(q), and 	c = 〈c1, . . . , c�〉 is a sequence
of constants, then we denote by q[x �→	c] the query obtained from q by replacing each occurrence of each xi with ci .

Significantly, the following example shows that �q� may not be expressible in relational calculus, even if q is a self-join-
free conjunctive query.

Example 1. Let q1 = {〈〉 | ∃x∃y∃z
(

R(x, z) ∧ S(y, z)
)}

. The query q1 is self-join-free conjunctive. It follows from [8] that �q1�
is not in FO (i.e., not expressible in relational calculus).

Let q2 = {〈〉 | ∃x∃y
(

R(x, y) ∧ S(y,b)
)}

, where b is a constant. Then, �q2� is equivalent to the following relational calculus
query:

∃x∃y
(

R(x, y) ∧ ∀y
(

R(x, y) → (
S(y,b) ∧ ∀z

(
S(y, z) → z = b

))))
. �

4. A framework for divulging inconsistent databases

In this section, we formalize the setting that was described and illustrated in Section 1. The setting is captured by the
language called CQAFO, which consists of first-order quantification and Boolean combinations of atomic formulas of the
form �q�, where q is any relational calculus query. The atomic formulas �q� capture that the database owner Bob only
returns consistent answers. Subsequently, the end user Alice, who interrogates Bob’s database, can do some post-processing
on Bob’s outputs. In our setting, we assume that Alice uses first-order quantification and Boolean combinations of Bob’s
consistent answers to the atomic formulas �q�.

Example 2. The scenario in Section 1 is captured by the CQAFO query{
y, w | ∃Z

⌊∃x∃u
(
M(x, y, Z) ∧ F (u, w, Z)

)⌋}
.

The formula within �·� is the query (2). The quantification ∃Z corresponds to Alice projecting away the cities column
returned by Bob. For readability, we will often use upper case letters for variables that are quantified outside the range
of �·�. �

JID:IJA AID:7961 /FLA [m3G; v1.190; Prn:14/11/2016; 10:55] P.5 (1-19)

F. Geerts et al. / International Journal of Approximate Reasoning ••• (••••) •••–••• 5
Example 3. The following query allows Alice to find the names of men with more than two cities in the database:{
x | ⌊∃y∃z M(x, y, z)

⌋ ∧ ¬∃Z
⌊∃y M(x, y, Z)

⌋}
.

To understand this query, it may be helpful to notice that
{

x, Z | �∃y M(x, y, Z)�} returns tuple (n, c) whenever c is the
only city of residence recorded for the person named n. Interestingly, even though Alice gets only consistent answers, she
can still infer that the database contains inconsistencies. In particular, since the foregoing query returns Ed on the example
database of Fig. 1, Alice can infer that there is uncertainty about the city of Ed. �
4.1. The language CQAFO

We next describe the syntax and semantics of the language CQAFO used for postprocessing.

Syntax The following are formulas in CQAFO:

• if q is a relational calculus query, then �q� is a CQAFO formula with the same free variables as q;
• if ϕ1 and ϕ2 are CQAFO formulas, then ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, and ¬ϕ1 are CQAFO formulas;
• if ϕ is a CQAFO formula, then ∃Y ϕ and ∀Y ϕ are CQAFO formulas.

If ϕ is a CQAFO formula, then free(ϕ) denotes the set of free variables of ϕ (i.e., the variables not bound by a quantifier).
If 	x is a tuple containing the free variables of ϕ , we write ϕ(x).

A CQAFO query is an expression of the form
{	t | ϕ}

, where 	t is a sequence of terms containing each variable of free(ϕ).
If 	t contains no constants and no double occurrences of the same variable, then such query is also denoted ϕ(t).

Semantics Let db be an uncertain database. Let ϕ(x) be a CQAFO formula, and 	a be a sequence of constants (of same
length as 	x). We inductively define db |= ϕ(a).

• If ϕ(x) = �q(x)� for some relational calculus query q(x), then db |= ϕ(a) if for every repair r of db, r |= q(a)2;
• db |= ¬ϕ(a) if db �|= ϕ(a);
• db |= ϕ1 ∧ ϕ2 if db |= ϕ1 and db |= ϕ2;
• db |= ϕ1 ∨ ϕ2 if db |= ϕ1 or db |= ϕ2;
• if ψ(x) = ∃Y ϕ(Y , 	x), then db |= ψ(a) if db |= ϕ(a′, 	a) for some a′;
• if ψ(x) = ∀Y ϕ(Y , 	x), then db |= ψ(a) if db |= ϕ(a′, 	a) for all a′ .

Let Q = {	t | ϕ(x)} be a CQAFO query. The answer Q (db) is the smallest set containing θ(t) for every valuation θ over
vars(t) such that for some 	a, θ(x) = 	a and db |= ϕ(a). By definition, we have vars(t) = vars(x), but 	t , unlike 	x, can contain
constants and multiple occurrences of the same variable. If 	t contains no variables, then Q is Boolean.

Domain independence is a desirable property of queries that emerges in CQAFO in the same way as in relational calculus
[3, p. 79]. For example, consider the CQAFO query Q 0 = {

x | �∃y∃z M(x, y, z)� ∨ �F (‘Iris’, ‘37’, ‘Paris’)�} on the example
database of Fig. 1. Since F (‘Iris’, ‘37’, ‘Paris’) holds true in every repair, the query is true for any value of x. The query Q 0 is
thus not domain independent. Nevertheless, domain independence will not be an issue in this paper, because we will only
deal with syntactic fragments of CQAFO that guarantee domain independence.

4.2. Restrictions on data complexity

The language CQAFO of Section 4.1 captures our first postulate which states that the database owner Bob returns exclu-
sively consistent answers. But we do not prohibit that end user Alice does some post-processing on Bob’s answers. In this
section, we will add our second postulate which states that Bob rejects queries q if the data complexity of �q� is not in FO.
Unfortunately, Bob has to face the following undecidability result.

Theorem 1. The following problem is undecidable. Given a relational calculus query q, is �q� in FO?

Proof. Let q1 = {〈〉 | ∃x∃y∃z
(

R(x, z) ∧ S(y, z) ∧ ϕ
)}

where ϕ is a closed relational calculus formula, i.e., a formula with no
free variables, such that all relation names in ϕ are all-key. Observe that this implies that the relation names in ϕ are
distinct from R and S . We show hereinafter that �q� is in FO if and only if ϕ is unsatisfiable. The desired result then
follows by [3, Theorem 6.3.1], which states that (finite) satisfiability of relational calculus queries is undecidable.

Obviously, if ϕ is unsatisfiable, then �q1� ≡ false, and hence �q1� is in FO.
We show next that if ϕ is satisfiable, then �q1� is not in FO. Assume that ϕ is satisfiable. Let q0 = ∃x∃y∃z

(
R(x, z) ∧

S(y, z)
)

and consider the following two problems:

2 r |= q(a) is defined in the standard way.

JID:IJA AID:7961 /FLA [m3G; v1.190; Prn:14/11/2016; 10:55] P.6 (1-19)

6 F. Geerts et al. / International Journal of Approximate Reasoning ••• (••••) •••–•••
• CERTAIN0: Given a database db, determine whether every repair of db satisfies q0.
• CERTAIN1: Given a database db, determine whether every repair of db satisfies q1.

We show a polynomial-time many-one reduction from CERTAIN0 to CERTAIN1. Let db0 be a database that is input to
CERTAIN0. Let S be the database schema that contains the relation names occurring in ϕ . An algorithm can consider
systematically every finite database db′ over S and test db′ |= ϕ , until a database db′ is found such that db′ |= ϕ . The
algorithm terminates because ϕ is satisfiable. Since the computation of db′ does not depend on db0, it takes O(1) time.
Since all relation names in db′ are all-key, we have that db′ is consistent. Clearly, q0 is true in every repair of db0 if and
only if q1 is true in every repair of db0 ∪ db′ . This follows from the fact that the relation names in ϕ are distinct from
R and S . So we have established a polynomial-time many-one reduction from CERTAIN0 to CERTAIN1. Since CERTAIN0 is
coNP-hard [8], it follows that CERTAIN1 is coNP-hard. Since FO � coNP [6], it follows that CERTAIN1 is not in FO. �

By Theorem 1, there exists no algorithm that allows Bob to decide whether he has to accept or reject a relational calculus
query. In general, little is known about the complexity of �q� for relational calculus queries q. One of the stronger known
results is the following.

Theorem 2 ([8]). The following problem is decidable in polynomial time. Given a self-join-free conjunctive query q, is �q� in FO?
Moreover, if �q� is in FO, then a relational calculus query equivalent to �q� can be effectively constructed.

In view of Theorems 1 and 2, the following scenario is the best we can go for with the current state of art.

1. The database owner Bob only accepts self-join-free conjunctive queries q such that �q� is in FO. Thus, Bob rejects every
query that is not self-join-free conjunctive, and rejects a self-join-free conjunctive query q if �q� is not in FO.

2. As before, Alice can do some first-order post-processing on the answers obtained from Bob.

Under these restrictions, we focus on the following problem: given that Alice wants to answer a self-join-free conjunctive
query q on a database owned by Bob, develop a strategy for Alice to get a subset (the greater, the better) of the consistent
answer to q. Our framework applies to Boolean queries by representing true and false by {〈〉} and {} respectively. A formal
definition follows.

4.3. Strategies

Strategies for a query q are defined next as relational calculus queries that can be expressed in CQAFO and that are
contained in �q�.

Definition 1. Let q be a self-join-free conjunctive query. A strategy for q is a CQAFO query ϕ such that ϕ
 �q� and for every
atomic formula �q′� in ϕ , we have that q′ is a self-join-free conjunctive query such that �q′� is in FO.

A strategy ϕ for q is optimal if for every strategy ψ for q, we have ψ
 ϕ . The problem OPTSTRATEGY takes in a
self-join-free conjunctive query q and asks to determine an optimal strategy for q. �

Some observations are in place.

• If the input to OPTSTRATEGY is a self-join-free conjunctive q such that �q� is in FO, then the CQAFO query �q� is
itself an optimal strategy.

• Every strategy ϕ is in FO, because all atomic formulas �q′� are required to be in FO. Therefore, if Alice wants to answer
a query q such that �q� is not in FO, then there is no strategy ϕ such that ϕ ≡ �q�.

• There is no fundamental reason why the input query to OPTSTRATEGY is required to be a self-join-free conjunctive
query. However, developing strategies for more expressive queries is left as an open question.

In the remainder of this paper, we will not investigate the problem OPTSTRATEGY in its most general form. Instead, we will
confine our investigation to strategies that can be expressed and effectively constructed in a syntactic fragment of CQAFO.
We will explain how such strategies can be constructed, but leave open the computational complexity of the construction.

5. How to construct good strategies?

Let q be a self-join-free conjunctive query. In this section, we investigate ways for constructing good (if not optimal)
strategies for q of a particular syntax. In Section 5.1, we take the most simple approach: take the union of queries �qi�
contained in �q�, where qi is self-join-free conjunctive and �qi� is in FO. We then show that the strategies obtained in this
way cannot be optimal. Therefore, an enhanced approach is developed in Section 5.2.

JID:IJA AID:7961 /FLA [m3G; v1.190; Prn:14/11/2016; 10:55] P.7 (1-19)

F. Geerts et al. / International Journal of Approximate Reasoning ••• (••••) •••–••• 7
5.1. Post-processing by unions only

Assume that the input to OPTSTRATEGY is a self-join-free conjunctive query q(z). In this section, we look at strategies
of the form

�⋃
i=1

�qi�, (3)

where each qi is of the form
{ 	zi | ∃	yi Bi

}
in which 	zi has the same length as 	z and Bi is a self-join-free conjunction of

atoms. Speaking strictly syntactically, �{ 	zi | ∃	yi Bi
}� is not a CQAFO query, as it is not of the form

{	t | ϕ}
for some CQAFO

formula ϕ as defined in Section 4.1. However, it can be easily verified that �{ 	zi | ∃	yi Bi
}� ≡ { 	zi | �∃	yi Bi�

}
, and the latter

query is a CQAFO query.
We use union (with its standard semantics) instead of disjunction to avoid notational difficulties. For example, the union{

x,a | �R(x,a)�} ∪ {
x, y | �S(x, y)�},

where a is a constant, is semantically clear, and is equivalent to{
x, y | �R(x, y) ∧ y = a� ∨ �S(x, y)�},

in which equality is used. It would be wrong to write
{

x, y | �R(x,a)� ∨ �S(x, y)�}, an expression that is not domain in-
dependent [3, p. 79], because if some fact R(c, a) holds true in every repair, then �R(x,a)� ∨ �S(x, y)� is true when c is
assigned to x, no matter what value is assigned to y. On the other hand, a CQAFO formula of the form (3) is domain
independent if each �qi� is domain independent.

Furthermore, a formula of the form (3) is a strategy if for every i ∈ {1, . . . , �}, �qi� is in FO and �qi�
 �q�. The latter
condition is equivalent to qi
 q as is shown next.

Lemma 1. Let q and q′ be self-join-free m-ary conjunctive queries. Then, q
 q′ if and only if �q�
 �q′�.

Proof. Let q = {	z | ∃	y B
}

and q′ = {	z0 | ∃	y0 B ′}, where 	z and 	z0 both have the same length m.
=⇒ Straightforward. ⇐= Assume �q�
 �q′�. Let μ be an injective mapping with domain vars(B) that maps each

variable to a fresh constant not occurring elsewhere. Since μ is injective, its inverse μ−1 is well defined. Let db = μ(B).
Clearly, db is consistent and q(db) = {μ(z)} = �q�(db). From �q�
 �q′�, it follows μ(z) ∈ �q′�(db) = q′(db). Then, there
exists a valuation θ over vars(B ′) such that θ(B ′) ⊆ db and θ(z0) = μ(z). Then μ−1 ◦ θ(B ′) ⊆ B and μ−1 ◦ θ(z0) = 	z. Since
μ−1◦ θ is a homomorphism from q′ to q, it follows q
 q′ by the Homomorphism Theorem [3, Theorem 6.2.3]. �

Lemma 1 does not hold for conjunctive queries with self-joins, as shown next.

Example 4. Let q = {〈〉 | R(a, b) ∧ R(a, c)
}

. For every uncertain database db, we have �q�(db) = {}. Let q′ be a query such
that q �
 q′ (such query obviously exists). Then, �q�
 �q′� and q �
 q′ . �

Lemma 1 allows us to construct strategies of the form (3), as follows. Assume that the input to OPTSTRATEGY is a
self-join-free conjunctive query q(z). For some positive integer �, generate self-join-free conjunctive queries q1, . . . , q� such
that for each i ∈ {1, . . . , �}, qi
 q and �qi� is in FO. The condition qi
 q is decidable by [3, Theorem 6.2.3]; the condition
that �qi� is in FO is decidable by Theorem 2. Then by Lemma 1,

⋃�
i=1�qi� is a strategy for q.

Unfortunately, Theorem 3 given hereinafter states that there are cases where no strategy of the form (3) is optimal. We
first generalize Lemma 1 to unions.

Lemma 2. Let q0, q1, . . . ,q� be self-join-free m-ary conjunctive queries. Then, �q0�
 ⋃�
i=1�qi� if and only if for some i ∈ {1, . . . , �},

q0
 qi .

Proof. ⇐= Straightforward. =⇒ Assume �q0�
 ⋃�
i=1�qi�. Let q0 = {	z0 | ∃	y0 B0

}
, where B0 is self-join-free. Let μ be

an injective mapping with domain vars(B0) that maps each variable to a fresh constant not occurring elsewhere. Since μ is
injective, its inverse μ−1 is well defined. Let db = μ(B0). Clearly, db is consistent and q0(db) = {μ(z0)} = �q0�(db). From
�q0�
 ⋃�

i=1�qi�, it follows that we can assume i ∈ {1, . . . , �} such that μ(z0) ∈ �qi�(db) = qi(db). Let qi = {	zi | ∃	yi Bi}. Then,
there exists a valuation θ over vars(Bi) such that θ(Bi) ⊆ db and θ(zi) = μ(z0). Then μ−1 ◦ θ(Bi) ⊆ B0 and μ−1 ◦ θ(zi) = 	z0.
Since μ−1 ◦ θ is a homomorphism from qi to q0, it follows q0
 qi . �
Theorem 3. There exists a self-join-free conjunctive query q such that for every strategy ϕ of the form (3) for q, there exists another
strategy ψ of the form (3) for q such that ϕ � ψ .

JID:IJA AID:7961 /FLA [m3G; v1.190; Prn:14/11/2016; 10:55] P.8 (1-19)

8 F. Geerts et al. / International Journal of Approximate Reasoning ••• (••••) •••–•••
Proof. Let q = {〈〉 | ∃x∃y∃z
(

R(x, z) ∧ S(y, z)
)}

. Then �q� is not in FO by Theorem 7 in the current paper (which is subsumed
by Theorem 1 in [8]). For every constant c, let qc be the query defined by qc := {〈〉 | ∃y∃z

(
R(c, z) ∧ S(y, z)

)}
. For every

constant c, we have that �qc�
 �q� by Lemma 1, and again by Theorem 7, �qc� is in FO.
Let ϕ be a strategy for q of the form (3). Let A be the greatest set of constants such that for all c ∈ A, there exists some

i ∈ {1, . . . , �} such that qi ≡ qc . Let b be a constant such that b /∈ A. Clearly ϕ
 ϕ ∪ �qb�
 �q�. It suffices to show that
ϕ � ϕ ∪ �qb�, meaning that ϕ is not optimal.

Assume towards a contradiction that �qb�
 ϕ . By Lemma 2, there exists i ∈ {1, . . . , �} such that qb
 qi
 q. We can
assume (not necessarily distinct) variables s, t, u, v such that qi is the existential closure of

(
R(s, t) ∧ S(u, v)

)
. From qi
 q, it

follows that t = v . From qb
 qi and b /∈ A, it follows that s, t , u are pairwise distinct variables. But then qi ≡ q, contradicting
that �qi� is in FO. We conclude by contradiction that ϕ � ϕ ∪ �qb�. �
5.2. Post-processing by unions and quantification

The proof of Theorem 3 indicates that strategies of the form (3) lack expressiveness because the number of constants in
such strategies is bounded. An obvious extension is to look for strategies that replace constants with existentially quantified
variables. The following example shows how such extension solves the lack of expressiveness that underlies the proof of
Theorem 3.

Example 5. Let q = ∃x∃y∃z
(

R(x, z) ∧ S(y, z)
)

and consider the CQAFO formula ϕ defined by ϕ := ∃X
⌊∃y∃z

(
R(X, z) ∧

S(y, z)
)⌋

. From Lemma 3 and Theorem 7 given hereinafter, it follows that ϕ is a strategy for q, i.e., ϕ
 �q� and
�∃y∃z

(
R(X, z) ∧ S(y, z)

)� is in FO. Recall from Example 2 that the use of upper case X is for readability. �
Assume that the input to OPTSTRATEGY is a self-join-free conjunctive query q(z). We next investigate strategies of the

form

�⋃
i=1

Q i, (4)

where for each i ∈ {1 . . . , �}, Q i is a CQAFO query of the form{	zi | ∃ 	Xi �∃	yi Bi�
}
, (5)

in which 	zi has the same length as 	z, and Bi is a self-join-free conjunction of atoms. It is understood that 	zi , 	Xi , and 	yi
have, pairwise, no variables in common, and that vars(zi 	Xi 	yi) = vars(Bi). For readability, we will use upper case Q to refer
to CQAFO queries of the form (5). The main tools for constructing strategies of the form (4) are provided by Theorems 4
and 5.

Theorem 4. The following problem is decidable in polynomial time. Given a CQAFO query Q of the form (5), is Q in FO? Moreover, if
Q is in FO, then a relational calculus query equivalent to Q can be effectively constructed.

Proof. Let B be a self-join-free conjunction of atoms, and let

Q = {	z | ∃ 	X �∃	y B�};
Q ′ = {	z 	X | �∃	y B�}.

Obviously, if Q ′ is in FO, then so is Q . We show next that if Q ′ is not in FO, then Q is not in FO.
For every variable x, we assume an infinite set of constants, denoted type(x), such that x �= y implies type(x) ∩ type(y) = ∅.

Let db be an uncertain database. We say that db is typed relative to B if for every atom R(x1, . . . , xn) in B , for every
i ∈ {1, . . . , n}, if xi is a variable, then for every fact R(a1, . . . , an) in db, ai ∈ type(xi) and the constant ai does not occur in B .
Significantly, since B is self-join-free, we can assume without loss of generality that Q and Q ′ are executed on databases
that are typed relative to B .

From the complexity proofs in [8], it follows that if Q ′ is not in FO, then Q ′ is not in FO even if for every variable
v ∈ vars(z) ∪ vars(X) (i.e., for every free variable v of Q ′), type(v) is a singleton. This means that if Q ′ is not in FO, it is not
in FO even on uncertain databases db such that for every atom R(x1, . . . , xn) in B and i ∈ {1, . . . , n}, if xi ∈ vars(z) ∪ vars(X),
then all R-facts of db agree on position i. It is then obvious that if Q ′ is not in FO, it must be the case that Q is not in FO
(because there is only one valuation for vars(z) ∪ vars(X) that can make �∃	y B� true).

By Theorem 2, it can be decided whether Q ′ is in FO. A relational calculus query equivalent to Q can be straightfor-
wardly obtained from a relational calculus query equivalent to Q ′ . �

We will be concerned with testing containment between CQAFO queries of the form (5). The following lemma general-
izes Lemma 1 by allowing (restricted forms of) existential quantification outside �·�.

JID:IJA AID:7961 /FLA [m3G; v1.190; Prn:14/11/2016; 10:55] P.9 (1-19)

F. Geerts et al. / International Journal of Approximate Reasoning ••• (••••) •••–••• 9
Lemma 3. Let B1 and B2 be self-join-free conjunctions of atoms in the following CQAFO queries:

Q 1 = {	z1 | ∃ 	X1 �∃	y1 B1�
};

Q 2 = {	z2 | ∃ 	X2 �∃	y2 B2�
}
.

Let q1 and q2 be the queries obtained from respectively Q 1 and Q 2 by omitting �·�, that is,

q1 = {	z1 | ∃ 	X1 ∃	y1 B1
};

q2 = {	z2 | ∃ 	X2 ∃	y2 B2
}
.

1. If Q 2
 Q 1 , then q2
 q1 .
2. If X1 is empty and q2
 q1 , then Q 2
 Q 1 .

Proof. The proof of 1 is analogous to the proof of the if-direction of Lemma 1.
For 2, assume X1 is empty and q2
 q1. By the Homomorphism Theorem [3, Theorem 6.2.3], there exists a valuation

θ over vars(B1) such that θ(z1) = 	z2 and θ(B1) ⊆ B2. Let db be a database and 	a a sequence of constants such that
	a ∈ Q 2(db). Then, there exists a valuation γ over vars(z2) ∪ vars(X2) with γ (z2) = 	a such that for every repair r of db,
γ can be extended into a valuation �r over vars(B2) such that �r(B2) ⊆ r. Let r0 be an arbitrary repair of db. The result
	a ∈ q1(r0) follows because �r0 ◦ θ is a valuation over vars(B1) such that �r0 ◦ θ(B1) ⊆ r0 and �r0 ◦ θ(z1) = 	a. Since r0 be an
arbitrary repair, from 	a ∈ q1(r0) and X1 empty, it follows 	a ∈ Q 1(db). �
Theorem 5. Given a self-join-free conjunctive query q1 and a CQAFO query Q 2 of the form (5), it can be decided whether Q 2
 �q1�.

Proof. Immediate from Lemma 3 and the decidability of containment for conjunctive queries. �
We point out that Theorem 5 is interesting in its own right. It is well known [3, Corollary 6.3.2] that containment of

relational calculus queries is undecidable. A large fragment for which containment is decidable is the class of unions of
conjunctive queries. Notice, however, that the queries in the statement of Theorem 5 need not be monotonic (and even not
first-order), and that decidability of containment for such queries is not obvious. We next provide an example of such a
non-monotonic query.

Example 6. Let Q = {
x | ∃Y �R(x, Y)�}. Let db = {R(a, 1)} and db′ = {R(a, 1), R(a, 2)}. Then db ⊆ db′ , but Q (db) = {a} is

not contained in Q (db′) = {}. Hence Q is not monotonic. As a note aside, we observe that Q is equivalent to the following
relational calculus query:{

x | ∃y
(

R(x, y) ∧ ∀y′(R(x, y′) → y = y′))}. �
Assume that the input to OPTSTRATEGY is a self-join-free conjunctive query q(z). Theorem 5 allows us to build a

strategy ϕ of the form (4) for q as follows. Let A be the set of constants that occur in q. Let ϕ be the disjunction of all (up
to variable renaming) CQAFO formulas Q i of the form (5) that use exclusively constants from A such that Q i
 �q� and
Q i is in FO. Clearly, there are at most finitely many such formulas (up to variable renaming). Containment of Q i in �q� is
decidable by Theorem 5. Finally, the condition that Q i is in FO is decidable by Theorem 4. The following theorem remedies
the negative result of Theorem 3.

Theorem 6. For every self-join-free conjunctive query q, there exists a computable strategy ϕ of the form (4) for q, such that for every
strategy ψ of the form (4) for q, ψ
 ϕ .

Proof. Assume that the input to OPTSTRATEGY is a self-join-free conjunctive query q(z). Let ϕ be the strategy defined
in the paragraph preceding this theorem. Let Q = {	z0 | ∃ 	X �∃	y B�} be a query of the form (5) where B is a self-join-free
conjunction of atoms such that Q is in FO and Q
 �q�. If all constants that occur in B also occur in q, then Q is already
contained in some disjunct of ϕ (by construction of ϕ). Assume next that B contains some constants that do not occur in q,
and let these constants be a1, . . . , am . For i ∈ {1, . . . , m}, let Xi be a new fresh variable. Let B ′ be the conjunction obtained
from B by replacing each occurrence of each ai with Xi . Let Q ′ = {	z0 | ∃ 	X∃X1 · · · ∃Xm �∃	yB ′�}.

From Q
 �q� and Lemma 3, it follows that
{	z0 | ∃ 	X ∃	y B

}
 q. By the Homomorphism Theorem [3, Theorem 6.2.3], we
can assume a homomorphism θ from q to

{	z0 | ∃ 	X ∃	y B
}

. Notice that if θ(t) = ai for some term t that occurs in q and
i ∈ {1, . . . , m}, then it must be the case that t is a variable (because ai does not occur in q). Let θ ′ be the substitution
obtained from θ such that for every variable v in q and i ∈ {1, . . . , m},

θ ′(v) =
{

Xi if θ(v) = ai
θ(v) otherwise.

JID:IJA AID:7961 /FLA [m3G; v1.190; Prn:14/11/2016; 10:55] P.10 (1-19)

10 F. Geerts et al. / International Journal of Approximate Reasoning ••• (••••) •••–•••
Then obviously θ ′ is a homomorphism from q to
{	z0 | ∃ 	X∃X1 · · · ∃Xm ∃	y B ′}. From the Homomorphism Theorem and

Lemma 3, it follows Q ′
 �q�. It can be easily seen that Q
 Q ′ . Furthermore, Q ′ is in FO because Q is in FO and it
can be easily argued that membership in FO is preserved if constants are replaced with free variables. Notice here that each
variable Xi is free in �∃	yB ′�. Since all constants that occur in B ′ also occur in q, we have that Q ′ is already contained in
some disjunct of ϕ (by construction of ϕ).

To conclude, whenever Q = {	z0 | ∃ 	X �∃	y B�} is a query of the form (5) where B is a self-join-free conjunction of atoms
such that Q is in FO and Q
 �q�, we have that ϕ ∪ Q
 ϕ . �

So far, we have imposed no restrictions on the size of the computable strategy ϕ in the statement of Theorem 6. From
a practical point of view, it is interesting to construct, among all optimal strategies ϕ of the form (4), the one with the
smallest number � of disjuncts. This problem will be addressed in the next section.

6. Simplifying strategies

In Section 5.2, we considered strategies that are unions of CQAFO queries of the form (5). A natural question is whether
such strategies can be simplified. One obvious simplification is to remove any component of the union that is contained
in another component, which requires an effective procedure for deciding containment between queries of the from (5).
Developing such a procedure turns out to be a challenging problem. In Section 6.1, we illustrate this problem and introduce
some simplifying assumptions. We will tackle this problem by using an existing tool, called attack graph, which we recall
in Section 6.2, and which we generalize to account for the two queries involved in a containment test (Section 6.3). In
Section 6.4, we provide algorithm ContainedIn (Function 1) that decides containment of CQAFO queries of the form (5)
under some additional restrictions.

6.1. Problem statement and motivation

We consider strategies Q 1 ∪ Q 2 ∪ · · · ∪ Q � consisting of CQAFO queries Q i of the form
{	zi | ∃ 	Xi �∃	yi Bi�

}
. Clearly, if

some Q i is contained in another Q j (i.e., Q i
 Q j with i �= j), then the presence of Q i in the strategy is vacuous and Q i is
redundant. That is, an equivalent shorter strategy is obtained by removing Q i from the union. This raises an important and
interesting research question:

Given two CQAFO queries Q 1 and Q 2 of the form (5), decide whether Q 1
 Q 2.

Theorem 5 settles containment of Q 2
 �q1�. In this containment, the right-hand side �q1� is restricted to have no quan-
tifier outside the scope of �·�. The opposite containment �q1�
 Q 2 turns out to be more difficult to handle, as illustrated
next.

Example 7. Consider the following two Boolean queries:

q2 = ∃u∃v∃w
(

R(u, w) ∧ S(v, w)
);

Q 2 = ∃U
⌊∃v∃w

(
R(U , w) ∧ S(v, w)

)⌋
,

and consider a database (call it db) with the following tables, where for readability, columns are named by variables, and
blocks are separated by dashed lines.

R u w

a 1
b 2

S v w

c 1
c 2

The database db has two repairs, each satisfying q2, hence db |= �q2�. However, db �|= Q 2, because the two repairs of db
use different values for u (a and b) to make the query true. So it is correct to conclude �q2� �
 Q 2.

Consider furthermore the following query q1:

q1 = ∃x∃y
(

R(x, y) ∧ S(x, y)
)
.

By means of the Homomorphism Theorem [3, p. 117], it can be verified that q1
 q2, hence �q1�
 �q2� by Lemma 1. It
takes some effort to see that if a database satisfies �q1�, then it must contain two singleton blocks of the form {R(d, e)} and
{S(d, e)}, as follows.

R x y

d e
...

S x y

d e
...

JID:IJA AID:7961 /FLA [m3G; v1.190; Prn:14/11/2016; 10:55] P.11 (1-19)

F. Geerts et al. / International Journal of Approximate Reasoning ••• (••••) •••–••• 11
Such database will necessarily satisfy Q 2, hence �q1�
 Q 2. �
It turns out that the containment problem for queries of the form (5) is quite challenging. To ease the technical treatment,

we make the following simplifications:

• We will only deal with Boolean conjunctive queries (i.e., henceforth, all variables are assumed to be quantified). By
Proposition 1, the restriction to Boolean queries does not compromise generality. At some places, it will be con-
venient (and unambiguous) to denote a Boolean conjunctive query by its set of atoms. For example, q1 = {〈〉 |
∃x∃y∃z

(
R(x, z) ∧ S(y, z)

)}
can be denoted by the set

{
R(x, z), S(y, z)

}
.

• Let q be a self-join-free conjunction of atoms. Let 	X be a sequence of distinct variables such that vars(X) ⊆ vars(q). We
write ∃	X �q� for the query

∃	X ⌊∃	u q
⌋
,

where vars(u) = vars(q) \ vars(X). That is, we only show the quantifiers that are outside the scope of �·�.
• Our results concerning containment ∃	X1 �q1�
 ∃	X1 �q2� will often require a homomorphism from q2 to q1 (which is

tantamount to requiring q1
 q2, by the Homomorphism Theorem [3, p. 117]). This requirement is reasonable, because
if no such homomorphism exists, then ∃	X1�q1� �
 ∃ 	X2�q2� by Lemma 3. For completeness, we recall here that a homo-
morphism from q2 to q1 is a mapping h with domain vars(q2) such that for every atom R(s1, . . . , s�) in q2, we have that
R(h(s1), . . . , h(s�)) belongs to q1.

Proposition 1. Let Q 2 and Q 1 be two CQAFO queries of the form (5). One can compute in polynomial time two Boolean CQAFO
queries Q ′

2 and Q ′
1 , both of the form (5), such that Q 1
 Q 2 if and only if Q ′

1
 Q ′
2 .

Proof. We can assume self-join-free conjunctions of atoms, B1 and B2, such that:

Q 1 = {	z1 | ∃ 	X1 �∃	y1 B1�
};

Q 2 = {	z2 | ∃ 	X2 �∃	y2 B2�
}
.

Let q1 and q2 be the queries obtained from respectively Q 1 and Q 2 by omitting �·�, that is,

q1 = {	z1 | ∃ 	X1 ∃	y1 B1
};

q2 = {	z2 | ∃ 	X2 ∃	y2 B2
}
.

If q1 �
 q2, then Q 1 �
 Q 2 by Lemma 3. In this case, pick two distinct key-equal facts A and B and let Q ′
1 = A and Q ′

2 = B .
Clearly, Q ′

1 �
 Q ′
2. Notice that the test q1
 q2 can be performed in polynomial time in the absence of self-joins.

Assume next q1
 q2. By the Homomorphism Theorem [3, Theorem 6.2.3], we can assume a valuation θ over vars(B2)

such that θ(B2) ⊆ B1 and θ(z2) = 	z1. Let μ be a valuation over vars(z1) that maps distinct variables to distinct fresh
constants. Let Q ′

1 := {
μ(z1) | ∃ 	X1 �∃	y1 μ(B1)�

}
, the query obtained from Q 1 by replacing each occurrence of each variable

z1 ∈ vars(z1) with μ(z1). Intuitively, Q ′
1 is the Boolean query obtained from Q 1 by treating free variables as constants. Since

B1 is self-join-free, it can be seen that Q 1
 Q 2 if and only if Q ′
1
 Q 2.

For example, for Q 1 = {
z | ∃X �∃y

(
R(X, y,b) ∧ S(X, y, z)

)�} with b a constant and R �= S , we would have that Q ′
1 = {

c |
∃X �∃y

(
R(X, y,b) ∧ S(X, y, c)

)�}, where c is a fresh constant. Notice that the above construction would make no sense in
the presence of self-joins. In particular, if R = S , then any answer to Q ′

1 would be empty (because b �= c).
Since the answer to Q ′

1 is either empty or the singleton {μ(z1)}, the containment Q ′
1
 Q 2 holds if Q 2 returns {μ(z1)}

whenever Q ′
1 does. Let Q ′

2 be the query obtained from Q 2 by replacing each occurrence of each variable z2 ∈ vars(z2) with
μ ◦ θ(z2). That is, the free tuple in Q ′

2 is equal to μ(z1). It is now obvious that Q ′
1
 Q 2 if and only if Q ′

1
 Q ′
2. This

concludes the proof. �
To sum up, we start with two Boolean conjunctive queries q1 and q2 such that q1
 q2 (and hence �q1�
 �q2� by

Lemma 1), and we want to know which existential quantification can be moved “outside the scope of �·�” while preserving
the containment �q1�
 �q2�. For the left-hand side (i.e., �q1�), this is easy because, by Lemma 3, ∃	X1�q1�
 �q2� if and only
if �q1�
 �q2�. For the right-hand side (i.e., �q2�), our major result will be an algorithm for deciding the containment �q1�

∃	X2 �q2� (Theorem 9), albeit by imposing some further restrictions on q1. We leave the design of a general containment test
for future work.

To explain how the containment test works, we first recall the notion of attack graph which is defined relative to a single
query (Section 6.2) and then introduce a new notion of attack that takes into account two queries q1 and q2 related by a
homomorphism (Section 6.3).

JID:IJA AID:7961 /FLA [m3G; v1.190; Prn:14/11/2016; 10:55] P.12 (1-19)

12 F. Geerts et al. / International Journal of Approximate Reasoning ••• (••••) •••–•••
Fig. 2. Attack graph of the query in Example 8.

6.2. Attack graphs

The construct of attack graph is the main tool for determining the complexity of �q�. Attack graphs were first introduced
in [28] for studying first-order expressibility of �q� for self-join-free conjunctive queries q.

Let q be a self-join-free Boolean conjunctive query (denoted by its set of atoms). We define K(q) as the following set of
functional dependencies:

K(q) := {
key(F) → vars(F) | F ∈ q

}
.

For every atom F ∈ q, we define F +,q as the following set of variables:

F +,q := {
x ∈ vars(q) | K(q \ {F }) |= key(F) → x

}
.

Here, the symbol |= denotes standard logical entailment. The attack graph of q is a directed graph whose vertices are the
atoms of q. There is a directed edge from F to G (F �= G) if there exists a sequence

F0

z1
� F1

z2
� F2 . . .

zn
� Fn (6)

where

• F0, . . . , Fn are atoms of q;
• F0 = F and Fn = G; and
• for all i ∈ {1, . . . , n}, zi ∈ vars(Fi−1) ∩ vars(Fi) and zi /∈ F +,q .

A directed edge from F to G in the attack graph of q is also called an attack from F to G , denoted by F
q� G . The sequence

(6) is called a witness for the attack F
q� G . If F

q� G , then we also say that F attacks G (or that G is attacked by F).

Example 8. Let q = {
R(x, y), S(y, z), T (z, x), U (x, u), V (x, u, v)

}
. We have R+,q = {x, u, v}. A witness for R q� T is R

y
� S

z
� T .

Note that, by an abuse of notation, we write R to mean the R-atom of q. The complete attack graph is shown in Fig. 2. �
Equipped with the notion of attack graph, we can now present a theorem that explains the decidability result of Theo-

rem 2.

Theorem 7 ([8]). For every self-join-free Boolean conjunctive query q, the query �q� is in FO if and only if the attack graph of q is
acyclic.

The attacks defined so far are from an atom to another atom. Attacks from an atom to a variable are defined as follows:
F

q� x if F
q∪{N(x)}� N(x), where N is a new relation name with signature [1, 1]. That is, F

q� x if there is an attack from F
to the “dummy” atom N(x) in the attack graph of q ∪ {N(x)}. The following lemma gives an important semantic property of
unattacked variables.

Lemma 4. Let q be a self-join-free Boolean conjunctive query. Let x ∈ vars(q) such that for every atom F of q, F
q
�� x. Then for every

database db such that db |= �q�, there exists a constant c such that db |= �q[x�→c]�.

Proof. Let q′ = q ∪ {N(x)} where N is a fresh relation name. The attack graph of q′ can be obtained from the attack graph
of q by adding the isolated vertex N(x). The desired result then follows form Lemma 9 in [8]. �

JID:IJA AID:7961 /FLA [m3G; v1.190; Prn:14/11/2016; 10:55] P.13 (1-19)

F. Geerts et al. / International Journal of Approximate Reasoning ••• (••••) •••–••• 13
The proof of the following lemma is analogous to the proof of Lemma C.1 in [29]. Intuitively, it states that no new attacks
emerge if we replace a variable with a constant in a Boolean self-join-free conjunctive query.

Lemma 5. Let q be a self-join-free Boolean conjunctive query. Let c be a constant and let q′ = q[x�→c] . For every F ∈ q, let F ′ be the

atom in q′ with the same relation name as F . For all F , G ∈ q, if F ′ q′
� G ′ , then F q� G.

Let q be a self-join-free Boolean conjunctive query such that the attack graph of q is acyclic. To avoid non-determinism
in some definitions and results to follow, assume a lexicographic order on the atoms of q. We write head(q) to denote the
first (in lexicographic order) atom of q that has no incoming attacks in the attack graph of q.

6.3. A new attack notion

We now define a generalized attack notion, which refers to two Boolean conjunctive queries, q1 and q2, such that there
exists a homomorphism from q2 to q1. This new attack notion, denoted by the symbol q2q1��, turns out to be a useful tool in
the study of the containment problem for queries of the form (5).

Definition 2. Let q1 and q2 be self-join-free Boolean conjunctive queries such that there exists a homomorphism (call it h)
from q2 to q1. Notice that such a homomorphism, if it exists, is unique (because the queries are self-join-free). Let G and H
be distinct atoms of q2. We write

G
q2q1��H

if there exists a sequence

G0

u1
� G1

u2
� G2 . . .

u�

� G� (7)

such that

1. G0, G1, . . . , G� are atoms of q2 such that G0 = G and G� = H ;
2. for all i ∈ {1, . . . , �}, ui ∈ vars(Gi−1) ∩ vars(Gi);
3. for all i ∈ {1, . . . , �}, h(ui) is a variable that does not belong to

(
h(G0)

)+,q1 .

Let u ∈ vars(q2). We write

G
q2q1��u

if

G
q′

2q′
1��N(u)

where

1. N is a new relation name with signature [1, 1];
2. q′

2 = q2 ∪ {N(u)}; and
3. q′

1 = q1 ∪ {N(h(u))}.

Notice that if h(u) is a constant, then G
q2q1���u. Note also that for every atom F of q1, F +,q1 = F +,q′

1 . �
Intuitively, G

q2q1��H if there exists a sequence of the form (7) whose image under the homomorphism h is a witness for
h(G) q1� h(H). The notion q2q1�� is a proper generalization of q1�, because for q1 = q2, the relationship q2q1�� is the same as q1�.
That is, F

q1q1��F ′ if and only if F
q1� F ′ .

Example 9. Let q2 = {R(u, x)} and q1 = {R(y, z), S(z)}. Then, R(u, x) q2q1��x because R(u, x)
q′

2q′
1��N(x), where q′

2 = { R(u, x), N(x) }
and q′

1 = {R(y, z), S(z), N(z)}. Indeed, note that R(u, x) and N(x) share the variable x, and h(x) = z does not belong to
R+,q′

1 = {y}. �
Example 10. Consider the following two queries:

q2 = {
R(a, u), S(u, x1), T (x2)

};
q1 = {

R(a, y), S(y, z), T (z)
}
,

JID:IJA AID:7961 /FLA [m3G; v1.190; Prn:14/11/2016; 10:55] P.14 (1-19)

14 F. Geerts et al. / International Journal of Approximate Reasoning ••• (••••) •••–•••
and let h be the (unique) homomorphism from q2 to q1. Notice that h(x1) = h(x2) = z. Since key(R) = ∅ in q1, but key(S) �=
∅ �= key(T), we have R+,q1 = ∅. Hence, R(a, u)

q2q1��x1 and R(a, u)
q2q1��u trivially hold. Note, however, that R(a, u)

q2q1���x2. This
is because the atom T (x2) shares no variable with any other atom of q2. �
6.4. Testing containment

The following theorem expresses a significant relationship between q2q1�� and query containment for queries of the
form (5). Paraphrasing somewhat, if �q1�
 �q2� and u ∈ vars(q2) such that G

q2q1��u for some G ∈ q2, then query con-
tainment is lost if the quantification of the variable u is moved outside the scope of �·�. It is an open question whether the
inverse of Theorem 8 also holds.

Theorem 8. Let q1 and q2 be self-join-free Boolean conjunctive queries such that there exists a homomorphism (call it h) from q2 to
q1 . Let u ∈ vars(q2). If G q2q1��u for some G ∈ q2 , then �q1� �
 ∃u�q2�.

Proof. We first fix some notations. Let G0 ∈ q2 such that G0
q2q1��u. Let h(G0) = F0 and h(u) = w . Assume that R0 is the

relation name of G0 (which is necessarily equal to the relation name of F0). We show that �q1� �
 ∃u�q2� by constructing a
database instance db such that db |= �q1� but db �|= ∃u�q2�.

To define db, let θ, μ be two valuations over vars(q1) such that for every x ∈ vars(q1), θ(x) = μ(x) if and only if x ∈
F0

+,q1 . Assume that q1 = {〈〉 | ∃	y B1
}

. Let db = θ(B1) ∪ μ(B1). We next show that db has only two repairs, denoted by r
and s, where

r = db \ {μ(F0)};
s = db \ {θ(F0)}.

To see that these are repairs, we first show that for every F ∈ q1 \ {F0}, the facts θ(F) and μ(F) are either equal or not
key-equal, i.e., they never constitute two distinct facts of a same block. Indeed, for every F ∈ q1 \{F0}, two cases are possible:

Case key(F) ⊆ F0
+,q1 . Then, vars(F) ⊆ F0

+,q1 , and thus θ and μ agree on all variables of vars(F). That is, θ(F) = μ(F).
Case key(F) � F0

+,q1 . Then, by the definition of θ and μ, for some variable x ∈ key(F), θ(x) �= μ(x), hence θ(F) and μ(F)

are not key-equal.

Furthermore, when considering F0, θ(F0) and μ(F0) are distinct and key-equal (hence, r contains θ(F0) and s contains
μ(F0)). The facts θ(F0) and μ(F0) are key-equal because key(F0) ⊆ F0

+,q1 is obvious. Further, from G0
q2q1��u, we can assume

some variable y ∈ vars(F0) such that F0
q1� y, hence y /∈ F0

+,q1 . Since θ and μ disagree on y, we have θ(F0) �= μ(F0). Clearly,
r and s are the only repairs of db, since {θ(F0), μ(F0)} is the only block of db with more than one fact.

It is obvious that r |= q1 and s |= q1, hence db |= �q1� since r and s are the only repairs of db. We now show that
db �|= ∃u�q2�, or in other words, that there is no constant c such that both r |= q2[u �→c] and s |= q2[u �→c] . First, we show that
if r |= q2[u �→c] and s |= q2[u �→c] for some constant c, then it must be the case that either c = μ(w) or c = θ(w). Indeed,
for every valuation α over vars(q2) such that α(q2) ⊆ r, we have α(u) ∈ {μ(w), θ(w)}. Likewise, for every valuation β over
vars(q2) such that β(q2) ⊆ s, we have β(u) ∈ {μ(w), θ(w)}. Second, we show that μ(w) �= θ(w). Indeed, from G0

q2q1��u, it

is correct to conclude w /∈ F0
+,q1 . To see this, consider a sequence G0

u1
� G1

u2
� G2 . . .

u
� N(u) witnessing that G0

q2q1��u. Then,
h(u) = w /∈ (

h(G0)
)+,q′

1 = F0
+,q1 . From the definition of μ and θ , it is correct to conclude that μ(w) �= θ(w). Finally, we

show that r �|= q2[u �→μ(w)] and s �|= q2[u �→θ(w)] . This suffices to show that db �|= ∃u�q2�.
We show r �|= q2[u �→μ(w)] (the proof of s �|= q2[u �→θ(w)] is symmetrical). More specifically, we show that any valuation α

over vars(q2) such that α(q2) ⊆ r satisfies α(u) = θ(w). Hence, α(u) �= μ(w) for any such valuation α and it is correct to
infer that r �|= q2[u �→μ(w)] .

It is easily verified that from G0
q2q1��u, it follows that for some � ≥ 0, there exists a sequence

G0

u1
� G1

u2
� G2 . . .

u�

� G� (8)

such that

1. G0, G1, . . . , G� are atoms of q2;
2. u ∈ vars(G�);
3. for all i ∈ {1, . . . , �}, ui ∈ vars(Gi−1) ∩ vars(Gi); and
4. for all i ∈ {1, . . . , �}, h(ui) is a variable such that μ(h(ui)) �= θ(h(ui)).

JID:IJA AID:7961 /FLA [m3G; v1.190; Prn:14/11/2016; 10:55] P.15 (1-19)

F. Geerts et al. / International Journal of Approximate Reasoning ••• (••••) •••–••• 15
Function 1. ContainedIn.

Observe that (4) is equivalent to h(ui) /∈ h(G0)
+,q1 = F0

+,q1 (for all i ∈ {1, . . . , �}). For every i ∈ {1, . . . , �}, define wi := h(ui).
Let α be a valuation over vars(q2) such that α(q2) ⊆ r. Based on the sequence (8), we show by induction on increasing i that
for i ∈ {0, . . . , �}, α(Gi) = θ(Fi). This suffices since if this holds, then α(G�) = θ(F�) and since u ∈ vars(G�), α(u) = θ(w).

The induction hypothesis trivially holds for i = 0. Indeed, as argued above, θ(F0) is the only R0-fact of r.
For the induction step, i �→ i + 1, the induction hypothesis is that for all j ∈ {0, . . . , i}, α(G j) = θ(F j). Clearly, since

ui+1 ∈ vars(Gi), we have that α(ui+1) = θ(ui+1). Then, since ui+1 ∈ vars(Gi+1) and θ(wi+1) �= μ(wi+1), it must be the case
that α(Gi+1) = θ(Fi+1).

So we obtain α(G�) = θ(F�), hence α(u) = θ(w). This concludes the proof. �
As already mentioned, it is an open question whether the inverse of Theorem 8 also holds:

From �q1�
 �q2�, u ∈ vars(q2), and G
q2q1���u for all G ∈ q2, is it correct to conclude �q1�
 ∃u�q2�?

Theorem 9 provides a positive answer to this question under restrictions on q1. The theorem is stated in the form of
Function 1, which recursively checks whether the variable u has an incoming q2q1��-attack. The function will be called once
for every atom of q2. We briefly discuss the restrictions imposed on q1 by Theorem 9.

• The restriction that q1 and q2 have the same cardinality can be easily met, because we can always add “dummy” atoms
to a conjunctive query without affecting query containment. For example, if q1 contains an R-atom with signature
[n, k], but q2 contains no R-atom, then we can add to q2 the dummy atom R(u1, . . . , uk, uk+1, . . . , un), where each ui is
a fresh variable not occurring elsewhere.

• The restriction that �q1� is in FO is not problematic for the application we have in mind, which, as explained in
Section 6.1, is the simplification of strategies, which are unions of queries of the form (5) that are in FO. Notice that no
such restriction is imposed on �q2�, which can thus be a query not in FO.

• The more technical restriction is F +,q1 ⊆ vars(F). This restriction is met, for example, by the queries q11 =
∃x∃y

(
R(x, y) ∧ S(x, y)

)
and q12 = ∃x∃y∃z

(
R(x, y) ∧ S(y, z)

)
, but not by q13 = ∃x∃y

(
R(x, y) ∧ S(x, z)

)
(because R+,q13 =

{x, z} and z /∈ vars(R)). This restriction excludes some queries, but is not overly prohibitive. It is an open question
whether Theorem 9 can be proved without relying on this restriction.

Theorem 9. Let q1 and q2 be self-join-free Boolean conjunctive queries, of the same cardinality, such that there exists a homomorphism
(call it h) from q2 to q1 . Assume that �q1� is in FO and that for every F ∈ q1 , it is the case that F +,q1 ⊆ vars(F). Then the following are
equivalent for any variable u:

1. ContainedIn(q1 ,q2 ,u) returns true; and
2. �q1�
 ∃u�q2�.

Proof. 2 =⇒ 1 Proof by contraposition. Assume that ContainedIn(q1,q2,u) returns false. Then, at some point in the
execution of ContainedIn(q1,q2,u), the test “if G0

q2q1��u” returns true. Let F0, F1, . . . , Fn be a topological sort of the

JID:IJA AID:7961 /FLA [m3G; v1.190; Prn:14/11/2016; 10:55] P.16 (1-19)

16 F. Geerts et al. / International Journal of Approximate Reasoning ••• (••••) •••–•••
attack graph of q1 where ties are broken lexicographically. For every i ∈ {0, . . . , n}, let Gi be the atom of q2 with the same

relation name as Fi (i.e., h(Gi) = Fi). Then, there exists � ∈ {0, . . . , n} such that G�

q′
2α(q′

1)
�� u where

• q′
2 = {G�, G�+1, . . . , Gn},

• q′
1 = {F�, F�+1, . . . , Fn}, and

• α is a valuation over vars(F0) ∪ vars(F1) ∪ · · · ∪ vars(F�−1).

We have α(F�)
α(q′

1)
� h(u). From Lemma 5, it follows F�

q1� h(u). It is now easy to see G�
q2q1��u. By Theorem 8, �q1� �
 ∃u�q2�.

1 =⇒ 2 We use the following notations:

h := (unique) homomorphism from q2 to q1;
F0 := head(q1);
G0 := the (unique) atom in q2 such that h(G0) = F0;
q̂1 := q1 \ {F0};
q̂2 := q2 \ {G0}.

The initial assumptions are the following:

1. ContainedIn(q1,q2,u) returns true;
2. db is a database such that every repair of db satisfies q1.

The proof runs by structural induction. For the base case (i.e., u /∈ vars(q2)), it is obvious that ∃u�q2� ≡ �q2� and the desired
result holds because there exists a homomorphism from q2 to q1. Assume hereinafter that u ∈ vars(q2).

Since �q1� is in FO, the attack graph of q1 is acyclic. Let R0, R1, . . . , Rn be a topological ordering of the attack graph
of q1, where ties are broken lexicographically.3 Since F0 = head(q1), the relation name of F0 is R0.

We need to show that db |= ∃u�q2�. Clearly, since db |= �q1�, there must exist a (not necessarily unique) subset db0 of
db such that

1. db0 |= �q1�;
2. for every block B of db, either B ⊆ db0 or B ∩ db0 = ∅.
3. Minimality: for every block B of db0, we have db0 \B �|= �q1�.

In practice, db0 can be obtained from db by repeatedly removing blocks until the further removal of any more block would
lead to a database that falsifies �q1�. We will show that db0 |= ∃u �q2�, which obviously implies db |= ∃u �q2� (because
every repair of db contains a repair of db0).

Let the set of R0-facts in db0 be {A1, . . . , Am}. For 1 ≤ i ≤ m, denote by θi the (unique) valuation over vars(F0) such that
θi(F0) = Ai . We show the following:

Agreement Property: For every v ∈ vars(F0) ∩ F0
+,q1 , for all i, j ∈ {1, . . . , m}, θi(v) = θ j(v).

To this extent, let v ∈ vars(F0) ∩ F0
+,q1 . Then, F0

q1�� v . Moreover, since F0 has no incoming attacks in the attack graph of q1,

we have that for all F ∈ q1, F
q1�� v . From Lemma 4, it follows that for all i, j ∈ {1, . . . , m}, θi(v) = θ j(v), which concludes

the proof of the Agreement Property. Notice that from key(F0) ⊆ F0
+,q1 and the Agreement Property, it follows that the set

{A1, . . . , Am} is the unique R0-block of db0.
It suffices now to show that there exists a constant b (which depends on db0) such that every repair of db0 satisfies

q2[u �→b] . We distinguish two cases, the first case being the easier one.

Case u ∈ vars(G0)

In this case, it can be shown that all R0-facts agree on the position at which u occurs in G0. Indeed, from G0

q2q1���u (since
ContainedIn(q1,q2,u) returns true), it follows h(u) ∈ F0

+,q1 . From h(u) ∈ vars(F0) and the Agreement Property, it follows
that for all i, j ∈ {1, . . . , m}, θi(h(u)) = θ j(h(u)). In this case, the desired result holds for b = θ1(h(u)).

Case u /∈ vars(G0)

Let d̂b0 := db0 \ {A1, . . . , Am}. For i ∈ {1, . . . , m}, denote by d̂b
i
0 a minimal subset of d̂b0 such that d̂b

i
0 |= �θi(q̂1)� and

every block of d̂b0 is either contained in d̂b
i
0 or disjoint with d̂b

i
0. That is, d̂b

i
0 is obtained from d̂b0 relative to θi(q̂1) in

3 By an abuse of notation, we blur the distinction between atoms and their relation names.

JID:IJA AID:7961 /FLA [m3G; v1.190; Prn:14/11/2016; 10:55] P.17 (1-19)

F. Geerts et al. / International Journal of Approximate Reasoning ••• (••••) •••–••• 17
exactly the same way as db0 was obtained from db relative to q1. In the same way as {A1, . . . , Am} was shown to be the
only R0-block of db0, it can be shown that for each i ∈ {1, . . . , m}, d̂b

i
0 contains only one R1-block.

It follows from Lemma 5 that R1, R2, . . . , Rn will be a topological sort of the attack graph of θi(q̂1) (for all 1 ≤ i ≤ m).
The following hold for any i ∈ {1, . . . , m}:

• from our initial hypothesis that ContainedIn(q1,q2,u) returns true, it follows that ContainedIn(θi(q̂1),q̂2,u) returns
true; and

• by the induction hypothesis, there exists a constant bi such that every repair r̂ of d̂b
i
0 satisfies q̂2[u �→bi] .

We show that db0 |= �q2[u �→b1]� (i.e., we fix i = 1). By symmetry, it will actually follow that for every i ∈ {1, . . . , m},
db0 |= �q2[u �→bi]�.

Let r be an arbitrary repair of db0. We need to show r |= q2[u �→b1] .
We can assume � ∈ {1, . . . , m} such that A� ∈ r. Since r |= q1, there exists a valuation δ over vars(q1) such that δ(q1) ⊆ r

and δ(F0) = A� . The latter follows because A� is the only R0-fact in r. Let α be the valuation over vars(q2) such that for
every x ∈ vars(q2), α(x) = δ(h(x)). Obviously, α(q2) = δ(q1) ⊆ r and α(G0) = A� .

Clearly, r ∩ d̂b
1
0 is a repair of d̂b

1
0. By the induction hypothesis, we can assume a valuation β over vars(q2) such that

1. β(q̂2) ⊆ r ∩ d̂b
1
0;

2. β(u) = b1; and
3. β(G0) = A1.

Notice that the induction hypothesis gives us the first two items. The last item follows from the construction of d̂b
1
0.

Let γ be the valuation over vars(q2) such that for every x ∈ vars(q2),

γ (x) =
{

α(x) if G0
q2q1��x

β(x) otherwise
(9)

From the construction of γ and G0

q2q1���u, it follows γ (u) = b1. It remains to be shown that γ (q2) ⊆ r. To this extent, let G
be an arbitrary atom of q2. It remains to be shown that γ (G) ∈ r. We distinguish two cases.

Case G = G0. Recall that α(G0) = A� , β(G0) = A1, and A� ∈ r. We show that γ (G0) = α(G0) = A� . To this extent, let w be
an arbitrary variable in vars(G0). If G0

q2q1��w , then γ (w) = α(w) by the construction of γ in (9). Consider next

G0

q2q1���w . Then it must be the case that h(w) ∈ F0
+,q1 and, by the Agreement Property, A1 and A� agree on the

position at which w occurs in G0. Then, α(w) = β(w).
Case G �= G0. Assume towards a contradiction G ∈ q2 such that γ (G) /∈ r. Then, it must be the case that α(G) �= γ (G) �=

β(G), because α(G) and β(G) belong to r. Then we can assume y1, y2 ∈ vars(G) such that γ (y1) = α(y1) �= β(y1)

and γ (y2) = β(y2) �= α(y2). We next show a contradiction by proving α(y2) = β(y2).

Observe that by the construction of γ in (9), from γ (y1) = α(y1) �= β(y1), it follows G0
q2q1��y1. Likewise, from

γ (y2) = β(y2) �= α(y2), it follows G0

q2q1���y2. We show next h(y2) ∈ F0
+,q1 .

From G0
q2q1��y1 and y1 ∈ vars(G), it follows G0

q2q1��G , which implies the existence of a sequence of the
form (7) with G� = G . Then for every variable v ∈ vars(G), either G0

q2q1��v or h(v) ∈ F0
+,q1 . Since y2 ∈ vars(G)

and G0

q2q1���y2, it must be the case h(y2) ∈ F0
+,q1 .

The statement of Theorem 9 makes the hypothesis that F0
+,q1 ⊆ vars(F0), hence h(y2) ∈ vars(F0). Then, by the

Agreement Property, it is correct to conclude that for all i, j ∈ {1, . . . , m}, θi(h(y2)) = θ j(h(y2)). In the remainder of
the proof, we denote by d the constant such that for all i ∈ {1, . . . , m}, θi(h(y2)) = d. Intuitively, this means that
all R0-facts of db0 contain the constant d at the position at which h(y2) occurs in F0. Note incidentally that this
does not mean that y2 occurs in G0, because the homomorphism h can map distinct variables of q2 to the same
variable in q1 (i.e., h needs not to be injective).

Let F be the atom such that h(G) = F , and let the relation name of F be R . From G �= G0, it follows F �= F0
(and R �= R0). Since y2 occurs in G , h(y2) occurs in F . So h(y2) occurs in both F0 and F . Let o be the arity of
R and let p ∈ {1, . . . , o} such that y2 occurs at position p in G (and hence h(y2) occurs at position p in F). The
construction of db0 ensures that all R-facts of db0 will contain the same constant d at position p. Indeed, if an
R-fact A of db contains a distinct constant at position p, then the block containing A will be excluded from db0
(because of the Minimality condition). It follows α(y2) = d = β(y2), a contradiction. We conclude by contradiction
that γ (G) ∈ r.

This concludes the proof. �

JID:IJA AID:7961 /FLA [m3G; v1.190; Prn:14/11/2016; 10:55] P.18 (1-19)

18 F. Geerts et al. / International Journal of Approximate Reasoning ••• (••••) •••–•••
7. Conclusion

We have studied a realistic setting for divulging an inconsistent database to end users. In this setting, users access
the database exclusively via syntactically restricted queries, and get exclusively consistent answers computable in FO data
complexity. If the data complexity is higher, then the query will be rejected, in which case users have to fall back on
strategies that obtain a large (the larger, the better) subset of the consistent answer. Such strategies combine answers
obtained from several “easier” queries.

Although our setting applies to arbitrary queries and constraints, we searched for strategies when constraints are primary
keys, and the database is accessible only via self-join-free conjunctive queries for which consistent query answering is in
FO. Under these access restrictions, we showed how to construct strategies that combine answers by means of union
and quantification. It turns out that the simplification of such strategies raises a novel and challenging query containment
problem. By means of a new tool (a generalization of attack graphs), we were able to solve this containment problem under
some syntactic restrictions, leaving a general solution for future work. Another interesting open question is whether our
strategies can still be improved, e.g., by using negation.

Of practical interest is the development of an academic prototype that allows investigating the real-life applicability and
efficiency of the proposed strategies.

References

[1] F. Geerts, F. Pijcke, J. Wijsen, First-order under-approximations of consistent query answers, in: C. Beierle, A. Dekhtyar (Eds.), Scalable Uncertainty
Management – Proceedings of the 9th International Conference, SUM 2015, Québec City, QC, Canada, September 16–18, 2015, in: Lecture Notes in
Computer Science, vol. 9310, Springer, 2015, pp. 354–367, http://dx.doi.org/10.1007/978-3-319-23540-0_24.

[2] M. Arenas, L.E. Bertossi, J. Chomicki, Consistent query answers in inconsistent databases, in: V. Vianu, C.H. Papadimitriou (Eds.), Proceedings of the
Eighteenth ACM SIGACT–SIGMOD–SIGART Symposium on Principles of Database Systems, May 31–June 2, 1999, Philadelphia, PA, USA, ACM Press,
1999, pp. 68–79, http://doi.acm.org/10.1145/303976.303983.

[3] S. Abiteboul, R. Hull, V. Vianu, Foundations of Databases, Addison–Wesley, 1995.
[4] J. Chomicki, J. Marcinkowski, Minimal-change integrity maintenance using tuple deletions, Inf. Comput. 197 (2005) 90–121.
[5] L. Libkin, SQL’s three-valued logic and certain answers, in: M. Arenas, M. Ugarte (Eds.), 18th International Conference on Database Theory, ICDT 2015,

March 23–27, 2015, Brussels, Belgium, in: LIPIcs, vol. 31, Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2015, pp. 94–109, http://dx.doi.org/
10.4230/LIPIcs.ICDT.2015.94.

[6] N. Immerman, Descriptive Complexity, Graduate Texts in Computer Science, Springer, 1999, http://dx.doi.org/10.1007/978-1-4612-0539-5.
[7] N.V. Cao, E. Fragnière, J.-A. Gauthier, M. Sapin, E.D. Widmer, Optimizing the marriage market: an application of the linear assignment model, Eur. J.

Oper. Res. 202 (2010) 547–553.
[8] P. Koutris, J. Wijsen, The data complexity of consistent query answering for self-join-free conjunctive queries under primary key constraints, in: T.

Milo, D. Calvanese (Eds.), Proceedings of the 34th ACM Symposium on Principles of Database Systems, PODS 2015, Melbourne, Victoria, Australia, May
31–June 4, 2015, ACM, 2015, pp. 17–29, http://doi.acm.org/10.1145/2745754.2745769.

[9] W. Fan, F. Geerts, Foundations of Data Quality Management, Synthesis Lectures on Data Management, Morgan & Claypool Publishers, 2012, http://
dx.doi.org/10.2200/S00439ED1V01Y201207DTM030.

[10] L.E. Bertossi, Database Repairing and Consistent Query Answering, Synthesis Lectures on Data Management, Morgan & Claypool Publishers, 2011.
[11] A. Fuxman, R.J. Miller, First-order query rewriting for inconsistent databases, in: T. Eiter, L. Libkin (Eds.), Database Theory, Proceedings of the 10th Inter-

national Conference, ICDT 2005, Edinburgh, UK, January 5–7, 2005, in: Lecture Notes in Computer Science, vol. 3363, Springer, 2005, pp. 337–351, http://
dx.doi.org/10.1007/978-3-540-30570-5_23.

[12] J. Wijsen, A survey of the data complexity of consistent query answering under key constraints, in: C. Beierle, C. Meghini (Eds.), Foundations of
Information and Knowledge Systems – Proceedings of the 8th International Symposium, FoIKS 2014, Bordeaux, France, March 3–7, 2014, in: Lecture
Notes in Computer Science, vol. 8367, Springer, 2014, pp. 62–78, http://dx.doi.org/10.1007/978-3-319-04939-7_2.

[13] P. Koutris, J. Wijsen, Consistent query answering for primary keys, SIGMOD Rec. 45 (2016) 15–22.
[14] D. Maslowski, J. Wijsen, A dichotomy in the complexity of counting database repairs, J. Comput. Syst. Sci. 79 (2013) 958–983.
[15] D. Maslowski, J. Wijsen, Counting database repairs that satisfy conjunctive queries with self-joins, in: N. Schweikardt, V. Christophides, V. Leroy (Eds.),

Proc. 17th International Conference on Database Theory, ICDT, Athens, Greece, March 24–28, 2014, OpenProceedings.org, 2014, pp. 155–164, http://
dx.doi.org/10.5441/002/icdt.2014.18.

[16] J. Wijsen, Charting the tractability frontier of certain conjunctive query answering, in: R. Hull, W. Fan (Eds.), Proceedings of the 32nd ACM SIGMOD–
SIGACT–SIGART Symposium on Principles of Database Systems, PODS 2013, New York, NY, USA, June 22–27, 2013, ACM, 2013, pp. 189–200,
http://doi.acm.org/10.1145/2463664.2463666.

[17] N.N. Dalvi, C. Ré, D. Suciu, Probabilistic databases: diamonds in the dirt, Commun. ACM 52 (2009) 86–94.
[18] N.N. Dalvi, C. Re, D. Suciu, Queries and materialized views on probabilistic databases, J. Comput. Syst. Sci. 77 (2011) 473–490.
[19] S. Greco, C. Molinaro, Approximate probabilistic query answering over inconsistent databases, in: Q. Li, S. Spaccapietra, E.S.K. Yu, A. Olivé (Eds.),

Conceptual Modeling – ER 2008, Proceedings of the 27th International Conference on Conceptual Modeling, Barcelona, Spain, October 20–24, 2008, in:
Lecture Notes in Computer Science, vol. 5231, Springer, 2008, pp. 311–325, http://dx.doi.org/10.1007/978-3-540-87877-3_23.

[20] G. Greco, S. Greco, E. Zumpano, A logical framework for querying and repairing inconsistent databases, IEEE Trans. Knowl. Data Eng. 15 (2003)
1389–1408.

[21] P.G. Kolaitis, E. Pema, W. Tan, Efficient querying of inconsistent databases with binary integer programming, Proc. VLDB Endow. 6 (2013) 397–408.
[22] A. Fuxman, E. Fazli, R.J. Miller, ConQuer: efficient management of inconsistent databases, in: F. Özcan (Ed.), Proceedings of the ACM SIGMOD

International Conference on Management of Data, Baltimore, MD, USA, June 14–16, 2005, ACM, 2005, pp. 155–166, http://doi.acm.org/10.1145/
1066157.1066176.

[23] D. Lembo, M. Lenzerini, R. Rosati, M. Ruzzi, D.F. Savo, Inconsistency-tolerant query answering in ontology-based data access, J. Web Semant. 33 (2015)
3–29.

[24] M. Bienvenu, R. Rosati, Tractable approximations of consistent query answering for robust ontology-based data access, in: F. Rossi (Ed.), Proceed-
ings of the 23rd International Joint Conference on Artificial Intelligence, IJCAI 2013, Beijing, China, August 3–9, 2013, IJCAI/AAAI, 2013, pp. 775–781,
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6904.

http://dx.doi.org/10.1007/978-3-319-23540-0_24
http://dx.doi.org/10.1145/303976.303983
http://refhub.elsevier.com/S0888-613X(16)30176-1/bib44424C503A626F6F6B732F61772F4162697465626F756C48563935s1
http://refhub.elsevier.com/S0888-613X(16)30176-1/bib4D415243494E4B4F57534B493032s1
http://dx.doi.org/10.4230/LIPIcs.ICDT.2015.94
http://dx.doi.org/10.4230/LIPIcs.ICDT.2015.94
http://dx.doi.org/10.1007/978-1-4612-0539-5
http://refhub.elsevier.com/S0888-613X(16)30176-1/bib43616F32303130353437s1
http://refhub.elsevier.com/S0888-613X(16)30176-1/bib43616F32303130353437s1
http://dx.doi.org/10.1145/2745754.2745769
http://dx.doi.org/10.2200/S00439ED1V01Y201207DTM030
http://dx.doi.org/10.2200/S00439ED1V01Y201207DTM030
http://refhub.elsevier.com/S0888-613X(16)30176-1/bib44424C503A7365726965732F73796E7468657369732F32303131426572746F737369s1
http://dx.doi.org/10.1007/978-3-540-30570-5_23
http://dx.doi.org/10.1007/978-3-540-30570-5_23
http://dx.doi.org/10.1007/978-3-319-04939-7_2
http://refhub.elsevier.com/S0888-613X(16)30176-1/bib44424C503A6A6F75726E616C732F7369676D6F642F4B6F7574726973573136s1
http://refhub.elsevier.com/S0888-613X(16)30176-1/bib44424C503A6A6F75726E616C732F6A6373732F4D61736C6F77736B69573133s1
http://dx.doi.org/10.5441/002/icdt.2014.18
http://dx.doi.org/10.5441/002/icdt.2014.18
http://dx.doi.org/10.1145/2463664.2463666
http://refhub.elsevier.com/S0888-613X(16)30176-1/bib44424C503A6A6F75726E616C732F6361636D2F44616C766952533039s1
http://refhub.elsevier.com/S0888-613X(16)30176-1/bib44424C503A6A6F75726E616C732F6A6373732F44616C766952533131s1
http://dx.doi.org/10.1007/978-3-540-87877-3_23
http://refhub.elsevier.com/S0888-613X(16)30176-1/bib44424C503A6A6F75726E616C732F746B64652F477265636F475A3033s1
http://refhub.elsevier.com/S0888-613X(16)30176-1/bib44424C503A6A6F75726E616C732F746B64652F477265636F475A3033s1
http://refhub.elsevier.com/S0888-613X(16)30176-1/bib44424C503A6A6F75726E616C732F70766C64622F4B6F6C616974697350543133s1
http://dx.doi.org/10.1145/1066157.1066176
http://dx.doi.org/10.1145/1066157.1066176
http://refhub.elsevier.com/S0888-613X(16)30176-1/bib44424C503A6A6F75726E616C732F77732F4C656D626F4C5252533135s1
http://refhub.elsevier.com/S0888-613X(16)30176-1/bib44424C503A6A6F75726E616C732F77732F4C656D626F4C5252533135s1
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6904

JID:IJA AID:7961 /FLA [m3G; v1.190; Prn:14/11/2016; 10:55] P.19 (1-19)

F. Geerts et al. / International Journal of Approximate Reasoning ••• (••••) •••–••• 19
[25] J. Wijsen, Making more out of an inconsistent database, in: G. Gottlob, A.A. Benczúr, J. Demetrovics (Eds.), Advances in Databases and Information
Systems, Proceedings of the 8th East European Conference, ADBIS 2004, Budapest, Hungary, September 22–25, 2004, in: Lecture Notes in Computer
Science, vol. 3255, Springer, 2004, pp. 291–305, http://dx.doi.org/10.1007/978-3-540-30204-9_20.

[26] L.E. Bertossi, L. Li, Achieving data privacy through secrecy views and null-based virtual updates, IEEE Trans. Knowl. Data Eng. 25 (2013) 987–1000.
[27] L. Libkin, Elements of Finite Model Theory, Springer, 2004.
[28] J. Wijsen, On the first-order expressibility of computing certain answers to conjunctive queries over uncertain databases, in: J. Paredaens, D.V. Gucht

(Eds.), Proceedings of the Twenty-Ninth ACM SIGMOD–SIGACT–SIGART Symposium on Principles of Database Systems, PODS 2010, June 6–11, 2010,
Indianapolis, IN, USA, ACM, 2010, pp. 179–190, http://doi.acm.org/10.1145/1807085.1807111.

[29] J. Wijsen, Certain conjunctive query answering in first-order logic, ACM Trans. Database Syst. 37 (2012) 9.

http://dx.doi.org/10.1007/978-3-540-30204-9_20
http://refhub.elsevier.com/S0888-613X(16)30176-1/bib44424C503A6A6F75726E616C732F746B64652F426572746F7373694C3133s1
http://refhub.elsevier.com/S0888-613X(16)30176-1/bib44424C503A626F6F6B732F73702F4C69626B696E3034s1
http://dx.doi.org/10.1145/1807085.1807111
http://refhub.elsevier.com/S0888-613X(16)30176-1/bib44424C503A6A6F75726E616C732F746F64732F57696A73656E3132s1

	First-order under-approximations of consistent query answers
	1 Introduction
	2 Related work
	3 Preliminaries
	4 A framework for divulging inconsistent databases
	4.1 The language CQAFO
	4.2 Restrictions on data complexity
	4.3 Strategies

	5 How to construct good strategies?
	5.1 Post-processing by unions only
	5.2 Post-processing by unions and quantiﬁcation

	6 Simplifying strategies
	6.1 Problem statement and motivation
	6.2 Attack graphs
	6.3 A new attack notion
	6.4 Testing containment

	7 Conclusion
	References

