
Improving Data Quality: Consistency and Accuracy

Gao Cong1 Wenfei Fan2,3 Floris Geerts2,4,5 Xibei Jia2 Shuai Ma2

1Microsoft Research Asia 2University of Edinburgh
3Bell Laboratories

4Hasselt University
5transnational Univ. Limburg

gaocong@microsoft.com {wenfei@inf, fgeerts@inf, x.jia@sms, sma1@inf }.ed.ac.uk

Abstract
Two central criteria for data quality are consistency and accuracy.
Inconsistencies and errors in a database often emerge as violations
of integrity constraints. Given a dirty databaseD, one needs au-
tomated methods to make itconsistent, i.e., find a repairD′ that
satisfies the constraints and “minimally” differs fromD. Equally
important is to ensure that the automatically-generated repairD′

is accurate, or makes sense,i.e.,D′ differs from the “correct” data
within a predefined bound. This paper studies effective methods for
improving both data consistency and accuracy. We employ a class
of conditional functional dependencies(CFDs) proposed in [6] to
specify the consistency of the data, which are able to capture in-
consistencies and errors beyond what their traditional counterparts
can catch. To improve the consistency of the data, we propose two
algorithms: one for automatically computing a repairD′ that sat-
isfies a given set ofCFDs, and the other for incrementally finding a
repair in response to updates to a clean database. We show that both
problems are intractable. Although our algorithms are necessarily
heuristic, we experimentally verify that the methods are effective
and efficient. Moreover, we develop a statistical method that guar-
antees that the repairs found by the algorithms areaccurate above
a predefined ratewithout incurring excessive user interaction.

1. Introduction
Real-world data is often dirty,i.e., containing inconsistencies,

conflicts and errors. A recent survey [31] reveals that enterprises
typically expect data error rates of approximately 1%–5%. The
consequences of dirty data may be severe. For example, it is re-
ported [12] that wrong price data in retail databases alone costsUS
consumers $2.5 billion annually. With this comes the need for ef-
fective methods to improve the quality of data, or to clean data.

Inconsistencies, errors and conflicts in a database often emerge
as violations of integrity constraints [2, 29]. A central problem
for data cleaning is how to make the dataconsistent: given a dirty
databaseD, we want to minimallyeditthe data inD such that it sat-
isfies certain constraints. In other words, we want to find arepair of
D, i.e.,a databaseRepr that satisfies the constraints and is as close
to the originalD as possible. This is the data cleaning approach
thatUS national statistical agencies, among others, have been prac-
ticing for decades [13, 35]. Manually editing the data is unrealistic
when the databaseD is large. Indeed, manually cleaning a set of
census data could easily take months by dozens of clerks [35]. This
highlights the need for automated methods to find a repair ofD.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
VLDB ‘07,September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

In practice one also wantsincrementalmethods to improve the
consistency of the data: given a clean databaseD that satisfies a set
Σ of constraints, and updates∆D on the databaseD, it is to find
a repair∆DRepr of ∆D such thatD ⊕∆DRepr satisfiesΣ (we use
⊕ to denote the application of updates). This is often advantageous
to batchmethods that compute a repairRepr of D ⊕ ∆D starting
from scratch instead of finding a typically much smaller∆DRepr.

Another important problem for data cleaning is how to guar-
antee that a repair isaccurate, or makes sense. Although an
automatically-generated repairRepr (Repr = D ⊕ ∆DRepr in the
incremental case) satisfies the constraints, it may contain edits to
the originalD that are not what the user wants. To ensure thatRepr
cannot go too wrong, assume thatDopt is the “correct”repair ofD.
We wantRepr to be as close toDopt as possible by guaranteeing
that |dif(Repr, Dopt)|/|Dopt| is within a predefined boundε. Here
dif counts the attribute-level differences between two databases.

There has been a host of work on data cleaning (e.g.,[2, 5, 25, 10,
14, 34]). However, to develop practical data-cleaning tools there
is much more to be done. First, the previous work often models
the consistency of data using traditional dependencies,e.g.,func-
tional dependencies (FDs). TraditionalFDs were developed mainly
for schema design, but are often inadequate for data cleaning. This
calls for the use of constraints particularly developed for data clean-
ing that are able to catch more inconsistencies than traditional de-
pendencies [29]. Second, few algorithms have been developed for
automatically finding repairs, and even less incremental methods
are in place. Third, none of the previous automated methods pro-
vides performance guarantee for theaccuracyof the repairs found.
These are illustrated by the example below.

Example 1.1:A company maintains a relation of sale records:
order(id, name, AC, PR, PN, STR, CT, ST, zip).

Eachorder tuple contains information about an item sold (a unique
item id, name and pricePR), and the phone number (area codeAC,
phone numberPN) and address of the customer who purchased the
item (streetSTR, city CT, stateST). An example databaseD is
shown in Fig. 1(a) (thewt rows will be elaborated on later).

TraditionalFDs on theorder database include:

fd1: [AC,PN] → [STR,CT,ST] fd2: [zip] → [CT,ST]
fd3: [id] → [name,PR] fd4: [CT,STR] → [zip]

That is, the phone number of a customer uniquely determines
her address, and the zip code determines the city; in additionid
uniquely determines thename andPR of the item sold, and the
city and street uniquely determine the zip code.

Although the database of Fig. 1(a) satisfies theseFDs, the data is
not clean: tuplest3 andt4 indicate that when the area code is 212,
the city could bePHI in PA, which is not the case in real life.

Such inconsistencies can be captured byconditional functional
dependencies(CFDs) introduced in [6]. For example, Fig. 1(b)
shows twoCFDs ϕ1 andϕ2. CFD ϕ1 extendsFD fd1 by includ-
ing a pattern tableauT1; it asserts that for any twoorder tuples,
if they have the same area code 212 (resp. 610, 215) andPN, then
they must have the sameSTR,CT,ST and moreover, the city and

315

id name PR AC PN STR CT ST zip
t1: a23 H. Porter 17.99 215 8983490 Walnut PHI PA 19014
wt (1) (0.5) (0.5) (0.5) (0.5) (0.8) (0.8) (0.8) (0.8)
t2: a23 H. Porter 17.99 610 3456789 Spruce PHI PA 19014
wt (1) (0.5) (0.5) (0.5) (0.5) (0.6) (0.6) (0.6) (0.6)
t3: a12 J. Denver 7.94 212 3345677 Canel PHI PA 10012
wt (1) (0.9) (0.9) (0.9) (0.9) (0.6) (0.1) (0.1) (0.8)
t4: a89 Snow White 18.99 212 5674322 Broad PHI PA 10012
wt (1) (0.6) (0.5) (0.9) (0.9) (0.1) (0.6) (0.6) (0.9)

(a) Exampleorder data

ϕ1 = ([AC, PN] → [STR, CT, ST], T1)

T1:

AC PN STR CT ST

212 NYC NY
610 PHI PA
215 PHI PA

ϕ2 = ([zip] → [CT, ST], T2)

T2:

zip CT ST

10012 NYC NY
19014 PHI PA

(b) Example CFDs

Figure 1: Example data and CFDs

state must beNYC andNY (resp.PHI andPA), respectively, regard-
less of what valuesPN,STR have (intuitively ‘ ’ indicates “don’t
care”). It enforces bindings of semantically related values: each
tuple inT1 specifies a constraint that only applies to tuples satisfy-
ing a certain pattern, rather than to the entire relation likefd1. For
example, the constraint specified by the second tuple inT1 only ap-
plies to tuples withAC = 212. Similarly,CFD ϕ2 extendsFD fd2.
Note thatCFDs ϕ1 andϕ2 cannot be expressed as traditionalFDs
since they specify patterns withdata values. In contrast, standard
FDs are a special case ofCFDs [6].

The database of Fig. 1(a) does not satisfy theseCFDs. Indeed,
tuple t3 violatesϕ1 sincet3[AC] = 212 but t3[CT,ST] 6= (NYC,
NY); it also violatesϕ2: althought3[zip] = 10012, t3[CT,ST] 6=
(NYC, NY). Similarly, t4 also violatesϕ1 andϕ2.

To make the databaseD consistent, one may want to editt3 and
t4 such thatt3[CT,ST] = t4[CT,ST] = (NYC, NY), as suggested
by CFDs ϕ1 andϕ2. In other words, a repairRepr of D consists
of tuplest1, t2 andt3, t4 updated as above. A central task of data
cleaning is to develop automated methods to find such repairs.

Now suppose that one wants to inserts a tuplet5 intoRepr, where
t5[AC,PN,CT,ST, zip] = (215, 8983490,NYC, NY, 10012). Then
t5 andt1 violate fd1: while they agree onAC,PN, they have dif-
ferent CT,ST. The objective ofincrementaldata cleaning is to
automatically and minimally updatet5 such thatRepr and the up-
datedt5 satisfy all theCFDs andFDs given above. This is nontriv-
ial: a naive approach to updatingt5 may lead to an infinite process.
Indeed, one might want to changet5[CT,ST] to (PHI, PA) as sug-
gested byCFD ϕ1. However, the updatedt5 now violatesCFD ϕ2:
t5[zip] = 10012 butt5[CT,ST] is not (NYC, NY). Now if we change
t5[CT,ST] back to (NYC, NY) as suggested byϕ2, we are back to
the originalt5 and again need to resolve the violation ofϕ1.

A possible fix might be by changingt5[CT,ST, zip] to (PHI, PA,
19014). WhileRepr and this editedt5 indeed satisfy all the con-
straints, this change may not beaccurate: the correct edit could be
letting t5[AC] = 212 while keeping the rest oft5 unchanged. Im-
proving theaccuracyof the data aims to guarantee that the repairs
found are as close to the correct data as possible. 2

Contributions. We present a data-cleaning framework that sup-
ports automated methods for finding repairs of databases, and for
incrementally finding repairs in response to database updates. It
also supports a statistical method that guarantees that the repairs
found by our algorithms are accurate. As opposed to previous work
on data cleaning, our methods are based onCFDs introduced in [6],
rather than traditional dependencies. As we have seen above,CFDs
are able to capture inconsistencies beyond what standardFDs can
detect. Furthermore,CFDscommonly arise in practice. In data inte-
gration, for example,FDs that hold on individual sources will hold
only conditionally, and thus becomeCFDs, on the integrated data.

Our first contribution is an algorithm for finding repairs of
databases based onCFDs. As shown in [5], the problem of finding

a quality repair isNP-complete even for a fixed set of traditional
FDs. We show that this problem remains intractable forCFDs, and
that FD-based repairing algorithms may not even terminate when
applied toCFDs. To this end we adopt the cost model of [5] that
incorporates both the accuracy of the data and edit distance. Based
on the cost model, we extend theFD-based repairing heuristic intro-
duced in [5] such that it is guaranteed to terminate and find quality
repairs when working onCFDs. To our knowledge no prior work
has considered repairing algorithms based onCFDs.

Our second contribution consists of complexity bounds and an
effective algorithm for incrementally finding repairs. We show that
the problem for incrementally finding quality repairs does not make
our lives easier: it is alsoNP-complete. In light of this we develop
an efficient heuristic algorithm for finding repairs in response to
updates, namely, deletions or insertions of a group of tuples. This
algorithm can also be used to find repairs of a dirty database.

Our third contribution is a statistical method to improve the ac-
curacy of the repairs found by our algorithms. On one hand, in
order to ensure that the repairs meet the expectation of the user, it
is necessary to involve domain experts to inspect the repairs. On
the other hand, it is too costly to manually check each editing when
dealing with a large dataset. In response to this we develop a sam-
pling method that, by involving the user to inspect and edit samples
of manageable size, guarantees that the accurate rates of the repairs
found are above apredefined boundwith ahigh confidence.

Our fourth contribution is an experimental study of our proposed
cleaning algorithms. We evaluate the accuracy and scalability of
our methods with real data scraped from the Web. We find that
CFDs are able to catch inconsistencies that traditionalFDs fail to
detect, and that our repairing and incremental repairing algorithms
efficiently find accurate candidate repairs for large datasets.

Our conclusion is thatCFDs and the proposed algorithms are a
promising tool for cleaning real-world data. To our knowledge,
our algorithms are the first automated methods for finding repairs
and incrementally finding repairs based on conditional constraints.
Furthermore, no prior work has studied methods for guaranteeing
the accuracy of repairs without incurring excessive manual efforts.

2. Conditional Functional Dependencies
In this section we review conditional functional dependencies

(CFDs) proposed in [6].
For a relation schemaR, let attr(R) denote its set of attributes.

The domain of an attributeA is denoted bydom(A). Given a
database instanceD overR, the active domain of an attributeA is
denoted byadom(A,D); it consists of all the constants indom(A)
that appear as theA-attribute of a tuple inD.

In this paper we consider relation schemas consisting of a single
relationR only. However, our repairing methods are applicable
to general relation schemas by repairing each relation in isolation.
This is possible sinceCFDs address a single relation only.

316

ϕ3 = (order:[id]→ [name, PR], T3), andT3 is

id name PR

ϕ4 = (order:[CT, STR]→ [zip], T4), whereT4 is

CT STR zip

Figure 2: Standard FDs expressed asCFDs

CFD. A CFD φ on relationR is a pair(R : X → Y, Tp), where
(1)X andY are subsets ofattr(R); (2)R : X → Y is a standard
FD, referred to as theFD embedded inφ; (3) Tp is a tableau with
all attributes inX andY , referred to as thepattern tableauof φ,
where for eachA inX orY , and eachpattern tupletp ∈ Tp, tp[A]
is either a constant ‘a’ in dom(A), or an unnamed variable ‘’.

If A appears in bothX andY , we usetp[AL] andtp[AR] in the
tableauTp to distinguish the occurrence of theA attribute inX and
Y , respectively. We denoteX asLHS(φ) andY asRHS(φ).

Example 2.1: Constraintsϕ1 and ϕ2 given in Fig. 1(b) are
CFDs. In ϕ1, for example,X (i.e., LHS(ϕ1)) is {AC, PN}, Y
(i.e., RHS(ϕ1)) is {STR,CT,ST}, the standardFD embedded in
ϕ1 is [AC,PN] → [STR,CT, ST], and the pattern tableau isT1

(we separate theLHS andRHS attributes in a pattern tuple with
‘‖’). Each pattern tuple inT1 expresses a constraint. For instance,
the first tuple oft1 expresses the standardFD fd1.

In fact all the constraints we have encountered so far can be ex-
pressed asCFDs. Indeed, the first pattern tuple ofϕ2 expressesfd2,
and theCFDs given in Fig. 2 specifiesfd3 (ϕ3) andfd4 (ϕ4). 2

Observe the following. (1) A standardFD R : X → Y is a
special case of theCFD (R : X → Y, Tp) in which Tp consists
of a single pattern tuple solely containing ‘’. See, for instance,
Fig. 2. (2) The pattern tableauTp of a CFD φ refines the standard
FD embedded inφ by enforcing the binding of semantically related
data values. In general, theFD embedded inφ may not hold on the
entire relation; it holds only on tuples matching the pattern tuples.
Semantics. To give the precise semantics ofCFDs, we first define
an order� on data values and ‘’: η1 � η2 if eitherη1 = η2, or η1
is a data value ‘a’ and η2 is ‘ ’. The order� naturally extends to
tuples,e.g.,(Walnut,NYC, NY) � (, NYC, NY) but (Walnut,NYC,
NY) 6� (, PHI,). We say that a tuplet1 matchest2 if t1 � t2.

A relation instanceD of R satisfiesthe CFD φ = (R : X →
Y, Tp), denoted byD |= φ, iff for each pairof tuplest1, t2 in D,
and foreachtupletp in the pattern tableauTp, if t1[X] = t2[X] �
tp[X], thent1[Y] = t2[Y] � tp[Y]. That is, if t1[X] andt2[X]
are equal and match the patterntp[X], thent1[Y] andt2[Y] must
also be equal to each other and match the patterntp[Y].

Example 2.2: Theorder table in Fig. 1 satisfiesϕ3, ϕ4 of Fig. 2.
However, as remarked in Example 1.1, each oft3, t4 does not sat-
isfy, i.e., violates, CFDsϕ1, ϕ2 of Fig. 1(b). Indeed, considertp =
(212, ‖ , NYC, NY) in T1. Althought3[AC,PN] = t3[AC,PN] �
tp[AC,PN], we have thatt3[STR,CT,ST] 6� tp[STR,CT,ST].
This tells us that while a violation of a standardFD requirestwo
tuples, asingletuple may violate aCFD. 2

We say that a databaseD satisfiesa setΣ of CFDs, denoted by
D |= Σ, if D |= ϕ for eachϕ ∈ Σ. Moreover, we say thatD
is consistent with respect toΣ if D |= Σ; otherwise we callD
inconsistentor dirty.

Observe that pattern tableaus inCFDs are quite different from
Codd tables, variable tables and conditional tables, which have
been traditionally used in the context of incomplete information
[22, 18]. The key difference is that each of these tables represents
possibly infinitely many relation instances, one instance for each
instantiation of variables. No instance represented by these table

formalisms can include two tuples that result from different instan-
tiations of a table tuple. In contrast, a pattern tableau is used to
constrain–as part of aCFD–a single relation instance, which can
contain any number of tuples that are all instantiations of the same
pattern tuple via different valuations of the unnamed variables ‘’.
Normal form . From the semantics ofCFDs we immediately obtain
a normal formof CFDs: Given a setΣ of CFDs, we may assume
that eachCFD φ ∈ Σ is of the formφ = (R : X → A, tp), where
A ∈ attr(R) andtp is a single pattern tuple. For ease of exposition
we assume thatCFDs are given in the normal form.
Satisfiability. To clean data based onCFDs we need to make sure
that theCFDs are satisfiable, or make sense. Thesatisfiability prob-
lem is to determine, given a setΣ of CFDs, whether or not there
exists a (non-empty) databaseD such thatD |= Σ. While this
problem is trivial for traditionalFDs, i.e., any set ofFDs is satis-
fiable, this is no longer true forCFDs. Indeed, it has been shown
that this problem is intractable in general [6]. However, when the
database schema is fixed, satisfiability ofCFDs can be decided in
PTIME. In the sequel we consider satisfiableCFDs only.

3. A Framework for Data Cleaning
We have seen thatCFDs are capable of capturing moreinconsis-

tencies than traditionalFDs. The next question is how to resolve
these violations and hence improve data consistency? Moreover, as
there may exist (possibly infinitely) many repairs, which candidate
repair should be chosen? Furthermore, how can one tell whether a
repair is accurate or not? In this section we answer these questions,
state the problems we will tackle, and present an overview of our
data-cleaning framework.

3.1 Violations and Repair Operations
We first formalize the notion of violations, which helps us de-

cide how “dirty” a data tuple is. We then discuss edit operations to
resolve the violations.

Consider a databaseD and a setΣ of CFDs. For each tuplet
in D, thenumber of violationsincurred byt, denoted byvio(t), is
computed as follows. Initiallyvio(t) is set to0.

(1) For eachCFDφ = (R : X → A, tp) in Σ, if t[X] � tp[X] but
t[A] 6� tp[A], we say thatt violatesφ, and incrementvio(t) by 1.
This may occur whentp[A] is a constant.

(2) For eachCFD φ = (R : X → A, tp) in Σ, if t[X] � tp[X]
and t[A] � tp[A], then foreachtuple t′ in D such thatt[X] =
t′[X] � tp[A] but t[A] 6= t′[A], we say thatt violatesφ with t′,
and add1 to vio(t). We can w.l.o.g. assume thattp[A] = ‘ ’ since
otherwise the violation is already covered by case (1) above

For a subsetC of D, the number of violations inC is defined to
be the sum ofvio(t) for all t in C, denoted byvio(C).

A repairRepr of a databaseD w.r.t. a setΣ of CFDs is a database
that (i) satisfiesΣ, i.e.,Repr |= Σ, and (ii) is obtained fromD by
means of a set ofrepair operations.

We considerattribute value modificationsas repair operations,
along the same lines as [5, 14, 24, 34]. Note that tuple insertions
do not lead to repairs whenCFDs (or FDs) are concerned, and that
tuple deletions can be mimicked by attribute value modifications.

When we modify theA-attribute of a tuplet in the database
D, we either draw its value fromadom(A,D), i.e., the set ofA-
attribute values occurring inD, or use the special valuenull when
necessary. That is, we donot inventnew values. We picknull if
the value of an attribute isunknownor uncertain. To simplify the
discussion we assume that one can keep track of a given tuplet in
D during the repair process despite that the value oft may change
(this can be achieved bye.g.,using a temporary unique tuple id).

317

Attribute value modifications are sufficient to resolveCFD viola-
tions: If a tuplet violates aCFD φ = (R : X → A, tp) (case 1
above), weresolve theCFD violation by either modifying the val-
ues of theRHS(φ) attribute such thatt[A] � tp[A], or changing the
values of someLHS(φ) attributes such thatt[X] 6� tp[X]. If t vio-
latesφ with another tuplet′ (case 2 above), we either modifyt[A]
(resp.t′[A]) such thatt[A] = t′[A], or changet[X] (resp.t′[X])
such thatt[X] 6� tp[X] (resp.t′[X] 6� tp[X]) or t[X] 6= t′[X].
Remarks. (1) We adopt thesimplesemantics of theSQL stan-
dard [23] fornull: t1[X] = t2[X] evaluates totrue if either oneof
them containsnull. (2) In contrast, when matching a data tuplet
and a pattern tupletp, t[X] � tp[X] is false if t[X] containsnull,
i.e., CFDs only apply to those tuples that precisely match a pattern
tuple, which does not containnull. (3) In case some attributes are
non-nullable, we use SET DEFAULT to reset attributes values to
their default value. The semantics of the matching operator is re-
defined accordingly. For convenience, we assume that all attributes
are nullable. (4) A tuple can be “deleted” via value modifications
by settingnull to all of its attributes.

3.2 Cost Model
As a violation may be resolved in more than one way, an imme-

diate question is which one to choose? One might be tempted to
pick the one that incurs least repair operations. While such a repair
is close to the original data, it may not be accurate.

We would like to make the decision based on both the accuracy
of the attribute values to be modified, and the “closeness” of the
new value to the original value. Following the practice ofUS na-
tional statistical agencies [13, 35], we assume that aweight in the
range[0, 1] is associated with each attributeA of each tuplet in the
datasetD, denoted byw(t, A) (see thewt rows in Fig. 1(a)). The
weight reflects the confidence of theaccuracyplaced by the user in
theattributet[A], and can be propagated via data provenance anal-
ysis in data transformations. Given this, we extend the cost model
of [5] to provide a guidance for how to choose a repair.

For two valuesv, v′ in the same domain, we assume that adis-
tance functiondis(v, v′) is in place, with lower values indicating
greater similarity. In our implementation, we simply adopt the
Damerau-Levenshtein (DL) metric [16], which is defined as the
minimum number of single-character insertions, deletions and sub-
stitutions required to transformv to v′. The cost of changing the
value of an attributet[A] from v to v′ is defined to be:

cost(v, v′) = w(t, A) · dis(v, v′)/max(|v|, |v′|),

Intuitively, the more accurate the originalt[A] value v is and
more distant the new valuev′ is from v, the higher the cost of this
change. We usedis(v, v′)/max(|v|, |v′|) to measure the similarity
of v andv′ to ensure that longer strings with1-character difference
are closer than shorter strings with1-character difference.

The cost of changing the value of anR-tuplet to t′ is the sum of
cost(t[A], t′[A]) for eachA ∈ attr(R) for which the value oft[A]
is modified. The cost of a repairRepr ofD, denotedcost(Repr, D)
is the sum of the costs of modifying tuples inD.

Example 3.1:Recall from Example 1.1 that tuplet3 violatesCFDs
ϕ1, ϕ2 given in Fig. 1(b). There are at least two alternative methods
to resolve the violations: changing (1)t3[CT,ST] to (NYC, NY), or
(2) t3[zip] to 19014 andt3[AC] to 215. The costs of these repairs
are 3/3 * 0.1 + 3/3 * 0.1 = 0.2 and 1/3 * 0.9 + 2/5 * 0.8 = 0.6,
respectively, in favor of option (1). Indeed, although option (1)
involves more editing than option (2), it may be more reasonable
since the weights oft3[CT,ST] indicate that these attributes are
less trustable and thus are good candidates to change. 2

∆

D Σ

∆ Σ

∆ D

(ε, δ)
Repr

sample

user

repairing
module

incremental
module

sampling
moduleDRepr

Repr

Figure 3: Data cleaning framework

Remarks. (1) Although the cost model incorporates the weight
information, our cleaning algorithms to be given shortly do not
necessarily rely on this. In the absence of the weight information,
our algorithms setw(t, A) to 1 for each attributeA of each tuple
t. In this case our algorithms use the number of violationsvio(t)
to guide repairing process, and our experimental results show that
the algorithms work well even when the weight information is not
available. (2) Other similarity metrics (see,e.g.,[11]) can also be
used instead of theDL metric in our model.

3.3 A Data Cleaning Framework: Overview
Therepairingproblem is stated as follows: given a setΣ of CFDs

over a schemaR and a database instanceD of R, it is to compute
a repairRepr of D such thatRepr |= Σ andcost(Repr, D) is min-
imum. That is, we wantautomatedmethods to find a repairconsis-
tent w.r.t.Σ by modifyingD. Intuitively, the smallercost(Repr, D)
is, the more accurate and closer to the original dataRepr is.

We also study theincremental repairing problem: suppose that
the databaseD is consistent,i.e.,D |= Σ. Given updates∆D toD,
we want to find a repair∆DRepr of ∆D such thatD⊕∆DRepr |= Σ
andcost(∆DRepr,∆D) is minimum. Since small∆D often incurs
a small number ofCFD violations, and becauseD is clean and thus
should not be updated, it is more reasonable and more efficient to
compute∆DRepr than computing a repairRepr ofD⊕∆D starting
from scratch. We considergroup updates: ∆D is a set of tuples to
be inserted or deleted. For any deletions∆D, the tuples can be
simply removed fromD without causing anyCFD violation. Thus
we need only to consider tuple insertion.

To assess the accuracy of repairs, assume a correct repairDopt

of D, perhaps worked out manually by domain experts. We say
that a repair isaccurate w.r.t.a predefined boundε at apredefined
confidence levelδ, if the ratio|dif(Repr, Dopt)|/|Dopt| is within the
boundε at the confident levelδ.

In practice it is unrealistic to manually findDopt or involve do-
main experts to inspect the entireRepr when the dataset is large. To
this end we employ a semi-automated and interactive approach: we
let the user inspect small samples, and edit the sample data as well
as inputCFDs if necessary; leveraging the user input, we invoke our
automated (incremental) repairing methods to revise repairs.

Putting these together, we develop a framework for data clean-
ing as shown in Fig. 3. The framework consists of three modules.
(a) The repairing module takes as input a databaseD and a setΣ of
CFDs. It automaticallyfinds a candidate repairRepr. (b) The incre-
mental repairing module takes updates∆D as additional input, and
automaticallyfinds repair∆DRepr. (c) The output repairs of these
two modules are sent to the sampling module, which also takes as
input accuracy bound and confidence(ε, δ). The sampling module
generates a sample and lets the user inspect it. The user feedback –
both changes∆Σ to theCFDs and changes to the sample data – is
recorded. If the accuracy is below the predefined bound, the repair-
ing or incremental repairing module is invoked again based on the
user feedback. The process may continue until an accurate enough
repair is recommended to the user. In the next three sections, we
present algorithms and methods for supporting these modules.

318

4. An Algorithm for Finding Repairs
We now present an algorithm for the repairing module, which

automaticallyfinds a candidate repair for an inconsistent database.
It is nontrivial to find a quality repair. As shown in [5], the re-

pairing problem is alreadyNP-complete for standardFDseven when
the relational schema andFDs are fixed (i.e., the intractability is the
data complexity). We show that forCFDs the problem remainsNP-
complete,i.e., CFDs do not add to the complexity of this problem.

Corollary 4.1: The repairing problem forCFDs is NP-complete,
even for a fixed database schema and a fixed set ofCFDs. 2

This tells us that practical automated methods for this prob-
lem have to be heuristic. Worse, althoughCFDs do not increase
the worst-case complexity, previous methods for repairingFDs no
longer work onCFDs. Indeed, while it suffices to resolveFD viola-
tions by only editing values of attributes in theRHS of FDs [5], this
strategy may not terminate onCFDs, as shown by the next example.

Example 4.1: Recall CFDs ϕ1, ϕ2 from Fig 1(b). As illustrated
in Example 1.1, tuplest1, t5 violateϕ1. While this violation can
be resolved by changing the value (NYC, NY) of theRHS(ϕ1) at-
tributest5[CT,ST], to the valuest1[CT,ST], this introduces a vio-
lation ofϕ2. This can no longer be resolved by changing the value
of theRHS(ϕ2) attributest5[CT,ST] back to (NYC, NY) as sug-
gested byϕ2, since otherwise we are back to the originalt5, have
to resolve the violation ofϕ1 again, and end up with an infinite
process. 2

To cope with this we present a repair algorithm, BATCHREPAIR,
which is a nontrivial extension of the algorithm forFDs proposed
in [5]. It extends the notion of equivalence classes of [5], and it
guarantees to terminate and finds a repairw.r.t. CFDs.

4.1 ResolvingCFD Violations
We first revise the notion of equivalence classes explored in [5],

and then present our strategy for repairingCFDs.
Equivalence classes. An equivalence classconsists of pairs of the
form (t, A), wheret identifies a tuple in whichA is an attribute.
In a databaseD, each tuplet and each attributeA in t have an
associated equivalence class, denoted byeq(t, A).

In a repair we will assign a uniquetarget valueto each equiva-
lence classE, denoted bytarg(E). That is, for all(t, A) ∈ E, t[A]
has the same valuetarg(E). The target valuetarg(E) can be ei-
ther ‘ ’, a constanta, ornull, where ‘ ’ indicates thattarg(E) is not
yet fixed, andnull means thattarg(E) is uncertain due to conflict.
To resolveCFD violations we may “upgrade”targ(E) from ‘ ’ to
a constanta, or from a to null, but not the other way around. In
particular, wedo notchangetarg(E) from one constant to another.

Intuitively, we resolveCFD violations by merging or modify-
ing the target values of equivalence classes. Consider aCFD

φ = (R : X → A, tp). For any pair of tuplest1 andt2 in D,
if t1[X] = t2[X] � tp[X], then(t1, A) and(t2, A) should belong
to the sameequivalence class and eventually,tp[A] = targ(E).
If (t1, A) 6= (t2, A), we may be able to resolve the violation by
mergingeq(t1, A) andeq(t2, A) into one. By using equivalence
classes, we separate the decision of which attribute values should
be equal from the decision of what value should be assigned to the
equivalence class. We defer the assignment oftarg(E) as much as
possible to reduce poor local decisions, such as changing the value
of t5[CT,ST] in Example 4.1.

We useE to keep track of the current set of equivalence classes
in a databaseD. Initially, E consists ofeq(t, A) for all tuplest in
D and all attributeA in t, whereeq(t, A) starts with a single pair
(t, A), with targ(eq(t, A)) = .

Procedure CFD-RESOLVE. Leveraging equivalence classes, we
present the main idea of our strategy for resolvingCFD violations,
which is done by procedureCFD-RESOLVE, a key component of
algorithm BATCHREPAIR.

ProcedureCFD-RESOLVE takes as input a pair(t, A) and aCFD

ϕ = (R : X → A, tp), wheret violatesϕ. Recall from Sec-
tion 3.1 thatt may violateϕ if t[X] � tp[X] and in addition,
either (1)t[A] 6� tp[A] andtp[A] is a constanta; or (2) there exists
another tuplet′ such thatt′[X] = t[X] but t′[A] 6= t[A], where
tp[A] = . The procedure resolves the violation as follows.

(1) t[A] 6� tp[A] andtp[A] = a. There are two cases to consider.

(1.1) If targ(eq(t, A)) = ‘ ’, i.e., the target value ofeq(t, A) is not
yet fixed, we resolve this by simply lettingtarg(eq(t, A)) := a.

(1.2)Otherwisetarg(eq(t, A)) is either a distinct constantb, ornull
for which we know that the value cannot be made certain. In this
case we have to change the value of someLHS(ϕ) attribute oft, a
situation that does not arise when repairing traditionalFDs.

More specifically, we look at each attributeBi ∈ X such that
targ(eq(t, Bi)) is ‘ ’, i.e., not yet fixed. If no suchBi exists, we
cannot resolve the conflict with a certain value. Thus we pickBi

such that the sum of weights of attributes ineq(t, Bi) is mini-
mal, and changetarg(eq(t, Bi)) to null. If there existsBi with
targ(eq(t, Bi)) = , we pick such aBi and a valuev such that
cost(eq(t[Bi]), v) is minimum, and lettarg(eq(t, Bi)) := v. The
valuev is picked by a procedure FINDV, which we shall discuss
shortly, along with the definition ofcost(eq(t[Bi]), v).

Example 4.2: Continuing with Example 4.1, suppose that we
want to resolve the violation ofϕ2 caused by tuplet5. If
targ(eq(t5,CT)) andtarg(eq(t5,ST)) are ‘ ’, we can resolve this
by simply letting them to beNYC andNY, respectively. However,
if these target values were already set toPHI andPA when,e.g.,re-
solving the violation ofϕ1 caused byt5 andt1, we can no longer
change these target values of theRHS(ϕ2) attributes. Hence, we
have to change the value of theLHS(ϕ2) attributet5[zip]. Now
procedure FINDV may settarg(eq(t5, zip)) to 19014. If, however,
targ(eq(t5, zip)) was already given another constant, we set it to
null since there is no certain value to resolve the violation. 2

(2) t violatesϕ with another tuplet′. We consider the following
cases. Suppose thattarg(eq(t, A)) = η andtarg(eq(t′, A)) = η′.

(2.1)Neitherη norη′ is null, and at least one of them is ‘’. In this
case the violation is resolved bymergingeq(t, A) and eq(t′, A)
into one. We remark that this step is identical to the resolution step
for FDs presented in [5]. In fact this is theonly operation required
to resolve allFD violations. ForCFDs, more needs to be done. We
let targ(eq(t, A)) be ‘ ’ if both η and andη′ are ‘ ’; if one of them
is a constantc, we lettarg(eq(t, A)) bec.

(2.2) η′ andη′ are distinct constantsc, c′, respectively. Like case
(1.2) above, this inconsistency cannot be resolved by changing
RHS(ϕ) attributes, and we have to resolve this by changing some
LHS(ϕ) attribute of eithert or t′, along the same lines as case (1.2).

(2.3)At least one ofη andη′ is null. Assume that it isη. Thent[A]
will be given null as its value. By the simple semantics ofnull,
t[A] = targ(eq(t′, A)) no matter what valuetarg(eq(t′, A)) will
eventually take. In other words, the violation is already resolved.

Example 4.3:Consider again the setting of Example 4.1, and sup-
pose that we want to resolve the violation ofϕ1 caused byt5 andt1.
If the target values ofeq(t5,CT) andeq(t5,ST) (resp.eq(t1,CT)
andeq(t1,ST)) are ‘ ’, and none of them isnull, we can resolve
the violation by simply mergingeq(t5,CT) andeq(t1,CT) and by
mergingeq(t5,ST) andeq(t1,ST). In the presence of conflicting
target values,e.g.,wheneq(t5,CT) andeq(t1,CT) have distinct

319

ProcedureBATCHREPAIR(D, Σ)

Input: A setΣ of CFDs, and a databaseD.
Output: A repairRepr of D.

1. E := {{(t, A)} | t ∈ R, A ∈ att(R)};
2. for eachE ∈ E do /* initializing targ(E) */
3. targ(E) := ;
4. InitializeDirty Tuples;
5. while Dirty Tuples 6= ∅
6. (t, B, v, ϕ) := PICKNEXT();
7. Repr := CFD-RESOLVE(t, B, v, ϕ);
8. UpdateDirty Tuples;
9. if Dirty Tuples = ∅ then
10. for eachE ∈ E do
11. if targ(E) = then /* instantiating */
12. targ(E) := a constant with the least cost;
13. UpdateDirty Tuples;
14. for eachE ∈ E and each(t, A) ∈ E do
15. t[A] := targ(E); /* updatingD to obtainRepr
16. return D.

Figure 4: Algorithm B ATCH REPAIR

constant target values, we have to change the target value of the
LHS(ϕ1) attributes of eithert1 or t5, i.e., the target value of one of
eq(t5,AC), eq(t5,PN), eq(t1,AC) or eq(t1,PN). 2

4.2 Batch Repair Algorithm
We now present algorithm BATCHREPAIR. In addition to the set

E of equivalence classes, the algorithm keeps track of violations
of CFDs. As we have seen in Example 4.1, a repair may gener-
atenew violations. Therefore, we maintain for eachCFD ϕ ∈ Σ
a setDirty Tuples(ϕ) of tuples that (possibly) violateϕ. We up-
date these sets after each resolution of a violation. More precisely,
suppose that a violation ofϕ caused byt is resolved by updating
eq(t, A). Then for each tuplet′, if (t′, A) ∈ eq(t, A), and for
eachψ = (R : X → C, tp), if A ∈ X ∪ {C}, we addt′ to
Dirty Tuples(ψ). We then removet from Dirty Tuples(ϕ). In this
wayDirty Tuples always contain allpotentially unresolvedtuples.

The algorithm is shown in Fig. 4. We start with initialization of
the setE of equivalence classes andDirty Tuples (lines 1-4). Next,
as long as there are dirty tuples (loop on line 5) we greedily look for
the “best” next repair. More specifically, the procedure PICKNEXT

loops over eachCFD ϕ ∈ Σ and its violating tuplet; it identifies
which pair(ϕ, t) incurs the least cost to repair (line 6). The algo-
rithm then resolvest for ϕ (line 7), resulting in a modified set of
equivalence classes, by invoking procedureCFD-RESOLVE. It then
updates the set of dirty tuples (line 8) before finding the next best
repair. If no more dirty tuples are unresolved (line 9), then for each
equivalence classE ∈ E with targ(E) = , it finds a constant value
with the least cost to instantiatetarg(E) (lines 10-12). That is,ul-
timately all equivalence classes will have either a constant value
or null. This instantiation may introduce new violations, and thus
Dirty Tuples should be maintained (line 13). After the loop, we
create a repairRepr by editing the original databaseD by using the
target values of equivalence classes (lines 14-15).

The most expensive and elaborate procedure is PICKNEXT (see
Fig. 5). It finds the next tuplet andCFD ϕ to be resolved. More
specifically, for eachCFDϕ and its unresolved tuplet, PICKNEXT

first decides for which attributeB of t it can updateeq(t, B) to
resolve the violation (line 3), following the analysis described in
Section 4.1. AfterB is fixed, it finds a setS of tuples that agree
with t on all the attributes inϕ exceptB (line 4). The idea is that we
may pick a target valuev for eq(t, B) from theB-attribute values
of the tuples inS (line 5). It then analyzes the cost of repairing the
violation usingv (lines 6-7), whereCost(t, B, v) is defined to beP

(t′,C)∈eq(t,B) w(t′, C) · cost(v, t′[C]). It returns(t, B, v) with

ProcedurePICKNEXT()

1. BestCost :=∞;
2. for eachCFD ϕ = (R : X → A, tp), t ∈ Dirty Tuples(ϕ) do
3. decide an attributeB in t to updateeq(t, B);
4. S := {t′ ∈ R | t′[X ∪ {A} \ {B}] = t[X ∪ {A} \ {B}]};
5. v := FINDV(t, B, S, ϕ);
6. if Cost(t, B, v) < BestCost then
7. BestFix := (t, B, v, ϕ); BestCost := Cost(t, B, v);
8. return BestFix;

Figure 5: procedure PICK NEXT

the least cost (line 8).
It remains to show how the valuev is picked. Givent, B andϕ,

procedure FINDV (not shown) aims to select semantically-related
values by first using values inCFDs. If this is not possible, a value is
selected from values appearing in related tuples. Moreover, by the
definition of Cost the optimal value is selected in a similar way
as in the most-common-value strategy. More precisely, FINDV
checks whetherB = A. If so, v is already determined by either
tp[A] (case (1.1) in Section 4.1) or the target values ofeq(t, A)
andeq(t′, A) (t′ is the tuple with whicht violatesϕ, case (2.1)).
Otherwise,i.e., if B ∈ LHS(ϕ), it inspectstarg(eq(t1, B)) for all
t1 ∈ S, and findsv with the leastCost(t, B, v) such thatv 6= t[B].
The motivation for pickingv from S is to find a semantically-
related value, identified by the patternt[X ∪ {A} \ {B}]. If such
v does not exist, it letsv := null.

Example 4.4:Returning to Example 4.2, suppose now that the tar-
get values of(eq(t5,CT), eq(t5,ST)) are (PHI, PA). To resolve
the violation ofϕ2 caused byt5, we decide to change the target
value oft5[zip]. Procedure PICKNEXT findsS = {t1, t2, t3, t4},
i.e., S consists of all tuplest′ with (PHI, PA) as the target value
of (eq(t′,CT), eq(t′,ST)), Now Procedure FINDV attempts to
choosev from the target values ofeq(t′, zip) for t′ ∈ S. There
are two such values: 19014 and 10012. It decides to pick 19014
since it is the only one that differs fromt5[B]. If S were empty or
targ(eq(t5, zip)) already had a constant, it assignsnull to v. 2

Upon receiving(t, B, v, ϕ) from PICKNEXT, procedureCFD-
RESOLVE in algorithm BATCHREPAIR merges or update the target
values of equivalence classes to resolve the violation ofϕ caused
by t, as described in Section 4.1.
Correctness. Clearly at each step of algorithm BATCHREPAIR, a
CFD violation is resolved. However, each step can also introduce
new violations as illustrated in Example 4.1; moreover, a tuplet can
appear as a violation multiple times. Nevertheless, BATCHREPAIR

always terminates and generates a repair.

Theorem 4.2: Given any databaseD and any setΣ of CFDs,
BATCHREPAIR terminates and finds a repairRepr |= Σ for D.

2

Proof sketch: At each step either the total numberN of equiva-
lence classes is reduced or the numberH of those classes that are
assigned a constant ornull is increased. Letk be the number of
(t, A) pairs inD. SinceN ≤ k andH ≤ 3 · k (the target value of
eq(t, A) can only be ‘’, a constant, ornull), BATCHREPAIR neces-
sarily terminates. Furthermore, since the algorithm proceeds until
no more dirty tuples exist, it always finds a repair ofD. 2

5. An Incremental Repairing Algorithm
In this section we present the algorithm underlying the incre-

mental module of our framework shown in Fig 3, which tackles
the incremental repairing problem. As remarked in Section 3.3, it
suffices to consider∆D consisting of insertions only, as deletions
never cause any inconsistencies.

320

Procedure INCREPAIR (D, ∆D, Σ,O)

Input: A clean databaseD, a setΣ of CFDs, a set of updates∆D,
and an orderingO on∆D.

Output: A repairRepr of D ⊕∆D such thatD ⊆ Repr.

1. Repr := D;
2. for eacht in ∆D in the given orderO do
3. Reprt := TUPLERESOLVE (t, Repr, Σ);
4. Repr := Repr ∪ {Reprt};
5. return Repr.

Figure 6: Algorithm I NCREPAIR

One might think that the incremental repairing problem is sim-
pler than its batch (non-incremental) counterpart. Unfortunately
it is not the case. Indeed, since the repairing problem (see Sec-
tion 3.3) can be seen as an instance of the incremental repairing
problem (indeed, just consider the case thatD = ∅), we immedi-
ately obtain the following corollary from Theorem 4.1.

Corollary 5.1: The incremental repairing problem forCFDs is NP-
complete, even for a fixed schema and a fixed set ofFDs. 2

Therefore, we again have to rely on heuristics in the incremental
setting. We first develop a heuristic in Section 5.1 and then present
optimization techniques to improve the algorithm in Section 5.2.
Finally, we show in Section 5.3 that the incremental algorithm in
fact provides an alternative method for the repairing problem.

5.1 Incremental Algorithm and Local Repairing Problem
Given a set of updates∆D, Corollary 5.1 tells us that it is be-

yond reach in practice to find an optimal∆DRepr. Furthermore,
we cannot directly apply the algorithm developed for the repairing
problem to finding∆DRepr since we cannot prevent it from updat-
ing the cleanD. Following the approach commonly used in repair-
ing census data [13, 35], we repair the tuples in∆D one at a time
following some orderingO on these tuples. We assume thatO is
given but will provide various orderings in Section 5.2.

Therefore, the key problem is to find, given a clean databaseD,
a tuplet to be inserted intoD, and a setΣ of CFDs, a repairReprt

of t of minimum cost such thatD ∪ {Reprt} is a repair. We refer
to this as thelocal repairing problem.
Algorithm I NCREPAIR . The overall driver of our incremental re-
pairing algorithm is presented in Fig. 6. Taking as input a database
D, a set∆D of updates, a setΣ of CFDs, and an orderingO on
∆D, it does the following. It first initializes the repairRepr with
the current clean databaseD (line 1). It then invokes a procedure
called TUPLERESOLVE (line 3) to repair each tuplet in ∆D ac-
cording to the given orderO (line 2), and adds the local repair
Reprt of t to Repr (line 4) before moving to the next tuple. Once
all tuples in∆D are processed, the final repair is reported (line 5).

The key characteristics of INCREPAIR are (i) that the repair
grows at each step, providing in this way more information that
we can use to clean the next tuple, and (ii) that the data inD is not
modified since it is assumed to be clean already.
Algorithm TUPLERESOLVE. The core of the INCREPAIR algo-
rithm is the procedure TUPLERESOLVE that aims to solve the local
repairing problem. One might think that the local repairing prob-
lem would make our lives easier. However, the result below tells us
that it is not the case.

Theorem 5.2:The local repairing problem isNP-complete. More-
over, it remains intractable if one considers standardFDs only. 2

Proof sketch: The NP-hardness is verified by reduction from the
distance-SAT problem, which isNP-complete [3]. That is to deter-
mine, given a propositional logic formulaφ, an initial truth assign-
mentρ1, and a constantk, whether there exists a truth assignment

ProcedureTUPLERESOLVE(t, Repr, Σ)

Input: A tuple t to repair, the current repairRepr, and a setΣ of CFDs.
Output: A repairReprt of t such thatRepr ∪ {Reprt} |= Σ.

1. C := ∅; Reprt := t;
2. while attr(R) 6= C do
3. cost :=∞;
4. for eachC ∈ [attr(R) \ C]k do
5. V := {v̂ | Repr ∪ {reprt[C/v̂]} |= Σ(C ∪ C)};
6. v̂ := arg minv̂∈V costfix(C, v̂);
7. if costfix(C, v̂) < cost then
8. cost := costfix(C, v̂); BestFix:=(C, v̂);
9. C := C ∪ C; Reprt := Reprt[C/t̂];
10. return Reprt.

Figure 7: Algorithm TUPLERESOLVE

ρ2 that satisfiesφ and differs fromρ1 in at mostk variables. 2

Theorem 5.2 shows that finding the optimal repairReprt of t is
infeasible in practice. Indeed, the naive approach, namely, enu-
merating all possible repairs and then selecting the one with the
minimal cost, is clearly not an option in case that the number of
attributes or the size of the active domains is large.

In light of this intractability, procedure TUPLERESOLVE is based
on agreedyapproach. As shown in Fig. 7, it takes as input a single
tuplet to be inserted, the current repairRepr, and a setΣ of CFDs,
and returns a repairReprt of t such thatRepr ∪ {Reprt} |= Σ.

Before we explain TUPLERESOLVE in more detail, we need
some notation. For a fixed integerk > 0 and a set of attributes
X ⊆ attr(R) we denote by[X]k the set of all subsets ofX of
sizek. For a tuplet, a setC ∈ [X]k andv̄ = (v1, . . . , vk), where
vi ∈ adom(D,Ai)∪{null} for eachAi ∈ C, we denote byt[C/v̄]
the tuple obtained by replacingt[Ai] by vi for eachAi ∈ C and
leaving the other attributes unchanged. Finally, for a setΣ of CFDs
and a setX ⊆ attr(R), we denote byΣ(X) the set ofCFDs in Σ
of the form(R : Y → A, tp) with Y ∪ {A} ⊆ X.

We explain how procedure TUPLERESOLVE works in an induc-
tive way. In a nutshell, it greedily finds the “best” sets of attributes
of t to modify in order to create a repair. More specifically, for a
fixedk > 0 it first finds the “best”C1 ∈ [attr(R)]k (lines 4–9) and
attribute valueŝv = (v1, . . . , vk) for the attributes inC1 such that

(i) vi is in adom(Repr, Ai) ∪ {null} (line 5);

(ii) Repr ∪ {t[C1/v̂]} satisfies allCFDs in Σ(C1) (line 5); and

(iii) the costcostfix(C1, v̂) = cost(t, t[C1/v̂]) × vio(t[C1/v̂]) is
minimal (lines 6–8).

In other words, the predefined parameterk limits the number of
possible repairs that we consider. Our experiments show that for
k = 1, 2 we are already able to obtain good results. We denote the
set of allk-tuplesv̄ satisfying (i) and (ii) byV (line 5). Once TU-
PLERESOLVEfindsC1 andv̂,C1 is added toC andt is replaced by
t1 = t[C1/v̂] (line 9). Furthermore, TUPLERESOLVE will never
backtrack and modifyt1 for the attributes inC1 again.

Suppose that TUPLERESOLVE already selectedn best pairwise
disjoint setsC1, . . . , Cn in [attr(R)]k and k-tuples v̂1, . . . , v̂n

such that fortn = tn−1[Cn/v̂n], we have thatRepr ∪ {tn} |=
Σ(C), whereC = C1 ∪ · · · ∪ Cn−1. That is, tn is the current
(almost) repair fort. If attr(R) = C then clearlytn is a real
repair of t and TUPLERESOLVE will output Reprt = tn (line
2, line 10). Otherwise, TUPLERESOLVE finds the next best set
Cn+1 in [attr(R) \ C]k and finds ak-tuple v̂n+1 satisfying the
same conditions (i)–(iii) as aboveexceptthat the repairtn+1 =
tn[Cn+1/v̂n+1] must satisfyΣ(Cn+1 ∪C). Again, the setCn+1 is
then added toC and the current (almost) repair is set totn+1. The
procedure TUPLERESOLVE keeps selecting such sets of attributes
and values untilattr(R) is completely covered.

321

It is important that̄v is allowed to containnull values (see prop-
erty (i)). Indeed, this is needed for guaranteeing the existence of
k-tuplesv̄ satisfying property (ii) as the next example illustrates.

Example 5.1:Considert5 in Example 1.1 and suppose thatk = 2.
Suppose that TUPLERESOLVE already fixed all attributes except
CT andST. In fact, no attribute values int5 are changed since the
violatedCFDs involve the two non-fixed attributes. In order for TU-
PLERESOLVE to repairt5 it needs to find a tuplêv = (v1, v2)
for C = {CT,ST} such thatt5[C/v̂] satisfies bothϕ1 andϕ2.
As observed in Example 1.1 no suchv̂ exists when we only con-
sider values in the active domains. Thus the only possiblev̂ here is
(null, null). In contrast, Example 1.1 shows thatC={CT,ST, zip}
for k = 3, andv̂=(PHI, PA, 19014) provides a repair fort5. 2

Correctness.The termination of INCREPAIR follows from the fact
that (i) each tuple in∆D is treated only once; and (ii) each at-
tribute is modified at most once by TUPLERESOLVE. Moreover,
TUPLERESOLVE always generates a repair for each tuple in∆D.

Theorem 5.3: Given a databaseD, a setΣ of CFDs and update
∆D, INCREPAIR always terminates and finds a repair∆DRepr

such thatD ⊕∆DRepr |= Σ, regardless of the orderingO. 2

5.2 Ordering for Processing Tuples and Optimizations
While the orderingO for processing tuples has no impact on the

termination of an INCREPAIR process, it does make a difference
when it comes to repairing performance and the accuracy of the re-
pair. We next study various orderings, based on which we develop
(and experiment with) variants of the INCREPAIR algorithm.

Theorem 4.1 tells us that it is beyond reach in practice to find
an ordering that leads to an optimal repair. Thus we propose and
experiment with the following orderings.
Linear-scan ordering. A naive approach is to adopt an arbitrary
linear-scan order forO, with the benefit that it incurs no extra cost.
We refer to INCREPAIR based on this as L-INCREPAIR.
A greedy algorithm based on violations.This algorithm, referred
to as V-INCREPAIR, is based on thenumber of violationsvio(t)
of each tuplet, which is defined in Section 3.1. A tuplet ∈ D
might cause multiple violations of constraints inΣ. Intuitively, the
lessvio(t) is, the more accuratet is and the less costly to repair it.
Algorithm V-INCREPAIR repairs tuples in theincreasingorder of
vio(t) so that accurate tuples are included inRepr early, and based
on them we resolve violations of “less accurate” tuples.
A greedy algorithm based on weights.Another approach is based
on the weightwt(t) of a tuplet (recall the definition ofwt(t) from
Section 3.2). Intuitively, the largerwt(t) is, the more accuratet is.
We develop a variant of INCREPAIR, referred to as W-INCREPAIR,
which processes tuples based on thedecreasingorder ofwt(t) to
reduce the cost and improve the quality of repairs found.

We next present optimizations adopted by our algorithm.
Optimization. The main computational cost of INCREPAIR lies
in the procedure TUPLERESOLVE. Indeed, there one needs to (i)
consider all possible subsetsC of attributes of sizek; (ii) for each
suchC compute the setV consisting of all possiblek-tuplesv̄ on
the attributes inC that satisfy the relevantCFDs; and (iii) obtain
from V the tuplev̂ that has minimal cost witht[C] (Fig 7, lines
5–6). To do these tasks efficiently we leverage the use of indices.
LHS-indices. For eachCFD (R : X → A, tp) in Σ we build
an indexI for the embeddedFD X → A. The index consists of
pairs〈key, it〉 wherekey uniquely identifies itemit in I and is con-
structed as follows: iftp[A] = a, then we simply add〈tp[X], a〉
to I; if tp[A] = , then we add for each tuplet′ ∈ Repr such that
t′[X] � tp[X] the pair〈t′′[X], t′′[A]〉 to I. Observe that because

Repr is clean, such keys provide indeed a unique identifier.
Now, given a tuplet′ and a fixed set of attributesC, we can ef-

ficiently determine whether or not a candidate repairt′′ = t′[C/v̄]
violates aCFD (R : X → A, tp) in Σ(C ∪ C) by (i) searching
the index forϕ usingt′′[X] as key; and (ii) testing whethert′′[A]
matches the returned item. Doing this for allCFDs allows us to
compute the number of violations of a candidate repair efficiently.

Finally, these indices are dynamically updated when repairs are
added toRepr using standard update mechanisms.
Cost-based indices.We arrange the values ofadom(Repr, A) for
each attributeA in a tree structure, by using a hierarchical agglom-
erative clustering method [20]. In the tree, “similar” values are
grouped together based on theDL metric. Suppose for the moment
that we are considering a single attributeA only and want to range
overadom(Repr, A) such that values are considered in decreasing
similarity to a given attribute valuet[A]. We then simply iterate
over adom(Repr, A) by first searching fort[A], starting from the
root, and then moving to its child cluster that is closest tot[A] in
terms of theDL metric. This process then continues until we find
a value modification fort[A] that satisfies the requirements given
in TUPLERESOLVE. If no suitable candidate can be found, we sim-
ply usenull. In case of multiple attributes (recall that TUPLERE-
SOLVE tries to findk-tuples), we range over the individual trees in
a nested way until a suitable candidate tuple is found. Again, we
introducenull whenever no suitable attribute value can be found.

5.3 Applying I NCREPAIR in the Non-incremental Setting
Algorithm INCREPAIR can also be used in the non-incremental

setting. Indeed, given a dirty databaseD′ one can first extract a
maximal consistent set of tuplesD from D′ and then simply ap-
ply INCREPAIR to D and∆D = D′ \ D. However, computing
such a maximal set of tuples might be too hard in practice:

Proposition 5.4: It is NP-hard to find, given a datasetD′ and a set
Σ of CFDs, a maximal subsetC ofD′ such thatC |= Σ. 2

Proof sketch: This is verified by reduction from the independent
set problem, which isNP-complete (cf. [17]). 2

Greedy algorithms do provide some approximation guarantees [7]
for finding such a setC. However, unless for eachCFD ϕ ∈ Σ
the number of tuples that violateϕ with another tuple is bounded
by a small constant, the approximation factor grows with the size
of the database [19]. A simpler approach is to compute the setC′

of tuples that do not violateanyconstraint inΣ. This clearly does
not gives us a maximal set of tuples but as shown in [6] it can be
efficiently computed usingSQL queries. Moreover, in practice one
can often expect this set to be fairly large. Indeed, the typical error
rate of real-world data in enterprises is 1%–5% [31].

6. Statistical Methods for Improving Accuracy
In this section we present the third part of the cleaning frame-

work shown in Fig. 3,i.e., thesampling module. The repairing al-
gorithms BATCHREPAIR and INCREPAIR both return a repairRepr
that satisfies theCFDs in Σ, i.e., consistentw.r.t. the givenCFDs.
However, certain value changes inRepr, which were automatically
generated, may not be what the user wants. Referring to Exam-
ples 1.1 and 5.1, INCREPAIR (for k = 3) resolves theϕ5 by modi-
fying t5 in the attributesCT, ST andzip, while the user may have
wanted to modifyt5[AC] only. This concerns theaccuracyof the
repair, rather than its consistency.

As remarked in Section 3.3, it is unrealistic to consult the user
for every change. To improve the accuracy without incurring ex-
cessive human efforts, we propose a sampling process. The proce-
dureSAMPLING (not shown) involves the user to inspect and edita

322

sampleof Repr rather than the entireRepr. This procedure ensures
that for candidate repairs found by the repairing algorithms, their
estimated inaccuracy rate, i.e., |dif(Repr, Dopt)|/|Dopt|, is below
a predefined boundε with high confidenceδ.

Given a repairRepr and predefinedε and δ, procedureSAM-
PLING works as follows: (1) it draws a sampleS from Repr and
lets the user inspectS; (2) based on the user feedback andε, it
computes atest statisticz; and finally (3) it comparesz with the
critical valuezα at confidence levelδ, which is obtained via nor-
mal distribution (see,e.g.,[1]), whereα = 1 − δ. If z ≤ −zα,
then it rejects the null hypothesis that the proportion of inaccurate
data inRepr is above the givenε value, andRepr is returned as
a candidate repair. Otherwise it recruits the user to editboth the
sampleS andCFDs in Σ. This user interaction may trigger new vi-
olations after which the repairing algorithm and sampling process
are invoked again, based on the possiblyuser-revisedsetΣ of CFDs
and database.

The objective ofSAMPLING is twofold: (i) It involves the users
to check whether the repair is accurate enough to meet their expec-
tation on the data quality; and (ii) it allows the repairing algorithms
to “learn” from the user interaction and improve the next round of
cleaning process. In particular, the user may enter newCFDs based
on new semantic bindings of related values.

We next outline methods for drawing a sample and for comput-
ing the statistic test. We also discuss the size of the samples re-
quired to guarantee with high probability that the inaccuracy ratio
is below the predefinedε threshold.
Sampling methods. A naive approach is to use uniform random
sampling techniques. However, the tuples drawn in this way may
not sufficientlyrepresentthose that were modified by the repairing
algorithm, which are the tuples that we would like the user to check
since they have a higher likelihood to be inaccurate. This motivates
us to employ the stratified sampling method [1].

The idea is to partition the tuples inRepr into multiple strata and
draw certain number of tuples from each strata, giving priority to
strata that are likely to be inaccurate. More specifically, suppose
that we want to draw a sample ofk tuples. We partitionRepr into
m strataP1, . . . , Pm with m < k. For i ∈ [1,m], the stratumPi

consists of those tuplest′ in Repr such thatt′ was obtained by the
repairing algorithm by modifying a tuplet in the original dataset
D with vio(t) ≥ vi, wherevio(t) is the number of violations oft
(Section 3.1), andvi is a fixed threshold. Alternatively, instead of
usingvio(t) one can usecost(t′, t) to partition the data set.

We also assume predefined thresholdsξ1, . . . , ξm such thatP
i∈[1,m] ξi = 1 andξi ≤ ξi+1. Then we drawξi · k many tu-

ples from the stratumPi. In this way we give a larger coefficient
ξi to the stratumPi, and thus draw more tuples fromPi, if tuples
in Pi are more likely to be inaccurate. We draw tuples from each
Pi by leveraging a widely used algorithm (e.g.,[33]) that scans the
data in one pass and uses constant space, and letS consist of tuples
drawn from all strata.
Statistical Test. Let random variableX denote the number of in-
accurate tuples in a sample. Because the probability of having an
inaccurate tuple in the sample is proportional to the size of that
sample, the variableX obeys a Binomial distribution, which is
commonly computed via its normal approximation (provided that
the sample size is large enough). Thus we can compute the test

statistic byz = (p̂− ε)/(
q

ε(1−ε)
k

), wherep̂ is the inaccuracy rate
in a specific sample,ε is the predefined inaccuracy rate andk is the
sample size. As mentioned earlier, we compare the test statistics
z with the critical valuezα at confidence levelδ. If z ≤ −zα,
we can conclude that the inaccuracy rate ofRepr is belowε with

probabilityδ.
The remaining question is how to compute the inaccuracy rate

p̂ for a specific sampleS. First, we let the user inspect and mark
the tuples that fall short of the expectation. From the user feedback
we get, for eachi ∈ [1,m], a numberei, which is the number
of inaccurate tuples in those tuples drawn from stratumPi. The
weighted inaccuracy ratêp of the sampleS is computed by:̂p =
(
P

i∈[1,m] ei · si)/(
P

i∈[1,m] |Pi| · si), wheresi = |Pi|/(ξi · k).
Sample size.We next discuss the choice of the sizek for the sam-
pleS. In general, the lower the inaccurate rate ofRepr is, the larger
the sample is required. Intuitively, this is because in order for inac-
curate tuples to appear in the sample, a large enough sample needs
to be taken. A theoretical prediction for sampling size can be de-
rived using Chernoff bounds [1], as follows.

Theorem 6.1: For a random sampleS of sizek and a constant

c, if k > c
ε

+ 1
ε
ln(1

1−δ
) + 1

ε

q
(ln(1

1−δ
))2 + 2 · c · ln(1

1−δ
), then

P [X < c] < 1 − δ holds,i.e., the probability that at leastc many
inaccurate tuples appear in the sampleS is no less thanδ. 2

Proof sketch: The Chernoff bounds [1] state that for any positive

constant0 ≤ η ≤ 1, we haveP [X < (1 − η)kε] ≤ e
−kηε2

2 . By
rewritingP [X < c] toP [X < (1−(1−c/(kε)))kε], and applying
the Chernoff bound result toP [X < (1−(1−c/(kε)))kε]< 1−δ,
we get the inequality stated in the theorem. 2

7. Experimental Evaluation
In this section, we present an experimental study of our repairing

algorithms. We investigate the repair quality, scalability, and sensi-
tivity to error rate and types of violations for both BATCHREPAIR

and INCREPAIR.

7.1 Experimental Setting
Our experiments were conducted on an Apple Xserve with

2.3GHz PowerPC dualCPUand 4GB of memory; of those, at most
2GB could be used by our system. We used a commercialDBMS on
the same machine.
Data and constraints. Our experiments used an extension of the
relation shown in Fig. 1. Specifically, its schema models a com-
pany’s sales records and includes 4 additional attributes, namely,
the country of the customerCTY, the tax rate of the itemVAT, the
title TT and quantity of the itemQTT. To populate this table, we
scraped real-life data fromAMAZON and other websites, and gen-
erated datasets of various sizes, ranging from 10k to 300k tuples.

Our setΣ consists of 7CFDs: 5 taken from Fig. 1 and Fig. 2,
together with two new cyclicCFDs.

We included 300–5,000 tuples in the pattern tableaus of these
CFDs, enforcing patterns of semantically related values which we
identified through analyzing the real data. Note that the set of con-
straints is fairly large since each pattern tuple is in fact a constraint.

We first populated the table such that the initial datasets are con-
sistent with all theCFDs in Σ. We refer to this “correct” data as
Dopt. We then introduced noise to attributes inDopt such that each
“dirty” tuple violates at least one or moreCFDs. To add noise to
an attribute, we randomly changed it either to a new value which
is close in terms ofDL metric (distance between 1 and 6) or to an
existing value taken from another tuple. Such “dirty” dataset is re-
ferred to asD. We used a parameterρ ranging from 1% to 10% for
the noise rate.

Moreover, in accordance to the cost model defined in Section 3.2
we set weights to the attributes of tuples inD in the following way.
Suppose thatt is a tuple inD, then we say thatA is a “clean” at-
tribute for t if the corresponding tuplet′ in Dopt agrees witht on
attributeA; otherwise we callA “dirty” for t. For dirty attributes

323

in t, we randomly assign a weightw(t, A) in [0, a]; for clean at-
tributes we randomly select a weightw(t, A) in [b, 1]. This is based
on the assumption that a clean attribute usually has a slightly higher
weight than a dirty attribute. In the experiments, we seta = 0.6
andb = 0.5. We also studied the case when no weight information
was available, by setting the weights to 1 for all attributes.
Algorithms. We have implemented prototypes of BATCHRE-
PAIR and all three variants of INCREPAIR, i.e., L-I NCREPAIR, V-
INCREPAIR and W-INCREPAIR, all in Java. We did not experiment
with algorithmSAMPLING because we could easily find out the in-
accuracy rate in a repairRepr by comparing the clean data and the
repair, since we started with the clean data.

In the experiments we used INCREPAIR to repair the entire data
set, as described in Section 5.3, except in one occasion (Fig. 12).
That is, L-INCREPAIR, V-I NCREPAIR and W-INCREPAIR were
applied to non-incremental setting except for Fig. 12.
Measuring repair quality. There is no benchmark algorithm avail-
able for repairingCFDs. While each repairRepr of the databaseD
found by our algorithms satisfies all theCFDs (this follows from
the correctness of our algorithms), it still may contain two types
of errors: (a) the noises that are not fixed, and (b) the new noises
introduced in the repairing process. Although it is important to dis-
tinguish these two types of errors, the metrics used in previous data
cleaning work often considers the first type of errors while ignoring
the second type. For example, [5] measuresthe percentage of error
corrected, which does not distinguish these two types of errors.

To measure these two types of errors, we used the notions ofPre-
cision andRecall, which are widely used in information retrieval
and many other areas.Precisionis the ratio of the number of cor-
rectly repaired noises to the number of changes made by the repair-
ing algorithm. It measures the repair correctness.Recallis the ra-
tio of the number of correctly repaired noises to the total number of
noises. It measures repair completeness. For a dirty datasetD and a
Repr found by our algorithms, we compute the number of noises by
dif(D,Dopt) (recall that we knowDopt). The number of changes
made by the repairing algorithm isdif(D,Repr) and the number of
noises correctly repaired isdif(D,Repr) − dif(Dopt,Repr). Note
that our algorithm may change some values tonull. If such a value
before the change is correct, we count thenull as an error; other-
wise, we treat it as a correction.

7.2 Experimental Results
We now report our findings concerning the accuracy (Preci-

sion/Recall) of our algorithms, their scalability in terms of the size
of the data, noise rates, and types of violations, and show the effi-
cacy ofCFDs vs. FDs in repairing data.
Efficacy of CFDs vs. FDs. We first show thatCFDs are indeed
more effective thanFDs in repairing dirty data. In Fig. 8, we
ran BATCHREPAIR on a dataset of 60K tuples and varied the noise
rateρ between 2% to 10%. The upper two curves report the accu-
racy for our set ofCFDs. The lower two curves show the accuracy
for the embeddedFDs (i.e., the CFDs in which the pattern tableau
consists of a single pattern of wildcards only). Figure 8 shows that
patterns improved significantly the accuracy of the repair.
Quality of the repair. We evaluated the data quality of our re-
pairing algorithms. We show the accuracy in terms ofPrecision
(Fig. 9) andRecall(Fig. 10) of all our algorithms,i.e., BATCHRE-
PAIR, L-I NCREPAIR, V-I NCREPAIR and W-INCREPAIR. In these
experiments, we varied the noise rateρ from 1% to 10%. The total
database size was fixed at 60K tuples.

Our experiments show that V-INCREPAIR and W-INCREPAIR

consistently outperform L-INCREPAIR, while W-INCREPAIR per-
forms slightly better than V-INCREPAIR. The accuracy of W-

INCREPAIR is influenced by the quality of the weights,i.e., the
choice ofa andb. The good performance of V-INCREPAIR is con-
sistent with the expectation that a tuple which has less violations
is more likely be a correct tuple. Indeed, algorithm V-INCREPAIR

first repairs tuples that are more likely to be correct, which will pro-
vide more reliable information when cleaning less accurate dirty
tuples subsequently. A similar argument holds for the good accu-
racy of W-INCREPAIR. Moreover, the running times (Fig. 13) of
L-I NCREPAIR and W-INCREPAIR are similar and slightly better
than V-INCREPAIR. Therefore, the improved quality of the latter
two algorithmsdoes notcome at a price, in terms of time.

Also in Fig. 9 and Fig. 10 we show the accuracy of the repair
given by BATCHREPAIR. Although BATCHREPAIR and INCRE-
PAIR are different in nature, the quality of the repairs provided by
them is comparable. Note also that thePrecisionandRecallde-
crease slightly with the increase of noise rate, as expected. The val-
ues ofRecallare relatively high, which means that our algorithms
can repair most of the errors.Precisionshows that new noises were
introduced when repairing these errors.

In the following, when reporting on the INCREPAIR algorithm
we always used V-INCREPAIR, as it consistently gave good results
for a wide range of(a, b)-values.

In Fig. 14 we verify our intuition thatCFDs with a constant in
theirRHS are more informative during the repairing than those with
a variableRHS. In this experiment we fixed the size of the data
to 60K tuples and varied the percentage of violations for constant
CFDs w.r.t. violations for variableCFDs from 20% to 80%. As can
be seen, an increasing number of constantCFD violations enabled
both BATCHREPAIR and INCREPAIR to achieve higher accuracy.
Scalability. In the following experiments we investigate the scal-
ability of our algorithms. In Fig. 11 we show the scalability
of BATCHREPAIR. As described in Section 4, the overall com-
plexity is governed by the procedure PICKNEXT. We found in our
experiments that without any further optimization, BATCHREPAIR

runs very slow. Therefore, we applied some additional optimiza-
tions based on the dependency graph of theCFDs, which help PICK-
NEXT to select the nextCFD to repair. As Fig. 11 shows, the op-
timized BATCHREPAIR scales very well for database sizes varying
from 60K to 300K tuples. The noise rate was fixed at 5%.

The effectiveness of INCREPAIR, when used in theincremental
setting, is reported in Fig. 12. We started from a clean database
consisting of 60K tuples and inserted 10 to 70 dirty tuples. It shows
that INCREPAIR significantly outperforms BATCHREPAIR in this
incremental setting, with comparable accuracy (see Figs. 9 and 10).
Observe that the running time of INCREPAIR increases faster than
that of BATCHREPAIR.

The scalability of all our algorithms with respect to noise rate is
shown in Fig. 13. We fixed the data size to 60K tuples and varied
the noise rate from 1% to 10%. All algorithms require more time
when the data has more noise, as expected. An interesting observa-
tion is that BATCHREPAIR is less sensitive to the noise rate because
it can repair many tuples simultaneously.

In Fig. 15 we show that the presence of violations for vari-
able CFDs has a negative effect on the time performance of
both BATCHREPAIR and INCREPAIR. This is not surprising since
such violations involve multiple tuples.
Summary. Our experimental results demonstrate both the effec-
tiveness and efficiency of our repairing algorithms. (1) We find
that all of our repairing algorithms, even the worst-performed L-
INCREPAIR, improve the quality of the data. (2) All of our algo-
rithms scale well with the database size. (3) Algorithms BATCHRE-
PAIR and V-INCREPAIR provide repairs that have comparable ac-
curacy. (4) Repair quality decreases when the noise rate increases

324

 70

 75

 80

 85

 90

 95

 100

 2 3 4 5 6 7 8 9 10

A
cc

ur
ac

y(
%

)

Percentage of errors(%)

BatchRepair (FD/Recall)
BatchRepair (FD/Prec)

BatchRepair (CFD/Recall)
BatchRepair (CFD/Prec)

Figure 8: Efficacy of CFDs vs. FDs

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7 8 9 10

Pr
ec

is
io

n(
%

)

Percentage of errors(%)

BatchRepair
V-IncRepair
W-IncRepair
L-IncRepair

Figure 9: Precision vs. noise rate

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7 8 9 10

R
ec

al
l(

%
)

Percentage of errors(%)

BatchRepair
V-IncRepair
W-IncRepair
L-IncRepair

Figure 10: Recall vs. noise rate

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 100 150 200 250 300

R
un

tim
e(

Se
c.

)

of tuples in database(K)

BatchRepair

Figure 11: Scalability of BATCH REPAIR

 0

 10

 20

 30

 40

 50

 10 20 30 40 50 60 70

R
un

tim
e(

Se
c.

)

of dirty tuples inserted

BatchRepair
IncRepair

Figure 12: Scalability of INCREPAIR

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1 2 3 4 5 6 7 8 9 10

R
un

tim
e(

Se
c.

)

Percentage of errors(%)

BatchRepair
V-IncRepair
W-IncRepair
L-IncRepair

Figure 13: Scalability vs. noise rate

for all of the algorithms. (5) If violations are mainly caused by
constantCFDs, then the algorithms run more efficiently and pro-
vide more accurate results. (6) While our algorithms correctly fix
noises, they may also introduce new noises. This is an issue not yet
well studied by previous work.

8. Related Work
A variety of constraint formalisms have been proposed [6, 4, 8,

26, 27]. Except for [6], these formalisms have not been applied
in the context of data cleaning.CFDs are proposed in [6], which
studies satisfiability and implication analyses ofCFDs, and gives
SQL techniques for detecting inconsistencies usingCFDs. How-
ever, it does not propose cleaning methods. Constraints of [8], also
referred to as conditional functional dependencies, and their exten-
sion known as constrained dependencies of [26], also restrict anFD

to hold on a subset of a relation. However, they cannot express
evenCFDs. More expressive are constraint-generating dependen-
cies (CGDs) of [4] and constrained tuple-generating dependencies
(CTGDs) of [27]. While bothCGDs andCTGDs can expressCFDs,
this expressive power comes with the price of high complexity.

Research on constraint-based data cleaning has mostly focused
on two topics introduced in [2]:repair is to find another database
that is consistent and minimally differs from the original database
(e.g.,[2, 5, 25, 9, 10, 14]); andconsistent query answeris to find
an answer to a given query in every repair of the original database
(e.g., [2, 10, 24, 34]). Most earlier work (except [5, 9, 14, 34])
considers traditional full and denial dependencies, which subsume
FDs, but do not consider patterns defined with data values. Beyond
traditional dependencies, logic programming is studied in [9, 14]
for fixing census data. A tableau representation of full dependen-
cies with data values is studied in [34], which focuses on condensed
representation of repairs and consistent query answers.

Closest to our work is [5]. Here, a cost model and repairing al-
gorithms are developed for standardFDs andINDs. Our cost model
(Section 3.2) is an extension of the one proposed in [5], by allowing
weights to be associated with attributes rather than with tuples. As
remarked earlier, repairingCFDs is far more intriguing than stan-
dardFDs. Our batch repairing algorithm (Section 4) is a nontrivial

extension of the algorithms of [5] in that both are based on equiv-
alence classes of tuple attributes, but the algorithms of [5] may not
terminate onCFDs. Incremental repairing and sampling for improv-
ing data accuracy (Sections 5 and 6) are not considered in [5].

Value modifications as repair operations are used in [13, 14, 34,
5, 25, 24]. A method for cleaning census data, based on reduction
to MWSC, was proposed in [13] and has been being used byUS na-
tional statistical agents [35]. Our heuristicREPAIR-CFD is inspired
by [13], but differs from it in that [13, 35] deal with editing rules
on individual records among which there is no interaction, whereas
modifying a single tuple may lead to violationsCFDs by multiple
other tuples. The repair algorithms of [25] are essentially an ex-
tension of the method of [13] for restricted denial constraints. As
remarked earlier, [34, 24] focus on consistent query answer rather
than repair. [14] employs logic programming to clean census data
and is quite different from the techniques developed in this work.

There has been a host of work on the merge-purge problem (e.g.,
[15, 21, 28]) for the elimination ofapproximate duplicates. As
observed in [5], it is possible to model many cases of this problem
in terms ofFDsandINDs repair. As shown in Section 5.2, clustering
techniques developed for merge-purge have immediate applications
in constraint-based data cleaning. There have also been commercial
ETL (extraction, transformation, loading) tools, in which a large
portion of the cleaning work has still to be done manually or by
low-level programs (see [29] for a comprehensive survey).

Related to this work are also theAJAX, Potter’s Wheel andARK-
TOS systems.AJAX [15] proposes a declarative language for spec-
ifying data cleaning operations (duplicate elimination) during data
transformations. Potter’s Wheel [30] is an interactive data clean-
ing system, which supports a sliding-window interface, and com-
bines data transformations and error detection (syntax and irregu-
larities). ARKTOS [32] is anETL tool that detects inconsistencies
based on basic keys, foreign keys and uniqueness constraints, etc.,
but it makes little effort to remove the detected errors. While a
constraint repair facility will logically become part of the cleaning
process supported by these tools and systems, we are not aware of
analogous functionality currently in any of the systems mentioned.

325

 80

 85

 90

 95

 100

 20 30 40 50 60 70 80

A
cc

ur
ac

y(
%

)

Percentage of dirty tuples violating constant CFDs(%)

IncRepair (Prec)
BatchRepair (Prec)

BatchRepair (Recall)
IncRepair (Recall)

Figure 14: Accuracy vs. percentage of constantCFD violations

 0

 100

 200

 300

 400

 500

 600

 700

 800

 20 30 40 50 60 70 80

R
un

tim
e(

Se
c.

)

Percentage of dirty tuples violating constant CFDs(%)

BatchRepair
IncRepair

Figure 15: Time vs percentage of constantCFD violations

9. Conclusions
We have proposed a framework for improving data quality, based

on CFDs. We have shown that the problem for finding optimal re-
pairs and the problem for incrementally finding optimal repairs are
both NP-complete. In light of these intractability results, we have
developed heuristic algorithms for both problems, and experimen-
tally verified their effectiveness and efficiency in improving the
consistency of the data. To improve the accuracy of the data, we
have proposed a statistical method that guarantees to find a repair
above a predefined accuracy rate with a high confidence. To our
knowledge, this work is among the first treatments of both consis-
tency and accuracy, and is the first effort to (incrementally) clean
data based on conditional constraints. We expect thatCFDs and
data-cleaning methods based onCFDs will yield a promising tool
for improving the quality of real-life data.

Several extensions are targeted for future work. First, to effec-
tively clean real-life data, it is often necessary to consider both
CFDs and inclusion dependencies [5]. We are investigating effec-
tive methods for improving the consistency and accuracy of the data
based on bothCFDs and inclusion dependencies. Second, we are
studying effective methods to automatically discover usefulCFDs
from real-life data. Finally, we exploring conditional constraints
beyondCFDs.
Acknowledgments. Wenfei Fan is supported in part by
EPSRC GR/S63205/01, GR/T27433/01, EP/E029213/1and BBSRC
BB/D006473/1. Floris Geerts is a postdoctoral researcher of the
FWO Vlaanderen and is supported in part byEPSRC GR/S63205/01.

10. References

[1] N. Alon and J. H. Spencer.“The Probabilistic Method”. John Wiley
Inc., 1992.

[2] M. Arenas, L. E. Bertossi, and J. Chomicki. Consistent query answers
in inconsistent databases. InPODS, 1999.

[3] O. Bailleux and P. Marquis. DISTANCE-SAT: Complexity and algo-
rithms. InAAAI/IAAI, 1999.

[4] M. Baudinet, J. Chomicki, and P. Wolper. Constraint-Generating De-
pendencies.JCSS, 59(1):94–115, 1999.

[5] P. Bohannon, W. Fan, M. Flaster, and R. Rastogi. A cost-based model
and effective heuristic for repairing constraints by value modification.
In SIGMOD, 2005.

[6] P. Bohannon, W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. Con-
ditional functional dependencies for data cleaning. InICDE, 2007.

[7] R. Boppana and M. M. Halld́orsson. Approximating maximum inde-
pendent sets by excluding subgraphs.BIT, 32(2):180–196, 1992.

[8] P. D. Bra and J. Paredaens. Conditional dependencies for horizontal
decompositions. InColloquium on Automata, Languages and Pro-
gramming, 1983.

[9] R. Bruni and A. Sassano. Errors detection and correction in large scale
data collecting. InIDA, 2001.

[10] J. Chomicki and J. Marcinkowski. Minimal-change integrity mainte-
nance using tuple deletions.Inf. Comput., 197:90–121, 2005.

[11] W. Cohen, P. Ravikumar, and S. Feinberg. A comparison of string-
distance metrics for name-matching tasks. InIIWeb, 2003.

[12] L. English. Plain English on data quality: Information quality man-
agement: The next frontier.DM Review Magazine, April 2000.

[13] I. Fellegi and D. Holt. A systematic approach to automatic edit and
imputation.J. American Statistical Association, 71(353):17–35, 1976.

[14] E. Franconi, A. L. Palma, N. Leone, S. Perri, and F. Scarcello. Census
data repair: a challenging application of disjunctive logic program-
ming. InLPAR, 2001.

[15] H. Galhardas, D. Florescu, D. Shasha, E. Simon, and C. Saita. AJAX:
An extensible data cleaning tool. InSIGMOD, 2001.

[16] H. Galhardas, D. Florescu, D. Shasha, E. Simon, and C. Saita. Declar-
ative data cleaning: Language, model and algorithms. InVLDB, 2001.

[17] M. Garey and D. Johnson.Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman and Company, 1979.

[18] G. Grahne.The Problem of Incomplete Information in Relational
Databases. Springer, 1991.

[19] M. Halldórsson and J. Radhakrishnan. Greed is good: approximat-
ing independent sets in sparse and bounded-degree graphs. InSTOC,
1994.

[20] J. Han and M. Kamber.“Data Mining: Concepts and Techniques”.
Morgan Kaufmann Publishers, 2006.

[21] M. A. Hernandez and S. Stolfo. Real-world data is dirty: Data cleans-
ing and the merge/purge problem.Data Mining and Knowledge Dis-
covery, 2(1):9–37, 1998.

[22] T. Imieliński and W. L. Jr. Incomplete information in relational
databases.JACM, 31(4):761–791, 1984.

[23] International StandardISO/IEC 9075-2:2003(E). Information technol-
ogy: Database languages, SQL Part 2 (Foundation, 2nd edition), 2003.

[24] A. Lopatenko and L. Bertossi. Complexity of consistent query an-
swering in databases under cardinality-based and incremental repair
semantics. InICDT, 2007.

[25] A. Lopatenko and L. Bravo. Efficient approximation algorithms for
repairing inconsistent databases. InICDE, 2007.

[26] M. J. Maher. Constrained dependencies.Theoretical Computer Sci-
ence, 173(1):113–149, 1997.

[27] M. J. Maher and D. Srivastava. Chasing Constrained Tuple-
Generating Dependencies. InPODS, 1996.

[28] A. Monge. Matching algorithm within a duplicate detection system.
IEEE Data Engineering Bulletin, 23(4), 2000.

[29] E. Rahm and H. H. Do. Data cleaning: Problems and current ap-
proaches.IEEE Data Engineering Bulletin, 23(4), 2000.

[30] V. Raman and J. M. Hellerstein. Potter’s Wheel: An interactive data
cleaning system. InVLDB, 2001.

[31] T. Redman. The impact of poor data quality on the typical enterprise.
Commun. ACM, 2:79–82, 1998.

[32] P. Vassiliadis, Z. Vagena, S. Skiadopoulos, N. Karayannidis, and
T. Sellis. ARKTOS: towards the modeling, design, control and exe-
cution of ETL processes.Inf. Syst., 8:537–561, 2001.

[33] J. S. Vitter. Random sampling with a reservoir.ACM Trans. Math.
Softw., 11(1), 1985.

[34] J. Wijsen. Condensed representation of database repairs for consistent
query answering. InICDT, 2003.

[35] W. E. Winkler. Methods for evaluating and creating data quality.Inf.
Syst., 29(7):531–550, 2004.

326

	Introduction
	Conditional Functional Dependencies
	A Framework for Data Cleaning
	Violations and Repair Operations
	Cost Model
	A Data Cleaning Framework: Overview

	An Algorithm for Finding Repairs
	Resolving cfd Violations
	Batch Repair Algorithm

	An Incremental Repairing Algorithm
	Incremental Algorithm and Local Repairing Problem
	Ordering for Processing Tuples and Optimizations
	Applying IncRepair in the Non-incremental Setting

	Statistical Methods for Improving Accuracy
	Experimental Evaluation
	Experimental Setting
	Experimental Results

	Related Work
	Conclusions
	References

