
The Role of Unknown Interactions in Implicit Matrix
Factorization — A Probabilistic View

Joey De Pauw
joey.depauw@uantwerpen.be

University of Antwerp
Antwerp, Belgium

Bart Goethals
bart.goethals@uantwerpen.be

University of Antwerp
Antwerp, Belgium
Monash University
Melbourne, Australia

ABSTRACT
Matrix factorization is a well-known and effective methodology
for top-k list recommendation. It became widely known during
the Netflix challenge in 2006, and since then, many adapted and
improved versions have been published. A particularly interesting
matrix factorization algorithm called iALS (for implicit Alternating
Least Squares) adapts the method for implicit feedback, i.e. a setting
where only a very small amount of positive labels are available along
with a majority of unknown labels. Compared to the classical task
of rating prediction, learning from implicit feedback is applicable
to many more domains, as the data is more abundant and requires
less effort to elicit from users. However, the sparsity, imbalance,
and implicit nature of the signal also pose unique challenges to
retrieving the most relevant items to recommend.

We revisit the role of unknown interactions in implicit matrix fac-
torization. Traditionally, all unknowns are interpreted as negative
samples and their importance in the training objective is then down-
weighted to balance them out with the known, positive interactions.
Interestingly, by adapting a probabilistic view of matrix factoriza-
tion, we can retain the unknown nature of these interactions by
modelling them as either positive or negative. With this new for-
mulation that better fits the underlying data, we gain improved
performance on the downstream recommendation task without any
computational overhead compared to the popular iALS method.

This paper outlines the key insights needed to adapt iALS to
use logistic regression. Furthermore, a logistic version of the pop-
ular full-rank EASE model is introduced in a similar fasion. An
extensive experimental evaluation on several real-world datasets
demonstrates the effectiveness of our approach. Additionally, a
discrepancy between the need for weighting between factorization
and autoencoder models is discovered, leading towards a better
understanding of these methods.

CCS CONCEPTS
• Information systems → Learning to rank; Recommender sys-
tems; Collaborative filtering.

RecSys ’24, October 14–18, 2024, Bari, Italy
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use.
Not for redistribution. The definitive Version of Record was published in 18th ACM
Conference on Recommender Systems (RecSys ’24), October 14–18, 2024, Bari, Italy,
https://doi.org/10.1145/3640457.3688100.

KEYWORDS
recommender system, collaborative filtering , implicit feedback,
matrix factorization

ACM Reference Format:
Joey De Pauw and Bart Goethals. 2024. The Role of Unknown Interactions in
Implicit Matrix Factorization—AProbabilistic View. In 18th ACMConference
on Recommender Systems (RecSys ’24), October 14–18, 2024, Bari, Italy. ACM,
New York, NY, USA, 9 pages. https://doi.org/10.1145/3640457.3688100

1 INTRODUCTION
An important component, contributing to the success of most mod-
ern recommender systems, is collaborative filtering from implicit
feedback data [1]. In this approach, the preferences of one user are
estimated based on the collection of all users’ past behaviour. The
data is both easy to collect and abundant, as it is generated by users’
interactions with the system. However, the data is also noisy and
sparse. Unlike explicit feedback data, where low ratings can be in-
terpreted as negative feedback, in binary implicit feedback, all items
that a user interacted with are assumed to be positive and the vast
remainder of the catalogue as unknown. This makes it challenging
to train a model that can accurately predict the user preferences [1].

One of the most popular collaborative filtering methods, that
can learn from implicit feedback data, is implicit Alternating Least
Squares (iALS) [8, 17]. iALS, often also called WMF or WRMF, is a
matrix factorization method that estimates the user preferences by
factorizing the user-item interaction matrix into lower-rank user
and item embedding matrices. In this method, all unknown inter-
actions are interpreted as negative samples and their importance
in the training objective is then downweighted to balance them
out with the known, positive interactions. However, this approach
does not fully capture the uncertainty in the data, as the unknown
interactions could be either positive or negative.

To address this issue, we propose a new probabilistic interpre-
tation of iALS called LogWMF. In this probabilistic interpretation,
unknown interactions are modelled as either positive or negative,
to better capture the uncertainty in the data. This new formulation
allows us to gain improved performance on the downstream rec-
ommendation task without any computational overhead compared
to iALS. An adaptation of the full-rank EASE model [24] with prob-
abilistic unknowns (LogEASE) is also included for completeness.
Compared to the closed-form solution of EASE, training LogEASE
is less practical in a production setting. However, we gain a bet-
ter understanding of the importance of weighting by studying its
performance in an offline evaluation.

https://orcid.org/0000-0002-1417-922X
https://orcid.org/0000-0001-9327-9554
https://doi.org/10.1145/3640457.3688100
https://doi.org/10.1145/3640457.3688100

RecSys ’24, October 14–18, 2024, Bari, Italy J. De Pauw et al.

Section 2 presents the background of iALS and introduces the
new probabilistic interpretation. Section 3 describes the experimen-
tal validation of our approach. Section 4 contains a review of related
work, and finally, Section 5 concludes the paper.

2 MODELS
2.1 Background
Weuse< and= to denote the amount of users and items respectively
and : for the embedding dimension. The matrices % ∈ R<×: and
& ∈ R=×: are the embedding matrices that factorize the binary
interaction matrix - ∈ {0, 1}<×= . The loss of iALS is given by:

L(iALS) =

<∑
D

=∑
8

,D,8

(
-D,8 − %D&

>
8

)2 + _

(
‖% ‖2� + ‖& ‖2�

)
(1)

where the weights,D,8 are chosen to be uniform (U0) for all missing
interactions and one for all positive interactions.

iALS is typically solved with Alternating Least Squares (ALS),
where the item factors are kept fixed when the user factors are
updated and vice versa.This is possible because the loss is bi-convex
in terms of the user or item factors. The update steps can even be
derived in closed form for fast learning:

%D = -D dm(,D)&
(
&> dm(,D)& + _�

)−1
&8 = ->

·,8 dm(,·,8)%
(
%> dm(,·,8)% + _�

)−1
with dm(·) constructing the diagonal matrix from the given vector.
The update formulas are derived by taking the derivative of the loss
with respect to the user or item factors and setting it to zero. With-
out loss of generality, in the followingwe only describe the optimiza-
tion of the user factors. The item factors are learned analogously.

The efficiency and high scalability of this method arises from
the structure of the weights. Since all missing interactions are
assigned the same weight U0, we can rewrite the weights as,D =

-D +U0 (1−-D). Subsequently, the inner product&> dm(,D)& can
efficiently be computed as:

U0&
>& +&> dm (-D (1 − U0))& (2)

Here, the first term is shared between all users and can be precom-
puted. The second term is only based on the positive interactions
and can be computed efficiently by taking the outer product be-
tween the factors of & corresponding to positive interactions. The
total complexity of one iteration of learning all user and item em-
beddings with iALS is O(?:2 + (< + =):3) with ? the total amount
of positive interactions.

Alternatively, previous work pointed out that computing the
exact optimum at each iteration is not necessary [2, 18, 19]. Indeed,
every iteration the optimum is overwritten anyway, so using a suffi-
ciently accurate approximation inside the iteration of ALS can speed
up the computation with barely any loss in convergence speed.

Newton’s method is a popular choice for approximate optimiza-
tion. It requires the first and second derivative of the loss. These are
also called the Jacobian (®9) and Hessian (�) matrices. One update
step of Newton’s optimization method consists of subtracting the
inverse of the Hessian multiplied with the Jacobian:

%>D = %>D − �−1 ®9 (3)

Finally, as described in [19], we can reach even better scalability
by using subvector optimization. In this method, we optimize the
factors piece by piece in small subsets of the weights determined by
the blocksize. The blocksize is typically between 64 and 256 to lever-
age efficient use of low-level vector instructions. Its optimal value
is hence mostly hardware dependent. We iterate by updating a spe-
cific block c of the embedding for all of the factors before switching
to the next block. The formulas for the Jacobian and Hessian are
found by computing the first and second partial derivatives:

mL(iALS)

m%>D,c
= ®9 = −&>

·,c dm(-D)
(
®1> − %D&

>
)>

+ U0&
>
·,c dm(®1> − -D)&%>D + _%>D,c

m2L(iALS)

m%D,c m%
>
D,c

= � = &>
·,c dm

(
-D + U0

(
®1> − -D

))
& ·,c + _�

The complexity of one epoch is O(?: |c | + (< + =) (:2 + : |c |2)).
For more details and a full overview of these methods, refer to [19].

2.1.1 Maximum Likelihood Estimation. In this section, we show
that the square loss objective of iALS can equivalent be written as a
Maximum Likelihood Estimation (MLE). Though the two formula-
tions are equivalent, the MLE formulation is easier to extend with
the logistic function. InMLE, wemaximize the likelihood of the data
given themodel.The likelihood of the data in this case is the product
of the probabilities of each interaction. For linear models, proba-
bilities are modelled with a Gaussian function: 6(G) = exp

(
−G2

)
,

leading us to the following MLE for iALS:

argmax
%,&

∏
D,8

6
(
1 − %D&

>
8

)-D,8 6
(
%D&

>
8

)U0 · (1−-D,8) (4)

To facilitate optimization, we take the negative of the natural
logarithm (ln) of the likelihood. This does not change the optimum
since the logarithm is continuous and monotonically increasing.
The equivalent loss to minimize is then the negative log-likelihood:

L(MLE) = −
∑
D,8

ln
(
6
(
1 − %D&

>
8

)-D,8

)
+ ln

(
6
(
%D&

>
8

)U0 · (1−-D,8)
)

+ _ · (‖% ‖2� + ‖& ‖2�)
Regularization is added to the loss to prevent overfitting. Note

that this corresponds to placing a Gaussian prior on the weights in
Equation (4). Finally, we can see that the logarithm cancels out the
exponential function of the Gaussian 6, and we can simplify the
loss to Equation (1) as follows:

L(MLE) =
∑
D,8

-D,8
(
1 − %D&

>
8

)2 + U0 (1 − -D,8)
(
%D&

>
8

)2
+_ · (‖% ‖2� + ‖& ‖2�)

= L(iALS) �

2.1.2 Regression vs Classification. Given that we are modelling
binary labels in the interaction matrix - , we argue that the
Gaussian function may not be the most appropriate choice. This
can be seen by first noting that the Gaussian function corresponds
to linear regression as shown above and as proven in the literature
on generalized linear models [14]. Linear regression is useful for

The Role of Unknown Interactions in Implicit Matrix Factorization RecSys ’24, October 14–18, 2024, Bari, Italy

its simplicity and efficiency. However, if we consider the problem
as a classification task, we encounter two issues.

First, the domain is not bounded between 0 and 1. This means
that the model is enforced to predict values around the arbitrarily
chosen targets of 0 and 1. With the downstream task where we
construct a ranked list based on predicted relevance, it is perhaps
counter-intuitive to also penalize positive values with a score above
1 and unknowns with a score below 0.

Second, the output is not interpretable as a probability. Indeed,
the domain of the regression is not bounded, so the computed
scores cannot be interpreted as probabilities. Even if we use the
interpretation with the Gaussian functions of Equation (4), it is clear
that the “probabilities” for positive and negative do not sum to one.

We can overcome these issue by phrasing the problem as a clas-
sification task, i.e. interpreting the labels as classes and modelling
the probabilities of a sample belonging to each class. For binary
classification, the logistic function is typically used:

f (G) = 1
1 + exp(−G)

It projects real values to the interval [0, 1] with a monotonically
increasing sigmoid curve. Logistic regression uses the logistic func-
tion to model the probability of a sample belonging to the positive
class. The probability of the negative class is simply 1 − f (G).

2.2 Modelling Unknown Interactions
A simple, yet impractical approach to achieve implicit matrix factor-
ization with logistic regression would be to directly use the logistic
function for both the positive and unknown interactions. In this
case, the unknowns are assumed to be negative interactions and
their probability is modelled as 1 − f (%D&>

8
). However, the opti-

mization of this loss scales with the size of the matrix< × =, i.e.
all combinations of users and items, which is not feasible for large
datasets. The reason for this is that the efficient precomputation
step outlined in Equation (2) of the iALS optimization is no longer
possible when the logistic function is used to model negative in-
teractions. A negative sampling approach is needed to make the
optimization feasible as previously shown in [10].

Instead, we propose to use the logistic function to model the
positive interactions and to model the unknowns as a product of
the probabilities of the positive and negative classes. Formally:

argmax
%,&

∏
D,8

f
(
%D&

>
8

)-D,8 ·
((
1 − f

(
%D&

>
8

))
f
(
%D&

>
8

))U0 · (1−-D,8)

There are multiple ways to interpret this formulation. First, the
product of the positive and negative probabilities is maximal when
both are equal to 0.5. In this sense, unknowns are modelled as
equally likely to be positive as negative. Deviating from this balance
is penalized, as this indicates that the model is too certain about the
unknowns. This also motivates why weights are kept in the loss, as
there are still many more unknown than positive interactions in the
data andwewant to balance out their impact on the learned weights.

Secondly, the new formulation can be interpreted as a three-
class classification problem as shown in the top part of Figure 1. To
make the probabilities of the three classes sum to one, we use the
squared logistic function for the positives instead.This is equivalent
to adding a weight to the positive samples, as the exponent becomes

0

0.25

0.5

0.75

1

(1 − f (G))2
2f (G) (1 − f (G))

f (G)2

−6 −4 −2 0 2 4 6

0

0.25

0.5 2f (G) (1 − f (G))
0.56(G)

1
4

Figure 1: Plot of the three-class classification interpretation
of the logistic function. The top plot shows the probabilities
of the three classes: positive (green), unknown (orange), and
negative (red). The bottom plot shows the approximation of
the logistic function with the Gaussian function.

a scalar factor in the negative log-likelihood. It furthermore has
no impact on the learned model as the same solution can be found
under different optimal hyperparameters. With the three-class for-
mulation, we can also model negatives explicitly as a separate class
independent of the unknowns. For the scope of this paper however,
we only consider binary implicit feedback data that is limited to
positive interactions and unknowns.

Optimizing this loss as-is would again scale poorly, as it remains
dependent on all combinations of users and items< × =. However,
we can now approximate the function used for the unknown class
with a Gaussian function. The bottom part of Figure 1 illustrates
the similarity between the two functions when a specific scalar
and exponent are used. In practice the scalar has no impact on
the loss and the exponent can be consumed by the hyperparamers
so they can be safely ignored. Using the Gaussian function for
approximation is inspired by the commonly used approximation
of the logistic function by the cumulative distribution function
(CDF) of a Gaussian distribution [4, 23]. In fact, the derivative of
the gaussian CDF is the gaussian function and the derivative of
f (G) is f (G) (1 − f (G)), which further supports the validity of this
approximation. Conveniently, as shown in Section 2.1.1, the MLE
with a Gaussian function is equivalent to a square loss.

To summarize, we find that when positive interactions are mod-
elled with a sigmoid function, intuitively it makes sense that un-
knowns are modelled as a product of the positive and negative
probabilities. This in turn can be approximated by a Gaussian func-
tion which equates to linear regression. With these insights we
develop LogWMF in the next section.

2.3 LogWMF
Putting everything together, we define the the maximum likelihood
estimation for LogWMF as follows:

argmax
%,&

∏
D,8

f
(
%D&

>
8

)2-D,8 6
(
%D&

>
8

)U0 · (1−-D,8)

RecSys ’24, October 14–18, 2024, Bari, Italy J. De Pauw et al.

Similar to the trick of weighting with iALS, we only use the
more complex logistic function for the positive interactions. The
missing interactions are modelled as unknowns and approximated
with the Gaussian function. For optimization, we use the equivalent
negative log-likelihood loss with regularization added:

L = −
∑
D,8

2-D,8 ln
(
f
(
%D&

>
8

))
+ U0 · (1 − -D,8) · ln

(
6
(
%D&

>
8

))
+ _ · (‖% ‖2� + ‖& ‖2�)

Compared to iALS, optimization with alternating least squares
is not possible as there is no closed form solution for the user and
item factors. We immediately derive the faster and more scalable
subvector optimization with Newton’s method instead.

mL
m%>D,c

= ®9 = −&>
·,c dm(-D)

(
®1> − f

(
%D&

>))>
+ U0&

>
·,c dm(®1> − -D)&%>D + _%>D,c

m2L
m%D,c m%

>
D,c

= � = &>
·,c dm

(
-D � f

(
%D&

>) � (
®1> − f

(
%D&

>))
+ U0

(
®1> − -D

))
& ·,c + _�

The scalar multiplier of two in both ®9 and � was omitted as it is
divided away in the optimization step, Equation (3). Also notice that
&>
·,c dm(®1>−-D)& , which appears in � (and its subset in�), can be

computed efficiently as described in Equation (2). Indeed, except for
applying the logistic function to the predicted scores and reusing
this result in the Hessian, this optimization requires no additional
computation compared to the subvector optimization of iALS. It has
the same training complexityO(?: |c |+(<+=) (:2+: |c |2)). At infer-
ence time, a top-k list per user can be constructed directly with the
dot product between user and item vectors. Since the logistic func-
tion is monotonically increasing, applying it would not change the
relative order of the predictions. In summary, existing production
systems based on iALS can easily be adapted to leverage LogWMF.

As a side note, previous work has shown that the loss of iALS
can be simplified by computing the term for missing values over all
user-item combinations, rather than only the missing ones [2]. This
results in a loss where the labels - are scaled by a factor depending
on U0. For linear regression, this leads to a rescaled loss that has the
same optimal solution. However, the optimum will be found with
different, rescaled versions of the optimal hyperparameters. With
the addition of the logistic function however, we need the labels -
to remain binary, and as such, this simplification cannot be applied.

2.4 Regularization Scaling
For simplicity of notation, we used a uniform regularization scalar
_ for all user and item factors. In practice, it is often found that
scaling the regularization strength based on the number of positive
interactions and/or unknowns can lead to better performance. The
optimization is otherwise identical, except a specific regularization
value _D or _8 is used for each user or item factor.

A first simple strategy, which we refer to as frequency scaling, is
to multiply the fixed regularization constant _ with the number of

positive interactions of a user (or item) to the power a :

_D = _ ·
(∑

8

-D,8

)a
Alternatively, the unknowns can also be taken into account with
their corresponding weight U0 in the weighted scaling strategy:

_D = _ ·
(
U0 · = +

∑
8

-D,8

)a
The hyperparameter a is typically optimized between 0 and 1

with a grid search. In both strategies, a value of 0 means that the
regularization strength is independent of - and reduces back to _.

2.5 Weighted EASE and LogEASE
EASE [24] is a popular recommendation model because of its simple
formulation and closed form solution. It computes a linear regres-
sion model with the following loss:

L(EASE) = ‖- − -�‖2� + _ ‖�‖2� s.t. diag(�) = 0

Where � is a square full-rank matrix of item-item weights and
its diagonal is set to zero to prevent learning predictions based
on self-similarity. The closed-form solution of EASE leads to fast
training times because no iteration is needed. However, for this
solution to work, the loss needs to remain sufficiently simple. For
example, adding item-specific regularization or weights breaks the
closed form solution. In this section we show that the subvector
optimization of iALS can be adapted to efficiently learn a weighted
and probabilistic version of EASE in two steps.

First, note that the square matrix � of EASE can be viewed as an
item embedding matrix with the corresponding ‘user embeddings’
- . Hence, if wewant the learned item embeddings&> to correspond
to the item-item weights � of EASE, we set the embedding size
to full rank (: = =), and instead of learning % , we fix the user
embeddings to - .

Secondly, the diagonal constraint needs to be added. For the
subvector optimization procedure this can be done by adding the
constraint to Newton’s method. Recall that weights are updated
per item 8 and block c independently. The Jacobian ®9 and Hessian
� of &8,c w.r.t. the loss are used to perform one update step &>

8,c
=

&>
8,c

− ®G with � ®G = ®9 . If we assume a feasible start where the
diagonal elements are zero, enforcing the constraint boils down to
ensuring the update direction ®G also has a zero in the right position
when 8 ∈ c . For this, we expand the linear system of equations �
to include the constraint as follows:[

� � ·,3
�3 0

] [
G

F

]
=

[®9
0

]
Here, � is the identitymatrix of size |c | and3 is the index correspond-
ing to the diagonal element &8,8 within the block. The dual variable
F does not need to be update in the case of a feasible start, and thus,
simply solving this system for ®G makes sure the diagonal elements
remain zero. With this adaptation, we can learn a weighted version
of EASE with the subvector optimization of iALS. This model is
referred to as Weighted EASE (WEASE). Similarly, we also adapt
our LogWMF model to a full rank version called LogEASE.

The Role of Unknown Interactions in Implicit Matrix Factorization RecSys ’24, October 14–18, 2024, Bari, Italy

3 EXPERIMENTS
To assess the performance of the proposed models, we conducted
empirical experiments on two widely studied benchmarks:
the MovieLens 20M (ML20M) [6], and the Million Song
Dataset (MSD) [3]. Liang et al. [12] established these benchmarks
for top-k item recommendation with implicit feedback and they
have been used in numerous studies to evaluate the performance
of recommendation algorithms. By using the same configuration,
which is summarized in Section 3.1, we ensure a fair comparison
with existing methods.

3.1 Experimental Setup
The benchmark of [12] consists of two datasets:
ML20M [6]: The MovieLens 20M dataset contains 20 million rat-

ings of movies. During preprocessing only positive (> 3)
ratings are retained as implicit feedback and inactive users
and items are filtered. The final benchmark contains 136.677
users, 20.108 items and 10 million interactions.

MSD [3]: This data contains user-song play counts. Play counts are
binarized and interpreted as implicit preference data. After
preprocessing, the dataset contains 571.355 users, 41.140
items and 33.6 million interactions.

In the benchmark, first a validation and test set are split from
the data. The validation set is used to tune the hyperparameters of
the algorithms, while the test set is used to independently evaluate
the performance. Strong generalization is used, meaning that the
users in these sets are distinct from those in the training set. For the
MovieLens 20M dataset, 10.000 users are randomly moved into the
validation set and 10.000 to the test set. For theMillion Song Dataset,
they contain 50.000 users each. Then, to evaluate the quality of the
recommendations, 80% of the interactions of each user are given
as history to the model and the remaining 20% are used as ground
truth to compute the metrics.

The evaluation metrics used, are Recall@20, Recall@50, and
NDCG@100. Recall@k measures the proportion of relevant items
that are ranked in the top-k positions, while NDCG@k is a ranking
metric that additionally considers the position of the relevant items
in the top-k positions. The reported results are averages over 5
runs on the test set. Each method is found to converge well-within
16 epochs, which we used as the maximum amount. All optimal
parameters with respect to the Recall@20metric are listed in Table 1
as determined by a grid search on the validation set. For more
details on the datasets and the preprocessing steps, refer to [12]
and the source code of our algorithms and experimental setup:
https://github.com/JoeyDP/LogWMF.

3.2 Results
Table 2 shows the results of the experiments sorted by Recall@20
scores. It contains results by previous works that use the bench-
mark of [12], along with our own results for LogWMF and LogEASE,
and reproduced results of iALS. Considering that the performance
of most recommendation models is highly dependent on finding
the right hyperparameters [21], we believe this to be the most fair
comparison. Hyperparameter tuning often requires an extensive
understanding of the underlying algorithms [20, 21]. Additionally,

Table 1: Best hyperparameters based on Recall@20. Values
with a box are fixed for the algorithm and not optimized.

Dataset Algorithm U0 _ a

ML20M

LogWMF 0.003 1 0.25
iALS 0.1 0.003 1
MF 1 0.1 1
MF (uniform reg) 1 30 0
LogEASE 0.01 10 0

MSD

LogWMF 0.003 0.01 1
iALS 0.1 0.03 1
MF 1 0.1 1
MF (uniform reg) 1 30 0
LogEASE 0.05 10 0

in reproducing algorithms, implementation errors or misinterpreta-
tions of the original method, can also cause major differences in the
measured performance [7]. By comparing with the best results of
previous works, we ensure that the algorithms are evaluated under
the best possible conditions and that there is no bias where the
proposed method is tuned better than the baselines.

First, we observe that LogWMF and LogEASE outperform their
linear counterparts (iALS and EASE) on both datasets. On the MSD
datasets, LogEASE is even the best performing algorithm of all the
baselines reported in [20]. Though the difference in metrics is not
large, we can still draw two conclusions from this result. On the one
hand, this validates the proposed approach. Introducing the logistic
function and modelling the missing values as unknowns work well
together to improve on the linear model. On the other hand it is
striking that, despite only needing to add a single application of the
logistic function to the training procedure, the algorithm is better
able to capture the underlying data.

Secondly, we experimented with different ways of scaling
the regularization terms. The results of previous work are based
on weighted scaling, where the weights U0 is included in the
formula (see Section 2.4). This leads to smoother, more uniform
regularization values compared to frequency scaling, which is
purely based on the occurrence counts. For iALS, on the ML20M
dataset, we found that the weighted scaling performed better,
while on the MSD dataset the frequency scaling performed better.
For LogWMF on the other hand, the frequency scaling always
performed best and the difference between the two strategies was
much smaller compared to iALS.

3.2.1 Ablation Study. The plots in Figure 2 dive deeper into how
different versions of matrix factorization perform under different
embedding dimensions. In addition to the iALS and LogWMF mod-
els that are explained in Section 2, we also compare with standard a
Matrix Factorization model (MF) where no weighting is applied to
the unobserved values. For this model there are two variants: one
with uniform regularization (no scaling), and one with frequency
scaling. The results in Figure 2 were obtained on the test set with
the hyperparameters of Table 1 as determined on the validation set
with an embedding dimension of 4096 for ML20M and 8192 for the
MSD dataset similar to [20].

https://github.com/JoeyDP/LogWMF

RecSys ’24, October 14–18, 2024, Bari, Italy J. De Pauw et al.

Table 2:Quality results on the ML20M and MSD benchmark sorted by Recall@20 scores.

Dataset Method Recall@20 Recall@50 NDCG@100 Result from

ML20M

RecVAE [22] 0.414 0.553 0.442 [22]
H+Vamp (Gated) [11] 0.413 0.551 0.445 [11]
RaCT [13] 0.403 0.543 0.434 [13]
LogWMF 0.401 0.538 0.432 our result
LogEASE 0.396 0.528 0.426 our result
Mult-VAE [12] 0.395 0.537 0.426 [12]
LambdaNet [5] 0.395 0.534 0.427 [22]
iALS [8, 17] 0.395 0.532 0.425 [20] and reproduced
EASE [24] 0.391 0.521 0.420 [24]
CDAE [27] 0.391 0.523 0.418 [12]
Mult-DAE [12] 0.387 0.524 0.419 [12]
SLIM [16] 0.370 0.495 0.401 [12]
WARP [26] 0.314 0.466 0.341 [22]
Popularity 0.162 0.235 0.191 [24]

MSD

LogEASE 0.336 0.430 0.392 our result
EASE [24] 0.333 0.428 0.389 [24]
LogWMF 0.315 0.414 0.374 our result
iALS [8, 17] 0.311 0.409 0.369 our result
iALS [8, 17] 0.302 0.403 0.360 [20]
RecVAE [22] 0.276 0.374 0.326 [22]
RaCT [13] 0.268 0.364 0.319 [13]
Mult-VAE [12] 0.266 0.364 0.316 [12]
Mult-DAE [12] 0.266 0.363 0.313 [12]
LambdaNet [5] 0.259 0.355 0.308 [22]
WARP [26] 0.206 0.302 0.249 [22]
CDAE [27] 0.188 0.283 0.237 [12]
Popularity 0.043 0.068 0.058 [24]

Due to the hyperparameters not being tuned independently of
the embedding dimension, it is possible for some models to achieve
slightly higher results on the lower dimensions. We ran a grid
search for each dimension independently with LogWMF and one
variant of iALS and found that the optimal hyperparameters tend
to be the same or very close for all dimensions. Combined with the
fact that we are mostly interested in the highest possible perfor-
mance of each method, which is often achieved with the highest
reported embedding dimension, we chose to reduce the computa-
tional overhead and complexity of our experiments by only tuning
the hyperparameters once. Only for the MF model with uniform
regularization on the ML20M Dataset did this cause a significant
difference. Namely, with _ = 100 instead of 30, the model would
produce a smooth curve that is more in line with the other mod-
els, however, slightly worse on the highest embedding dimension,
where the hyperparameters are determined. In any case, this does
not impact the conclusions drawn from the results.

Notice that in order of increasing model complexity, we first
have the simplest MF (Uniform Reg.), followed by MF that adds
frequency scaling to the regularization. Then iALS extends this
with weights for unobserved values, and finally LogWMF adds the
logistic function to the model. The results show that, in general,
complexer models are able to achieve better performance, which is
no surprise. Having more ways to adapt to the dataset by tuning the

corresponding hyperparameters, typically allows for a better fit. On
the ML20M dataset, this pattern is clearly visible for all metrics. On
theMSD dataset however, we find that for the embedding dimension
of 8192, the simpler MF model with frequency scaling outperforms
the more complex iALS model with weighted scaling and it is on-
par with iALS with frequency scaling. Note that the former is a
special case of the latter with U0 fixed to 1 and so it cannot be
better. LogWMF consistently outperforms all other models on both
datasets, which confirms the results from the previous section.

Our results can also be placed in the context of the theoretical
work by Jin et al. [9]. They studied a closed-form solution for the
simplest matrix factorization model, and discovered that the differ-
ence between MF and a full-rank autoencoder boils down to how
they scale the eigenvalues of the user-item matrix to compute their
recommendations. In light of this work, it is possible that the more
complex factorization models have more favourable ways of scaling
the eigenvalues, which could be what allows them to perform better.
However, since there is no exact formula for their global optimum,
we cannot make the same derivation to compare these methods.

3.2.2 WEASE and LogEASE. In a final set of experiments, we take
a closer look at the use of unobserved weighting in full-rank mod-
els. To the best of our knowledge, no efficient implementation for
Weighted EASE (WEASE) has been found before. The main bottle-
neck is needing to compute the inverse of a rank = matrix for each

The Role of Unknown Interactions in Implicit Matrix Factorization RecSys ’24, October 14–18, 2024, Bari, Italy

128 512 2048 8192
0.27
0.28
0.29
0.30
0.31
0.32
0.33
0.34
0.35
0.36
0.37
0.38
0.39
0.40

M
ov
ie
Le
ns

20
M

Recall@20

128 512 2048 8192
0.41
0.42
0.43
0.44
0.45
0.46
0.47
0.48
0.49
0.50
0.51
0.52
0.53
0.54

Recall@50

128 512 2048 8192
0.31
0.32
0.33
0.34
0.35
0.36
0.37
0.38
0.39
0.40
0.41
0.42
0.43

NDCG@100

128 512 2048 8192
0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

Embedding size

M
ill
io
n
So
ng

D
at
as
et

128 512 2048 8192
0.18
0.20
0.22
0.24
0.26
0.28
0.30
0.32
0.34
0.36
0.38
0.40
0.42

Embedding size

MF (Uniform Reg.) MF iALS (frequency scaling) iALS (weighted scaling) LogWMF

128 512 2048 8192
0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

0.38

Embedding size

Figure 2: Results on the test set for different embedding dimensions.

item independently if the closed-form solution is used. By adapting
the subvector optimization procedure of iALS as shown in Sec-
tion 2.5, we found a scalable algorithm for WEASE and LogEASE.

Figure 3 shows the results of running EASE, WEASE and Lo-
gEASE on the validation set with different values for the unobserved
weight U0. By inspecting the results on the validation set, we can
draw conclusions about which hyperparameters are selected by the
grid search. First, we observe that the values for EASE and WEASE
with U0 = 1 are very close for all metrics on both datasets. This
validates our implementation of WEASE since it converges towards
the same optimum as the closed form EASE. Secondly, we find that
the full-rank WEASE model achieves its optimal performance with
an unobserved weight of 1 on both datasets. As this corresponds
to not downweighting the unobserved interactions at all, we can
conclude that adding weights to the loss of EASE is actually detri-
mental for its performance. Considering that weighting plays such
an important role in matrix factorization methods, it is a surprising
result that the same does not hold for linear full-rank autoencoders.
For LogEASE however, we find that the optimal value for U0 is 0.01
on the ML20M dataset and 0.05 on the MSD dataset.

Based on these results we cannot formulate a conclusive explana-
tion for this phenomenon yet. Further experimentation is needed to

pinpoint the exact difference between matrix factorization and full-
rank autoencoders that causes the difference in need for weighting.
Our working theory is that either the full-rank nature, the diagonal
constraint or the fixed user embeddings already fulfil the same role
in the loss as the weighting does in matrix factorization, leading it
to be obsolete and even detrimental when added.

Similarly, we found that item-specific regularization with fre-
quency scaling and weighed scaling also did not improve results.
Both for EASE and LogEASE the optimal results are found with
a = 0 on both datasets. Notice that item-specific regularization
in this context differs from the one used in [25]. Where we use a
separate regularization value for each item embedding vector, the
original paper scales each embedding dimension differently, i.e. the
rows of � rather than its columns. The latter is easier to compute
as it does not require a different inverse for each item.

4 RELATEDWORK
In 2014, Johnson C. proposed a similar logistic matrix factorization
model for implicit feedback data [10]. In their method called Logistic
MF, unknowns are modelled as negatives and the model is trained
with gradient descent and negative sampling to keep it scalable.
The optimization procedure of LogWMF has two major advantages
over Logistic MF. First, Newton’s optimization method typically

RecSys ’24, October 14–18, 2024, Bari, Italy J. De Pauw et al.

10−4 10−3 10−2 10−1 1 10
0.35

0.36

0.37

0.38

0.39

0.40

0.41

M
ov
ie
Le
ns

20
M

Recall@20

10−4 10−3 10−2 10−1 1 10
0.48

0.49

0.50

0.51

0.52

0.53

0.54

Recall@50

10−4 10−3 10−2 10−1 1 10
0.38

0.39

0.40

0.41

0.42

0.43

0.44

NDCG@100

10−4 10−3 10−2 10−1 1 10
0.31

0.32

0.33

0.34

Unobserved Weight

M
ill
io
n
So
ng

D
at
as
et

10−4 10−3 10−2 10−1 1 10
0.41

0.42

0.43

Unobserved Weight
WEASE EASE LogEASE

10−4 10−3 10−2 10−1 1 10
0.36

0.37

0.38

0.39

Unobserved Weight

Figure 3: Results on the validation set for full-rank models with different unobvserved weights.

converges faster and does not require hyperparameters such as
a learning rate to tune. Second, being able to take all negatives
into account without needing to sample them also reduces the
complexity of our method, although sampling could still be used to
speed up the training process further.

Another difference is the need for bias terms in Logistic MF,
which are are found to have little impact in iALS and LogWMF.
Looking at the loss function that is optimized, the need for unregu-
larized bias terms makes sense because the majority of the data is
missing and the logistic function in Logistic MF requires the model
weights to produce a negative number for those samples. However,
the regularization on the user and item factors pulls them towards
zero to prevent overfitting. Bias terms are not regularized and can
therefore be used to make modelling the unknowns easier in Logis-
tic MF. In iALS and LogWMF, the unknowns are modelled by a dot
product of zero between factors, which is the same as the regular-
ization target. The only use for bias terms would be to model the
difference in popularity/activity between users and items, which is
already captured by the magnitude of the embedding vectors.

A second related model is called Probabilistic MF by Mnih and
Salakhutdinov [15]. They propose a probabilistic matrix factoriza-
tion model for rating prediction, which is a different problem than

the implicit feedback setting. The model is based on a Gaussian dis-
tribution over the ratings, where the mean is estimated by the dot
product between user and item factors. Due to the difference in the
tasks of rating prediction and top-k recommendation from implicit
feedback, the approach does not directly carry over. However, they
did also find a major improvement when using ‘adaptive priors’,
similarly to using regularization scaling in our case.

The effectiveness of approximating the logistic function by the
cumulative distribution function of a Gaussian distribution (or vice-
versa) [4] was already demonstrated in previous work. For example,
H. Steck [23] used this approximation to convert a single score
to an approximated rank in a list. By decoupling the dependence
of the ranking on the scores of all items, the method was able to
approximately optimize ranking metrics such as NDCG in the loss.

5 CONCLUSIONS
In this paper we presented a probabilistic interpretation of implicit
matrix factorization for recommendation. In this new formulation,
unknowns are modelled as a product of positive and negative proba-
bilities, which better fits their role in the data. Indeed, ultimately we
are interested in recommending unseen items to a user, and hence
assuming all of them are negative is too strict in a probabilistic set-
ting. Furthermore, we derived an efficient optimization procedure

The Role of Unknown Interactions in Implicit Matrix Factorization RecSys ’24, October 14–18, 2024, Bari, Italy

for this new model, called LogWMF for Logistic Weighted Matrix
Factorization. The key to its efficiency, is to approximate the prob-
abilities of unknown interactions with a Gaussian. This allows for
subvector optimization with Newton’s method. Experiments on two
benchmark datasets showed that LogWMF is able to outperform its
linear counterpart iALS on the downstream recommendation task.

Additionally, a similar adaptation called LogEASE is derived
based on the popular full-rank EASEmethod, and finally, a weighted
version of EASE called WEASE is studied. LogEASE outperforms
EASE on both datasets and requires tuning of the unobserved
weight parameter. WEASE on the other hand is found to not benefit
from the weighting at all, for which the exact reason remains an
open question for future research.

For future work, we would like to investigate the following three
directions: (1) Train with explicit negative interactions, such as
skips in music or explicit dislikes in a upvote/downvote system.
LogWMF takes a three-class classification approach that is well-
suited for this type of data. (2) Investigate the effect of weighting in
WEASE by relating it to the differences with matrix factorization.
Most prominently are the full-rank, the diagonal constraint and
the sparsity pattern of the fixed user embeddings. (3) Study and
compare the learned embeddings of iALS and LogWMF to gain a
better understanding of the differences in performance and where
further improvements can be made.

ACKNOWLEDGMENTS
This work was supported by the Research Foundation — Flanders
(FWO) [11E5921N to J. De Pauw].

REFERENCES
[1] Charu C Aggarwal et al. 2016. Recommender systems. Vol. 1. Springer.
[2] Immanuel Bayer, Xiangnan He, Bhargav Kanagal, and Steffen Rendle. 2017. A

generic coordinate descent framework for learning from implicit feedback. In
Proceedings of the 26th international conference on world wide web. 1341–1350.

[3] Thierry Bertin-Mahieux, Daniel PW Ellis, Brian Whitman, and Paul Lamere. 2011.
The million song dataset. (2011).

[4] Christopher M Bishop. 1995. Neural networks for pattern recognition. Oxford
university press.

[5] Christopher Burges, Robert Ragno, and Quoc Le. 2006. Learning to rank with
nonsmooth cost functions. Advances in neural information processing systems 19
(2006).

[6] F Maxwell Harper and Joseph A Konstan. 2015. The movielens datasets: History
and context. Acm transactions on interactive intelligent systems (tiis) 5, 4 (2015),
1–19.

[7] Balázs Hidasi and Ádám Tibor Czapp. 2023. The effect of third party imple-
mentations on reproducibility. In Proceedings of the 17th ACM Conference on
Recommender Systems. 272–282.

[8] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative filtering for
implicit feedback datasets. In 2008 Eighth IEEE international conference on data
mining. Ieee, 263–272.

[9] Ruoming Jin, Dong Li, Jing Gao, Zhi Liu, Li Chen, and Yang Zhou. 2021. Towards
a better understanding of linear models for recommendation. In Proceedings of the
27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. 776–785.

[10] Christopher C Johnson et al. 2014. Logistic matrix factorization for implicit
feedback data. Advances in Neural Information Processing Systems 27, 78 (2014),
1–9.

[11] Daeryong Kim and Bongwon Suh. 2019. Enhancing VAEs for collaborative
filtering: flexible priors & gating mechanisms. In Proceedings of the 13th ACM
conference on recommender systems. 403–407.

[12] Dawen Liang, Rahul G Krishnan, Matthew D Hoffman, and Tony Jebara. 2018.
Variational autoencoders for collaborative filtering. In Proceedings of the 2018
world wide web conference. 689–698.

[13] Sam Lobel, Chunyuan Li, Jianfeng Gao, and Lawrence Carin. 2019. Towards
amortized ranking-critical training for collaborative filtering. arXiv preprint
arXiv:1906.04281 (2019).

[14] Peter McCullagh. 2019. Generalized linear models. Routledge.

[15] Andriy Mnih and Russ R Salakhutdinov. 2007. Probabilistic matrix factorization.
Advances in neural information processing systems 20 (2007).

[16] Xia Ning and George Karypis. 2011. Slim: Sparse linear methods for top-n
recommender systems. In 2011 IEEE 11th international conference on data mining.
IEEE, 497–506.

[17] Rong Pan, Yunhong Zhou, Bin Cao, Nathan N Liu, Rajan Lukose, Martin Scholz,
and Qiang Yang. 2008. One-class collaborative filtering. In 2008 Eighth IEEE
international conference on data mining. IEEE, 502–511.

[18] István Pilászy, Dávid Zibriczky, and Domonkos Tikk. 2010. Fast als-based matrix
factorization for explicit and implicit feedback datasets. In Proceedings of the
fourth ACM conference on Recommender systems. 71–78.

[19] Steffen Rendle, Walid Krichene, Li Zhang, and Yehuda Koren. 2021. IALS++:
Speeding up matrix factorization with subspace optimization. arXiv preprint
arXiv:2110.14044 (2021).

[20] Steffen Rendle, Walid Krichene, Li Zhang, and Yehuda Koren. 2022. Revisiting
the performance of ials on item recommendation benchmarks. In Proceedings of
the 16th ACM Conference on Recommender Systems. 427–435.

[21] Faisal Shehzad and Dietmar Jannach. 2023. Everyone’sa winner! on hyperparame-
ter tuning of recommendation models. In Proceedings of the 17th ACM Conference
on Recommender Systems. 652–657.

[22] Ilya Shenbin, Anton Alekseev, Elena Tutubalina, Valentin Malykh, and Sergey I
Nikolenko. 2020. Recvae: A new variational autoencoder for top-n recommenda-
tions with implicit feedback. In Proceedings of the 13th international conference
on web search and data mining. 528–536.

[23] Harald Steck. 2015. Gaussian ranking by matrix factorization. In Proceedings of
the 9th ACM Conference on Recommender Systems. 115–122.

[24] Harald Steck. 2019. Embarrassingly shallow autoencoders for sparse data. In The
World Wide Web Conference. 3251–3257.

[25] Harald Steck, Maria Dimakopoulou, Nickolai Riabov, and Tony Jebara. 2020.
Admm slim: Sparse recommendations for many users. In Proceedings of the 13th
international conference on web search and data mining. 555–563.

[26] Jason Weston, Samy Bengio, and Nicolas Usunier. 2011. Wsabie: Scaling up to
large vocabulary image annotation. (2011).

[27] Yao Wu, Christopher DuBois, Alice X Zheng, and Martin Ester. 2016. Collabora-
tive denoising auto-encoders for top-n recommender systems. In Proceedings of
the ninth ACM international conference on web search and data mining. 153–162.

	Abstract
	1 Introduction
	2 Models
	2.1 Background
	2.2 Modelling Unknown Interactions
	2.3 LogWMF
	2.4 Regularization Scaling
	2.5 Weighted EASE and LogEASE

	3 Experiments
	3.1 Experimental Setup
	3.2 Results

	4 Related Work
	5 Conclusions
	Acknowledgments
	References

