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Abstract. Recent studies demonstrate the usefulness of condensed rep-
resentations as a semantic compression technique for the frequent item-
sets. Especially in inductive databases, condensed representations are
a useful tool as an intermediate format to support exploration of the
itemset space. In this paper we establish theoretical upper bounds on
the maximal size of an itemset in different condensed representations. A
central notion in the development of the bounds are the l-free sets, that
form the basis of many well-known representations. We will bound the
maximal cardinality of an l-free set based on the size of the database.
More concrete, we compute a lower bound for the size of the database in
terms of the size of the l-free set, and when the database size is smaller
than this lower bound, we know that the set cannot be l-free. An ef-
ficient method for calculating the exact value of the bound, based on
combinatorial identities of partial row sums, is presented.

1 Introduction

Mining frequent itemsets [1] is a core operation of many data mining algorithms.
During the last decade, hundreds of algorithms have been proposed to find fre-
quent itemsets when a database and a user-defined support threshold are given.
However, when this minimal support threshold is set too low or when the data
are highly correlated, the process of mining frequent itemsets can result in an
immense amount of frequent sets. Even the most efficient mining algorithms
cannot cope with this combinatorial blow-up. To overcome this problem, con-
densed representations can be used. Condensed representations were introduced
in [13] in the slightly different context of arbitrary Boolean rules. Intuitively,
a condensed representation can be seen as a compact view on the data that
allows for answering user queries more efficiently than directly from the origi-
nal data. In [13], for example, the collection of frequent sets is considered as a
condensed representation that allows to speed up frequency counts of arbitrary
Boolean expressions over the items. In this paper we concentrate on condensed
representations for the collection of frequent itemsets itself, since this collec-
tion can already be far too large to store. A condensed representation in the
context of the frequent itemsets can be a sub-collection of all frequent itemsets
that still contains all information to construct the frequent sets with their cor-
responding supports. The best-known example of a condensed representation is
the closed itemsets representation [14]. Other examples are the Free Sets [2], the



Disjunction Free Sets [3], the Generalized Disjunction Free Sets [12], and the
Non-Derivable Sets [7].

Especially in inductive databases, condensed representations are a useful tool
as an intermediate format to support exploration of the itemset space. In fact,
the role of a condensed representation in an inductive database is comparable
to a partly materialized view in a data warehouse: materializing all frequent
itemsets off-line would speed-up the exploration enormously, but is infeasible
because of the gigantic number of them. Instead, the condensed representation
is materialized. This representation is much smaller, but, at the same time, con-
tains enough information to speed up ad-hoc querying in the inductive database.
When the user asks a query concerning the frequencies of itemsets, these fre-
quencies can be computed more efficiently from the condensed representation
than directly from the database. Depending on time and space constraints, the
type of condensed representation can be chosen. For example, the free sets rep-
resentation is less compact than the disjunction free representation, but allows
for faster computation of frequency queries.

An important question now is: how concise is a condensed representation; do
we have guarantees about the maximal size of a representation? The usefulness of
a condensed representation relies critically on its size. In this paper we establish
theoretical upper bounds on the maximal size of an itemset for all representations
that are based on l-free sets [6]. These representations include the Free Sets [2],
the Disjunction Free Sets [3], the Generalized Disjunction Free Sets [12], the
Non-Derivable Sets [7], and all the variants of these representations, such as the
disjunction free and generalized disjunction free generators representations [9,
11]. Hence, based on the size of the database, we present worst-case bounds on
the size of the largest sets in these representations.

A central notion in the development of the bounds are thus the l-free sets.
Each of the aforementioned representations can be expressed in terms of l-
freeness. It was shown in [6], that these representations can be expressed as
the collection of frequent l-free sets together with a part of the border, for dif-
ferent values of l. The border of the collection of the frequent l-free sets are
the itemsets that are not frequent l-free themselves, but all their subsets are
frequent l-free. For example, the free sets representation of [2], corresponds to
the collection of the frequent 1-free sets plus the sets in the border that are
infrequent. For more details about the connection between the l-free sets and
existing condensed representations, we refer to [6].

In this paper, we will bound the maximal cardinality of an l-free set based on
the size of the database. More concrete, we compute a lower bound on the size
of the database in terms of the size of the l-free set, and when the database size
is smaller than this lower bound, we know that the set cannot be l-free. In this
paper, we thus give general results relating l-freeness of a set I with a bound on
the size of the database D in terms of the size of I. The results for a particular l
can be generalized to the case where l equals the size of I, yielding a connection
between ∞-freeness and a bound on the size of D in terms of the size of I,
and can also be extended to NDIs. Because the aforementioned representations



can be expressed as the collection of frequent l-free sets plus some sets in the
border, the maximal size of a set in the representations is the maximal size of
a frequent l-free set plus 1, since the sets in the border can be at most 1 item
larger than the largest frequent l-free set. In this way, we extend results of [7]
and of [10] that relate the database size to the maximal length of respectively
the non-derivable itemsets and the generalized disjunction free sets. Hence, even
though we concentrate on a bound on the l-free sets, the main goal of the paper
is to establish a bound on the condensed representations that are based on the
l-free sets.

An efficient method, the sum-of-binomials triangle, for calculating the exact
value of the bound based on combinatorial identities of partial row sums is
presented and an approximation that is easy to compute is given. From this
triangle, we can conclude interesting facts concerning the size of the database.

The organization of the paper is as follows. Section 2 revisits the notions of
deduction rules. In Section 3 the bounds on the size of the database that are
related to the l-freeness of a set are introduced. Section 4 gives an approximation
of this bound, while Section 5 discusses an efficient method to compute the exact
bound. In Section 6, our work is related to other papers. Section 7 concludes the
paper and gives further research directions.

2 Deduction Rules Revisited

In this section we refresh the deduction rules introduced in [4]. The deduction
rules allow for deriving a lower and an upper bound on the support of an itemset,
based on the support of its subsets. For example, for the itemset abc we can find
the following lower bound on the support:

supp(abc) ≥ supp(ab) + supp(ac)− supp(a) .

We first give a complete collection of deduction rules in general. Then, the depth
of a rule is defined and only rules up to a certain depth are considered. Next, the
notion of an l-free set is introduced. The l-free sets are an important concept,
since in [6], it was shown that many condensed representations can easily be
expressed in a uniform way using the l-free sets. We will not go into detail about
this uniform framework, but only give the intuition behind it. For the exact
details, we refer the reader to [6].

2.1 General Concept of Deduction Rules

We start from a database D with |D| = m transactions, based on |I| = n items.
We consider an itemset I ⊆ I with k elements (|I| = k) and we are interested in
the support of I in the database D: supp(I,D). In [6] (in a somewhat different
form), the following relation between the support of I and its subsets was shown:

Theorem 1. Let δX(I,D) denote the following sum (X ⊆ I):

δX(I,D) =
∑

X⊆J⊂I

(−1)|I\J|+1supp(J) .



Upper/Lower Bounds δX(I, D) X |I \ X| X ∪ Y

supp(I,D) ≤ sab + sac + sbc − sa − sb − sc + s{} {} 3 abc

supp(I,D) ≥ sab + sac − sa a 2 abc
supp(I,D) ≥ sab + sbc − sb b 2 abc

supp(I,D) ≥ sac + sbc − sc c 2 abc

supp(I,D) ≤ sab ab 1 abc

supp(I,D) ≤ sac ac 1 abc
supp(I,D) ≤ sbc bc 1 abc

supp(I,D) ≥ 0 abc 0 abc

Depth l

X ∪ Y Equalities

abc supp(I,D) = sab + sac + sbc − sa − sb − sc + s{} − s
abc

abc supp(I,D) = sab + sac − sa + s
abc

abc supp(I,D) = sab + sac − sa + sabc

abc supp(I,D) = sac + sbc − sc + s
abc

abc supp(I,D) = sab − sabc

abc supp(I,D) = sac − s
abc

abc supp(I,D) = sbc − sabc

abc supp(I,D) = sabc

Table 1. Deduction rules for the set abc. sJ denotes supp(J).

Then, supp(I,D) = δX(I,D) + (−1)|Y |supp(X ∪ Y ,D) where Y = I \X, and
supp(X ∪ Y ,D) denotes the number of transactions in D that contains all items
in X, and none of the items in Y .

Hence, for all X ⊆ I, depending on the sign of |Y |, δX(I,D) is an upper
(|Y | odd), or a lower (|Y | even) bound on the support of I. The set X ∪ Y in
Theorem 1, is called a generalized itemset based on I. For the complete set of
rules for the example where I = {a, b, c}, see Table 1. With these rules we can
compute a lower and upper bound on the support of I when we assume that
the supports of all its strict subsets are known. The lower bound is denoted by
LB(I,D) and the upper bound by UB(I,D). That is:

LB(I,D) = max{δX(I,D) | X ⊆ I, |I \X| even}
UB(I,D) = min{δX(I,D) | X ⊆ I, |I \X| odd}

Notice that the complexity of the sum δX(I,D) depends on the cardinality of
Y = I \X. This number |Y | is called the depth of the rule δX(I,D). Hence, the
deeper a rule is, the more complex it is (see Table 1). Therefore, it is often inter-
esting to only consider rules up to a fixed depth l. The lower and upper bounds
calculated with rules up to depth l will be denoted LBl(I,D) and UBl(I,D).
That is:

LBl(I,D) = max{δX(I,D) | X ⊆ I, |I \X| even, |I \X| ≤ l}
UBl(I,D) = min{δX(I,D) | X ⊆ I, |I \X| odd, |I \X| ≤ l}



When it is clear from the context we do not explicitly write down D in the
formulas.

Example 1. Consider the following database:
TID Items
1 a, b, c, d
2 a, b, c
3 a, b, d, e
4 c, e
5 b, d, e
6 a, b, e
7 a, c, e
8 a, d, e
9 b, c, e
10 b, d, e

In this database, the following supports hold:

supp({}) = 10 supp(a) = 6 supp(b) = 7 supp(c) = 5
supp(ab) = 4 supp(ac) = 3 supp(bc) = 3

The deduction rules for abc up to level 2 are the following
(see Table 1):
supp(abc) ≥ δa(abc) = 1 supp(abc) ≤ δab(abc) = 4
supp(abc) ≥ δb(abc) = 0 supp(abc) ≤ δac(abc) = 3
supp(abc) ≥ δc(abc) = 1 supp(abc) ≤ δbc(abc) = 3

supp(abc) ≥ δabc(abc) = 0

Hence, based on the supports of the subsets of abc, we can deduce that LB1(abc) =
0, UB1(abc) = 3, LB2(abc) = 1 and UB2(abc) = 3.

2.2 l-Freeness of an Itemset

A very important notion in the context of a unifying framework for the condensed
representations is l-freeness:

Definition 1. Let l be a positive integer. A set I is l-free, if supp(I,D) 6=
LBl(I,D), and supp(I,D) 6= UBl(I,D). A set I is ∞-free, if supp(I,D) 6=
LB(I,D), and supp(I,D) 6= UB(I,D).

In [6], the following properties of l-freeness were shown: l-freeness is anti-
monotone; that is, every subset of an l-free itemset is also l-free, and every
superset of an itemset that is not l-free is also not l-free. l-freeness is interesting
in the context of condensed representations, because the support of any non-l-
free set can be derived as follows: if supp(I,D) = LBl(I,D), then for all I ⊆ J ,
supp(J,D) = LBl(J,D). Hence, if we observe the fact supp(I,D) = LBl(I,D),
there is no need to store any of the supersets of I in a condensed representation.
The representations that rely on l-freeness hence store the frequent l-free sets,
and some sets that are “on the border.” For a detailed description we refer to [6].

From Theorem 1, the following lemma easily follows:

Lemma 1. Let l be a positive integer, I an itemset, X ⊆ I. I is l-free if and
only if supp(X ∪ Y ) 6= 0 for all generalized itemsets X ∪ Y that are based on I,
with |Y | ≤ l.

2.3 Link Between l-Freeness and Condensed Representations

The following proposition from [6], links the free sets [2], the disjunction free
sets [3, 9], and the generalized disjunction free sets [12, 11] with l-freeness, for
different values of l.



Proposition 1. Link between l-freeness with other condensed representations.

- I is free ⇔ I is 1− free
- I is disjunction free ⇔ I is 2− free
- I is generalized disjunction free ⇔ I is ∞− free
- I is NDI ⇒ every strict subset of I is ∞− free

From the unified framework introduced in [6] the following proposition making
the connection between the size of an l-free set and the different condensed repre-
sentations is immediate (recall from the introduction that the different represen-
tations can be expressed as l-free sets plus the border . Hence, the representations
can contain sets that are 1 item larger than the largest l-free set):

Proposition 2. Let max(l,D) be the length of the largest l-free set in D.

- Every set in the free sets representation [2] has length at most max(1,D)+1.
- Every set in the disjunction free sets representation [3, 9] has length at most

max(2,D) + 1.
- Every set in the generalized disjunction free sets representation [12, 11] has

length at most max(∞,D) + 1.
- Every set in the non-derivable itemsets representation [7] has length at most

max(∞,D) + 1.

Hence, because of Proposition 2, a theoretical bound on the size of the l-free sets
immediately leads to a bound on many condensed representations.

3 Bounds on the Size of the Database

In this section we present the theoretical lower bound dl(k) on the size of the
database in terms of the size k of the largest l-free set. Hence, if D contains an
l-free set of size k, then the cardinality of D must be at least dl(k). This result
then allows for deriving the maximal cardinality of an l-free set based on the size
of a database. Indeed; the maximal size k of an l-free set is the largest integer k
such that |D| ≥ dl(k).

3.1 Bounds for l-Free Sets

We illustrate the principle of the bound with an example. Let I = abcd be a 2-free
set. We will show how the lower bound d2(4) on the size of D can be derived.
Because I is 2-free, by definition, supp(I,D) 6= LB2(I,D) and supp(I,D) 6=
UB2(I,D). Because of Lemma 1, for all generalized itemsets X ∪ Y based on I,
with |Y | ≤ 2, supp(X ∪ Y ,D) 6= 0 . In the case of abcd, this means that

supp(abcd) > 0, supp(abcd) > 0, supp(abcd) > 0,

supp(abcd) > 0, supp(abcd) > 0, supp(abcd) > 0,

supp(abcd) > 0, supp(abcd) > 0, supp(abcd) > 0,

supp(abcd) > 0, supp(abcd) > 0 .



Every transaction can make only one of these conditions true. Indeed; suppose
that a transaction T supports both abcd and abcd. Then, T must at the same
time not contain b (abcd) and contain b (abcd), and that is clearly impossible.
Hence, a database D in which abcd is 2-free, must contain at least one transaction
for each generalized itemset X ∪ Y based on abcd with |Y | ≤ 2. Hence, to get
the lower bound on the size of the database, we we have to count the number
of generalized itemsets consisting of 4 items with at most two negated items.

There are
(

4
2

)
= 6 generalized itemsets consisting of 4 elements with exactly

two elements negated and
(

4
1

)
= 4 generalized itemsets of size 4 with exactly

1 item negated. There exists only 1 generalized itemset of size 4 with no items
negated. Hence, every database in which abcd is 2-free needs to have at least
d2(4) = 6 + 4 + 1 = 11 transactions.

In general, let I be l-free with |I| = k. Then, for every generalized itemset
X ∪ Y based on I with |Y | ≤ l, there needs to be at least one supporting
transaction. For each generalized itemset we thus have k items and at most l of
them can be negated. We now count all the possibilities with no item of the k
items negated, with 1 item negated, . . . , up to when l items out of k are negated.
Hence, in general, we have:

dl(k) =
(

k
0

)
+

(
k
1

)
+ . . . +

(
k
l

)
=

l∑
i=0

(
k
i

)
This reasoning leads directly to the following theorem:

Theorem 2.

I is l− free ⇒ |D| ≥
l∑

i=0

(
k
i

)
(1)

|D| <
l∑

i=0

(
k
i

)
⇒ I is not l−free (2)

3.2 Bounds For ∞-Free Sets

If we take l equal to k, the size of I, we use all the deduction rules to derive the
support of I. Based on (1) and (2) we now have the following results:

I is ∞−free ⇒ |D| ≥
k∑

i=0

(
k
i

)
= 2k (3)

|D| < 2k ⇒ I is not ∞−free (4)

From eqs. (3) and (4), it follows that

Theorem 3. I is ∞−free ⇒ |I| ≤ log2(|D|)
Hence, |I| > log2(|D|) ⇒ I is not ∞−free



4 Approximation of the Bound

As already mentioned before, the main focus of this paper is to derive the max-
imal cardinality of an l-free set, based on the size of the database. The maximal
size k of an l-free set is the largest integer k such that |D| ≥ dl(k). This lower
bound on the size of the database is an incomplete binomial sum in terms of l
and k and it is difficult to rewrite it to an expression for k in terms of l and
|D|. Therefore, we try to find a lower bound for dl(k) yielding a simple expres-
sion that is easy convertible in a result for k in terms of l and |D|. We use the
following approximation: (

k
l

)
≤

l∑
i=0

(
k
i

)
.

It is known that
(k − l)l

l!
≤

(
k
l

)
=

k(k − 1) · · · (k − l + 1)
l!

≤ kl

l!
.

If we now require that |D| < (k−l)l

l! we have for sure that the left side of the
implication (2) is satisfied and therefore that I is not l-free. Even more, we find
the following condition for k:

Proposition 3. k > l
√

l!|D|+ l ⇒ I is not l−free

5 Exact Computation of the Bound

In Section 3.1 we derived Theorem 2. A crucial part in the equations (1) and (2)
is the incomplete binomial sum that is completely determined by l and k:

dl(k) =def

l∑
i=0

(
k
i

)
This is the exact amount of generalized itemsets that is needed to to make a

set I of size k, l-free. We can now find a recursion relation between the different
dl(k)’s. We illustrate the relation with an example. Suppose we want to know the
value of d2(4). d2(4) corresponds to the number of generalized disjunction free
sets of size 4 with at most 2 negations. Let abcd be the base of the generalized
disjunction free sets. The disjunction free sets based on abcd can be divided into
two groups: the ones with d, and the ones with d. Let X ∪ Y be a generalized
itemset of the first type. Then, X \ {d} ∪ Y is a generalized itemset based on
abc with at most 2 negations. Similarly, if we take d out of a generalized itemset
based on abcd of the second type, we get a generalized itemset base on abc with
at most 1 negation. Hence, there are d2(3) generalized itemsets of the first kind,
and d1(3) of the second type. Hence, d2(4) = d2(3) + d1(3). An illustration of
this example can be found in Table 2.

For general l and k, we get the following recursive relation:

dl(k) = dl(k − 1) + dl−1(k − 1) (5)



d2(3)∑2

i=0

(
3
i

)
= 7

abc

abc

(
3
2

)
= 3

abc

abc

abc

(
3
1

)
= 3

abc

abc

(
3
0

)
= 1

→

d2(4) d2(3) d1(3)∑2

i=0

(
4
i

)
= 11

∑2

i=0

(
3
i

)
= 7

∑1

i=0

(
3
i

)
= 4

abcd abcd

abcd abcd

abcd abcd

abcd

(
4
2

)
= 6 abcd

abcd abcd

abcd abcd

abcd abcd
abcd abcd

abcd

(
4
1

)
= 4 abcd

abcd abcd

abcd

(
4
0

)
= 1 abcd

Table 2. Total amount of generalized itemsets for a set of size k = 4, consisting of the
items a, b, c and d, for level 2 based on a subset of size k = 3.

When we rewrite this relation with the partial binomial sums, we get:

l∑
i=0

(
k
i

)
=

l∑
i=0

(
k − 1

i

)
+

l−1∑
i=0

(
k − 1

i

)
This relation is also known as Pascal’s 6th Identity of Partial Row Sum Rules.

Because l ≤ k, we only need to know the diagonal elements dk(k) and the
base-elements d1(k) to use the above recurrence relation (5). With this knowl-
edge, we can construct a triangle with the incomplete binomial sums dl(k).

This sum-of-binomials triangle has several interesting properties (see Fig. 1):

– The diagonal defined by l = k is easy to compute because
∑k

i=0

(
k
i

)
= 2k.

– The bottom line for l = 0 is always 1.
– The base line for l = 1 is always k + 1. For a set of size k to be 1-free,(

k
0

)
+

(
k
1

)
= 1 + k generalized itemsets are needed.

– The line under the diagonal defined by l = k − 1 is always 2k − 1. dk(k) =∑k
i=0

(
k
i

)
= 2k and dk−1(k) =

∑k−1
i=0

(
k
i

)
= 2k −

(
k
k

)
= 2k − 1.

– Parallellogramrule: the entry dl′(k′) for a certain couple (k′, l′) can be calcu-
lated using (5) and therefore needs all the other entries in the parallelogram
that can be constructed starting in that couple (k′, l′) and drawing lines par-
allel with the diagonal and the horizontal axes. The parallellogram is then



l 1 2 4 8 16 32 64 128 256 . . 2k . .

. . . . . . . . . . . ↗ 2k − 1. .

. . . . . . . . . . ↗ ↗ . . .
8 1 2 4 8 16 32 64 128 256 ↗ . . . .
7 1 2 4 8 16 32 64 128 255 . . . . .
6 1 2 4 8 16 32 64 127 297 . . . . .
5 1 2 4 8 16 32 63 120 219 . . . . .
4 1 2 4 8 16 31 57 99 163 . . . . .

3 1 2 4 8 15 26 42 64 93 . . . −→ n3

3!

2 1 2 4 7 11 16 22 29 37 . . . −→ n2

2!

1 1 2 3 4 5 6 7 8 9 → → k+1 −→ n
0 1 1 1 1 1 1 1 1 1 → → 1 −→ 1

0 1 2 3 4 5 6 7 8 . . k . Limit.

Fig. 1. Sum-of-binomials triangle

bounded by the diagonal defined by l = k, the horizonthal base line defined
by l = 1 and the lines parallel with these basic axes defined by l = l′ and
l = k − (k′ − l′). For an example, take k′ = 6 and l′ = 4.

– Sumrule: the entry dl′(k′) for a certain couple (k′, l′) can also be computed
by taking

(∑k′−1
i=0 dl′−1(i)

)
+ 1. This is taking the sum of all the entries on

the lower line, one step shifted to the left, plus 1. For example, if we take
k′ = 6 and l′ = 4 we see that 57 = (1 + 2 + 4 + 8 + 15 + 26) + 1.

To give an idea of the complete(d) diagram, see Figure 1. When l = 2 we

find d2(k) =
k2

2
+ o(k). When l = 3 we find d3(k) =

k3

2 · 3
+ o(k2). In general,

dl(k) =
kl

l!
+ o(kl−1).

With the use of Proposition 2 and these bounds, we also find bounds for the
various condensed representations.

6 Related Work

In [5], the log2(|D|) + 1-bound on the NDI-representation was already proven.
In [10], it is showed, using a very similar technique, the upper bound log2(|D|)+1
on the cardinality of generalized disjunction free set. Notice that this claim is
less strong than our claim that the largest ∞-free set is at most log2(|D|), and
that ∞-free and generalized disjunction free is the same. This discrepancy comes
partially from a slight difference in definition between generalized disjunction free
sets in [12], and in [6]. The results in [10] are based on the definitions in [12],
while the results in this paper are based on the definitions in [6]. We next explain
the difference and motivate our choice to follow the definition of [6].

The original definition of generalized disjunction free sets in [12] relies on
the notion of disjunctive rules I \ Y →

∨
Y . A rule I \ Y →

∨
Y holds in a



transaction database if and only if every transaction that contains all items in
I \ Y also contains at least one item in Y . A set I is said to be generalized
disjunction free if for all non-empty Y ⊂ I, the rule I \ Y →

∨
Y does not hold.

Notice that the rule I \ Y →
∨

Y holds if and only if supp((I \ Y ) ∪ Y ) = 0 [6].
Since Y = ∅ is not considered, a set is generalized disjunction free according to
[12] if and only if supp((I \ Y )∪ Y ) 6= 0 for all non-empty subsets Y of I. In [6],
however, also the rule I → ∅ is considered. The rule I → ∅ only holds for sets with
support equal to 0, since the right-hand side is the empty disjunction, which is
always false. Therefore, the only sets for which there is a difference, are sets with
support equal to 0. There are situations in which a set with support equal to 0
is generalized disjunction free in the definition of [12], while it is not generalized
disjunction free in the definition of [6]. In our opinion, it is reasonable to call
every itemset with support 0 generalized disjunction free, since the support of all
its supersets can trivially be derived to be equal to 0. Therefore, in this paper, we
used the definitions from [6]. This difference explains the difference between the
bound of [10] and ours, as for a set I of size k to be generalized disjunction free,
there must not be 2k transactions, but 2k−1; supp(I) itself can be 0. Therefore,
I can only be generalized disjunction free according to [12] if |D| ≥ 2k− 1. This
gives the bound log2(|D|+1), which still improves the bound log2(|D|)+1 given
in [10].

Notice incidently that our bound on the l-free sets can easily be extended
to a bound on frequent l-free sets, using a similar technique as in [10]. Let σ
be the frequency threshold. A set I is frequent if at least σ transactions in the
database contain all items of I. Therefore, for a set I of cardinality k to be
frequent l-free, there need to be at least σ transactions containing all items of I,
and 1 transaction for every other generalized itemset X ∪ Y based on I. Hence,

I is σ − frequent l− free ⇒ |D| ≥
∑l

i=0

(
k
i

)
+ (σ − 1)

Another interesting link exists with [8]. In [8], the following question in the
context of mining frequent itemsets with a standard levelwise approach is stud-
ied: given the current level and the current frequent itemsets, what is the maxi-
mal number of candidate itemsets that can be generated on the next level? The
method described in [8] can be used at run-time to get ever better estimates
on the size of the largest possible frequent itemset. Furthermore, the method
also works for any collection of itemsets that is subset-closed. Hence, the results
in [8] can also be used to get a run-time bound on the number and maximal
cardinality of the l-free sets.

7 Conclusion and Future Work

In this paper, an upper bound on the size of the database D, in terms of the
size of the set I is found, indicating that whenever that bound is not exceeded,
the set I is no l-free set. For the case that l = k the bound simplifies yielding a
expression in terms of |I| and |D|.



The aim of this work was to find a simple expression based only on the size
of the set I and the number of transactions, to bound the cardinality of l-free
sets. We found a reasonable approximation for the combinatorial bound that is
easy to compute and useful for making conclusions. Because of the link between
l-freeness and the other representations (freeness, disjunction freeness and gen-
eralized disjunction freeness) we can extend our results based on Proposition 1
and also make conclusions for these cases.

|D| < k + 1 ⇒ I is not free

|D| < k2 + k + 2
2

⇒ I is not disjunction free

|D| < 2k ⇒ I is not generalized disjunction free

Interesting future work includes trying to find a statistical bound that, when we
assume that all the items are independent and have probability p, tells us what
the probability is that all combinations of generalized itemsets occur. Another
interesting topic is when there exists correlation between the items.
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