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Abstract—This paper investigates three problems identified in [1] for annotation propagation, namely, the view side-effect, source

side-effect, and annotation placement problems. Given annotations entered for a tuple or an attribute in a view, these problems ask

what tuples or attributes in the source have to be annotated to produce the view annotations. As observed in [1], these problems are

fundamental not only for data provenance but also for the management of view updates. For an annotation attached to a single existing

tuple in a view, it has been shown that these problems are often intractable even for views defined in terms of simple SPJU queries [1].

We revisit these problems by considering several dichotomies: 1) views defined in various subclasses of SPJU, versus SPJU views

under a practical key preserving condition; 2) annotations attached to existing tuples in a view versus annotations on tuples to be

inserted into the view; and 3) a single-tuple annotation versus a group of annotations. We provide a complete picture of intractability

and tractability for the three problems in all these settings. We show that key preserving views often simplify the propagation analysis.

Indeed, some problems become tractable for certain key preserving views, as opposed to the intractability of their counterparts that are

not key preserving. However, group annotations often make the analysis harder. In addition, the problems have quite diverse

complexity when annotations are attached to existing tuples in a view and when they are entered for tuples to be inserted into the view.

Index Terms—Annotation, view updates, view maintenance, SPJU queries.

Ç

1 INTRODUCTION

DATABASE annotations have been recognized by scien-

tists as an essential feature for new generation
database management systems [2], [3], [4]. Annotations

are additional information attached to tuples or attributes,

either entered manually or generated by programs, to

explain or correct the data [2]. This information is essential

to the quality and semantics of the data, and should be

carried over along with the regular data when the data are

migrated, transformed, or integrated. With this comes the

need for studying annotation propagation. The analysis of
annotation propagation is important in tracing the origin

of the data [1], [2], [5], [6], [7], [8] (a.k.a. lineage [9], [10]),

data cleaning [11], access control [12], semantic web [13],

and in digital libraries [14], among other things. Several

systems and tools have been developed to support

annotation propagation analysis, e.g., DBNotes [15], and

MONDRIAN [16].

1.1 Annotation Propagation Analysis

In many applications, data transformations are expressed as
views defined as SPJU queries in terms of the selection (S),
projection (P), join (J), union (U), and renaming operators of
the relational algebra. Annotations attached to some tuples
in a database are carried forward to the views: the selection
and projection operators preserve the annotations placed at
selected tuples and the projected attributes, respectively;
join merges annotations of the tuples joined together, while
union simply copies the annotation of each tuple. In
addition, annotating a view of some data, the annotations
are carried backward to the source data as well as forward
to other views [2]. As observed in [1], annotation propaga-
tion analysis is closely related to classical view update
problem (see, e.g., [17] for a detailed discussion about the
view update problem).

Three problems fundamental to the propagation analysis
have been identified in [1], stated as follows: consider a
source database D, an SPJU query Q, the view QðDÞ, and a
tuple 4V in the view, given as input.

. The view side-effect problem is to find a smallest set4D
of tuples in D such that QðDÞ n 4V ¼ QðD n 4DÞ,
i.e., with zero side effect, if such 4D exists.

. The source side-effect problem is to find a smallest set
4D of tuples in D such that 4V is in QðDÞn
QðD n 4DÞ.

. The annotation placement problem is to find, given a
field in the tuple 4V , a single tuple 4D in D such
that an annotation in a field of 4D propagates to the
minimum number of fields in the view including4V .

Intuitively, when an annotation is entered for 4V in the
view, the view side-effect problem is to identify a smallest
set4D of tuples in the source such that annotations in those
places produce the view annotation, without spreading to
other view tuples. Alternatively, it means that the deletion

506 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 3, MARCH 2012

. G. Cong is with the Division of Information Systems, School of Computer
Engineering, Nanyang Technological University, Nanyang Avenue,
Singapore 639798.
E-mail: gaocong@ntu.edu.sg.

. W. Fan is with the Laboratory for Foundations of Computer Science, School
of Informatics, Edinburgh University, Informatics Forum, 10 Crichton
Street, Edinburgh EH8 9AB, Scotland, United Kingdom.
E-mail: wenfei@inf.ed.ac.uk.

. F. Geerts is with the Department of Computer Science, University of
Antwerp, Middelheimlaan 1, B-2020 Antwerpen, Belgium.
E-mail: floris.geerts@ua.ac.be.

. J. Li and J. Luo are with the School of Computer Science and Technology,
Harbin Institute of Technology, 750#, Harbin 150001, China.
E-mail: {lijzh, luojizhou}@hit.edu.cn.

Manuscript received 25 Mar. 2010; revised 23 June 2010; accepted 18 Aug.
2010; published online 31 Jan. 2011.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-2010-03-0177.
Digital Object Identifier no. 10.1109/TKDE.2011.27.

1041-4347/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society



of 4D from the source leads to the removal of 4V from the
view without side effect, i.e., 4D indicates how the tuple
4V gets into the view.

We should remark that our statement of the view side-
effect problem is referred as the “side-effect free” view
side-effect problem in [1]. Here, we enforce j4V j ¼ 0,
where 4V denotes the difference between QðDÞ and
QðD n 4DÞ. In contrast, Buneman et al. [1] aim to minimize
j4V j, although all the complexity results in [1] for the view
side-effect problem are established for the “side-effect free”
version, i.e., the problem studied here.

As opposed to the view side-effect problem, the source
side-effect problem is to find a smallest set of tuples in the
source such that the desired annotation in the view can be
obtained by annotating those places in the source, although
it may have side effects on the view. Note that the source
side-effect problem does not require j4V j ¼ 0.

When some annotation is attached to a location in 4V ,
the annotation placement problem is to find the correspond-
ing location in the source D to concretely annotate such that
the view annotation propagates backward to the source
with minimum side effects.

Example 1.1. Consider a database D with two relations:
Author(AuName, Journal), Journal(Journal, Topic, #Papers)
(with keys underlined), and an SPJ query (view defini-
tion) Q1 ¼ �AuName;TopicðAuthor ffl JournalÞ. Instances of
both relations and the view Q1ðDÞ are shown in Figs. 1a,
1b, and 1c (ignore Fig. 1d for now).

Suppose that John is not a researcher on XML and
thus the tuple (John, XML) in the view Q1ðDÞ is an error.
Let 4V ¼ fðJohn;XMLÞg. We want to find tuples 4D in
the base relations of D to annotate the error such that the
annotations propagate to the fields in the view tuple 4V
via Q1; or alternatively, we want to delete 4D such that
their removal leads to the deletion of the erroneous 4V .
The three problems stated above impose different
conditions on how to achieve this.

1. View side-effect problem. There are multiple ways
to remove tuples in D in order to delete 4V from
the view. The tuples in D related to4V , i.e., those
with matching values in 4V , are (John, TKDE),

(John, TODS), (TKDE, XML, 30), and (TODS, XML,
30). We want to find a smallest set 4D of tuples
such that deleting4D fromD leads to the removal
of4V from Q1ðDÞ but incurs no side effects, i.e., it
deletes 4V but no other tuples from Q1ðDÞ. To
delete 4V , one can remove {(John, TKDE), (John,
TODS)} from the Author table (denoted by 41D),
or delete (John, TKDE) from Author and (TODS,
XML, 30) from Journal (42D). However, none of
these is side-effect free: the first option, for
example, also results in the deletion of (John,
CUBE) from the view. Hence, there exists no
solution to the view side-effect problem.

2. Source side-effect problem. It differs from condi-
tion 1 in that we do not care about the view side
effect when we search for a smallest set 4D of
tuples in D to delete. Thus in this case, both 41D
and 42D are solutions. In addition, removing
{(TODS, XML, 30), (TKDE, XML, 30)} from
Journal is also a solution although it incurs more
severe view side effects than 41D and 42D.

3. Annotation placement problem. Suppose that the
information “John is not an XML researcher” is
attached to the AuName field of 4V . We want to
find a single tuple4D in the databaseD to annotate
such that the annotation propagates to the AuName
field of4V and a least number of other fields in the
view Q1ðDÞ. Here, the solution is 4D ¼ (John,
TODS): by annotating the AuName field of4D, we
get the desired annotation in the view with zero
side effect.

1.2 View Updates and Data Provenance

The need for investigating these problems is evident in view
update management and data provenance. As observed in
[2], the view and source side-effect problems are the classical
view deletion problems. Moreover, these two problems are
important to why-provenance, while the annotation place-
ment problem is related to where-provenance [5].

. The connection with why-provenance. Given an annota-
tion attached to some tuple t in the output of a
query, the view and source side-effect problems are
to find which tuples in the input should be
annotated such that the annotations in the input
are propagated forward to the view. To answer these
questions, we need to identify a (smallest) set of
the input tuples that suffices to make t appear in the
view. This is what why-provenance concerns, which
aims to find a “proof” or “witness” for t to appear in
the output, i.e., a minimum set of source tuples that
suffices to produce t in the output.

. The connection with where-provenance. When an anno-
tation a is attached to some field (location) l of a tuple
in the view, the annotation placement problem is to
find a single field (location) in the input to place the
annotation a, such that a propagates to a minimum
number of output locations including l. That is, we
want to propagate annotations backward from the
output of a query to the source database [3]. In other
words, we want to identify where the value in the
output location l is copied from. This is the focus of
where-provenance, which is to find where a value in
the output comes from.
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Fig. 1. Example of propagation problems. (a) Author(AuName,
Journal). (b) Journal(Journal, Topic, #Papers). (c) View definition

Q1 ¼ �AuName;TopicðAuthor ffl JournalÞ. (d) Key preserving view:

�AuName;TopicðAuthor ffl JournalÞ.



Although there has been a host of work on annotation
processing (see Section 1.4 below), the complexity bounds
for the problems described above are only studied in [1],
[12]. In those papers, it is shown that the analysis is in
general beyond reach in practice. Indeed, the view and
source side-effect problems are NP-hard for views ex-
pressed in fragments of SPJU. Similarly, the annotation
placement problem is NP-hard for PJ and SPJ views [12].
While these problems are also important to the manage-
ment of view updates, their complexity bounds have not
been studied in that line of work.

1.3 Contributions

In this paper, we extend [1], [12] in several aspects. First, we
identify a practical condition under which the analysis of
annotation propagation becomes feasible. The condition,
referred to as the key preservation condition, requires that an
SPJU view Q retains a key of every base relation involved in
the definition of Q. In other words, a view Q is key
preserving if the primary keys of all the base relations
involved in Q are included as distinct attributes in the
projection fields of Q. This is less restrictive than other
proposals for restricting view definitions [18], [19]. Further-
more, many views for data transformation or integration
found in practice can be naturally modified to be key
preserving by extending the projection-attribute list to
include the primary keys.

Second, we investigate the impact of group updates on the
analysis of annotation propagation. That is, we generalize
the problem statements given earlier by allowing the given
view update 4V to include multiple tuples. The need for
studying this is evident: in practice, annotations are often
entered for multiple view tuples at the same time, rather
than for a single tuple.

Third, in addition to annotations attached to existing
tuples in a view, we study the view and source side-effect
problems when the given4V is a set of tuples to be inserted.
These are the classical view insertion problems. The
motivation for studying this is that one often wants to
know, when new tuples along with annotations are inserted
into the view, how the annotations should be propagated
back to the source (a.k.a. feedback loop [11]). We study these
problems both in the presence and in the absence of the key
preservation condition.

We give a full treatment of the three problems for
annotation propagation w.r.t. the following dichotomies:

. general views versus key preserving views,

. singleton 4V versus a set 4V of view tuples, and

. 4V to be deleted versus 4V to be inserted.

We examine the impact of different combinations of these
factors on the combined complexity of these problems. The
complexity measure follows the work [1] where the
complexity results of annotation propagation were first
established and the studies [20], [21], [22] where the
complexity of view update problems was studied.

We provide a comprehensive picture of the complexity
on these problems for views defined in various fragments of
SPJU queries, identifying all those cases that are intractable
The results tell us the following:

1. Key preserving views often simplify the analysis of
annotation propagation. For instance, the annotation
placement problem is NP-hard for general PJ (with
projection and join) views [12], but it is in poly-
nomial time (PTIME) for key preserving SPJU views.
When 4V consists of a single existing tuple in the
view, the source side-effect problem is NP-hard for
general PJ views [1], but it is in PTIME for key
preserving SPJ views. This tells us that key preser-
ving views make it feasible to efficiently conduct
certain propagation analysis.

2. Group updates complicate the propagation analysis.
For instance, the view side-effect and source side-
effect problems become NP-hard for key preserving
SPJ views when group deletions are considered,
whereas they are in PTIME for single-tuple deletions.

3. The presence of selections in the views does not
complicate the analysis. More specifically, the com-
plexity of all problems is independent of the presence
of selection predicates in the view definition.

4. These problems have quite diverse complexity for
view insertions and view deletions. On one hand,
the view side-effect problem is in PTIME for key
preserving SPU and SPJ views and single-tuple
deletions, whereas it is intractable for single-tuple
insertions and views defined with join only. On the
other hand, the source side-effect problem is in
PTIME for key preserving SPJU and single-tuple
insertions, but it becomes NP-hard for JU views and
single-tuple deletions.

Taken together, these tell us what cases of the annotation
propagation analysis are intractable or in PTIME, for all
subclasses of SPJU views, from general views to key
preserving views, and from single-tuple update to group
view updates. To our knowledge, no previous work has
established complexity results for these problems for key
preserving views, group view updates, or for view inser-
tions. These results are useful in both the analysis of data
provenance and the study of view update management.

1.4 Related Work

This paper extends an earlier version [23] as follows: 1) we
investigate the annotation analysis for key preserving views
that also support the union operator, and 2) we revise the
statement of the view side-effect problem used in [23] to
align with its counterpart in [1], and redeveloped the results
accordingly. Several new intractability and PTIME results
are established. In particular, we show that the view side-
effect problem for insertions and views defined with join
alone is already NP-hard, and that the annotation place-
ment problem is tractable for key preserving SPJU views.

Recent research on querying annotated databases could
be classified into two categories: annotation querying (e.g.,

[24], [25]) and annotation propagation (e.g., [1], [6], [8], [26],
[27], [28]). In the former, queries access annotations as well
as the regular data directly. In the latter, queries are
directed primarily at the regular data, while annotations are
merely carried to the query results.

More specifically, propagation schemes for processing
annotations explicitly or implicitly were studies in [8], and
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the expressive power of various propagation schemes was
investigated in [25], [26]. The problems studied there are
entirely different from the problems considered in this
work. Other work investigated either propagating annota-
tions of different granularity [6], or via different methods
such as semirings [27], original source tags [28], and
source set [8]. The only previous complexity results on
annotation propagation were established in [1], [12].
However, key preservation (to be defined in Section 2),
group updates and propagation of view insertions were
not considered in [1], [12].

There has also been work on modeling and managing
provenance information [7], [9], [5], [29]. The focus has
mostly been on different types of provenance, i.e., why-
provenance [9], why-not-provenance [7], where-provenance
[5], and how-provenance [29]. Only [9] gave a complexity
result. In [9], a key preserving condition was also
considered, which simplifies the computation of lineage.
However, Cui et al. [9] studied generic mapping functions,
which are quite different from SPJU views. Hence, their
complexity results do not carry over to the problems
considered in this paper and vice versa.

There has been a host of work on view updates.
Algorithms were provided in [18] for translating restricted
view updates to base table updates without side effects in
the presence of certain functional dependencies. An algo-
rithm was developed in [19] to translate (with side effects) a
class of SPJ view updates to base relations, with the
following restrictions: base tables may only be joined on
keys and must satisfy foreign keys; a join view corresponds
to a single tree where each node refers to a relation; join
attributes must be preserved; and comparisons between
two attributes are not allowed in selection conditions. More
recently in [30], a bidirectional query language was
proposed, which imposes conditions on the operators in
the language such that arbitrary changes to views can be
carried out. Our key preservation condition is less restric-
tive than those in [18], [19], [30].

An algorithm was given in [10] for translating view
deletions to base relations without side effects, based on data
lineage. It performs an exhaustive search over all candidate
solutions, which takes exponential time. In contrast, with
our key preservation condition, the computation of data
lineage is simplified and the view side-effect deletion
problem is PTIME resolvable. The key preservation condi-
tion was also studied in [31] for XML view updates, which is
a different problem from those considered in this work.

On relational view updates, surprisingly few complexity
bounds are known. The only tractability and intractability
results we are aware of were established in [20], [21], [22],
for finding a minimal view complement for relational
views, a problem different from ours.

Commercial database systems [32], [33], [34] allow
updates on very restricted views, while allowing users to
specify updates manually with the INSTEAD OF triggers. For
example, for views to be deletable IBM DB2 [32] restricts the
from clause to reference only one base table.

1.5 Organization

We first present key preserving views in Section 2. We then
establish the complexity bounds of the view side-effect

problem, the source side-effect problem, and the annotation
placement problem in Sections 3, 4, and 5, respectively. We
identify open issues in Section 6.

Due to the space constraint, we do not include proofs
that are already presented in [23]. We refer the interested
reader to [23] for the details of those proofs.

2 KEY PRESERVATION

In this section, we define the notion of key preservation.

2.1 SPJU Queries

Let R ¼ fR1; . . . ; Rng be a relational schema. An SPJ query
(a.k.a. conjunctive query) on databases of R is a query
defined in terms of the selection (�), projection (�), join (ffl ),
and renaming (�) operators in the relational algebra. It can
be expressed in the normal form as follows [17]:

�Y ðRc �EsÞ; where Es ¼ �F ðEcÞ; Ec ¼ S1 ffl � � � ffl Sn;

where

1. Y is a list of attributes in relations of R;
2. Rc ¼ fðA1 : a1; . . . ; Am : amÞg, a constant relation,

such that for each i 2 ½1;m�, Ai is in Y , Ai’s are
distinct, and ai is a constant in the domain of Ai;

3. for each j 2 ½1; n�, Sj is �jðRiÞ for some Ri in R, and
�j is a renaming operator, such that Ai does not
appear in any Sj; and

4. F is a conjunction of equality atoms such as A ¼ B
and A ¼ “a” for a constant a in the domain of A.

An SPJU query (a.k.a. union of conjunctive queries)
defined on R is a query of the form Q1 [ � � � [Qn, where
Qi’s are union-compatible SPJ queries on R [17].

We study various subclasses of SPJU, denoted by listing
the operators supported. The renaming operator is included
in all subclasses by default without listing it explicitly. For
instance, PJ is the class of queries defined with the
projection, join, and renaming operators.

For example, the view given in Fig. 1c is a PJ view.

2.2 Key Preserving Views

Consider an SPJ query Q ¼ �Y ðRc � EsÞ defined above. We
say that Q is key preserving if all the primary key attributes
(with possible renaming) of each occurrence of the base
relations in Es are included in the projection fields Y of Q.

An SPJU query Q1 [ � � � [Qn is said to be key preserving if
for each i 2 ½1; n�, Qi is key preserving.

Example 2.1. The query Q1 given in Example 1.1 (and
corresponding view shown in Fig. 1c) can be extended
such that it is key preserving. Indeed, let Q2 ¼
�AuName;Journal;TopicðAuthor ffl JournalÞ. Then, Q2 is key
preserving. The view Q2ðDÞ is shown in Fig. 1d.

The analysis of Example 1.1 becomes simpler for the
key preserving view of Example 2.1. Consider the
deletion of 4V ¼ {(John, TKDE, XML)} from Q2ðDÞ.
1) View side-effect problem. Since Q2 is key preserving, it
is obvious that the deletion can be performed by deleting
either (John, TKDE) from Author or (TKDE, XML, 30)
from Journal. Leveraging key preservation, we can easily
check the view side effect by finding the occurrences of
key values of deleted relation tuples in the view. This
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tells us that there is no solution to the problem that has
zero view side effect. 2) Source side-effect problem.
Similar to point 1, we can easily determine that the
solution is either {(John, TKDE)} or {(TKDE, XML, 30)}.
3) Annotation placement problem. Similarly, we can see
that the solution is {(John, TKDE)}.

3 THE VIEW SIDE-EFFECT PROBLEM

In this section, we investigate the view side-effect problem.
We first study the problem for single-tuple and group
deletions in Section 3.1. We then investigate the problem for
insertions in Section 3.2, for key preserving SPJU views and
general SPJU views.

3.1 Deletion Propagation

Given a view deletion 4V , a source database D, an SPJU

query Q, and the view QðDÞ, the view side-effect problem
for deletion propagation is to find a smallest set of source

tuples 4D to delete such that tuples in 4V are deleted,
without side effects.

The view side-effect problem has been studied in [1] for
general SPJU views and single-tuple deletions (when 4V is

a singleton set). We investigate this problem for key
preserving SPJU views and single-tuple deletions, and for
SPJU views (key preserving or not) and group deletions

(when 4V consists of multiple tuples).
We present in Table 1 the complexity of the view side-

effect problem for various subclasses of SPJU, for single-

tuple deletions, and for group deletions (see Section 6).

3.1.1 Single-Tuple Deletions

It is known that without the key preservation condition, the
view side-effect problem for single deletions on a PJ view is

NP-hard [1]. In contrast, the problem becomes tractable for
key preserving SPJ views. This shows that key preservation
may indeed simplify the analysis of annotation propagation.

Proposition 1. The view side-effect problem is in PTIME for key

preserving SPJ views and single-tuple deletions.

Proof Sketch. We show that for key preserving SPJ views, it
suffices to delete a view tuple by removing any
component tuple from a base relation that “contributes

to” the view tuple. Moreover, it is in PTIME to check if
the deletion is side-effect free. We refer the interested
reader to [23, Theorem 3.1] for a detailed proof. tu

However, key preservation does not make our lives
easier for JU views. From the proof in [1] for JU views, it

follows that the problem remains NP-hard for key preser-
ving JU views.

Corollary 2. The view side-effect problem is NP-hard for key
preserving JU views and single-tuple deletions.

Proof. The proof of [1, Theorem 2.2] is applicable here. The
proof shows that the view side-effect problem is NP-hard
for single-tuple deletions and JU views by reduction
from the 3SAT problem. The reduction, however, uses JU
views that are key preserving. tu

3.1.2 Group Deletions

Our first result for group deletions is a PTIME algorithm for
the view side-effect problem for SPU views. It should be
remarked that the complexity of group view deletions is
considered in neither [1] nor [12].

Corollary 3. The view side-effect problem is in PTIME for SPU
views and for group deletions.

Proof. Let R be a schema and D database as described in
Proposition 1, Q ¼

Sk
j¼1 Qj a union of SP queries, and

4V ¼ ft1; . . . ; tmg be a group deletion. We give a PTIME
algorithm for computing 4D that is side-effect free, if it
exists. The algorithm is an extension of the algorithm for
single deletions developed in [1].

The algorithm first scansD and returns for eachRi 2 R
the set of tuples satisfying at least one of the selection
conditions in one of the SP queries Qj. We denote the
resulting database by D00. Next, the algorithm considers
the tuples in 4V and removes them from 4V if a side-
effect free update has been found for the tuples considered
so far. That is, at each step, a set 4D0 is computed, if it
exists, such that QðD n 4D0Þ ¼ QðDÞ n 4V 0, where 4V 0
denotes the tuples in4V removed so far. It is important to
remark that for SPU views, the set 4D0, if it exists, is
uniquely determined.

Initially, D0 ¼ D00, 4V 0 ¼ ;, and 4D ¼ ;. As long as
4V n 4V 0 6¼ ;, let t be the first tuple (based on some
arbitrary ordering) in 4V n 4V 0. The algorithm then
computes 4D0 as the set of all tuples from D0 that
project on t. Observe that this set is indeed uniquely
determined. We distinguish between the following two
cases: 1) there exists a tuple s 2 4D0 such that
QðfsgÞ 6� 4V . In this case, the algorithm halts and no
side-effect free solution exists. 2) Qð4D0Þ � 4V . In this
case, the deletion of 4D0 in D0 causes side effects that all
belong to 4V . Clearly, these view tuples do not have to
be further processed by the algorithm. Hence, we set
4D ¼ 4D [4D0 and call the algorithm with D0 ¼
D0 n 4D0 and 4V 0 ¼ 4V 0 [ ð4V \Qð4D0ÞÞ. If the algo-
rithm successfully terminates, i.e., when 4V 0 ¼ 4V , the
side-effect free update 4D is returned. The solution 4D
is minimum because of the uniqueness of each update
computed during the execution of the algorithm, and in
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addition, the need to remove all tuples in these updates
that is necessary in any solution. The algorithm clearly
runs in polynomial time. tu

Group updates may complicate the annotation propaga-
tion analysis. In contrast to Proposition 1, the view side-
effect problem becomes NP-hard for group deletions and
key preserving views defined with join only.

Theorem 4. The view side-effect problem is NP-hard for key
preserving J views and group deletions.

Proof Sketch. We prove this by reduction from the
minimum set cover problem. The detail can be found
in the proof of [23, Theorem 3.3]. tu

3.2 Insertion Propagation

Given a source database D, a query Q, the view V ¼ QðDÞ,
and a set 4V of tuples, the view side-effect problem for
insertion propagation is to find a minimum set4D of tuples
such thatQðD [4DÞ ¼ QðDÞ [ 4V , i.e., the insertion of4D
into D produces 4V and does not incur any side effect.

For single-tuple and group insertions, the complexity
bounds of the view side-effect problem are summarized in
Table 2 for various fragments of SPJU views, key
preserving or not. Compared with Table 1, one can see
that view insertions complicate the view side-effect
analysis. In particular, the problem becomes coNP-hard
for key preserving views defined with join only, even for
single-tuple insertions.

To see the complication introduced by view insertions,
consider the differences between insertions and deletions
for key preserving views. To insert a tuple t into V , one can
identify the key ki of the tuple ti that needs to be inserted
into each occurrence of each Ri relation involved in V . As
will be seen shortly, based on ki, one can either identify an
existing tuple ti in the Ri relation with ki, or otherwise,
construct a tuple ti carrying ki as its key and insert it into
the Ri relation. Observe that while view tuple deletions can
always be carried out when side effects are allowed, it is
not always doable to insert a tuple into views in the
presence of the key preservation condition, even if side
effects are allowed.

Example 3.1. Consider the key preserving query Q3 ¼
ðAuthor ffl JournalÞ in the setting of Example 1.1, and the
insertion of tuple (Kate, TODS, XML, 35) into the view
Q3ðDÞ. At first glance, it seems that this insertion can be
carried out by inserting (Kate, TODS) into table Author
and (TODS, XML, 35) into Journal. However, this
insertion is not possible: the insertion of (TODS, XML,
35) has to be rejected since taken together with (TODS,
XML, 30) it violates the key in the table Journal.

3.2.1 Intractability Results

In contrast to Proposition 1, the view side-effect problem is
already intractable when Q is a key preserving view
defined with join only, even if 4V consists of a single tuple
to be inserted.

Proposition 5. The view side-effect problem is coNP-hard for
J views and single-tuple insertions.

Proof. We prove the coNP-hardness by reduction from the
complement of the Boolean conjunctive query problem.
An instance of that problem is an SJ query q ¼
�Cð�f1

ðR1Þ ffl � � � ffl �fkðRkÞÞ over an instance I of rela-
tional schema R ¼ fR1; . . . ; Rmg. It is to decide whether
qðIÞ 6¼ ;. This problem is NP-complete (cf. [35]).

Given q and I, we define a source database D, a J
query Q, and a single tuple 4V to be inserted into the
view V ¼ QðDÞ, such that qðIÞ ¼ ; iff there exists a side-
effect free solution 4D.

Base relations. Database D consists of 1þmþ w
relations, where w is the number of the selection
conditions in C of the form “�A¼c,” for some attribute
A and constant c. More specifically, the database
includes 1) R0ðAÞ, initially empty, where A is a distinct
attribute; 2) R01, and Ri for i 2 ½2;m� to code the input
instance I, where R01 is R1 extended with the attribute A;
and 3) a new relation Si with one attribute Ai for each
selection condition “�Ai¼c” in C, to encode constants in
the selection condition C. Initially, Si ¼ fðcÞg.

View. We first define a J query Q0 ¼ R0 ffl q0 ffl
S1 ffl � � � ffl Sw, where q is obtained from q by replacing
each occurrence of R1 by R01. Suppose that C contains p
selection conditions “�Ai¼Bi

” for some attributes Ai and
Bi, for i 2 ½1; p�. We incorporate these equality conditions
into the view one by one. Initially, Q0 ¼ Q0. Suppose that
we have already encoded the first j� 1 conditions asQj�1.
Let �Aj¼Bj

be the next selection condition. We then define
Qj ¼ Qj�1 ffl �Aj=Bj

ðq0Þ, where �Aj=Bj
renames Aj as Bj,

while keeping the other attributes unchanged. Finally, we
define Q ¼ Qp. Note that the size of Q is quadratic in the
size of q. Initially, QðDÞ ¼ ;.

View insertions. We define 4V as a single tuple
ðx; x; . . . ; xÞ to be inserted into QðDÞ, where x is a
distinct value.

See Fig. 2 for an illustration of the reduction.
One can readily verify that qðIÞ ¼ ; iff there exists a

(minimum) 4D such that QðD [4DÞ ¼ V [4V . tu

As opposed to Corollary 3, the problem also becomes
harder for key preserving PU views and insertions. The
intractability remains intact on general PU views.

Theorem 6. The view side-effect problem is NP-hard for key
preserving PU views and single-tuple insertions.
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TABLE 2
Complexity of the View Side-Effect Problem for Insertion Propagation



Proof. We prove the NP-hardness by reduction from the 1-in-

3 3SAT problem. An instance of the latter is � ¼ C1 ^ � � � ^
Cn, where all variables in � are x1; . . . ; xk, and each clause

Cj is of the form ‘j1
_ ‘j2

_ ‘j3 and ‘ij is either xs or �xs,

s 2 ½1; k�. The problem is to determine whether there is a

truth assignment that makes � true and for which exactly

one literal in each clause is assigned true. This problem is

NP-complete (cf. [35]).
Given �, we define a source database D, a key

preserving PU query Q, and a single tuple 4V to be
inserted into the view V ¼ QðDÞ, such that � has a 1-in-3
truth assignment iff there exists a minimum 4D that is
side-effect free, i.e., QðD [4DÞ ¼ V [4V .

Base relations. The database D consists of two relations
RðK;X1; . . . ; Xk; Y1; . . . ; Yk; CÞ a n d RvðK;A1; A2; A3;
B1; B2; B3Þ. Here, K is the key attribute of R and is to
enforce that zero-side-effect solutions consist of a single-
tuple insertion in R only. The attributes Xi and Yi are to
encode truth values fT; Fg, and C is an auxiliary
attribute needed to check that tuples in R are truth
assignments of X ¼ fx1; . . . ; xkg. Initially, R is empty. As
will be seen shortly, the view will extract all permuta-
tions of the truth values of the literals occurring in each
clause. Clearly, when dealing with 1-in-3 truth assign-
ments, this set of permutations is necessarily limited to
fðT; F ; F Þ; ðF; T ; F Þ; ðF; F ; T Þg. However, since our view
is initially empty and we are considering single-tuple
insertions only, we use the relation Rv to populate
the initial view with two fixed tuples, corresponding to
the permutations fðT; F ; F Þ; ðF; T ; F Þg. For this, Rv

consists of a single tuple ð0; T ; F ; F ; F ; T ; F Þ. As before,
the key attribute K of Rv is to avoid the insertion of
additional tuples in Rv.

View. We define a key preserving PU query Q ¼
V0 [ V1 [ V2 as follows:

. V0 ¼ �K;X;Y ;Zð�f1
ðRvÞÞ [ �K;X;Y ;Zð�f2

ðRvÞÞ, where
�f1

renames A1; A2; A3 as X;Y ; Z, and �f2
renames

B1; B2; B3 as X;Y ; Z. This query yields two tuples
corresponding to two of the three valid 1-in-3
truth assignments of clauses. Initially, V0ðDÞ ¼
fð0; T ; F ; F Þ; ð0; F ; T ; F Þg.

. V1 ¼
Sk
i¼1

S
�2�ðXi;Yi;CÞ �K;X;Y ;Zð�ðRÞÞ, where �ðXi;

Yi; CÞ is the set of all (bijective) renaming of
Xi; Yi; C into X;Y ; Z. Intuitively, each such
renaming corresponds to a permutation of
Xi; Yi; C. Since C will be enforced to equal to F
(false), the view V1 is used to verify whether
tuples in R define a truth assignment. Indeed, �

defines a truth assignment if the permutations of
ð�ðxÞ; �ð�xÞ; F Þ correspond to fðT; F ; F Þ; ðF; T ; F Þ;
ðF; F; T Þg, i.e., the tuples in the view. Initially,
V1ðDÞ ¼ ;.

. V2 ¼
Sn
i¼1 V2;i, where each V2;i is to encode the

clause Ci of �. Suppose that Ci ¼ ‘j1
_ ‘j2

_ ‘j3
. If

‘ij ¼ xs for some s 2 ½1; k�, then let Aij ¼ Xs; if

‘ij ¼ �xs, then Aij ¼ Ys. We then define V2;i ¼S
�2�ðAj1

;Aj2
;Aj3
Þ �K;X;Y ;Zð�ðRÞÞ, where as before,

�ðAj1 ; Aj2 ; Aj3
Þ is the set of all (bijective) renaming

of Aj1
; Aj2

; Aj3
into X;Y ; Z. Initially, V2ðDÞ ¼ ;.

This view simply checks whether all permutations of
literals in all clauses conform the 1-in-3 condition. Note
that Q is a key preserving PU query.

View insertions. We define 4V to consist of a single
tuple ð0; F ; F ; T Þ to be inserted into V ¼ QðDÞ.

The reduction is illustrated in Fig. 3 for � ¼ ð�x1 _
�x2 _ x3Þ ^ ðx2 _ �x4 _ x5Þ ^ ðx1 _ x3 _ x4Þ. The tuple in-
serted into the view V and the tuple to be inserted into
D are indicated by the bold rectangles.

We next verify that there is a 1-in-3 truth assignment
for � iff there exists a minimum side-effect free 4D.

First, assume that � is a 1-in-3 truth assignment for �.
Let 4D be the single tuple ð0; �ðx1Þ; �ðx2Þ; . . . ; �ðxnÞ;
�ð�x1Þ; �ð�x2Þ; . . . ; �ð�xnÞ; F Þ to be inserted in R. Note that
V0ðD [4DÞ remains unchanged. Since � is a truth
assignment, �ðxiÞ and �ð�xiÞ are complements for each
i 2 ½1; k�. In other words, for each possible renaming � of
ðXi; Yi; CÞ into X;Y ; Z, �K;X;Y ;Zð�ðRÞÞ consists of tuples t
of the form ð0; t½X;Y ; Z�Þ with t½X;Y ; Z� having a single
T and two F -values. In other words, V1ðD [4DÞ ¼
V [4V . In addition, there is exactly one T among the
three literals of each clause Cj, and Q2;j takes all the
permutations of the values of these three literals. Thus,
again V2ðD [4DÞ ¼ V [4V . That is, QðD [4DÞ ¼
V [4V and hence 4D is side-effect free. Furthermore,
since no tuples could have been be added to Rv (due to
the key constraints) and 4D consists of a single tuple,
4D is necessarily minimum.

Conversely, let 4D be a minimum side-effect free
solution such that QðD [4DÞ ¼ V [4V . Since ð0; F ;
F ; T Þ is inQðD [4DÞ and4D is side-effect free, we know
that 4D consists of a single tuple of the form
ð0; a1; a2; . . . ; an; b1; b2; . . . ; bn; F Þ. Further, by the definition
of V1 and the fact thatQðD [4DÞ ¼ V [4V , we have that
the mapping �ðxiÞ ¼ ai and �ð�xiÞ ¼ bi is a truth assign-
ment for �. Finally, since QðD [4DÞ is fð0; T ;
F ; F Þ; ð0; F ; T ; F Þ; ð0; F ; F ; T Þg, by the definition of V2, �
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Fig. 2. Illustration of the proof of Proposition 5.

Fig. 3. Illustration of the proof of Theorem 6.



must be a 1-in-3 truth assignment for �, since otherwise
side effects would occur in QðD [4DÞ. tu

Remark. From Proposition 5 and Theorem 6, it follows that
any fragment of SPJU that contains both PU and J is both
coNP-hard and NP-hard (lower bound), and is intract-
able. Hence, such a fragment is in a complexity class that
subsumes NP and coNP (see, e.g., [36] for details about
complexity hierarchies).

3.2.2 Tractability Results

The good news is that the problem is tractable for SP and
SU views and for group insertions, no matter whether these
views are key preserving or not.

Theorem 7. The view side-effect problem is in PTIME for
1) SP views and 2) SU views, both for group insertions.

Proof. The proof is constructive. For each of the cases, we
provide a PTIME algorithm which either halts (indicat-
ing that no solution exists) or outputs a solution for the
view side-effect problem. Note that some view insertions
may not be doable, as shown in Example 3.1.

SP views. A PTIME algorithm can be found in the proof
of [23, Theorem 4.3]. The algorithm first checks whether
the tuples in group insertions satisfy the view definition,
and whether the group insertions contain tuples with the
same key attributes. Then for each view tuple, it
generates its base tuples, fills in their missing values
such that the selection conditions in the view definition
are satisfied, and checks whether those tuples can be
inserted into base tables without violating the keys.

Key preserving SU-views. Consider a key preserving SU
query Q ¼

Sk
i¼1 Qi, an instance D of the schema R, and a

group insertion 4V . We assume that each S query Qi is
of form Qi ¼ �Cið�fiðRjiÞÞ. Observe that if there exists a
source insertion 4D that produces 4V , then there exists
a side-effect free solution. Indeed, since Q does not
involve joins, one can always trim irrelevant tuples from
the query result by adjusting values in 4D.

The PTIME algorithm first models the view side-effect
problem as a flow network with integer capacity on each
edge, and then computes the maximum flow of the
network in polynomial time. If the value of the maximum
flow equals to j4V j, then we can get a solution to the view
side-effect problem. Otherwise, there exists no solution
for group insertions 4V .

We first model R, Q, and 4V as a flow network. The
initial vertex set of the flow network is N ¼ fS; Tg [
fTi j ti 2 4V g [ fri j Ri 2 Rg, where S is the source
node, T is the sink node, Ti represents a tuple node for
each ti 2 4V , and ri represents a relation node for each
relation Ri involved in V . The initial edge set consists of
E ¼ fðS; TiÞ j i 2 ½1; k�g [ fðri; T Þ j i 2 ½1; n�g, where k is
the size of 4V , n is the size of R, the capacity of edges
ðS; TiÞ is 1 and that of edge ðri; T Þ is 1.

We next encode4V . For each tuple t in4V , we check
for each Qi whether 1) t satisfies the selection condition
Ci in Qi; and 2) whether there exists no tuple in QiðDÞ
having conflicting key with t. If both conditions are
satisfied for Qi, the relation Rji in Qi is called a candidate
host for tuple t. If there exists no such a candidate host for
t, the algorithm halts and no solution to the view side-
effect problem exists. If all tuples in group update have
at least one candidate host, then the algorithm continues.

Note, however, that t will not necessarily be inserted
into a candidate host. Indeed, whether t is inserted into
one of its candidate hosts, say Rji , also depends on
whether the other possible insertions (from 4V ) into Rji

cause a key violation together with the insertion incurred
by t. The information regarding key information among
tuples in their candidate hosts is modeled in the flow
network as follows: for each candidate host Rji and each
t‘ 2 4V , we update the flow network N . Let ~aji be the
tuple consisting of key attributes of t‘ in Rji . We
distinguish between the following two cases:

. Case 1. There is no edge of the form ðvð~ajiÞ; rjiÞ,
where v is a vertex with ~aji as its label. We add a
new vertex vnew with ~aji as label into N , and add
new edges ðT‘; vnewÞ and ðvnew; rjiÞ. The capacity of
each new edge is 1, representing that at most one
tuple with this key can be inserted in the host Rji .

. Case 2. There is already an edge of the form
ðvð~ajiÞ; rjiÞ, where v is a vertex with ~aji as its label.
This indicates that some other tuples (conflicting
with t‘ on Rji ) with the same key attributes ~aji
exist. Note that together with t‘, only one such
tuple can be inserted into Rji . Thus, we add an
edge ðT‘; vÞ with capacity 1.

These steps complete the construction of flow net-
work. The construction clearly runs in polynomial time.
Below, we illustrate the construction. Fig. 4 shows the
flow network for base relations RiðAi;Bi; Ci;DiÞ, for
i ¼ 1; 2; 3, and SU view

V ¼ �C¼3ð�f1
ðR1ÞÞ [ �C¼Dð�f2

ðR2ÞÞ [ �B¼Cð�f3
ðR3ÞÞ;

where �fi renamesAi;Bi; Ci;Di asA;B;C;D for i ¼ 1; 2; 3.

The group update 4V is indicated by the bold rectangle.

The gray shadowed vertexes are added following the

rules in cases 1 and 2 and each of them has only one

outgoing edge. As formally shown below, there is a

solution for the insertion of4V into V iff the value of the

maximum flow of the constructed flow network is j4V j.
For this example, there is a solution 4D that inserts

t1; t2; t3; t4 into R3; R1; R2; R2, respectively.
More formally, we show that there is a solution to the

view side-effect problem iff the value of the maximum
flow of the constructed flow network is j4V j. First, we
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Fig. 4. Illustration of the algorithm of Theorem 7(2).



assume that the maximum flow � : E ! Rþ equals j4V j.
By definition, this implies that

P
ðS;TiÞ �ðS; TiÞ ¼ j4V j, or

in other words, that � assigns 1 to every edge starting
from S. By the flow conversation law, i.e., for each
v 2 N n fS; Tg,

P
ðv;wÞ2E �ðw; vÞ ¼

P
ðv;wÞ2E �ðv; wÞ, and

the fact that all other edges (except those adjacent to T )
have weight 1 assigned to them, this in turn implies that
� defines a unique path from S to T , one for each tuple in
4V . Since the in- and outgoing edges from the key-
labeled vertexes have weight 1, these paths do not share
key-labeled vertexes. Thus, from those paths one can
infer the candidate hosts into which to insert each of the
tuples. Indeed, for ti 2 4V , one can simply follow the
path (as defined by �Þ starting form Ti until the
corresponding host relation is reached.

Conversely, if a side-effect free solution exists, then
there is a 4D such that QðD [4DÞ ¼ V [4V . Since the
view is key preserving, for any two distinct tuples
t1; t2 2 4V , there are different t01; t

0
2 2 4D inserted into

relations R1; R2, assuring that t1 and t2 appear in the
view. Consider the following two cases: 1) R1 and R2 are
different relations; and 2) R1 and R2 are the same relation
R. For case 1, the construction of the flow network
indicates that starting from S, we can reach T1 and T2

through different edges, and then reach different labeled
nodes through different edges; finally, we reach different
nodes r1 and r2. For case 2, the validity of the insertion
guarantees that t1 and t2 have different keys on relation
R. Thus, we can start from S and reach T1 and T2 via
different edges, and then reach different labeled nodes,
and finally reach node r. Since t1; t2 were chosen
arbitrarily, this implies the existence of S to T paths
passing through each tuple node in N . Furthermore, all
these paths share no labeled node and tuple node. This
means that there is a feasible flow with value j4V j.

Since for any flow �,
P
ðS;TiÞ �ðS; TiÞ � j4V j, the

maximum flow value is j4V j. From this, it follows that
the algorithm is in PTIME.

Arbitrary SU views. Since SU views do not have
projections, they are key preserving. Hence, the PTIME
algorithm above also works on arbitrary SU views. tu

4 THE SOURCE SIDE-EFFECT PROBLEM

In this section, we investigate the source side-effect

problem. We study the problem for various key preserving

SPJU views in Section 4.1 for both single-tuple and group

deletions. Insertions are considered in Section 4.2.

4.1 Deletion Propagation

Given a view deletion 4V , the source side-effect problem

for deletion propagation is to find a smallest set 4D of

source tuples to be deleted so that the tuples in 4V are

removed from the view.
Table 3 gives the complexity of determining the mini-

mum 4D for various subclasses of SPJU queries, for single-

tuple and group deletions. Compared to Table 1, the results

tell us that it is already hard to determine whether there

exists 4D to produce 4V , even without checking whether

4D is side-effect free.
It has been shown that the source side-effect problem is

already NP-hard for single deletions and PJ views [1]. We

show that the problem for single deletions becomes

polynomial-time solvable when the key preservation con-

dition is imposed. This again verifies our observation that

key preservation simplifies the analysis.

Proposition 8. The source side-effect problem is in PTIME for

key preserving SPJ views and single-tuple deletions.

Proof. The PTIME algorithm presented in the proof of

Proposition 1 is already able to compute a minimum

source update 4D. We can therefore use the same

algorithm for the source side-effect problem, except that

we do not have to perform the steps for selecting the

update that minimizes the number of view side effects. tu

However, the problem for group deletions remains hard.

Similar to Theorem 4, we show that the source side-effect

problem is intractable for views defined with join only and

for group deletions. This problem has not been considered

by previous work.

Corollary 9. The source side-effect problem is NP-hard for key

preserving J views and group deletions.

Proof. The proof of Theorem 4 suffices to show this. Indeed,

the reduction given in that proof assures the minimality

of the size of the source updates, and it does not impose

any constraints on the size of side effects. tu

For JU views, the problem is getting no easier, similar to

its view side-effect counterpart (Corollary 2).

Corollary 10. The source side-effect problem is NP-hard for key

preserving JU views and single-tuple deletions.

Proof. The proof of Corollary 2 is applicable here. Its

reduction [1] concerns only the existence of a smallest

source update that produces view updates. tu

In contrast, for SPU views, the analysis is simpler,

comparable to its view side-effect counterpart (Corollary 3).

Corollary 11. The source side-effect problem is in PTIME for

SPU views and group deletions.

514 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 3, MARCH 2012

TABLE 3
Complexity of the Source Side-Effect Problem for Deletion Propagation



Proof. The PTIME algorithm given in the proof of Corollary 3
suffices to find smallest source updates. tu

4.2 Insertion Propagation

Given a source database D, a query Q, the view V ¼ QðDÞ,
and a set 4V of tuples, the source side-effect problem for
insertion propagation is to find a smallest set 4D of tuples
such that QðD [4DÞ contains 4V , i.e., we want to find a
smallest set of tuples to insert into the source database such
that the insertion will get 4V into the view, regardless of
side effects on the view.

For single-tuple and group insertions, the complexity
results for the source side-effect problem are summarized in
the Table 4. Compared to its view side-effect counterpart
(Table 2), the source side-effect problem is relatively easier
for insertions since we no longer need to check whether
source insertions are side-effect free.

4.2.1 Intractability Results

We first show that like its view side-effect counterpart
(Proposition 5), the source side-effect problem is intractable
for general PJ (and thus SPJ) views and single-tuple
insertions. This tells us that the source side-effect analysis
for insertions is more intriguing than its deletion counter-
part (Proposition 8).

Theorem 12. The source side-effect problem is NP-hard for PJ
views and for single-tuple insertions.

Proof Sketch. We prove this by reduction from the
minimum set cover problem. The detail can be found
in the proof of [23, Theorem 4.5]. tu

The problem is no easier for JU views and group
insertions, even when the views are key preserving.

Theorem 13. The source side-effect problem is NP-hard for key
preserving JU views and group insertions.

Proof. We show this by reduction from the hitting-set
problem. An instance of that problem consists of a
collection C of subsets of a finite set S; it is to find a
minimum subset X of S such that X \ ci 6¼ ; for all
ci 2 C. The problem is NP-complete (cf. [35]).

Given S and C, we define an instance of the source
side-effect problem. Let S ¼ fxi j i 2 ½1; n�g and C ¼
fcj j j 2 ½1; k�g. We construct a source database D, a key
preserving JU query Q, the view V ¼ QðDÞ, and a group
insertion 4V . We show that we can find a minimum
hitting set X of S iff there exists a minimum set4D such
that QðD [4DÞ 	 V [4V .

Base relations. For each xi 2 S (i 2 ½1; n�), we define two
relations Rði;1ÞðAi;BiÞ and Rði;2ÞðBi;DiÞ as follows:

. Rði;1ÞðAi;BiÞ, where Ai is the key, and Ai;Bi range
over ½1; k� and fT; Fg, respectively. Intuitively, a
tuple inRði;1Þ indicates whether or not xi belongs to
a subset of C. Initially, ðj; F Þ is in Rði;1Þ iff xi 62 cj.

. Rði;2ÞðBi;DiÞ, whereDi is the key, andBi;Di range
over fT; Fg and ½0; k�, respectively. Intuitively, a
tuple in Rði;2Þ indicates whether or not xi is
included in the hitting set. Initially, Rði;2Þ is empty.

View. We define a JU query Q ¼ �f1
ðQ1Þ [ � � � [

�fnðQnÞ where Qi ¼ Rði;1ÞðAi;BiÞ ffl Rði;2ÞðBi;DiÞ and �fi
renames Ai;Bi;Di as A;B;D, respectively. Initially,
V ¼ QðDÞ ¼ ;. Intuitively, a tuple in the view is a triple
ðj; b; xÞ, indicating whether at least one element of cj is
covered by the hitting set.

View insertions. The set 4V is fðj; T ; 0Þ j j 2 ½1; k�g.
The construction is illustrated in Fig. 5 for S ¼

fa; b; c; dg a n d C ¼ fc1 ¼ fa; bg; c2 ¼ fa; dg; c3 ¼ fb; cg;
c4 ¼ fb; c; dgg. The tuples inserted into the view and the
tuples to be inserted into D are indicated by the bold
rectangles. As will be seen shortly, 4D in this example
corresponds to a hitting set X ¼ fa; bg of C.

We next show the correctness of the reduction. First
observe that for any source insertion 4D, if V [4V �
QðD [4DÞ, then j4Dj 
 kþ h, where h is the size of
minimum hitting set of C. To show this, we consider an
index set I ¼ fi j i 2 ½1; n�, tuple ðT; 0Þ is inserted into
Rði;2Þ, Rði;1Þ accepts at least one tuple from 4Dg. Tuples
inserted into Rðj;1Þ or Rðj;2Þ (j 62 I) are redundant, because
they never generate any tuple in the view. Moreover,
since QðD [4DÞ contains 4V , for each j 2 ½1; k�, ðj; T Þ
must be inserted into some Rði;1Þ with i 2 I. This means
that each cj must contain an element xi with i 2 I, which
results in a hitting set fxi j i 2 Ig of C. Putting these
together, j4Dj 
 kþ jIj 
 kþ h.
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TABLE 4
Complexity of the Source Side-Effect Problem for Insertion Propagation

Fig. 5. Illustration of the proof of Theorem 13.



We next continue with verifying the correctness of the
reduction. First, assume that X is a minimum hitting set
of C. We then construct a set of source tuples 4D such
that QðD [4DÞ 	 V [4V and j4Dj is minimum. Let
cj 2 C and take one xi from cj \X that is not empty.
Then, we insert ðj; T Þ into relation Rði;1Þ and insert ðT; 0Þ
into Rði;2Þ. Note that by the keys, only one insertion can
succeed. Hence, the total number of successful insertions
of ðT; 0Þ into D will never exceed jXj ¼ h. As a
consequence, ðj; T ; 0Þ belongs to QðD [4DÞ. Thus,
QðD [4DÞ 	 V [4V and j4Dj � kþ h. Together with
the observation above, we see that j4Dj is minimum.

Conversely, assume that 4D is a minimum set such
that QðD [4DÞ 	 V [4V . We construct a minimum
hitting setX ofC. Let I ¼ fi j some tuple in4D is inserted
into relation Rði;1Þg. Since j4Dj is minimum, there are no
redundant insertions and thus ðT; 0Þmust be inserted into
Rði;2Þ for all i 2 I. Similarly, since QðD [4DÞ 	 4V , we
have that for each j 2 ½1; k�, ðj; T Þ is inserted intoD exactly
once (into some relation Rði;1Þ with i 2 I). Thus, X ¼ fxi j
i 2 Ig is a hitting set of C and j4Dj ¼ kþ jIj ¼ kþ jXj. If
there exists another hitting set X0 such that jX0j < jXj, we
can use the construction method previously described to
find a solution 4D0 such that j4D0j � kþ jX0j <
kþ jXj ¼ j4Dj, which contradicts the assumption that
4D is minimum. tu

The problem for PU views is as hard as for JU views.

Theorem 14. The source side-effect problem is NP-hard for key

preserving PU views and group insertions.

Proof. We prove this by reduction from the 1-in-3 3SAT

problem. We refer to the proof of Theorem 6 for the

statement of the 1-in-3 3SAT problem.
Given an instance � of the 1-in-3 3SAT problem, we

define a source database D, a key preserving PU query
Q, and a set 4V of tuples to be inserted into the view
V ¼ QðDÞ such that � is 1-in-3 satisfiable iff there exists a
(minimum) source insertion 4D such that V [4V �
QðD [4DÞ. The reduction is similar to the one given in
the proof of Theorem 6.

Base relations. The database D consists of one relation
RðK;X1; . . . ; Xk; Y1; . . . ; Yk; C1; . . . ; Cnþk;W Þ, where K is
the key, the attributes Xi and Yi range over fT; Fg for
i 2 ½1; k�, Cj ranges over ½1; nþ k� for all j 2 ½1; nþ k�, and
W is in fFg. Intuitively, Xi; Yið1 � i � kÞ encode the
truth value of xi and its negation, respectively. We use
Cnþi together with W to determine whether a truth
assignment is valid, i.e., whether only one of Xi and Yi is
T . We use Cj ð1 � j � nÞ to check whether clause cj is
satisfied by the truth assignment. Initially, D is empty.

View. We define a key preserving PU queryQ ¼ V1 [ V2.

. V1 ¼ [ki¼1V1;i, where

V1;i ¼ [�2�ðXi;Yi;W Þ�K;X;Y ;Z;Cð�nþið�ðRÞÞÞ;

where �ðXi; Yi;WÞ is the set of all (bijective)
renaming of Xi; Yi;W as X;Y ; Z, and �nþi
renames Cnþi as C. Intuitively, renaming in
�ðXi; Yi;WÞ enumerates permutations of Xi; Yi,
and W . The query V1 is used to verify whether

tuples in R define a valid truth assignment.
Initially, V1ðDÞ ¼ ;.

. V2 ¼
Sn
i¼1 V2;i, where each V2;i is defined accord-

ing to the clause Ci of �. Suppose that Ci ¼ ‘i1 _
‘i2 _ ‘i3 . If ‘ij ¼ xs for some s 2 ½1; k�, then let Aij ¼
Xs; if ‘ij ¼ �xs, then let Aij ¼ Ys. We then define

V2;i ¼
[

�2�ðAi1
;Ai2

;Ai3
Þ
�K;X;Y ;Z;Cð�ið�ðRÞÞÞ;

where as before, �ðAi1 ; Ai2 ; Ai3Þ is the set of all
(bijective) renaming of Ai1 ; Ai2 ; Ai3 as X;Y ; Z, and
�i renames Ci as C. Intuitively, V2;i introduces a
tuple into V iff clause ci is 1-in-3 satisfied by the
truth assignment encoded by a tuple of D.
Initially, V2ðDÞ ¼ ;.

View updates. Let4V ¼ fð0; 	 ; jÞ j 	 ¼ ð	 ½X�; 	 ½Y �; 	 ½Z�Þ,
	 is a permutation of ðT; F ; F Þ; j 2 ½1; nþ k�g.

To show that this is a reduction, first assume that � is
a 1-in-3 truth assignment for �. Let 4D be the tuple

ð0; �ðx1Þ; . . . ; �ðxkÞ; ��ðx1Þ; . . . ; ��ðxkÞ; 1; . . . ; nþ k; F Þ:

By the view definition and the fact that � is a truth

assignment, we have that V1ð4DÞ is the set fð0; 	; jÞ j
	 ¼ ð	 ½X�; 	 ½Y �; 	 ½Z�Þ is a permutation of ðT; F ; F Þ; j 2
½nþ 1; nþ k�g. Similarly, we have that V2ð4DÞ is the

set fð0; 	; jÞ j 	 ¼ ð	 ½X�; 	 ½Y �; 	 ½Z�Þ is a permutation of

ðT; F ; F Þ; j 2 ½1; n�g. Hence, QðD [4DÞ ¼ V [4V .
Conversely, assume that there exists a (minimum)

source insertion 4D such that V [4V ¼ 4V �
Qð4DÞ ¼ QðD [4DÞ. Since the tuple ð0; T ; F ; F ; 1Þ 2
4V is inserted into the view, R has key attribute K, and
Q is key preserving, one can see that 4D must contain a
unique tuple t with t½K� ¼ 0. Since all other tuples in4V
share this key value, t is the only tuple in 4D
contributing to 4V . We can therefore assume that 4D
consists of the single tuple t. By the definition of V , each
Vi;j can only insert exactly one set of tuples into the view,
where the set is of the form fð0; 	 ; gði; jÞÞ j 	 is a
permutation of ðT; F ; F Þg, and gði; jÞ is the value of
t½Cnþj� when i ¼ 1 and it is t½Cj� when i ¼ 2. Since we
know that there are precisely nþ k such sets in 4V , and
there are precisely nþ k subqueries Vi;j, each mapping
gði; jÞ must be a bijection. That is, g : Vi;j ! ½1; nþ k� is a
bijection, where gð1; jÞ ¼ t½Cnþj� and gð2; jÞ ¼ t½Cj�.

We use the mapping g to define a truth assignment of
x1; . . . ; xk. For arbitrary xi, ð0; T ; F ; F ; gð1; iÞÞ is inserted
into V through a subquery V1;i. By the definition of V1;i,
we can conclude that ft½Xi�; t½Yi�g ¼ fT; Fg. Hence, a
truth assignment for � is defined by �ðx1Þ ¼ t½X1�; . . . ;
�ðxkÞ ¼ t½Xk�. Next, we verify that this assignment is a 1-
in-3 truth assignment of �. Consider an arbitrary clause
Ci of �. Since ð0; T ; F ; F ; gð2; iÞÞ is inserted into V
through subquery V2;i, by the definition of V2;i, we know
that there is exactly one T among the truth values of the
three literals in the clause. Hence, � is indeed a 1-in-3
truth assignment. tu

4.2.2 Tractability Results

We next identify some polynomial-time solvable subclasses.
As in the view side-effect analysis (Theorem 7), SP views
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and SU views behave well. In contrast to their view side-
effect counterparts (Proposition 5), the source side-effect
analyses of SJ views and key preserving SPJ views also
become simpler.

The result below also tells us that the source side-effect
problem is in PTIME for SJ views and group insertions. In
contrast, for group deletions, the problem is NP-hard for
any views defined with join operations, no matter whether
they are key preserving or not (Corollary 9).

Theorem 15. The source side-effect problem is in PTIME for

1. SP views,
2. SU views,
3. SJ views, and
4. key preserving SPJ views,

for group insertions.

Proof. The PTIME algorithms for cases 1 and 2 are similar to
those of the view side-effect problem given in the proof
of Theorem 7. In fact, the algorithms provided there
return solutions for the source side-effect problem. We
therefore concentrate on cases 3 and 4. These cases
require a bit more effort (recall that the view side-effect
problem for these cases is intractable, by Proposition 5).

SJ views. Consider an SJ query Q ¼ �Cð�f1
ðR1Þ ffl � � � ffl

�fkðRkÞÞ. A PTIME algorithm is given as follows:
Because Q does not contain any projection, we can

derive for each tuple t in 4V and for each relation Ri

(i 2 ½1; k�) in Q a candidate insert tuple bti ¼ ð~ai;~biÞ over
the attributes of Ri, where ~ai corresponds to the key
attributes of Ri. We then check for each t 2 4V whether
ð�f1
ðbt1Þ ffl � � � ffl �fkðbtkÞÞ satisfies the selection condition

C. If not, then no solution exists and the algorithm halts.
Otherwise, we check for each bti whether there exists
already a tuple si in Ri having the same key ~ai. If this is
the case, bti should be equal to si. If there exists a tuple bti
for which this does not hold, then no solution exists and
the algorithm stops. Otherwise, the algorithm continues.

Denote by 4Ri the set of tuples bti for which no tuple
in Ri exists with the same key. We finally check whether
4Ri contains distinct tuples having the same key. If such
tuples exists, no solution can be found and the algorithm
halts. Otherwise, we define 4D to be f4R1; . . . ;4Rkg.

We remark that 4D is the minimum solution. Indeed,
in each instance Ri, the number of tuples inserted into D
is the same as the number of new keys for Ri present in
4V . This is the minimum requirement for any solution.

The algorithm clearly runs in polynomial time.
Key preserving SPJ views. Consider a key preserving

SPJ query Q ¼ �B1;...;Bm
�Cð�f1

ðR1Þ ffl � � � ffl �fkðRkÞÞ.
As before, for each tuple t in 4V and each relation Ri

in Q, we associate a template t̂i ¼ ð~ai;~bi;~ziÞ.
The PTIME algorithm first checks for incompatible

templates. More specifically, the algorithm checks
whether 1) there are no two different templates with
the same key; and 2) no template t̂i with the same key as
an existing tuple si in Ri, but which differs from si in
another attribute. If no incompatible templates are
found, then the algorithm continues.

If no conflicts are found, we define4Ri to be the set of

templates t̂i which have no matching tuple si in Ri. We

instantiate the variables in these templates as follows: for

each tuple t in4V , we compute a conjunctive formula �t
representing the selection and join conditions to hold on

t̂1 ^ t̂2 ^ � � � ^ t̂k, such that it will generate t in the view.

The formula �t consists of conjuncts of equations of the

form x ¼ y, where x and y are variables or constants in t̂i,

for i 2 ½1; k�. We group together all conjuncts �t into a

single conjunction � ¼ ^t24V �t, and check whether there

exists an instantiation of the variables that satisfies �,

using a method similar to the one given for case 1 in the
proof of Theorem 7. An example of the algorithm can be

found in the proof of [23, Theorem 4.4].
Since we are not concerned about the size of the side

effects, we do not have to take into account constraints
regarding existing constants in the database (this is in
contrast to the coNP-hardness proof of Proposition 5).
Hence, if an instantiation exists, we can convert the
templates into tuples that populate the update set 4Ri.
Finally, we define 4D ¼ f4R1; . . . ;4Rkg.

Obviously, 4D is a solution. It is also minimum: at
most a single tuple for each new key in tuples in 4V is
added, a necessary requirement for any solution. tu

As opposed to Proposition 5 and Theorem 6, we show

that the source side-effect problem is tractable for SPU and

SJU views for single-tuple insertions. Putting these together

with Theorems 13 and 14, we can see that group insertions

complicate the source side-effect analysis.

Corollary 16. The source side-effect problem is in PTIME for

1) SPU views and 2) SJU views, for single-tuple insertions.

Proof. 1. SPU views. Consider an SPU query Q ¼Sk
i¼1 �B1;...;Bm

ð�Cið�fiðRiÞÞÞ, a database D, the view QðDÞ,
and view update 4V consisting of a single tuple t. We

present a PTIME algorithm that, given Q, D, QðDÞ, and

4V , computes a minimum 4D to produce 4V .
The algorithm first checks whether the only tuple t in

4V is already present in the view V ¼ QðDÞ. If yes, then
4D ¼ ;. Otherwise, the algorithm proceeds as follows:

For i 2 ½1; k�, we invoke the PTIME algorithm for SP
views given in the proof of Theorem 15 to check whether
or not t can be inserted into �B1;...;Bm

ð�Cið�fiðRiÞÞÞ, by
inserting a source tuple 4Di into base relation Ri. If the
answer is yes for some i 2 ½1; k�, then it inserts a single
tuple 4Di into the relation Ri. Otherwise, t cannot
be inserted into V . Obviously, the algorithm is in PTIME,
and 4D contains at most one tuple (thus minimum).

2. SJU views. Similarly, one can develop a PTIME
algorithm to handle SJU views and single-tuple inser-
tions. The algorithm leverages the PTIME algorithm for
SJ views (Theorem 15), along the same lines as above. tu

Corollary 17. The source side-effect problem is in PTIME for key

preserving SPJU views, for single-tuple insertions.

Proof. There exists a PTIME algorithm that, given a key

preserving SPJU query Q, a database D, the view QðDÞ,
and view update 4V with a single tuple as input,

computes a minimum4D to produce4V , if it exists. The

algorithm is similar to the one for SPU views given in the

proof of Corollary 16. Indeed, the only difference between

the two is that here we invoke the PTIME algorithm for
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key preserving SPJ views (Theorem 15) for single

insertions, rather than the one for SP views. tu

5 THE ANNOTATION PLACEMENT PROBLEM

In this section we investigate the annotation placement

problem. Given a single location (field) l in a view tuple

4V , a source database D, an SPJU query Q, and the view

V ¼ QðDÞ, the annotation placement problem is to identify

a single field l0 in a single tuple4D such that annotating l0 is

propagated to a smallest number of fields in the view

including l. As stated in Section 1, this problem studies how

an annotation attached to a location in the view is traced

backward to the source data.
In contrast to the view side-effect problem and the source

side-effect problem (Sections 3 and 4), we do not need to

consider group updates or insertions for the annotation

placement problem. As a consequence, this section presents

a single result: the annotation placement problem is in

PTIME for all subclasses of key preserving SPJU views. In

contrast, it was shown in [1] that the problem is NP-hard for

general PJ views, and it is in PTIME for SJU and SPU views.

Theorem 18. The annotation placement problem is in PTIME for

any subclass of key preserving SPJU views.

Proof. It suffices to prove it for key preserving SPJU views.

Let R ¼ fR1; . . . ; Rng be a relational schema, D an

instance of R, and Q ¼ [ki¼1Qi an SPJU query, where

Qi ¼ �A1;...;Am
ð�Cið�fi1 ðRi1Þ ffl � � � ffl �fini ðRini

ÞÞ. We u se

ðV ; t; AlÞ to denote a location in the view, i.e., an

annotation is attached to the Al attribute of tuple t 2 V
(¼ QðDÞ). We develop a PTIME algorithm that, given D,

Q, QðDÞ, and ðV ; t; AlÞ as input, finds a single tuple 4D
in D and a single location ðD;4D;BlÞ in4D such that an

annotation in this field of 4D propagates to a smallest

number of tuples in V including ðV ; t; AlÞ.
We first show how we process each SPJ subquery Qi,

i 2 ½1; k�. We decompose t into ti1 ; . . . ; tini based on Qi,
where tij is the attribute value vector (including key
attributes) associated with the relation Rij . Utilizing the
key preservation condition, the algorithm checks whether
the following conditions are satisfied: 1) there is a tuple
t0ij 2 Rij (unique if exists) with the same key-attribute
values as tij on Rij for each j 2 ½1; ni�, 2) t0 ¼ t0i1 ffl � � � ffl
t0ini

satisfies the selection condition Ci, and 3) t ¼
�A1;...;Am

ðt0Þ. If not, we know that t cannot be generated
by subqueryQi and thus4Di ¼ ;. Otherwise, for each tij ,
if it contains attribute Bl and an annotation on Bl can be
propagated to the specified field Al in t, we check the
other tuples in the entire view QðDÞ to compute the side
effects generated by annotating Bl of tij . After processing
all tij , j 2 ½1; ni�, we can find the location with the
minimum side effects for annotating a tuple in QiðDÞ,
as well as its side effects Si on the entire view QðDÞ,
where Si is the set of view locations affected by
annotating Bl. This can be done in PTIME.

By processing each Qi as above, we find 4Di and Si
for all i 2 ½1; k�. We pick a nonempty 4Dj such that Sj is
minimum among all Si’s with nonempty 4Di. Then,
4Dj is the location with minimum side effects. tu

6 CONCLUSION

We have identified a practical condition, namely, the key
preservation condition, which simplifies the propagation
analysis of annotations. For key preserving views, we have
shown that the annotation placement problem is tractable
for all subclasses of SPJU queries, and that the view and
source side-effect problems are in PTIME for SPJ views and
single-tuple deletions, as opposed to NP-hard for general
SPJ views [1], [12]. We have also investigated the impact of
group updates on the complexity of the propagation
analysis, and shown that group updates complicate the
analysis: for group deletions, the view and source side-
effect problems become NP-hard for all subclasses of key
preserving SPJU views that involve join operation. In
addition, we have established the first complexity results
for the analysis of view insertions for SPJU views, key
preserving or not. These provide a complete picture of the
complexity (intractability and tractability) of the annotation
propagation analysis, which is useful in both data prove-
nance and view update processing.

We are currently studying approximation (heuristic)

algorithms for the propagation analysis when the problems

are intractable. We also plan to study the upper bounds for

the intractable cases and to identify other practical condi-

tions on view definitions such that the analysis can be

performed efficiently. Finally, we only considered lower

bounds for the intractable cases. We defer the study of

upper bounds to future work.
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