
A Probability Analysis for Candidate-Based Frequent
Itemset Algorithms

Nele Dexters
University of Antwerp

Middelheimlaan 1
2020 Antwerp, Belgium
nele.dexters@ua.ac.be

Paul W. Purdom
Indiana University
Computer Science

Bloomington, Indiana, 47405
pwp@cs.indiana.edu

Dirk Van Gucht
∗

Indiana University
Computer Science

Bloomington, Indiana, 47405
vgucht@cs.indiana.edu

ABSTRACT
This paper explores the generation of candidates, which is
an important step in frequent itemset mining algorithms,
from a theoretical point of view. Important notions in our
probabilistic analysis are success (a candidate that is fre-
quent), and failure (a candidate that is infrequent). For a
selection of candidate-based frequent itemset mining algo-
rithms, the probabilities of these events are studied for the
shopping model where all the shoppers are independent and
each combination of items has its own probability, so any
correlation between items is possible. The Apriori Algo-
rithm is considered in detail; for AIS, Eclat, FP-growth and
the Fast Completion Apriori Algorithm, the main principles
are sketched. The results of the analysis are used to com-
pare the behaviour of the algorithms for a variety of data
distributions.

1. INTRODUCTION
The frequent itemset mining (FIM) problem [1, 2] is a

well-known basic problem at the core of many data min-
ing problems [3, 5, 6]. The problem is, given a database of
basket data and a user-defined support threshold k, to deter-
mine which sets of items are bought by at least k shoppers,
so occur in at least k baskets.

Since its introduction, several different algorithms for solv-
ing the problem were proposed [4, 5, 13], and experimentally
analyzed [5, 14]. A survey of the best known FIM algorithms
can be found in [9]. In comparison to the extensive litera-
ture on the experimental analysis, relatively few papers have
been devoted to theoretical analyses [8, 12]. Our paper adds
to the theoretical aspect of the FIM problem.

The aim of this research is an analytical study of the prop-
erties of the FIM problem and the performance of the asso-
ciated algorithms and their interaction with different data
distributions. The number of candidates has a major effect

∗The work of this author is supported by NSF grant IIS-
0082407.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’06April 23-27, 2006, Dijon, France
Copyright 2006 ACM 1-59593-108-2/06/0004 ...$5.00.

on the computation work done by the algorithm. There-
fore, in the context of a general probabilistic model where
all the shoppers shop independently of each other and each
combination of items has its own probability of being pur-
chased (so any correlation between items is possible), we
theoretically analyze the probability that an itemset is a
candidate for a variety of candidate-based FIM algorithms:
the Apriori Algorithm [2], which we will analyze in detail,
AIS [1], Eclat [13], FP-growth [10] (which can be consid-
ered as a candidate-based algorithm, the title of [10] not
withstanding) and the Fast Completion Apriori (FCA) Al-
gorithm [2]. Their analysis is similar to that of Apriori, so
only the main principles are sketched. For these algorithms,
an itemset becomes a candidate if certain associated testsets
are already determined to be frequent. For the Apriori, AIS,
Eclat, and FP-growth algorithms, the testsets are itemsets
that are obtained by omitting a single item from I; for FCA,
the testsets are all those subsets of I whose size is equal to
the level where the regular Apriori Algorithm was last used.
For example, itemset abcd is a candidate for Apriori when all
its subsets abc, abd, acd and bcd are frequent; for Eclat, the
same set abcd might be a candidate when abc and abd are
frequent. Because of this candidacy definition that differs
for each algorithm, the candidacy probability is dependent
of the particular algorithm used. Once all candidates are
found, their exact frequency status has to be counted ex-
plicitly in the database. If a considered candidate set turns
out to be frequent, it is called a success; otherwise, it is a
failure. All correct FIM algorithms have the same success
probability; the failure probability is algorithm dependent
and is particularly important because it is related to work
that a better algorithm might hope to avoid. We compute
the candidacy, success and failure probabilities for all the
algorithms. It turns out that the algorithms differ in which
testset is the most important one.

In [12], Apriori is considered in detail for the uniform
shopping model. Our paper differs in two significant ways.
Our new shopping model is much more general and covers
almost all realistic situations. Furthermore, the study per-
formed in our paper is not only for Apriori, but for several
other algorithms and is based on the conceptual notion of
candidate sets and testsets and their probabilistic relation-
ship for being frequent.

Our theoretical approach is useful for practical purposes,
for example for designers and implementors of FIM algo-
rithms or for algorithms based on FIM, such as Association
Rule Mining Algorithms.

The main contributions of this research are: (1) the deriva-



tion of the candidacy, success and failure probabilities of
itemsets for various candidate-based FIM algorithms, using
a general random shopping model with arbitrary buying pat-
terns that can cover associations, (2) the failure probability
of an itemset I is essentially determined by the probability
of a particular testset of I, obtained by omitting one element
of I, but which testset this is depends on the algorithm, and
(3) the comparison of the behavior of these candidate-based
FIM algorithms for a variety of data distributions.

2. CANDIDATE-BASED FIM ALGORITHMS

2.1 The AIS Algorithm
The AIS algorithm [1] is the first algorithm introduced to

solve the FIM problem. An itemset I of size n is treated as
a candidate if any n− 1 size subset of I is frequent.

2.2 The Apriori Algorithm
The Apriori Algorithm [2] works level-wise: it determines

which sets of size 1 are frequent, then generates candidates
of size 2 and determines which of these sets are frequent, etc.
When processing level n, it already knows all frequent sets
of size n−1. Apriori is developed from AIS by strengthening
the candidacy test: an itemset I consisting of n items is a
candidate if all of its n− 1 size subsets are frequent.

2.3 The Fast Completion Apriori Algorithm
The FCA Algorithm [2] starts out like the regular Apriori

Algorithm, proceeding in a level-wise manner, generating
and testing candidates as it goes, but as soon as it deter-
mines that the number of candidates for all remaining levels
is not too large, it generates candidates for the remaining
levels based on the currently available information. So, in
fact, it runs the Apriori Algorithm but stops at a certain
level n. From that level on, the algorithm uses the frequent
itemsets of size n to generate candidates for all remaining
higher levels. An itemset I of size n + h is a candidate if all
of its subsets of size n are frequent.

2.4 Eclat and FP-growth
In [9], it is shown that Eclat [13] and FP-growth [10] are

candidate-based algorithms. As far as the test leading to
candidacy, they are essentially the same algorithm [9], even
though they have important differences in the details of how
they organize the data for processing.

Both Eclat and FP-growth build a tree of frequent item-
sets based on an ordering of the items (cfr. Max-Miner [4]).
There are three different orderings that are commonly used:
least-frequent-first (LFF) [4], most-frequent-first (MFF) [10],
and arbitrary or lexicographic order [11]. Both LFF and
MFF can be applied as a static ordering, based on global
frequencies, or as a dynamic ordering, based on frequencies
for the current subtree.

An itemset I is a candidate only when two particular sub-
sets of I are frequent. These two testsets are the one ob-
tained by omitting the last item from I (the father testset)
and the one obtained by omitting the next-to-last item from
I (the special-uncle testset).

3. GENERAL ANALYSIS

3.1 Shopping Model

M1 M M2

Figure 1: Graphical illustration of the region M as-
sociated with itemset I, and the ears M1 and M2

associated with testsets I1 and I2, respectively.

The shopping model considers a set of shoppers that have
identical, independent and random shopping policies: all the
shoppers behave the same and shop independently of each
other; each combination of items in the shop has its own
probability of being purchased. This model is very general:
we can accomodate the existence of dependencies. In this
approach, we assume that the shoppers do not change their
policy over time.

The more general situation where each shopper has his
own policy can also be handled with this model, as long as
the shoppers arrive in random order and as long as they
make their choices independently. The idea is to replace the
original shoppers by a single one whose policy is a weighted
linear combination of the policies of the original shoppers.

3.2 Analysis
This paper focusses on what a candidate-based FIM al-

gorithm does while processing a single itemset, I. To de-
termine the total work done by the algorithm, the results of
this section have to be summed over all itemsets. For the
general random shopping model used in this paper, this is
hard to do. One can, however, gain a lot of insight into the
behavior of the algorithms by focusing on what is important
with respect to a single itemset.

In general, a candidate-based algorithm, when it is con-
sidering making itemset I a candidate, will have already
counted some of the subsets of I. These sets are going to
be used as testsets. Figure 1 shows the situation in basket
space when I is associated with two testsets, I1 and I2. The
region M contains the baskets that contain all the items of
I (along with perhaps additional items). The left ear M1

contains the baskets that contain all the items of I1, except
for those baskets that are in M (so contain all the items of
I). Similarly, M2 contains all the baskets with the items
of I2 except those that have all the items of I (and are in
M). For all the algorithms we consider (except for FCA),
the various ears are disjoint. Itemset I is a candidate if the
number of baskets that are in M ∪Mi is at least k, for every
testset Ii.

We use the following notations in the analysis:

b, the total number of baskets in the database.

k, the support threshold. A FIM algorithm determines
which itemsets are contained in at least k baskets.

I, the itemset being considered. The elements of I are
named with integers from 1 to |I|.

Ii, the i-th testset associated with I. For the Apriori Algo-
rithm, we have Ii = I − {i} (1 ≤ i ≤ |I|), but this is
not true in general.



P (I), the probability that a shopper buys all the items in I,
regardless of whether or not other items are purchased;
P (I) is the probability that a basket is in M . This
definition implies P (∅) = 1. Similarly, P (Ii) is the
probability that a shopper buys all the items in Ii;
P (Ii) is the probability that a basket is in the set of
baskets associated with the i-th testset Ii: M ∪Mi.

Qi(I) = P (Ii) − P (I), the probability that a shopper buys
all the items in the i-th testset without buying all the
items in I. This is the probability that a basket con-
tributes to the i-th testset even though it does not
contain all the items of I. In other words, the basket
is in the ear associated with the i-th testset, Mi, and
Qi(I) is the probability of this ear.

Q(I), the Qi(I) that dominates in the determination of the
magnitude of the failure probability of itemset I.

l, the number of i values for which Qi(I) = Q(I). It is the
multiplicity of the controlling value.

For itemset I, we compute:

S(I), the success probability, i.e., the probability that at
least k baskets contain all the items of I, so that I is
frequent. Any correct algorithm for the FIM problem
has the same success probability. It is a property of
the data, not of the algorithm.

F (I), the failure probability, i.e., the probability that item-
set I passes the candidacy test but fails the frequency
test. Some algorithms are faster than others because
they have a smaller failure probability. The failure
probability depends on both the problem instance and
the algorithm.

The probability that itemset I is a candidate is

C(I) = S(I) + F (I).

The mathematics are similar to that in [12], but there
are changes in the details so that we can handle the more
general situation of this paper.

3.3 Success Probability
The probability that at least k of b shoppers have baskets

that contain all of the items of set I is

S(I) =
X
j≥k

 
b

j

!
[P (I)]j [1− P (I)]b−j . (1)

When P (I) ≤ k/b, it can be shown that

S(I) ≤ e−bα2
1/{2P (I)[1−P (I)]}+O(bα3

1[1−P (I)]−2) (2)

with α1 = k/b − P (I). In this case S(I) goes to 0 rapidly
with increasing α1.

When P (I) ≥ (k − 1)/b, we can find

S(I) ≥ 1− e−bα2
2/{2P (I)[1−P (I)]}+O(bα3

2P (I)−2) (3)

with α2 = P (I) − (k − 1)/b. In this case S(I) goes to 1
rapidly with increasing α2.

3.4 Candidate and Failure Probability
To compute the candidate and failure probability, we de-

fine the following conditions with respect to a single basket:

M : a shopper’s basket contains all the items in I, and

Mi: a shopper’s basket contains all the items of testset Ii

without containing all the items of I.

For all the algorithms we consider (except FCA), these con-
ditions are disjoint.

The probability that a shopper satisfies condition M is
P (I), the probability that he satisfies condition Mi is Qi(I).

So long as the Mis are disjoint, the probability that j0
shoppers satisfy condition M , j1 shoppers satisfy condition
M1, . . . , jn shoppers satisfy condition Mn and the remaining
b−j0−· · ·−jn shoppers do not satisfy any of the conditions
can be expressed by�

b
j1, . . . , jn, b− j0 − j1 − · · · − jn

�

×[P (I)]j0
� Y
1≤i≤n

Qi(I)ji

�

×
�
1− P (I)−

X
1≤i≤n

Qi(I)

�b−j0−
P

1≤i≤n ji

. (4)

If the Mi overlap, the details are more complex, but the
situation is similar and a variant of eq. (4) can be derived.

Thus, for any algorithm we are considering, eq. (4) (or a
variant) gives the probability related to a particular set of
counts (the j values). If this equation is summed over the
cases that lead a particular algorithm to make I a candidate,
then the formula gives the probability that I is a candidate.
If we sum over the conditions that lead to I being a failure,
then we obtain the probability that I is a failure. The set
of conditions depends on the particular algorithm.

4. FAILURE PROBABILITY FOR APRIORI
Itemset I is a candidate if for every testset Ii (1 ≤ i ≤ |I|),

the number of baskets that are in M ∪Mi is at least k. This
happens when

j0 + j1 ≥ k and j0 + j2 ≥ k and · · ·
and j0 + j|I| ≥ k (5)

is true. Thus, to find the probability that I is a candidate for
the Apriori Algorithm, we must sum eq. (4) (with n = |I|)
subject to condition (5). The subset of these cases, where j0
is smaller than k, are the cases that lead to I being a failure:

F (I) = C(I)− S(I)

=
X
j0<k

j1≥k−j0
j2≥k−j0···

j|I|≥k−j0

 
b

j0, j1, . . . , j|I|, b− j0 − j1 − · · · − j|I|

!

×[P (I)]j0
� Y
1≤i≤|I|

Qi(I)ji

�

×
�
1− P (I)−

X
1≤i≤|I|

Qi(I)

�b−j0−
P

1≤i≤|I| ji

. (6)



4.1 Chernoff Bound for F(I)

Chernoff bounds [7] provide a good method to approxi-
mate F (I).

When Q(I) + P (I) ≤ k/b, it can be shown that

F (I) ≤

e−blθα2
3/(2{Q(I)+P (I)+(l−1)P (I)−l[Q(I)+P (I)]2}) (7)

with α3 = k/b − [P (I) + Q(I]; θ is used to represent a
function that approaches 1 in the limit. In this case, F (I)
goes rapidly to 0.

When P (I) ≥ (k − 1)/b, F (I) goes rapidly to 0 because
F (I) ≤ 1− S(I). In particular, we can find

F (I) ≤ e−bα2
2/{2P (I)[1−P (I)]}+O(α3

2bP (I)−2) (8)

when α2 = P (I)− (k − 1)/b.
To obtain a lower bound on F (I), we use inclusion-exclusion

arguments leading to

F (I) ≥ 1− e−bα2
1/{2P (I)[1−P (I)]}+O(bα3

1[1−P (I)]−2)

−
X

1≤i≤|I|

e−bβ2
i /{2[P (Ii)][1−P (Ii)]}+O(bβ3

i [P (Ii)]
−2) (9)

where P (Ii) = P (I)+ Qi(I) and where α1 and βi related to
k by k = b[P (I)+α1] and k = b[P (I)+Qi(I)−βi]+1 when
α1 and all the βs are positive.

4.2 Interpretation
The diagram in Figure 2 is illustrating the behavior of

Apriori with regard to a single itemset, I, where the asso-
ciated testsets are I1, . . . , I|I|. Itemset I has probability
P (I). Each testset Ii has some larger (or equal) probabil-
ity because each basket that contains all the items of I also
contains all the items of each testset Ii. If the fractional
threshold k/b is less than P (I), then itemset I is always a
success [S(I) ≈ 1]. In this case, the failure probability is (al-
most) zero [F (I) ≈ 0]. If k/b is above P (Idominant) (where
Idominant is the best testset, i.e., the one with the smallest
probability), then there is almost no chance that I is even a
candidate [C(I) ≈ 0], so both the success and failure prob-
abilities are (nearly) zero [S(I) ≈ 0, F (I) ≈ 0]. If k/b is
between P (I) and P (Idominant), the probability that I is a
candidate is almost one [C(I) ≈ 1], but the probability that
I is a success is almost zero [S(I) ≈ 0], so the probability
that I is a failure is almost one [F (I) ≈ 1].

Nearly all the failures for the Apriori Algorithm, i.e. count-
ing itemsets which are not frequent, come from those sets
where the set’s probability, P (I), is below the threshold k/b
but where the probability of the best testset, P (Idominant),
is above the threshold k/b.

5. FAILURE PROBABILITY FOR OTHER
ALGORITHMS

5.1 AIS
For AIS, an itemset I is a candidate if I occurs in a basket

and some subset of I that is missing one item is frequent. For
a simple analysis, we only take care of the second condition.
Itemset I is a candidate when the condition

j0 + j1 ≥ k or j0 + j2 ≥ k or · · ·
or j0 + j|I| ≥ k (10)

0 P (I) P (Idominant) 1

k/b

F (I) ≈ 0

S(I) ≈ 1

C(I) ≈ 1 C(I) ≈ 1 C(I) ≈ 0

S(I) ≈ 0

F (I) ≈ 1 F (I) ≈ 0

S(I) ≈ 0

Figure 2: Whether itemset I is frequent (a success),
or a candidate which is infrequent (a failure), or not
even a candidate, is determined (with high probabil-
ity) by where the threshold ratio k/b falls in relation
to the probability of itemset I and the probability
of I’s most important testset Idominant.

is true. It is a failure when eq. (10) is true with j0 < k. Thus,
the failure probability for AIS is given by eq. (6) except that
the condition on the summation is

j0 < k and (j0 + j1 ≥ k or j0 + j2 ≥ k or · · ·
or j0 + j|I| ≥ k). (11)

Inclusion-exclusion type reasoning can be used on the logi-
cal or operation: the sum is equivalent to the sum of a collec-
tion of subsums, some occurring with a negative sign. From
the detailed analysis that we did for the Apriori Algorithm,
we can approximate all of these subsums individually.

Because an itemset I is a candidate for AIS if any n − 1
size subset of I is frequent, the only subsum in this collection
of inclusion-exclusion subsums that is important is the one
associated with the weakest of the testsets, the testset with
the highest probability, so long as the largest Qi(I) is not
too close to the others. Thus, when we have a unique worst
testset (no near ties), the failure probability for the AIS
Algorithm is bounded by eqs. (7) , (8), and (9) with Q(I)
being the largest of the Qi(I) and l = 1.

The performance of AIS is determined by the worst test-
set. If Im is the m − 1 size subset of a candidate set I of
size m with largest probability of being purchased, then I
is a candidate with probability near 1 when the probability
of buying all the items of Im is significantly above k/b, and
it is near 0 when the probability of buying the items is sig-
nificantly below k/b. The other testsets have only a slight
effect on the probability that itemset I will be a candidate.
When several itemsets tie for worst, the bound on the failure
probability is worse than that given by eqs. (7), (8), and (9)
but only by a factor that is no larger than the number of
ties. Whether F (I) is near 0 or 1 still depends on whether
or not k/b is between P (I) and P (Im). Figure 2 is again
applicable, but with Idominant = Im.

5.2 Fast Completion Apriori Algorithm
The testsets for an itemset I are its subsets consisting

of n elements, where n is the last level where the regular
Apriori Algorithm is used. Unlike the previous cases, we now
have overlapping testset ears. The presence of overlapping
testset ears reduces the effectiveness compared to the no-
overlap case but we can show that the performance of the
algorithm on itemset I is determined primarily by the best
of I’s testsets. Of course, this best testset comes from the
level where the regular Apriori Algorithm stopped (several
levels back), so it usually is a much worse testset than the
one Apriori would use.

Eqs. (7), (8), and (9) still bound the failure probability



with Q(I) being the Qi(I) for the best testset and l = 1, so
long as there is no tie for the best Q.

5.3 Eclat and FP-growth
Since both the father and the special-uncle must be fre-

quent for a set I to be a candidate, the best of those two test-
sets has the main effect on whether I is a candidate. Thus,
the failure probability is bounded by eqs. (7), (8) and (9)
with Q(I) equal to the smaller of the Qi(I) for the father
and the Qi(I) for the special-uncle. The value of l is 1 when
these two Qs are different, and l is 2 when they are equal.

Which two Qs control the failure probability depends on
the ordering that is used. If the order is dynamic MFF, the
father testset will be the worst testset and the special uncle
testset will be the second worst. If the order is static MFF,
there will be a strong tendency for the father testset to be
the worst one and for the special-uncle testset to be the
second-worst one. If this happens, the second-worst testset
has the main effect on the probability of candidacy, but the
actual situation will depend on what correlations are present
in the data. If the order is dynamic LFF, the father testset
will be the best testset and has the main effect. If the order is
static LFF, the father testset will likely be the best testset.
If the items are chosen in a random lexicographic order,
both the parent and the special uncle will each be randomly-
chosen testsets. Each pair of possible Qs is thus equally
likely to be chosen and the best of the two randomly-chosen
testsets will have the main effect.

Once we have determined which testset has the main ef-
fect, the situation is the same as for the previous algorithms,
as illustrated in Figure 2; the itemset I is a candidate with
probability near 1 when the probability of buying all the
items of the important testset is significantly above k/b and
it is near 0 when the probability of buying is significantly
below k/b.

6. DISCUSSION
In this paper, we discuss algorithms that have a candi-

dacy test that considers an itemset I when only some of I’s
subsets, the testsets, are frequent. The various algorithms
differ in which subsets they consider for the candidacy test.
It is clear that an algorithm that considers all subsets that
are missing one item (such as Apriori) will sometimes need
to consider fewer candidates than those that have a weaker
candidacy test. We can show this with an example of anti-
correlated data. Suppose items have the following frequency
ordering: a < b < c (let a = hot dog, b = Pepsi Cola and c =
Coca Cola) and the following doubleton frequency ordering
bc < ab < ac. For thresholds in the range bc < k < ab,
Eclat counts the set abc but Apriori does not. It is clear
that Apriori does less work compared to Eclat, but it is less
obvious how significant these differences are. We use the
probabilistic analyses from the previous sections to show
that the significance depends both on the algorithm and on
properties of the data set being processed (and in the case
of Eclat-like algorithms, the ordering assumption).

The testsets for Eclat are a subset of the testsets for Apri-
ori and a superset of the testsets for AIS. Therefore, the per-
formance of Eclat is intermediate between those of Apriori
and of AIS.

For data that are suitable uniform (the various testsets of
the same size have similar probabilities), all the algorithms
(other than FCA) have essentially the same performance in

terms of the number of candidates generated.
If the data is non-uniform but suitably independent and

random, then Apriori has essentially the same performance
as LFF Eclat; Random Eclat is worse; MFF Eclat is worse
yet and AIS is worst of all.

When the data has strong anti-correlations, Apriori is the
best, followed by LFF Eclat, and then by the remaining
algorithms in the same order as before, w.r.t. amounts of
candidates generated.

These conclusions are in agreement with previous exper-
imental results [4, 5, 13]. Some of these conclusions could
be obtained by considering particular fixed datasets but our
probabilistic analysis shows that these conclusions are quite
general.

7. REFERENCES
[1] R. Agrawal, T. Imielinski, and A. Swami. Mining

association rules between sets of items in large
databases. Proc. ACM SIGMOD Int. Conf.
Management of Data, pages 207–216, 1993.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules. Proc. of VLDB Conference, pages
487–499, 1994.

[3] R. Agrawal and R. Srikant. Mining sequential
patterns. Proc. IEEE ICDE Int. Conf. on Data
Engineering, pages 3–14, 1995.

[4] R. J. Bayardo. Efficiently mining long patterns from
databases. Proc. ACM SIDMOD Int. Conf. on
Management of Data, pages 85–93, 1998.

[5] R. J. Bayardo, B. Goethals, and M. J. (co-chairs)
Zaki. Workshop on frequent itemset mining
implementations (fimi ’04). Brighton, UK, 2004.

[6] T. Calders. Computational complexity of itemset
frequency satisfiability. Proc. ACM
SIGACT-SIGMOD-SIGART Symp. on Principles of
Database Systems, pages 143–154, 2004.

[7] H. Chernoff. A measure of asymptotic efficiency for
test of a hypothesis based on the sum of observations.
Annals of Mathematical Statistics, 23:493–507, 1942.

[8] F. Geerts, B. Goethals, and J. Van den Bussche. A
tight upper bound on the number of candidate
patterns. Proc. of the first IEEE Int. Conf. on Data
Mining, 2001.

[9] B. Goethals. Efficient frequent pattern mining. PhD
thesis, transnational University of Limburg,
Diepenbeek, Belgium, December 2002.

[10] J. Han, J. Pei, and Y. Yin. Mining frequent patterns
without candidate generation. Proc. ACM SIGMOD
Int. Conf. Management of Data, pages 1–12, 2000.

[11] W. A. Kosters and W. Pijls. Apriori, a depth first
implementation. Proc. of the Workshop on Frequent
Itemset Mining Implementations, 2003.

[12] P. W. Purdom, D. Van Gucht, and D. P. Groth.
Average case performance of the apriori algorithm.
SIAM J. Computing, 33 (5):1223–1260, 2004.

[13] M. J. Zaki. Scalable algorithms for association mining.
IEEE Transactions on Knowledge and Data
Engineering, 12 (3):372–390, 2000.

[14] Z. Zheng, R. Kohavi, and L. Mason. Real world
performance of association rule algorithms. Proc. of
the 7th ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining, pages 401–406, 2001.


