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Consistent Query Answering (CQA) is a principled approach for answering queries on 
inconsistent databases. The consistent answer to a query q on an inconsistent database 
db is the intersection of the answers to q on all repairs, where a repair is any consistent 
database that is maximally close to db. Unfortunately, computing consistent answers 
under primary key constraints has already exponential data complexity for very simple 
conjunctive queries, and is therefore completely impracticable.
In this paper, we propose a new framework for divulging an inconsistent database to end 
users, which adopts two postulates. The first postulate complies with CQA and states that 
inconsistencies should never be divulged to end users. Therefore, end users should only 
get consistent query answers. The second postulate states that only those queries can be 
answered whose consistent answers can be obtained with low data complexity (i.e., by a 
polynomial-time algorithm or even a first-order logic query). User queries that exhibit a 
higher data complexity will be rejected.
A significant problem in this framework is as follows: given a rejected query, find other 
queries, called under-approximations, that are accepted and whose consistent answers are 
contained in those of the rejected query. We provide solutions to this problem for the 
special case where the constraints are primary keys and the queries are self-join-free 
conjunctive queries.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Inconsistent, incomplete and uncertain data is widespread in the internet and social media era. This has given rise to 
a new paradigm for query answering, called Consistent Query Answering (CQA) [2]. This paradigm starts with the notion of 
repair, which is a new consistent database that minimally differs from the original inconsistent database. In general, an 
inconsistent database can have many repairs. In this respect, database repairing is different from data cleaning which aims 
at a unique cleaned database.

In this paper, we assume that the only constraints are primary keys, one per relation. A repair of an inconsistent database 
db is a maximal subset of db that satisfies all primary key constraints. Primary keys will be underlined. For example, the 
database of Fig. 1 stores ages and cities of residence of male and female persons. For simplicity, assume that persons have 

✩ A short version of this article was published in the conference proceedings of SUM 2015 [1].
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M N A C

Ed 48 Mons
Ed 48 Paris

Dirk 29 Mons

F N A C

An 37 Mons
Iris 37 Paris

Fig. 1. Example database with primary key violations.

unique names (attribute N). Every person has exactly one age (attribute A) and city (attribute C ). However, distinct tuples 
may agree on the primary key N , because there can be uncertainty about ages and cities. In the database of Fig. 1, there 
is uncertainty about the city of Ed (it can be Mons or Paris). The database can be repaired in two ways: delete either 
M(Ed, 48, Mons) or M(Ed, 48, Paris). A maximal set of tuples that agree on their primary key will be called a block; in 
Fig. 1, blocks are separated by dashed lines.

When database repairing results in multiple repairs, CQA shifts from standard semantics to certainty semantics. Given a 
query, the consistent answer (also called certain answer) is defined as the intersection of the answers on all repairs. That is, 
for a query q on an inconsistent database db, CQA replaces the standard query answer q(db) with the consistent answer, 
defined by the following intersection:⋂{

q(r) | r is a repair of db
}
. (1)

Thus, the certainty semantics exclusively returns answers that hold true in every repair. Given a query q, we will denote by 
�q� the query that maps a database to the consistent answer defined by (1).

A practical obstacle to CQA is that the shift to certainty semantics involves a significant increase in complexity. When 
we refer to complexity in this paper, we mean data complexity, i.e., the complexity in terms of the size of the database (for 
a fixed query) [3, p. 422]. It is known for long [4] that there exist conjunctive queries q that join two relations such that 
the data complexity of �q� is already coNP-hard. If this happens, CQA is completely impracticable.

This paper investigates ways to circumvent the high data complexity of CQA in a realistic setting, which is based on the 
following assumptions:

• If a query returns an answer to a user, then every tuple in that answer should belong to the consistent answer. In 
Libkin’s terminology [5], query answers must not contain false positives, i.e., tuples that do not belong to the consistent 
answer.

• The only queries that can be executed in practice are those with data complexity in FP or, even better, in FO. Here, FO
refers to the descriptive complexity class that captures all queries expressible in relational calculus [6]. FP is the class 
of function problems solvable in polynomial time.

Therefore, if the data complexity of a query �q� is not in FP, then the best we can go for is an approximation without false 
positives (also called under-approximation), computable in polynomial time. The term strategy will be used for queries that 
compute such approximations. Intuitively, a strategy can be regarded as a two-step process in which one starts by issuing a 
number of well-behaved queries �qi�, for i ∈ {1, . . . , �}, which can then be subject to a post-processing step. In this paper, 
well-behaved queries are those that are accepted by a query interface, e.g., self-join-free conjunctive queries qi such that 
�qi� is in FO, and post-processing is formalized as queries built-up from the �qi�’s.

We next illustrate our setting by an example. Consider the following scenario with two persons, called Bob and Alice. The 
person called Bob owns a database that is publicly accessible only via a query interface which restricts the syntax of the 
queries that can be asked. Our main results concern the case where the interface is restricted to self-join-free conjunctive 
queries. The database schema including all primary key constraints is publicly available. However, Bob is aware that his 
database contains many mistakes which should not be divulged. Therefore, whenever some end user asks a query q, Bob
will actually execute the query �q�. That is, end users will get exclusively consistent answers. But, for feasibility reasons, 
Bob will reject any query q for which the data complexity of �q� is too high. In this paper, we assume that Bob considers 
that data complexity is too high when it is not in FO. The person called Alice interrogates Bob’s database, and she will be 
happy to get exclusively consistent answers. Unfortunately, her query q will be rejected by Bob if the data complexity of �q�
is too high (i.e., not in FO). If this happens, Alice has to change strategy. Instead of asking q, she can ask a finite number 
of queries q1, q2, . . . , q� such that for every i ∈ {1, . . . , �}, the data complexity of �qi� is in FO, and hence the query qi will 
be accepted by Bob. No restriction is imposed on the number � of queries that can be asked. The best Alice can hope for 
is that she can compute herself the answer to �q� (or even to q) from Bob’s answers to �q1�, . . . , �q�� by means of some 
post-processing. The question addressed in this paper is: Given that Alice wants to answer q, what queries should she ask 
to Bob?

Here is a concrete example. Assume Bob owns the database of Fig. 1. Interested in stable couples,1 Alice submits the 
query q1 which asks “Get pairs of ages of men and women living in the same city”:

q1 = {
y, w | ∃x∃u∃z

(
M(x, y, z) ∧ F (u, w, z)

)}
.

1 According to [7], marital stability is higher when the wife is 5+ years younger than her husband.
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The consistent answer is {(48, 37), (29, 37)}. However, the query �q1� that returns the consistent answer is known to have
coNP-hard data complexity [8]. Therefore, Bob will reject q1. Alice changes strategy and submits the query q2 which asks 
“Get pairs of ages and city of men and women living in the same city”:

q2 = {
y, w, z | ∃x∃u

(
M(x, y, z) ∧ F (u, w, z)

)}
. (2)

Since the data complexity of �q2� is known to be in FO [8], Bob will execute �q2�. The query q2 returns {(29, 37, Mons), 
(48, 37, Mons)} on one repair, and {(29, 37, Mons), (48, 37, Paris)} on the other repair, so the consistent answer is {(29, 37,

Mons)}. This in turn allows Alice to derive a consistent answer to the original query: since (29, 37, Mons) belongs to the 
answer to �q2�, it is correct to conclude that (29, 37) belongs to the answer to �q1�. An interesting question is whether 
Alice has a better strategy that divulges even more answers to �q1�.

The technical contributions of this paper are as follows. We first show that the following problem is undecidable: Given 
a relational calculus query q, is �q� in FO? In view of this undecidability result, we then limit our attention to strategies 
that are first-order combinations (using disjunction and existential quantification) of queries �q� that are known to be in
FO. We show how to build optimal strategies under such syntax restrictions.

This paper is organized as follows. Section 2 discusses related work. Section 3 provides some mathematical definitions. 
Section 4 introduces our new framework for studying consistent query answering under primary key constraints, and in-
troduces the problem OPTSTRATEGY. Intuitively, OPTSTRATEGY asks, given a query q, to find a new query q′ that gets 
the largest subset of consistent answers while still obeying the restrictions imposed by our framework. Section 5 provides 
ways to solve OPTSTRATEGY in restricted settings. Section 6 studies a novel query containment problem that is intimately 
related to the simplification of strategies. Finally, Section 7 concludes the paper.

2. Related work

Consistent query answering (CQA) was proposed in [2] as a principled approach to handle data quality problems that 
arise from violations of integrity constraints. We refer to the textbooks [9] and [10] for comprehensive overviews of these 
domains.

Fuxman and Miller [11] were the first ones to focus on CQA under the restrictions that consistency is only with respect to 
primary keys and that queries are self-join-free conjunctive queries. A survey on consistent query answering to conjunctive 
queries under primary key constraints is given in [12]. Some recent results not covered by this survey can be found in [8,13].

Instead of returning the query answers true in every repair, one could return the query answers true in, e.g., a majority 
of repairs. This leads to the counting variant of CQA, which has been studied in [14,15]. As observed in [16], the counting 
variant of CQA under primary key constraints is closely related to query answering in block-independent-disjoint (BID) 
probabilistic databases [17,18]. Counting the fraction of repairs that satisfy a query has also been studied by Greco et al. [19]. 
The constraints in that work are functional dependencies, and the repairs are obtained by updates. Greco et al. present an 
approach for computing approximate probabilistic answers in polynomial time.

In the past, the paradigm of CQA has been implemented in expressive formalisms, such as Disjunctive Logic Program-
ming [20] and Binary Integer Programming (BIP) [21]. In these formalisms, it is relatively easy to express an algorithm that 
computes consistent answers to conjunctive queries under primary key constraints. The drawback is that these algorithms 
may, in the worst case, take exponential time in cases where, in theory, certain answers are computable in polynomial 
time or expressible in first-order logic. In the latter case, the consistent answer can be computed by a single SQL query 
using standard database technology, including query optimization. In [10, page 38], the author mentions that logic programs 
for CQA cannot compete with solutions in first-order logic when they exist. Likewise, in an experimental comparison of 
EQUIP [21] and ConQuer [22], the authors of the former system found that BIP never outperformed solutions in SQL.

For (unions of) conjunctive queries, under-approximations of consistent answers can be obtained by executing the queries 
on the intersection of all repairs (instead of intersecting query answers). This is called the Intersection ABox Repair (IAR) 
semantics [23,24]. In our setting, the intersection of all repairs can be computed in FO, by selecting from the database all 
blocks that contain only one tuple.

Our work can also be regarded as querying “consistent views,” in the sense that Bob returns exclusively consistent an-
swers. It has been observed long ago [25] that consistent views are not closed under relational calculus. In other words, the 
position of the �·� construct in a query does matter. For example, for the database of Fig. 1, the query 

{
x | ∃y∃z �M(x, y, z)�}

returns only Dirk, while �{x | ∃y∃z M(x, y, z)
}� returns both Ed and Dirk. Bertossi and Li [26] have used views to protect the 

secrecy of data in a database. In our setting, the query answers that are to be hidden from end users are those that are not 
true in every repair.

3. Preliminaries

We assume disjoint sets of variables and constants. A term is a constant or a variable. If 	t is a sequence of terms, then 
vars(	t) denotes the set of variables that occur in 	t . A valuation over a set U of variables is a total mapping θ from U to 
the set of constants. At several places, it is implicitly understood that such a valuation θ is extended to be the identity on 
constants and on variables not in U .
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Atoms and key-equal facts. Each relation name R of arity n, n ≥ 1, has a unique primary key which is a set {1, 2, . . . , k}
where 1 ≤ k ≤ n. We say that R has signature [n, k] if R has arity n and primary key {1, 2, . . . , k}. We say that R is all-key if 
n = k. For all positive integers n, k such that 1 ≤ k ≤ n, we assume denumerably many relation names with signature [n, k].

If R is a relation name with signature [n, k], then R(t1, . . . , tn) is called an R-atom (or simply atom), where each ti is a 
term (1 ≤ i ≤ n). Such an atom is commonly written as R(	x, 	y) where the primary-key value 	x = t1, . . . , tk is underlined and 
	y = tk+1, . . . , tn . An R-fact (or simply fact) is an R-atom in which no variable occurs. Two facts R1(	a1, 	b1) and R2(	a2, 	b2)

are key-equal if R1 = R2 and 	a1 = 	a2.
We will use letters F , G, H for atoms. For an atom F = R(	x, 	y), we denote by key(F ) the set of variables that occur in 	x, 

and by vars(F ) the set of variables that occur in F , that is, key(F ) = vars(	x) and vars(F ) = vars(	x) ∪ vars(	y).

Uncertain databases, blocks, and repairs. A database schema is a finite set of relation names. All constructs that follow 
are defined relative to a fixed database schema.

A database is a finite set db of facts using only the relation names of the schema. We often refer to databases as 
“uncertain databases” to stress that such databases can violate primary key constraints.

A block of db is a maximal set of key-equal facts of db. The term R-block refers to a block of R-facts, i.e., facts with 
relation name R . An uncertain database db is consistent if no two distinct facts are key-equal (i.e., if every block of db is a 
singleton). A repair of db is a maximal (with respect to set containment) consistent subset of db. We write rset(db) for the 
set of repairs of db.

Queries and consistent query answering. We assume that the reader is familiar with relational calculus [3, Chapter 5] and 
with the notion of queries [27, Definition 2.7]. By FO, we denote the descriptive complexity class that contains the queries 
expressible in relational calculus.

For every m-ary (m ≥ 0) relational calculus query q, we define �q� as the m-ary query that maps every database db to ⋂{
q(r) | r ∈ rset(db)

}
. Clearly, if db is a consistent database, then �q�(db) = q(db).

Given two m-ary queries q1 and q2, we say that q1 is contained in q2, denoted by q1 
 q2 if for every database db, 
q1(db) ⊆ q2(db). We write q1 � q2, if q1 
 q2 and q2 �
 q1. We say that q1 and q2 are equivalent, denoted by q1 ≡ q2, if 
q1 
 q2 and q2 
 q1.

A 0-ary query is called Boolean. If q is a Boolean query, then q maps any database to either {〈〉} or {}, corresponding to 
true and false respectively.

A conjunctive query is a relational calculus query of the form 
{	z | ∃	y B

}
where B is a conjunction of atoms. The conjunc-

tion B and the query are said to be self-join-free if no relation name occurs more than once in B . We write vars(B) for the 
set of variables that occur in B . By a slight abuse of notation, we denote by B also the set of conjuncts that occur in B . 
For example, if B1 = R(	x) ∧ R(	y) and B2 = R(	x) ∧ R(	y) ∧ R(	z), then we may write B1 ⊆ B2. Finally, if q is a self-join-free 
conjunctive query with an R-atom, then, by an abuse of notation, we write R to mean the R-atom of q.

If q is a conjunctive query, 	x = 〈x1, . . . , x�〉 is a sequence of distinct variables in vars(q), and 	c = 〈c1, . . . , c�〉 is a sequence 
of constants, then we denote by q[	x �→	c] the query obtained from q by replacing each occurrence of each xi with ci .

Significantly, the following example shows that �q� may not be expressible in relational calculus, even if q is a self-join-
free conjunctive query.

Example 1. Let q1 = {〈〉 | ∃x∃y∃z
(

R(x, z) ∧ S(y, z)
)}

. The query q1 is self-join-free conjunctive. It follows from [8] that �q1�
is not in FO (i.e., not expressible in relational calculus).

Let q2 = {〈〉 | ∃x∃y 
(

R(x, y) ∧ S(y,b)
)}

, where b is a constant. Then, �q2� is equivalent to the following relational calculus 
query:

∃x∃y
(

R(x, y) ∧ ∀y
(

R(x, y) → (
S(y,b) ∧ ∀z

(
S(y, z) → z = b

))))
. �

4. A framework for divulging inconsistent databases

In this section, we formalize the setting that was described and illustrated in Section 1. The setting is captured by the 
language called CQAFO, which consists of first-order quantification and Boolean combinations of atomic formulas of the 
form �q�, where q is any relational calculus query. The atomic formulas �q� capture that the database owner Bob only 
returns consistent answers. Subsequently, the end user Alice, who interrogates Bob’s database, can do some post-processing 
on Bob’s outputs. In our setting, we assume that Alice uses first-order quantification and Boolean combinations of Bob’s 
consistent answers to the atomic formulas �q�.

Example 2. The scenario in Section 1 is captured by the CQAFO query{
y, w | ∃Z

⌊∃x∃u
(
M(x, y, Z) ∧ F (u, w, Z)

)⌋}
.

The formula within �·� is the query (2). The quantification ∃Z corresponds to Alice projecting away the cities column 
returned by Bob. For readability, we will often use upper case letters for variables that are quantified outside the range 
of �·�. �
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Example 3. The following query allows Alice to find the names of men with more than two cities in the database:{
x | ⌊∃y∃z M(x, y, z)

⌋ ∧ ¬∃Z
⌊∃y M(x, y, Z)

⌋}
.

To understand this query, it may be helpful to notice that 
{

x, Z | �∃y M(x, y, Z)�} returns tuple (n, c) whenever c is the 
only city of residence recorded for the person named n. Interestingly, even though Alice gets only consistent answers, she 
can still infer that the database contains inconsistencies. In particular, since the foregoing query returns Ed on the example 
database of Fig. 1, Alice can infer that there is uncertainty about the city of Ed. �
4.1. The language CQAFO

We next describe the syntax and semantics of the language CQAFO used for postprocessing.

Syntax The following are formulas in CQAFO:

• if q is a relational calculus query, then �q� is a CQAFO formula with the same free variables as q;
• if ϕ1 and ϕ2 are CQAFO formulas, then ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, and ¬ϕ1 are CQAFO formulas;
• if ϕ is a CQAFO formula, then ∃Y ϕ and ∀Y ϕ are CQAFO formulas.

If ϕ is a CQAFO formula, then free(ϕ) denotes the set of free variables of ϕ (i.e., the variables not bound by a quantifier). 
If 	x is a tuple containing the free variables of ϕ , we write ϕ(	x).

A CQAFO query is an expression of the form 
{	t | ϕ}

, where 	t is a sequence of terms containing each variable of free(ϕ). 
If 	t contains no constants and no double occurrences of the same variable, then such query is also denoted ϕ(	t).

Semantics Let db be an uncertain database. Let ϕ(	x) be a CQAFO formula, and 	a be a sequence of constants (of same 
length as 	x). We inductively define db |= ϕ(	a).

• If ϕ(	x) = �q(	x)� for some relational calculus query q(	x), then db |= ϕ(	a) if for every repair r of db, r |= q(	a)2;
• db |= ¬ϕ(	a) if db �|= ϕ(	a);
• db |= ϕ1 ∧ ϕ2 if db |= ϕ1 and db |= ϕ2;
• db |= ϕ1 ∨ ϕ2 if db |= ϕ1 or db |= ϕ2;
• if ψ(	x) = ∃Y ϕ(Y , 	x), then db |= ψ(	a) if db |= ϕ(a′, 	a) for some a′;
• if ψ(	x) = ∀Y ϕ(Y , 	x), then db |= ψ(	a) if db |= ϕ(a′, 	a) for all a′ .

Let Q = {	t | ϕ(	x)} be a CQAFO query. The answer Q (db) is the smallest set containing θ(	t) for every valuation θ over 
vars(	t) such that for some 	a, θ(	x) = 	a and db |= ϕ(	a). By definition, we have vars(	t) = vars(	x), but 	t , unlike 	x, can contain 
constants and multiple occurrences of the same variable. If 	t contains no variables, then Q is Boolean.

Domain independence is a desirable property of queries that emerges in CQAFO in the same way as in relational calculus 
[3, p. 79]. For example, consider the CQAFO query Q 0 = {

x | �∃y∃z M(x, y, z)� ∨ �F (‘Iris’, ‘37’, ‘Paris’)�} on the example 
database of Fig. 1. Since F (‘Iris’, ‘37’, ‘Paris’) holds true in every repair, the query is true for any value of x. The query Q 0 is 
thus not domain independent. Nevertheless, domain independence will not be an issue in this paper, because we will only 
deal with syntactic fragments of CQAFO that guarantee domain independence.

4.2. Restrictions on data complexity

The language CQAFO of Section 4.1 captures our first postulate which states that the database owner Bob returns exclu-
sively consistent answers. But we do not prohibit that end user Alice does some post-processing on Bob’s answers. In this 
section, we will add our second postulate which states that Bob rejects queries q if the data complexity of �q� is not in FO. 
Unfortunately, Bob has to face the following undecidability result.

Theorem 1. The following problem is undecidable. Given a relational calculus query q, is �q� in FO?

Proof. Let q1 = {〈〉 | ∃x∃y∃z
(

R(x, z) ∧ S(y, z) ∧ ϕ
)}

where ϕ is a closed relational calculus formula, i.e., a formula with no 
free variables, such that all relation names in ϕ are all-key. Observe that this implies that the relation names in ϕ are 
distinct from R and S . We show hereinafter that �q� is in FO if and only if ϕ is unsatisfiable. The desired result then 
follows by [3, Theorem 6.3.1], which states that (finite) satisfiability of relational calculus queries is undecidable.

Obviously, if ϕ is unsatisfiable, then �q1� ≡ false, and hence �q1� is in FO.
We show next that if ϕ is satisfiable, then �q1� is not in FO. Assume that ϕ is satisfiable. Let q0 = ∃x∃y∃z

(
R(x, z) ∧

S(y, z)
)

and consider the following two problems:

2 r |= q(	a) is defined in the standard way.
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• CERTAIN0: Given a database db, determine whether every repair of db satisfies q0.
• CERTAIN1: Given a database db, determine whether every repair of db satisfies q1.

We show a polynomial-time many-one reduction from CERTAIN0 to CERTAIN1. Let db0 be a database that is input to 
CERTAIN0. Let S be the database schema that contains the relation names occurring in ϕ . An algorithm can consider 
systematically every finite database db′ over S and test db′ |= ϕ , until a database db′ is found such that db′ |= ϕ . The 
algorithm terminates because ϕ is satisfiable. Since the computation of db′ does not depend on db0, it takes O(1) time. 
Since all relation names in db′ are all-key, we have that db′ is consistent. Clearly, q0 is true in every repair of db0 if and 
only if q1 is true in every repair of db0 ∪ db′ . This follows from the fact that the relation names in ϕ are distinct from 
R and S . So we have established a polynomial-time many-one reduction from CERTAIN0 to CERTAIN1. Since CERTAIN0 is
coNP-hard [8], it follows that CERTAIN1 is coNP-hard. Since FO � coNP [6], it follows that CERTAIN1 is not in FO. �

By Theorem 1, there exists no algorithm that allows Bob to decide whether he has to accept or reject a relational calculus 
query. In general, little is known about the complexity of �q� for relational calculus queries q. One of the stronger known 
results is the following.

Theorem 2 ([8]). The following problem is decidable in polynomial time. Given a self-join-free conjunctive query q, is �q� in FO? 
Moreover, if �q� is in FO, then a relational calculus query equivalent to �q� can be effectively constructed.

In view of Theorems 1 and 2, the following scenario is the best we can go for with the current state of art.

1. The database owner Bob only accepts self-join-free conjunctive queries q such that �q� is in FO. Thus, Bob rejects every 
query that is not self-join-free conjunctive, and rejects a self-join-free conjunctive query q if �q� is not in FO.

2. As before, Alice can do some first-order post-processing on the answers obtained from Bob.

Under these restrictions, we focus on the following problem: given that Alice wants to answer a self-join-free conjunctive 
query q on a database owned by Bob, develop a strategy for Alice to get a subset (the greater, the better) of the consistent 
answer to q. Our framework applies to Boolean queries by representing true and false by {〈〉} and {} respectively. A formal 
definition follows.

4.3. Strategies

Strategies for a query q are defined next as relational calculus queries that can be expressed in CQAFO and that are 
contained in �q�.

Definition 1. Let q be a self-join-free conjunctive query. A strategy for q is a CQAFO query ϕ such that ϕ 
 �q� and for every 
atomic formula �q′� in ϕ , we have that q′ is a self-join-free conjunctive query such that �q′� is in FO.

A strategy ϕ for q is optimal if for every strategy ψ for q, we have ψ 
 ϕ . The problem OPTSTRATEGY takes in a 
self-join-free conjunctive query q and asks to determine an optimal strategy for q. �

Some observations are in place.

• If the input to OPTSTRATEGY is a self-join-free conjunctive q such that �q� is in FO, then the CQAFO query �q� is 
itself an optimal strategy.

• Every strategy ϕ is in FO, because all atomic formulas �q′� are required to be in FO. Therefore, if Alice wants to answer 
a query q such that �q� is not in FO, then there is no strategy ϕ such that ϕ ≡ �q�.

• There is no fundamental reason why the input query to OPTSTRATEGY is required to be a self-join-free conjunctive 
query. However, developing strategies for more expressive queries is left as an open question.

In the remainder of this paper, we will not investigate the problem OPTSTRATEGY in its most general form. Instead, we will 
confine our investigation to strategies that can be expressed and effectively constructed in a syntactic fragment of CQAFO. 
We will explain how such strategies can be constructed, but leave open the computational complexity of the construction.

5. How to construct good strategies?

Let q be a self-join-free conjunctive query. In this section, we investigate ways for constructing good (if not optimal) 
strategies for q of a particular syntax. In Section 5.1, we take the most simple approach: take the union of queries �qi�
contained in �q�, where qi is self-join-free conjunctive and �qi� is in FO. We then show that the strategies obtained in this 
way cannot be optimal. Therefore, an enhanced approach is developed in Section 5.2.
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5.1. Post-processing by unions only

Assume that the input to OPTSTRATEGY is a self-join-free conjunctive query q(	z). In this section, we look at strategies 
of the form

�⋃
i=1

�qi�, (3)

where each qi is of the form 
{ 	zi | ∃	yi Bi

}
in which 	zi has the same length as 	z and Bi is a self-join-free conjunction of 

atoms. Speaking strictly syntactically, �{ 	zi | ∃	yi Bi
}� is not a CQAFO query, as it is not of the form 

{	t | ϕ}
for some CQAFO

formula ϕ as defined in Section 4.1. However, it can be easily verified that �{ 	zi | ∃	yi Bi
}� ≡ { 	zi | �∃	yi Bi�

}
, and the latter 

query is a CQAFO query.
We use union (with its standard semantics) instead of disjunction to avoid notational difficulties. For example, the union{

x,a | �R(x,a)�} ∪ {
x, y | �S(x, y)�},

where a is a constant, is semantically clear, and is equivalent to{
x, y | �R(x, y) ∧ y = a� ∨ �S(x, y)�},

in which equality is used. It would be wrong to write 
{

x, y | �R(x,a)� ∨ �S(x, y)�}, an expression that is not domain in-
dependent [3, p. 79], because if some fact R(c, a) holds true in every repair, then �R(x,a)� ∨ �S(x, y)� is true when c is 
assigned to x, no matter what value is assigned to y. On the other hand, a CQAFO formula of the form (3) is domain 
independent if each �qi� is domain independent.

Furthermore, a formula of the form (3) is a strategy if for every i ∈ {1, . . . , �}, �qi� is in FO and �qi� 
 �q�. The latter 
condition is equivalent to qi 
 q as is shown next.

Lemma 1. Let q and q′ be self-join-free m-ary conjunctive queries. Then, q 
 q′ if and only if �q� 
 �q′�.

Proof. Let q = {	z | ∃	y B
}

and q′ = {	z0 | ∃	y0 B ′}, where 	z and 	z0 both have the same length m.
=⇒ Straightforward. ⇐= Assume �q� 
 �q′�. Let μ be an injective mapping with domain vars(B) that maps each 

variable to a fresh constant not occurring elsewhere. Since μ is injective, its inverse μ−1 is well defined. Let db = μ(B). 
Clearly, db is consistent and q(db) = {μ(	z)} = �q�(db). From �q� 
 �q′�, it follows μ(	z) ∈ �q′�(db) = q′(db). Then, there 
exists a valuation θ over vars(B ′) such that θ(B ′) ⊆ db and θ(	z0) = μ(	z). Then μ−1 ◦ θ(B ′) ⊆ B and μ−1 ◦ θ(	z0) = 	z. Since 
μ−1◦ θ is a homomorphism from q′ to q, it follows q 
 q′ by the Homomorphism Theorem [3, Theorem 6.2.3]. �

Lemma 1 does not hold for conjunctive queries with self-joins, as shown next.

Example 4. Let q = {〈〉 | R(a, b) ∧ R(a, c)
}

. For every uncertain database db, we have �q�(db) = {}. Let q′ be a query such 
that q �
 q′ (such query obviously exists). Then, �q� 
 �q′� and q �
 q′ . �

Lemma 1 allows us to construct strategies of the form (3), as follows. Assume that the input to OPTSTRATEGY is a 
self-join-free conjunctive query q(	z). For some positive integer �, generate self-join-free conjunctive queries q1, . . . , q� such 
that for each i ∈ {1, . . . , �}, qi 
 q and �qi� is in FO. The condition qi 
 q is decidable by [3, Theorem 6.2.3]; the condition 
that �qi� is in FO is decidable by Theorem 2. Then by Lemma 1, 

⋃�
i=1�qi� is a strategy for q.

Unfortunately, Theorem 3 given hereinafter states that there are cases where no strategy of the form (3) is optimal. We 
first generalize Lemma 1 to unions.

Lemma 2. Let q0, q1, . . . ,q� be self-join-free m-ary conjunctive queries. Then, �q0� 
 ⋃�
i=1�qi� if and only if for some i ∈ {1, . . . , �}, 

q0 
 qi .

Proof. ⇐= Straightforward. =⇒ Assume �q0� 
 ⋃�
i=1�qi�. Let q0 = {	z0 | ∃	y0 B0

}
, where B0 is self-join-free. Let μ be 

an injective mapping with domain vars(B0) that maps each variable to a fresh constant not occurring elsewhere. Since μ is 
injective, its inverse μ−1 is well defined. Let db = μ(B0). Clearly, db is consistent and q0(db) = {μ(	z0)} = �q0�(db). From 
�q0� 
 ⋃�

i=1�qi�, it follows that we can assume i ∈ {1, . . . , �} such that μ(	z0) ∈ �qi�(db) = qi(db). Let qi = {	zi | ∃	yi Bi}. Then, 
there exists a valuation θ over vars(Bi) such that θ(Bi) ⊆ db and θ(	zi) = μ(	z0). Then μ−1 ◦ θ(Bi) ⊆ B0 and μ−1 ◦ θ(	zi) = 	z0. 
Since μ−1 ◦ θ is a homomorphism from qi to q0, it follows q0 
 qi . �
Theorem 3. There exists a self-join-free conjunctive query q such that for every strategy ϕ of the form (3) for q, there exists another 
strategy ψ of the form (3) for q such that ϕ � ψ .
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Proof. Let q = {〈〉 | ∃x∃y∃z
(

R(x, z) ∧ S(y, z)
)}

. Then �q� is not in FO by Theorem 7 in the current paper (which is subsumed 
by Theorem 1 in [8]). For every constant c, let qc be the query defined by qc := {〈〉 | ∃y∃z

(
R(c, z) ∧ S(y, z)

)}
. For every 

constant c, we have that �qc� 
 �q� by Lemma 1, and again by Theorem 7, �qc� is in FO.
Let ϕ be a strategy for q of the form (3). Let A be the greatest set of constants such that for all c ∈ A, there exists some 

i ∈ {1, . . . , �} such that qi ≡ qc . Let b be a constant such that b /∈ A. Clearly ϕ 
 ϕ ∪ �qb� 
 �q�. It suffices to show that 
ϕ � ϕ ∪ �qb�, meaning that ϕ is not optimal.

Assume towards a contradiction that �qb� 
 ϕ . By Lemma 2, there exists i ∈ {1, . . . , �} such that qb 
 qi 
 q. We can 
assume (not necessarily distinct) variables s, t, u, v such that qi is the existential closure of 

(
R(s, t) ∧ S(u, v)

)
. From qi 
 q, it 

follows that t = v . From qb 
 qi and b /∈ A, it follows that s, t , u are pairwise distinct variables. But then qi ≡ q, contradicting 
that �qi� is in FO. We conclude by contradiction that ϕ � ϕ ∪ �qb�. �
5.2. Post-processing by unions and quantification

The proof of Theorem 3 indicates that strategies of the form (3) lack expressiveness because the number of constants in 
such strategies is bounded. An obvious extension is to look for strategies that replace constants with existentially quantified 
variables. The following example shows how such extension solves the lack of expressiveness that underlies the proof of 
Theorem 3.

Example 5. Let q = ∃x∃y∃z
(

R(x, z) ∧ S(y, z)
)

and consider the CQAFO formula ϕ defined by ϕ := ∃X
⌊∃y∃z

(
R(X, z) ∧

S(y, z)
)⌋

. From Lemma 3 and Theorem 7 given hereinafter, it follows that ϕ is a strategy for q, i.e., ϕ 
 �q� and 
�∃y∃z

(
R(X, z) ∧ S(y, z)

)� is in FO. Recall from Example 2 that the use of upper case X is for readability. �
Assume that the input to OPTSTRATEGY is a self-join-free conjunctive query q(	z). We next investigate strategies of the 

form

�⋃
i=1

Q i, (4)

where for each i ∈ {1 . . . , �}, Q i is a CQAFO query of the form{	zi | ∃ 	Xi �∃	yi Bi�
}
, (5)

in which 	zi has the same length as 	z, and Bi is a self-join-free conjunction of atoms. It is understood that 	zi , 	Xi , and 	yi
have, pairwise, no variables in common, and that vars(	zi 	Xi 	yi) = vars(Bi). For readability, we will use upper case Q to refer 
to CQAFO queries of the form (5). The main tools for constructing strategies of the form (4) are provided by Theorems 4
and 5.

Theorem 4. The following problem is decidable in polynomial time. Given a CQAFO query Q of the form (5), is Q in FO? Moreover, if 
Q is in FO, then a relational calculus query equivalent to Q can be effectively constructed.

Proof. Let B be a self-join-free conjunction of atoms, and let

Q = {	z | ∃ 	X �∃	y B�};
Q ′ = {	z 	X | �∃	y B�}.

Obviously, if Q ′ is in FO, then so is Q . We show next that if Q ′ is not in FO, then Q is not in FO.
For every variable x, we assume an infinite set of constants, denoted type(x), such that x �= y implies type(x) ∩ type(y) = ∅. 

Let db be an uncertain database. We say that db is typed relative to B if for every atom R(x1, . . . , xn) in B , for every 
i ∈ {1, . . . , n}, if xi is a variable, then for every fact R(a1, . . . , an) in db, ai ∈ type(xi) and the constant ai does not occur in B . 
Significantly, since B is self-join-free, we can assume without loss of generality that Q and Q ′ are executed on databases 
that are typed relative to B .

From the complexity proofs in [8], it follows that if Q ′ is not in FO, then Q ′ is not in FO even if for every variable 
v ∈ vars(	z) ∪ vars( 	X) (i.e., for every free variable v of Q ′), type(v) is a singleton. This means that if Q ′ is not in FO, it is not 
in FO even on uncertain databases db such that for every atom R(x1, . . . , xn) in B and i ∈ {1, . . . , n}, if xi ∈ vars(	z) ∪ vars( 	X), 
then all R-facts of db agree on position i. It is then obvious that if Q ′ is not in FO, it must be the case that Q is not in FO
(because there is only one valuation for vars(	z) ∪ vars( 	X) that can make �∃	y B� true).

By Theorem 2, it can be decided whether Q ′ is in FO. A relational calculus query equivalent to Q can be straightfor-
wardly obtained from a relational calculus query equivalent to Q ′ . �

We will be concerned with testing containment between CQAFO queries of the form (5). The following lemma general-
izes Lemma 1 by allowing (restricted forms of) existential quantification outside �·�.
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Lemma 3. Let B1 and B2 be self-join-free conjunctions of atoms in the following CQAFO queries:

Q 1 = {	z1 | ∃ 	X1 �∃	y1 B1�
};

Q 2 = {	z2 | ∃ 	X2 �∃	y2 B2�
}
.

Let q1 and q2 be the queries obtained from respectively Q 1 and Q 2 by omitting �·�, that is,

q1 = {	z1 | ∃ 	X1 ∃	y1 B1
};

q2 = {	z2 | ∃ 	X2 ∃	y2 B2
}
.

1. If Q 2 
 Q 1 , then q2 
 q1 .
2. If X1 is empty and q2 
 q1 , then Q 2 
 Q 1 .

Proof. The proof of 1 is analogous to the proof of the if-direction of Lemma 1.
For 2, assume X1 is empty and q2 
 q1. By the Homomorphism Theorem [3, Theorem 6.2.3], there exists a valuation 

θ over vars(B1) such that θ(	z1) = 	z2 and θ(B1) ⊆ B2. Let db be a database and 	a a sequence of constants such that 
	a ∈ Q 2(db). Then, there exists a valuation γ over vars(	z2) ∪ vars( 	X2) with γ (	z2) = 	a such that for every repair r of db, 
γ can be extended into a valuation �r over vars(B2) such that �r(B2) ⊆ r. Let r0 be an arbitrary repair of db. The result 
	a ∈ q1(r0) follows because �r0 ◦ θ is a valuation over vars(B1) such that �r0 ◦ θ(B1) ⊆ r0 and �r0 ◦ θ(	z1) = 	a. Since r0 be an 
arbitrary repair, from 	a ∈ q1(r0) and X1 empty, it follows 	a ∈ Q 1(db). �
Theorem 5. Given a self-join-free conjunctive query q1 and a CQAFO query Q 2 of the form (5), it can be decided whether Q 2 
 �q1�.

Proof. Immediate from Lemma 3 and the decidability of containment for conjunctive queries. �
We point out that Theorem 5 is interesting in its own right. It is well known [3, Corollary 6.3.2] that containment of 

relational calculus queries is undecidable. A large fragment for which containment is decidable is the class of unions of 
conjunctive queries. Notice, however, that the queries in the statement of Theorem 5 need not be monotonic (and even not 
first-order), and that decidability of containment for such queries is not obvious. We next provide an example of such a 
non-monotonic query.

Example 6. Let Q = {
x | ∃Y �R(x, Y )�}. Let db = {R(a, 1)} and db′ = {R(a, 1), R(a, 2)}. Then db ⊆ db′ , but Q (db) = {a} is 

not contained in Q (db′) = {}. Hence Q is not monotonic. As a note aside, we observe that Q is equivalent to the following 
relational calculus query:{

x | ∃y
(

R(x, y) ∧ ∀y′(R(x, y′) → y = y′))}. �
Assume that the input to OPTSTRATEGY is a self-join-free conjunctive query q(	z). Theorem 5 allows us to build a 

strategy ϕ of the form (4) for q as follows. Let A be the set of constants that occur in q. Let ϕ be the disjunction of all (up 
to variable renaming) CQAFO formulas Q i of the form (5) that use exclusively constants from A such that Q i 
 �q� and 
Q i is in FO. Clearly, there are at most finitely many such formulas (up to variable renaming). Containment of Q i in �q� is 
decidable by Theorem 5. Finally, the condition that Q i is in FO is decidable by Theorem 4. The following theorem remedies 
the negative result of Theorem 3.

Theorem 6. For every self-join-free conjunctive query q, there exists a computable strategy ϕ of the form (4) for q, such that for every 
strategy ψ of the form (4) for q, ψ 
 ϕ .

Proof. Assume that the input to OPTSTRATEGY is a self-join-free conjunctive query q(	z). Let ϕ be the strategy defined 
in the paragraph preceding this theorem. Let Q = {	z0 | ∃ 	X �∃	y B�} be a query of the form (5) where B is a self-join-free 
conjunction of atoms such that Q is in FO and Q 
 �q�. If all constants that occur in B also occur in q, then Q is already 
contained in some disjunct of ϕ (by construction of ϕ). Assume next that B contains some constants that do not occur in q, 
and let these constants be a1, . . . , am . For i ∈ {1, . . . , m}, let Xi be a new fresh variable. Let B ′ be the conjunction obtained 
from B by replacing each occurrence of each ai with Xi . Let Q ′ = {	z0 | ∃ 	X∃X1 · · · ∃Xm �∃	yB ′�}.

From Q 
 �q� and Lemma 3, it follows that 
{	z0 | ∃ 	X ∃	y B

} 
 q. By the Homomorphism Theorem [3, Theorem 6.2.3], we 
can assume a homomorphism θ from q to 

{	z0 | ∃ 	X ∃	y B
}

. Notice that if θ(t) = ai for some term t that occurs in q and 
i ∈ {1, . . . , m}, then it must be the case that t is a variable (because ai does not occur in q). Let θ ′ be the substitution 
obtained from θ such that for every variable v in q and i ∈ {1, . . . , m},

θ ′(v) =
{

Xi if θ(v) = ai
θ(v) otherwise.
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Then obviously θ ′ is a homomorphism from q to 
{	z0 | ∃ 	X∃X1 · · · ∃Xm ∃	y B ′}. From the Homomorphism Theorem and 

Lemma 3, it follows Q ′ 
 �q�. It can be easily seen that Q 
 Q ′ . Furthermore, Q ′ is in FO because Q is in FO and it 
can be easily argued that membership in FO is preserved if constants are replaced with free variables. Notice here that each 
variable Xi is free in �∃	yB ′�. Since all constants that occur in B ′ also occur in q, we have that Q ′ is already contained in 
some disjunct of ϕ (by construction of ϕ).

To conclude, whenever Q = {	z0 | ∃ 	X �∃	y B�} is a query of the form (5) where B is a self-join-free conjunction of atoms 
such that Q is in FO and Q 
 �q�, we have that ϕ ∪ Q 
 ϕ . �

So far, we have imposed no restrictions on the size of the computable strategy ϕ in the statement of Theorem 6. From 
a practical point of view, it is interesting to construct, among all optimal strategies ϕ of the form (4), the one with the 
smallest number � of disjuncts. This problem will be addressed in the next section.

6. Simplifying strategies

In Section 5.2, we considered strategies that are unions of CQAFO queries of the form (5). A natural question is whether 
such strategies can be simplified. One obvious simplification is to remove any component of the union that is contained 
in another component, which requires an effective procedure for deciding containment between queries of the from (5). 
Developing such a procedure turns out to be a challenging problem. In Section 6.1, we illustrate this problem and introduce 
some simplifying assumptions. We will tackle this problem by using an existing tool, called attack graph, which we recall 
in Section 6.2, and which we generalize to account for the two queries involved in a containment test (Section 6.3). In 
Section 6.4, we provide algorithm ContainedIn (Function 1) that decides containment of CQAFO queries of the form (5)
under some additional restrictions.

6.1. Problem statement and motivation

We consider strategies Q 1 ∪ Q 2 ∪ · · · ∪ Q � consisting of CQAFO queries Q i of the form 
{	zi | ∃ 	Xi �∃	yi Bi�

}
. Clearly, if 

some Q i is contained in another Q j (i.e., Q i 
 Q j with i �= j), then the presence of Q i in the strategy is vacuous and Q i is 
redundant. That is, an equivalent shorter strategy is obtained by removing Q i from the union. This raises an important and 
interesting research question:

Given two CQAFO queries Q 1 and Q 2 of the form (5), decide whether Q 1 
 Q 2.

Theorem 5 settles containment of Q 2 
 �q1�. In this containment, the right-hand side �q1� is restricted to have no quan-
tifier outside the scope of �·�. The opposite containment �q1� 
 Q 2 turns out to be more difficult to handle, as illustrated 
next.

Example 7. Consider the following two Boolean queries:

q2 = ∃u∃v∃w
(

R(u, w) ∧ S(v, w)
);

Q 2 = ∃U
⌊∃v∃w

(
R(U , w) ∧ S(v, w)

)⌋
,

and consider a database (call it db) with the following tables, where for readability, columns are named by variables, and 
blocks are separated by dashed lines.

R u w

a 1
b 2

S v w

c 1
c 2

The database db has two repairs, each satisfying q2, hence db |= �q2�. However, db �|= Q 2, because the two repairs of db
use different values for u (a and b) to make the query true. So it is correct to conclude �q2� �
 Q 2.

Consider furthermore the following query q1:

q1 = ∃x∃y
(

R(x, y) ∧ S(x, y)
)
.

By means of the Homomorphism Theorem [3, p. 117], it can be verified that q1 
 q2, hence �q1� 
 �q2� by Lemma 1. It 
takes some effort to see that if a database satisfies �q1�, then it must contain two singleton blocks of the form {R(d, e)} and 
{S(d, e)}, as follows.

R x y

d e
...

S x y

d e
...
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Such database will necessarily satisfy Q 2, hence �q1� 
 Q 2. �
It turns out that the containment problem for queries of the form (5) is quite challenging. To ease the technical treatment, 

we make the following simplifications:

• We will only deal with Boolean conjunctive queries (i.e., henceforth, all variables are assumed to be quantified). By 
Proposition 1, the restriction to Boolean queries does not compromise generality. At some places, it will be con-
venient (and unambiguous) to denote a Boolean conjunctive query by its set of atoms. For example, q1 = {〈〉 |
∃x∃y∃z

(
R(x, z) ∧ S(y, z)

)}
can be denoted by the set 

{
R(x, z), S(y, z)

}
.

• Let q be a self-join-free conjunction of atoms. Let 	X be a sequence of distinct variables such that vars( 	X) ⊆ vars(q). We 
write ∃	X �q� for the query

∃	X ⌊∃	u q
⌋
,

where vars(	u) = vars(q) \ vars( 	X). That is, we only show the quantifiers that are outside the scope of �·�.
• Our results concerning containment ∃	X1 �q1� 
 ∃	X1 �q2� will often require a homomorphism from q2 to q1 (which is 

tantamount to requiring q1 
 q2, by the Homomorphism Theorem [3, p. 117]). This requirement is reasonable, because 
if no such homomorphism exists, then ∃	X1�q1� �
 ∃ 	X2�q2� by Lemma 3. For completeness, we recall here that a homo-
morphism from q2 to q1 is a mapping h with domain vars(q2) such that for every atom R(s1, . . . , s�) in q2, we have that 
R(h(s1), . . . , h(s�)) belongs to q1.

Proposition 1. Let Q 2 and Q 1 be two CQAFO queries of the form (5). One can compute in polynomial time two Boolean CQAFO
queries Q ′

2 and Q ′
1 , both of the form (5), such that Q 1 
 Q 2 if and only if Q ′

1 
 Q ′
2 .

Proof. We can assume self-join-free conjunctions of atoms, B1 and B2, such that:

Q 1 = {	z1 | ∃ 	X1 �∃	y1 B1�
};

Q 2 = {	z2 | ∃ 	X2 �∃	y2 B2�
}
.

Let q1 and q2 be the queries obtained from respectively Q 1 and Q 2 by omitting �·�, that is,

q1 = {	z1 | ∃ 	X1 ∃	y1 B1
};

q2 = {	z2 | ∃ 	X2 ∃	y2 B2
}
.

If q1 �
 q2, then Q 1 �
 Q 2 by Lemma 3. In this case, pick two distinct key-equal facts A and B and let Q ′
1 = A and Q ′

2 = B . 
Clearly, Q ′

1 �
 Q ′
2. Notice that the test q1 
 q2 can be performed in polynomial time in the absence of self-joins.

Assume next q1 
 q2. By the Homomorphism Theorem [3, Theorem 6.2.3], we can assume a valuation θ over vars(B2)

such that θ(B2) ⊆ B1 and θ(	z2) = 	z1. Let μ be a valuation over vars(	z1) that maps distinct variables to distinct fresh 
constants. Let Q ′

1 := {
μ(	z1) | ∃ 	X1 �∃	y1 μ(B1)�

}
, the query obtained from Q 1 by replacing each occurrence of each variable 

z1 ∈ vars(	z1) with μ(z1). Intuitively, Q ′
1 is the Boolean query obtained from Q 1 by treating free variables as constants. Since 

B1 is self-join-free, it can be seen that Q 1 
 Q 2 if and only if Q ′
1 
 Q 2.

For example, for Q 1 = {
z | ∃X �∃y

(
R(X, y,b) ∧ S(X, y, z)

)�} with b a constant and R �= S , we would have that Q ′
1 = {

c |
∃X �∃y

(
R(X, y,b) ∧ S(X, y, c)

)�}, where c is a fresh constant. Notice that the above construction would make no sense in 
the presence of self-joins. In particular, if R = S , then any answer to Q ′

1 would be empty (because b �= c).
Since the answer to Q ′

1 is either empty or the singleton {μ(	z1)}, the containment Q ′
1 
 Q 2 holds if Q 2 returns {μ(	z1)}

whenever Q ′
1 does. Let Q ′

2 be the query obtained from Q 2 by replacing each occurrence of each variable z2 ∈ vars(	z2) with 
μ ◦ θ(z2). That is, the free tuple in Q ′

2 is equal to μ(	z1). It is now obvious that Q ′
1 
 Q 2 if and only if Q ′

1 
 Q ′
2. This 

concludes the proof. �
To sum up, we start with two Boolean conjunctive queries q1 and q2 such that q1 
 q2 (and hence �q1� 
 �q2� by 

Lemma 1), and we want to know which existential quantification can be moved “outside the scope of �·�” while preserving 
the containment �q1� 
 �q2�. For the left-hand side (i.e., �q1�), this is easy because, by Lemma 3, ∃	X1�q1� 
 �q2� if and only 
if �q1� 
 �q2�. For the right-hand side (i.e., �q2�), our major result will be an algorithm for deciding the containment �q1� 

∃	X2 �q2� (Theorem 9), albeit by imposing some further restrictions on q1. We leave the design of a general containment test 
for future work.

To explain how the containment test works, we first recall the notion of attack graph which is defined relative to a single 
query (Section 6.2) and then introduce a new notion of attack that takes into account two queries q1 and q2 related by a 
homomorphism (Section 6.3).
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Fig. 2. Attack graph of the query in Example 8.

6.2. Attack graphs

The construct of attack graph is the main tool for determining the complexity of �q�. Attack graphs were first introduced 
in [28] for studying first-order expressibility of �q� for self-join-free conjunctive queries q.

Let q be a self-join-free Boolean conjunctive query (denoted by its set of atoms). We define K(q) as the following set of 
functional dependencies:

K(q) := {
key(F ) → vars(F ) | F ∈ q

}
.

For every atom F ∈ q, we define F +,q as the following set of variables:

F +,q := {
x ∈ vars(q) | K(q \ {F }) |= key(F ) → x

}
.

Here, the symbol |= denotes standard logical entailment. The attack graph of q is a directed graph whose vertices are the 
atoms of q. There is a directed edge from F to G (F �= G) if there exists a sequence

F0

z1
� F1

z2
� F2 . . .

zn
� Fn (6)

where

• F0, . . . , Fn are atoms of q;
• F0 = F and Fn = G; and
• for all i ∈ {1, . . . , n}, zi ∈ vars(Fi−1) ∩ vars(Fi) and zi /∈ F +,q .

A directed edge from F to G in the attack graph of q is also called an attack from F to G , denoted by F
q� G . The sequence 

(6) is called a witness for the attack F
q� G . If F

q� G , then we also say that F attacks G (or that G is attacked by F ).

Example 8. Let q = {
R(x, y), S(y, z), T (z, x), U (x, u), V (x, u, v)

}
. We have R+,q = {x, u, v}. A witness for R q� T is R 

y
� S

z
� T . 

Note that, by an abuse of notation, we write R to mean the R-atom of q. The complete attack graph is shown in Fig. 2. �
Equipped with the notion of attack graph, we can now present a theorem that explains the decidability result of Theo-

rem 2.

Theorem 7 ([8]). For every self-join-free Boolean conjunctive query q, the query �q� is in FO if and only if the attack graph of q is 
acyclic.

The attacks defined so far are from an atom to another atom. Attacks from an atom to a variable are defined as follows: 
F

q� x if F
q∪{N(x)}� N(x), where N is a new relation name with signature [1, 1]. That is, F

q� x if there is an attack from F
to the “dummy” atom N(x) in the attack graph of q ∪ {N(x)}. The following lemma gives an important semantic property of 
unattacked variables.

Lemma 4. Let q be a self-join-free Boolean conjunctive query. Let x ∈ vars(q) such that for every atom F of q, F
q
�� x. Then for every 

database db such that db |= �q�, there exists a constant c such that db |= �q[x�→c]�.

Proof. Let q′ = q ∪ {N(x)} where N is a fresh relation name. The attack graph of q′ can be obtained from the attack graph 
of q by adding the isolated vertex N(x). The desired result then follows form Lemma 9 in [8]. �
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The proof of the following lemma is analogous to the proof of Lemma C.1 in [29]. Intuitively, it states that no new attacks 
emerge if we replace a variable with a constant in a Boolean self-join-free conjunctive query.

Lemma 5. Let q be a self-join-free Boolean conjunctive query. Let c be a constant and let q′ = q[x�→c] . For every F ∈ q, let F ′ be the 

atom in q′ with the same relation name as F . For all F , G ∈ q, if F ′ q′
� G ′ , then F q� G.

Let q be a self-join-free Boolean conjunctive query such that the attack graph of q is acyclic. To avoid non-determinism 
in some definitions and results to follow, assume a lexicographic order on the atoms of q. We write head(q) to denote the 
first (in lexicographic order) atom of q that has no incoming attacks in the attack graph of q.

6.3. A new attack notion

We now define a generalized attack notion, which refers to two Boolean conjunctive queries, q1 and q2, such that there 
exists a homomorphism from q2 to q1. This new attack notion, denoted by the symbol q2q1��, turns out to be a useful tool in 
the study of the containment problem for queries of the form (5).

Definition 2. Let q1 and q2 be self-join-free Boolean conjunctive queries such that there exists a homomorphism (call it h) 
from q2 to q1. Notice that such a homomorphism, if it exists, is unique (because the queries are self-join-free). Let G and H
be distinct atoms of q2. We write

G
q2q1��H

if there exists a sequence

G0

u1
� G1

u2
� G2 . . .

u�

� G� (7)

such that

1. G0, G1, . . . , G� are atoms of q2 such that G0 = G and G� = H ;
2. for all i ∈ {1, . . . , �}, ui ∈ vars(Gi−1) ∩ vars(Gi);
3. for all i ∈ {1, . . . , �}, h(ui) is a variable that does not belong to 

(
h(G0)

)+,q1 .

Let u ∈ vars(q2). We write

G
q2q1��u

if

G
q′

2q′
1��N(u)

where

1. N is a new relation name with signature [1, 1];
2. q′

2 = q2 ∪ {N(u)}; and
3. q′

1 = q1 ∪ {N(h(u))}.

Notice that if h(u) is a constant, then G
q2q1���u. Note also that for every atom F of q1, F +,q1 = F +,q′

1 . �
Intuitively, G

q2q1��H if there exists a sequence of the form (7) whose image under the homomorphism h is a witness for 
h(G) q1� h(H). The notion q2q1�� is a proper generalization of q1�, because for q1 = q2, the relationship q2q1�� is the same as q1�. 
That is, F

q1q1��F ′ if and only if F
q1� F ′ .

Example 9. Let q2 = {R(u, x)} and q1 = {R(y, z), S(z)}. Then, R(u, x) q2q1��x because R(u, x)
q′

2q′
1��N(x), where q′

2 = { R(u, x), N(x) }
and q′

1 = {R(y, z), S(z), N(z)}. Indeed, note that R(u, x) and N(x) share the variable x, and h(x) = z does not belong to 
R+,q′

1 = {y}. �
Example 10. Consider the following two queries:

q2 = {
R(a, u), S(u, x1), T (x2)

};
q1 = {

R(a, y), S(y, z), T (z)
}
,
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and let h be the (unique) homomorphism from q2 to q1. Notice that h(x1) = h(x2) = z. Since key(R) = ∅ in q1, but key(S) �=
∅ �= key(T ), we have R+,q1 = ∅. Hence, R(a, u)

q2q1��x1 and R(a, u)
q2q1��u trivially hold. Note, however, that R(a, u)

q2q1���x2. This 
is because the atom T (x2) shares no variable with any other atom of q2. �
6.4. Testing containment

The following theorem expresses a significant relationship between q2q1�� and query containment for queries of the 
form (5). Paraphrasing somewhat, if �q1� 
 �q2� and u ∈ vars(q2) such that G

q2q1��u for some G ∈ q2, then query con-
tainment is lost if the quantification of the variable u is moved outside the scope of �·�. It is an open question whether the 
inverse of Theorem 8 also holds.

Theorem 8. Let q1 and q2 be self-join-free Boolean conjunctive queries such that there exists a homomorphism (call it h) from q2 to 
q1 . Let u ∈ vars(q2). If G q2q1��u for some G ∈ q2 , then �q1� �
 ∃u�q2�.

Proof. We first fix some notations. Let G0 ∈ q2 such that G0
q2q1��u. Let h(G0) = F0 and h(u) = w . Assume that R0 is the 

relation name of G0 (which is necessarily equal to the relation name of F0). We show that �q1� �
 ∃u�q2� by constructing a 
database instance db such that db |= �q1� but db �|= ∃u�q2�.

To define db, let θ, μ be two valuations over vars(q1) such that for every x ∈ vars(q1), θ(x) = μ(x) if and only if x ∈
F0

+,q1 . Assume that q1 = {〈〉 | ∃	y B1
}

. Let db = θ(B1) ∪ μ(B1). We next show that db has only two repairs, denoted by r
and s, where

r = db \ {μ(F0)};
s = db \ {θ(F0)}.

To see that these are repairs, we first show that for every F ∈ q1 \ {F0}, the facts θ(F ) and μ(F ) are either equal or not 
key-equal, i.e., they never constitute two distinct facts of a same block. Indeed, for every F ∈ q1 \{F0}, two cases are possible:

Case key(F ) ⊆ F0
+,q1 . Then, vars(F ) ⊆ F0

+,q1 , and thus θ and μ agree on all variables of vars(F ). That is, θ(F ) = μ(F ).
Case key(F ) � F0

+,q1 . Then, by the definition of θ and μ, for some variable x ∈ key(F ), θ(x) �= μ(x), hence θ(F ) and μ(F )

are not key-equal.

Furthermore, when considering F0, θ(F0) and μ(F0) are distinct and key-equal (hence, r contains θ(F0) and s contains 
μ(F0)). The facts θ(F0) and μ(F0) are key-equal because key(F0) ⊆ F0

+,q1 is obvious. Further, from G0
q2q1��u, we can assume 

some variable y ∈ vars(F0) such that F0
q1� y, hence y /∈ F0

+,q1 . Since θ and μ disagree on y, we have θ(F0) �= μ(F0). Clearly, 
r and s are the only repairs of db, since {θ(F0), μ(F0)} is the only block of db with more than one fact.

It is obvious that r |= q1 and s |= q1, hence db |= �q1� since r and s are the only repairs of db. We now show that 
db �|= ∃u�q2�, or in other words, that there is no constant c such that both r |= q2[u �→c] and s |= q2[u �→c] . First, we show that 
if r |= q2[u �→c] and s |= q2[u �→c] for some constant c, then it must be the case that either c = μ(w) or c = θ(w). Indeed, 
for every valuation α over vars(q2) such that α(q2) ⊆ r, we have α(u) ∈ {μ(w), θ(w)}. Likewise, for every valuation β over 
vars(q2) such that β(q2) ⊆ s, we have β(u) ∈ {μ(w), θ(w)}. Second, we show that μ(w) �= θ(w). Indeed, from G0

q2q1��u, it 

is correct to conclude w /∈ F0
+,q1 . To see this, consider a sequence G0

u1
� G1

u2
� G2 . . .

u
� N(u) witnessing that G0

q2q1��u. Then, 
h(u) = w /∈ (

h(G0)
)+,q′

1 = F0
+,q1 . From the definition of μ and θ , it is correct to conclude that μ(w) �= θ(w). Finally, we 

show that r �|= q2[u �→μ(w)] and s �|= q2[u �→θ(w)] . This suffices to show that db �|= ∃u�q2�.
We show r �|= q2[u �→μ(w)] (the proof of s �|= q2[u �→θ(w)] is symmetrical). More specifically, we show that any valuation α

over vars(q2) such that α(q2) ⊆ r satisfies α(u) = θ(w). Hence, α(u) �= μ(w) for any such valuation α and it is correct to 
infer that r �|= q2[u �→μ(w)] .

It is easily verified that from G0
q2q1��u, it follows that for some � ≥ 0, there exists a sequence

G0

u1
� G1

u2
� G2 . . .

u�

� G� (8)

such that

1. G0, G1, . . . , G� are atoms of q2;
2. u ∈ vars(G�);
3. for all i ∈ {1, . . . , �}, ui ∈ vars(Gi−1) ∩ vars(Gi); and
4. for all i ∈ {1, . . . , �}, h(ui) is a variable such that μ(h(ui)) �= θ(h(ui)).
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Function 1. ContainedIn.

Observe that (4) is equivalent to h(ui) /∈ h(G0)
+,q1 = F0

+,q1 (for all i ∈ {1, . . . , �}). For every i ∈ {1, . . . , �}, define wi := h(ui). 
Let α be a valuation over vars(q2) such that α(q2) ⊆ r. Based on the sequence (8), we show by induction on increasing i that 
for i ∈ {0, . . . , �}, α(Gi) = θ(Fi). This suffices since if this holds, then α(G�) = θ(F�) and since u ∈ vars(G�), α(u) = θ(w).

The induction hypothesis trivially holds for i = 0. Indeed, as argued above, θ(F0) is the only R0-fact of r.
For the induction step, i �→ i + 1, the induction hypothesis is that for all j ∈ {0, . . . , i}, α(G j) = θ(F j). Clearly, since 

ui+1 ∈ vars(Gi), we have that α(ui+1) = θ(ui+1). Then, since ui+1 ∈ vars(Gi+1) and θ(wi+1) �= μ(wi+1), it must be the case 
that α(Gi+1) = θ(Fi+1).

So we obtain α(G�) = θ(F�), hence α(u) = θ(w). This concludes the proof. �
As already mentioned, it is an open question whether the inverse of Theorem 8 also holds:

From �q1� 
 �q2�, u ∈ vars(q2), and G
q2q1���u for all G ∈ q2, is it correct to conclude �q1� 
 ∃u�q2�?

Theorem 9 provides a positive answer to this question under restrictions on q1. The theorem is stated in the form of 
Function 1, which recursively checks whether the variable u has an incoming q2q1��-attack. The function will be called once 
for every atom of q2. We briefly discuss the restrictions imposed on q1 by Theorem 9.

• The restriction that q1 and q2 have the same cardinality can be easily met, because we can always add “dummy” atoms 
to a conjunctive query without affecting query containment. For example, if q1 contains an R-atom with signature 
[n, k], but q2 contains no R-atom, then we can add to q2 the dummy atom R(u1, . . . , uk, uk+1, . . . , un), where each ui is 
a fresh variable not occurring elsewhere.

• The restriction that �q1� is in FO is not problematic for the application we have in mind, which, as explained in 
Section 6.1, is the simplification of strategies, which are unions of queries of the form (5) that are in FO. Notice that no 
such restriction is imposed on �q2�, which can thus be a query not in FO.

• The more technical restriction is F +,q1 ⊆ vars(F ). This restriction is met, for example, by the queries q11 =
∃x∃y 

(
R(x, y) ∧ S(x, y)

)
and q12 = ∃x∃y∃z

(
R(x, y) ∧ S(y, z)

)
, but not by q13 = ∃x∃y 

(
R(x, y) ∧ S(x, z)

)
(because R+,q13 =

{x, z} and z /∈ vars(R)). This restriction excludes some queries, but is not overly prohibitive. It is an open question 
whether Theorem 9 can be proved without relying on this restriction.

Theorem 9. Let q1 and q2 be self-join-free Boolean conjunctive queries, of the same cardinality, such that there exists a homomorphism 
(call it h) from q2 to q1 . Assume that �q1� is in FO and that for every F ∈ q1 , it is the case that F +,q1 ⊆ vars(F ). Then the following are 
equivalent for any variable u:

1. ContainedIn(q1 ,q2 ,u) returns true; and
2. �q1� 
 ∃u�q2�.

Proof. 2 =⇒ 1 Proof by contraposition. Assume that ContainedIn(q1,q2,u) returns false. Then, at some point in the 
execution of ContainedIn(q1,q2,u), the test “if G0

q2q1��u” returns true. Let F0, F1, . . . , Fn be a topological sort of the 
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attack graph of q1 where ties are broken lexicographically. For every i ∈ {0, . . . , n}, let Gi be the atom of q2 with the same 

relation name as Fi (i.e., h(Gi) = Fi ). Then, there exists � ∈ {0, . . . , n} such that G�

q′
2α(q′

1)
�� u where

• q′
2 = {G�, G�+1, . . . , Gn},

• q′
1 = {F�, F�+1, . . . , Fn}, and

• α is a valuation over vars(F0) ∪ vars(F1) ∪ · · · ∪ vars(F�−1).

We have α(F�) 
α(q′

1)
� h(u). From Lemma 5, it follows F�

q1� h(u). It is now easy to see G�
q2q1��u. By Theorem 8, �q1� �
 ∃u�q2�.

1 =⇒ 2 We use the following notations:

h := (unique) homomorphism from q2 to q1;
F0 := head(q1);
G0 := the (unique) atom in q2 such that h(G0) = F0;
q̂1 := q1 \ {F0};
q̂2 := q2 \ {G0}.

The initial assumptions are the following:

1. ContainedIn(q1,q2,u) returns true;
2. db is a database such that every repair of db satisfies q1.

The proof runs by structural induction. For the base case (i.e., u /∈ vars(q2)), it is obvious that ∃u�q2� ≡ �q2� and the desired 
result holds because there exists a homomorphism from q2 to q1. Assume hereinafter that u ∈ vars(q2).

Since �q1� is in FO, the attack graph of q1 is acyclic. Let R0, R1, . . . , Rn be a topological ordering of the attack graph 
of q1, where ties are broken lexicographically.3 Since F0 = head(q1), the relation name of F0 is R0.

We need to show that db |= ∃u�q2�. Clearly, since db |= �q1�, there must exist a (not necessarily unique) subset db0 of 
db such that

1. db0 |= �q1�;
2. for every block B of db, either B ⊆ db0 or B ∩ db0 = ∅.
3. Minimality: for every block B of db0, we have db0 \B �|= �q1�.

In practice, db0 can be obtained from db by repeatedly removing blocks until the further removal of any more block would 
lead to a database that falsifies �q1�. We will show that db0 |= ∃u �q2�, which obviously implies db |= ∃u �q2� (because 
every repair of db contains a repair of db0).

Let the set of R0-facts in db0 be {A1, . . . , Am}. For 1 ≤ i ≤ m, denote by θi the (unique) valuation over vars(F0) such that 
θi(F0) = Ai . We show the following:

Agreement Property: For every v ∈ vars(F0) ∩ F0
+,q1 , for all i, j ∈ {1, . . . , m}, θi(v) = θ j(v).

To this extent, let v ∈ vars(F0) ∩ F0
+,q1 . Then, F0

q1�� v . Moreover, since F0 has no incoming attacks in the attack graph of q1, 

we have that for all F ∈ q1, F
q1�� v . From Lemma 4, it follows that for all i, j ∈ {1, . . . , m}, θi(v) = θ j(v), which concludes 

the proof of the Agreement Property. Notice that from key(F0) ⊆ F0
+,q1 and the Agreement Property, it follows that the set 

{A1, . . . , Am} is the unique R0-block of db0.
It suffices now to show that there exists a constant b (which depends on db0) such that every repair of db0 satisfies 

q2[u �→b] . We distinguish two cases, the first case being the easier one.

Case u ∈ vars(G0)

In this case, it can be shown that all R0-facts agree on the position at which u occurs in G0. Indeed, from G0

q2q1���u (since
ContainedIn(q1,q2,u) returns true), it follows h(u) ∈ F0

+,q1 . From h(u) ∈ vars(F0) and the Agreement Property, it follows 
that for all i, j ∈ {1, . . . , m}, θi(h(u)) = θ j(h(u)). In this case, the desired result holds for b = θ1(h(u)).

Case u /∈ vars(G0)

Let d̂b0 := db0 \ {A1, . . . , Am}. For i ∈ {1, . . . , m}, denote by d̂b
i
0 a minimal subset of d̂b0 such that d̂b

i
0 |= �θi(q̂1)� and 

every block of d̂b0 is either contained in d̂b
i
0 or disjoint with d̂b

i
0. That is, d̂b

i
0 is obtained from d̂b0 relative to θi(q̂1) in 

3 By an abuse of notation, we blur the distinction between atoms and their relation names.
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exactly the same way as db0 was obtained from db relative to q1. In the same way as {A1, . . . , Am} was shown to be the 
only R0-block of db0, it can be shown that for each i ∈ {1, . . . , m}, d̂b

i
0 contains only one R1-block.

It follows from Lemma 5 that R1, R2, . . . , Rn will be a topological sort of the attack graph of θi(q̂1) (for all 1 ≤ i ≤ m). 
The following hold for any i ∈ {1, . . . , m}:

• from our initial hypothesis that ContainedIn(q1,q2,u) returns true, it follows that ContainedIn(θi(q̂1),q̂2,u) returns 
true; and

• by the induction hypothesis, there exists a constant bi such that every repair r̂ of d̂b
i
0 satisfies q̂2[u �→bi ] .

We show that db0 |= �q2[u �→b1]� (i.e., we fix i = 1). By symmetry, it will actually follow that for every i ∈ {1, . . . , m}, 
db0 |= �q2[u �→bi ]�.

Let r be an arbitrary repair of db0. We need to show r |= q2[u �→b1] .
We can assume � ∈ {1, . . . , m} such that A� ∈ r. Since r |= q1, there exists a valuation δ over vars(q1) such that δ(q1) ⊆ r

and δ(F0) = A� . The latter follows because A� is the only R0-fact in r. Let α be the valuation over vars(q2) such that for 
every x ∈ vars(q2), α(x) = δ(h(x)). Obviously, α(q2) = δ(q1) ⊆ r and α(G0) = A� .

Clearly, r ∩ d̂b
1
0 is a repair of d̂b

1
0. By the induction hypothesis, we can assume a valuation β over vars(q2) such that

1. β(q̂2) ⊆ r ∩ d̂b
1
0;

2. β(u) = b1; and
3. β(G0) = A1.

Notice that the induction hypothesis gives us the first two items. The last item follows from the construction of d̂b
1
0.

Let γ be the valuation over vars(q2) such that for every x ∈ vars(q2),

γ (x) =
{

α(x) if G0
q2q1��x

β(x) otherwise
(9)

From the construction of γ and G0

q2q1���u, it follows γ (u) = b1. It remains to be shown that γ (q2) ⊆ r. To this extent, let G
be an arbitrary atom of q2. It remains to be shown that γ (G) ∈ r. We distinguish two cases.

Case G = G0. Recall that α(G0) = A� , β(G0) = A1, and A� ∈ r. We show that γ (G0) = α(G0) = A� . To this extent, let w be 
an arbitrary variable in vars(G0). If G0

q2q1��w , then γ (w) = α(w) by the construction of γ in (9). Consider next 

G0

q2q1���w . Then it must be the case that h(w) ∈ F0
+,q1 and, by the Agreement Property, A1 and A� agree on the 

position at which w occurs in G0. Then, α(w) = β(w).
Case G �= G0. Assume towards a contradiction G ∈ q2 such that γ (G) /∈ r. Then, it must be the case that α(G) �= γ (G) �=

β(G), because α(G) and β(G) belong to r. Then we can assume y1, y2 ∈ vars(G) such that γ (y1) = α(y1) �= β(y1)

and γ (y2) = β(y2) �= α(y2). We next show a contradiction by proving α(y2) = β(y2).

Observe that by the construction of γ in (9), from γ (y1) = α(y1) �= β(y1), it follows G0
q2q1��y1. Likewise, from 

γ (y2) = β(y2) �= α(y2), it follows G0

q2q1���y2. We show next h(y2) ∈ F0
+,q1 .

From G0
q2q1��y1 and y1 ∈ vars(G), it follows G0

q2q1��G , which implies the existence of a sequence of the 
form (7) with G� = G . Then for every variable v ∈ vars(G), either G0

q2q1��v or h(v) ∈ F0
+,q1 . Since y2 ∈ vars(G)

and G0

q2q1���y2, it must be the case h(y2) ∈ F0
+,q1 .

The statement of Theorem 9 makes the hypothesis that F0
+,q1 ⊆ vars(F0), hence h(y2) ∈ vars(F0). Then, by the 

Agreement Property, it is correct to conclude that for all i, j ∈ {1, . . . , m}, θi(h(y2)) = θ j(h(y2)). In the remainder of 
the proof, we denote by d the constant such that for all i ∈ {1, . . . , m}, θi(h(y2)) = d. Intuitively, this means that 
all R0-facts of db0 contain the constant d at the position at which h(y2) occurs in F0. Note incidentally that this 
does not mean that y2 occurs in G0, because the homomorphism h can map distinct variables of q2 to the same 
variable in q1 (i.e., h needs not to be injective).

Let F be the atom such that h(G) = F , and let the relation name of F be R . From G �= G0, it follows F �= F0
(and R �= R0). Since y2 occurs in G , h(y2) occurs in F . So h(y2) occurs in both F0 and F . Let o be the arity of 
R and let p ∈ {1, . . . , o} such that y2 occurs at position p in G (and hence h(y2) occurs at position p in F ). The 
construction of db0 ensures that all R-facts of db0 will contain the same constant d at position p. Indeed, if an 
R-fact A of db contains a distinct constant at position p, then the block containing A will be excluded from db0
(because of the Minimality condition). It follows α(y2) = d = β(y2), a contradiction. We conclude by contradiction 
that γ (G) ∈ r.

This concludes the proof. �
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7. Conclusion

We have studied a realistic setting for divulging an inconsistent database to end users. In this setting, users access 
the database exclusively via syntactically restricted queries, and get exclusively consistent answers computable in FO data 
complexity. If the data complexity is higher, then the query will be rejected, in which case users have to fall back on 
strategies that obtain a large (the larger, the better) subset of the consistent answer. Such strategies combine answers 
obtained from several “easier” queries.

Although our setting applies to arbitrary queries and constraints, we searched for strategies when constraints are primary 
keys, and the database is accessible only via self-join-free conjunctive queries for which consistent query answering is in 
FO. Under these access restrictions, we showed how to construct strategies that combine answers by means of union 
and quantification. It turns out that the simplification of such strategies raises a novel and challenging query containment 
problem. By means of a new tool (a generalization of attack graphs), we were able to solve this containment problem under 
some syntactic restrictions, leaving a general solution for future work. Another interesting open question is whether our 
strategies can still be improved, e.g., by using negation.

Of practical interest is the development of an academic prototype that allows investigating the real-life applicability and 
efficiency of the proposed strategies.
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