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Abstract
This paper revisits the analysis of annotation propagation
from source databases to views defined in terms of conjunc-
tive (SPJ) queries. Given a source database D, an SPJ
query Q, the view Q(D) and a tuple ΔV in the view, the
view (resp. source) side-effect problem is to find a minimal
set ΔD of tuples such that the deletion of ΔD from D re-
sults in the deletion of ΔV from Q(D) while minimizing the
side effects on the view (resp. the source). A third problem,
referred to as the annotation placement problem, is to find
a single base tuple ΔD such that annotation in a field of
ΔD propagates to ΔV while minimizing the propagation to
other fields in the view Q(D). These are important for data
provenance and the management of view updates. However
important, these problems are unfortunately NP-hard for
most subclasses of SPJ views [5].

To make the annotation propagation analysis feasible in
practice, we propose a key preserving condition on SPJ
views, which requires that the projection fields of an SPJ
view Q retain a key of each base relation involved in Q.
While this condition is less restrictive than other propos-
als [11, 14], it often simplifies the annotation propagation
analysis. Indeed, for key-preserving SPJ views the annota-
tion placement problem coincides with the view side-effect
problem, and the view and source side-effect problems be-
come tractable. In addition we generalize the setting of [5]
by allowing ΔV to be a group of tuples to be deleted, and
investigate the insertion of tuples to the view. We show
that group updates make the analysis harder: these prob-
lems become NP-hard for several subclasses of SPJ views.
We also show that for SPJ views the source and view side-
effect problems are NP-hard for single-tuple insertion, but
are tractable for some subclasses of SPJ for group insertions,
in the presence or in the absence of the key preservation con-
dition.

Categories and Subject Descriptors: F.2 [Analysis of
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1. Introduction
It is common to find real-world data dirty [17]. To cope

with this, corrections or annotations of errors are often
added to the data by experts. This information is essen-
tial to the quality (accuracy and timeliness) of the data,
and should be carried over along with the regular data
when the data is migrated, transformed or integrated. With
this comes the need for studying annotation propagation,
i.e., how annotations propagate through migration, trans-
formation or integration processes. The analysis of anno-
tation propagation has proved important in data prove-
nance [5, 6] (aka. lineage [10, 9]) for tracing the origin of
a piece of data, data cleaning [17] for improving data qual-
ity, and in security [19] for enforcing access control, among
other things.

In many applications data migration, transformation or
integration can be expressed as views defined in terms of
conjunctive queries, i.e., SPJ queries defined in terms of
the selection, projection, join and renaming operators of the
relational algebra. The analysis of annotation propagation
can thus be formalized as follows: We consider annotations
to be pieces of information associated with a location (tu-
ple) in a relation. More formally, a triple (R, t, A) indicates
that the annotation A is associated with tuple t in rela-
tion R. Given a source database D and an SPJ query Q,
annotations are propagated to the view V = Q(D) in the
straightforward way (see [5] for more details). The asso-
ciated problems addressed in this paper are the following:
Given a tuple ΔV in the view,

• the view side-effect problem is to find a set ΔD of tuples in
D such that Q(D)−Q(D−ΔD) is a minimal set containing
ΔV and in addition, among all such source updates, ΔD
is minimal; intuitively, this means that the deletion of ΔD
from the source leads to the removal of ΔV from the view
with minimal view side effect; in other words, ΔD indicates
how the tuple ΔV gets into the view, and the problem is
to identify a minimal set ΔD of locations (tuples) in the
source such that annotations in those places propagate to a
minimal number of tuples in the view including ΔV ;
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PCName Conf
Joe CIKM
John CIKM
Tom CIKM
John SIGMOD

(a) Table
PC(PCName, Conf)

Conf Topic # Paper
CIKM IR 30
CIKM DB 30

SIGMOD DB 30

(b) Table
Conf(Conf, Topic, #Paper)

PCName Topic
Joe IR
Joe DB
Tom IR
Tom DB
John IR
John DB

(c) View Q1=
πPCName,Topic(PC ��
Conf)

PCName Conf Topic
Joe CIKM IR
Joe CIKM DB
Tom CIKM IR
Tom CIKM DB
John CIKM IR
John CIKM DB
John SIGMOD DB

(d) Key preserving view Q2=
πPCName,Conf,Topic(PC �� Conf)

Figure 1: Example of propagation problems

• the source side-effect problem is to find a minimal set ΔD
of tuples in D such that Q(D) − Q(D − ΔD) contains ΔV ;
intuitively, it is to simply find a minimal set of locations
(tuples) in the source such that the desired annotation in
the view can be obtained by annotating in those places in
the source, regardless of side effects on the view; as opposed
to the previous problem, the source side-effect problem does
not require Q(D)−Q(D−ΔD) to be minimal, while it tends
to incur minimal changes to the original source data;

• the annotation placement problem is to find, given a field
(location) in the tuple ΔV , a single tuple ΔD in D such
that annotation in a field of ΔD propagates to a minimal
number of tuples (locations) in the view including ΔV ; in
other words, when some error or other annotation is known
for the tuple in ΔV , the problem is to find the corresponding
tuple (location) in the source D to concretely annotate such
that the annotation propagates to the view.

Example 1.1: To illustrate these decision problems,
consider a database D consisting of two relations,
PC(PCName, Conf) and Conf(Conf, Topic, #Paper)
(with keys underlined), and an SPJ query (view definition)
Q1= πPCName,Topic(PC �� Conf). An instance of each
relation and the view Q1(D) are shown in Fig. 1(a)-(c)
(ignore Fig. 1(d) for now). Suppose that John is not a
database researcher and thus the tuple (John, DB) in the
view Q1(D) is an error, i.e., ΔV = {(John, DB)}. We want
to find locations (tuple fields) in the base relations of D to
annotate the error information such that the annotations
propagate to the fields in the view tuple ΔV via Q1;
in other words, we want to find tuples in D to remove
such that their removal leads to the deletion of the error
ΔV . The three decision problems described above impose
different conditions on how to do this.
(1) View-side effect problem: There are multiple ways to
remove tuples in D in order to delete ΔV from the view.
Note that D tuples related to ΔV , i.e., those tuples with
matching values in ΔV , are (John, CIKM), (John, SIGMOD),

(CIKM, DB, 30) and (SIGMOD, DB, 30). While removing
certain combinations of these tuples leads to the removal
of ΔV , we want to find a combination ΔD such that the
removal of ΔD incurs minimal side effect on the view, i.e., it
deletes ΔV and a least number of other tuples from the view,
and furthermore, ΔD contains the least number of tuples.
In other words, we want to find and annotate ΔD such that
all the fields of the view tuple ΔV will be annotated by

propagation of the annotations in ΔD via Q1. One solution
is to remove {(John, CIKM), (John SIGMOD)} from the PC
table, and the other is by removing (John, CIKM) from PC
and (SIGMOD, DB, 30) from Conf. Note that none of the
solutions is side-effect free: the first solution, for example,
also results in the deletion of (John, IR) from the view.
(2) Source side-effect problem: The difference from (1) is
that we do not care about the view side-effect when we
search for a minimal set ΔD of tuples in D to delete. Thus
in this case, removing {(SIGMOD, DB, 30), (CIKM, DB, 30)}
from Conf is also a solution although it incurs more severe
view side effects than the solutions given above.
(3) Annotation placement problem: Suppose that the infor-
mation “John is not a database researcher” is to be anno-
tated on ΔV . We want to find a single tuple ΔD in the
database D to annotate such that the annotation propa-
gates to ΔV and a least number of other tuples in the view
Q1(D). Here, annotating ΔD = (John, SIGMOD) is the de-
sired solution with zero side effect. �

Prior work. Although there has been a host of work on
data provenance [4, 5, 6, 9, 10, 19], the complexity bounds
for the decision problems associated with annotation prop-
agation analysis are only studied in [5, 19], in which it is
shown that the analysis is in general beyond reach in prac-
tice. Indeed, the view and source side-effect problems are
NP-hard for views expressed in SPJ and in fact in its sub-
class PJ [5], and the annotation placement problem is NP-
hard for PJ and SPJ views [19]. Although these problems
are also of interest to the management of view updates, their
complexity is not addressed in that line of work and the only
complexity results known in the study of view updates con-
cern finding minimal complements of views [8, 15], a problem
quite different from the analysis of annotation propagation.

Contributions. To this end we identify a practical con-
dition under which the analysis of annotation propagation
becomes feasible. The condition, referred to as the key-
preservation condition, requires that an SPJ view Q retains
a key of every base relation involved in the definition of Q.
In other words, the primary keys of all the base relations in-
volved in Q are included as distinct attributes in the projec-
tion fields of Q. This is less restrictive than other proposals
for restricting view definitions [11, 14], and many views for
data transformation or integration found in practice can be
naturally modified to be key preserving, by extending the
projection-attribute list to include the primary keys.

We focus on fundamental issues in connection with key-
preserving SPJ views: we give a full treatment of the deci-
sion problems associated with annotation propagation, and
establish a variety of complexity results for these problems.

Our first contribution consists of complexity bounds for
the analysis of annotation propagation for key-preserving
SPJ views. These results tell us that the key preservation
condition simplifies the annotation propagation problems
studied in [5, 19]. We show that under the key preservation
condition, the view side-effect problem and the annotation
placement problem coincide, and moreover, the view and
source side-effect problems (and thus the annotation place-
ment problem) all become tractable for SPJ views.

Our second contribution is an investigation of the impact
of group updates on the analysis of annotation propagation.
Here we allow the given view update ΔV to include multiple
tuples to be deleted from the view, rather than a single tuple
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as stated above. In this setting the propagation analysis is
to identify propagation of multiple annotations in the view.
We show that group updates complicate the analysis: all the
three problems become NP-hard for views defined in terms
of join, i.e., these problems are intractable for SJ, PJ and
SPJ views while they remain tractable for SP views. To our
knowledge these are among the first complexity results for
group view updates.

Our third contribution consists of complexity results for
the view and source side-effect problems when the given ΔV
is a set of tuples to be inserted instead of deleted. The mo-
tivation for studying this is that one often wants to know,
when new tuples along with annotations are inserted into the
view, how the annotations should be propagated back to the
source (aka. feedback loop [17]). We study these problems
both in the presence and in the absence of the key preserva-
tion condition. We show that for PJ (and thus SPJ) views,
the view and source side-effect problems are already NP-
hard for single-tuple insertion, and these problems are in
PTIME for SP and SJ views for group insertions, in the
presence and in the absence of the key preservation condi-
tion. To our knowledge no previous work has established
complexity results for these problems for view insertions.

Our main conclusions are: (a) key preservation simplifies
the propagation analysis of annotations and view updates,
to an extent; (b) group updates make our lives harder than a
single-tuple update; and (c) view insertion does not behave
as well as its deletion counterpart for key preserving views.

Taken together, these provide a dichotomy in the com-
plexity of the analysis of annotation propagation for all sub-
classes of SPJ views, and for single-tuple and group view
insertions and deletions. These complexity results are im-
portant not only for the propagation analysis of annotations;
they are also useful for the study of classical view update
problems, for which, to our knowledge, few complexity re-
sults have been established by previous work.

It should be mentioned that the key preservation condi-
tion was first studied in [7] for xml view updates. However,
the decision problems investigated in [7] are different from
the decision problems considered in this paper.

Organization. The remainder of the paper is organized as
follows. Section 2 presents the key-preservation condition.
Section 3 revisits the annotation propagation analysis of [5,
19] under the key preservation condition, and establishes
complexity results for group deletions. Section 4 investigates
these problems for view insertions. Related work is discussed
in Section 5, followed by a conclusion in Section 6. All proofs
of the complexity results are included in the paper.

2. Key Preservation
In this section we define the notion of key preservation and

show that under this condition, the view side-effect problem
and the annotation placement problem coincide.

SPJ queries. Let R = (R1, . . . , Rn) be a relational
schema. An SPJ query on databases of R is an expression
defined in terms of the selection (σ), projection (π), join
(��) and renaming (δ) operators in the relational algebra,
and with relation names R1, . . . , Rn in R as well as con-
stants. It is known that the class of satisfiable SPJ queries
is equivalent to conjunctive queries as well as SPC queries
defined in terms of the selection, projection and cross prod-
uct (×) operators (see, e.g., [1]). Thus in the sequel we shall
use SPJ and SPC interchangeably.

We also study various subclasses of SPJ, denoted by list-
ing the operators supported: SP, SJ, and PJ (the renam-
ing operator is included in all subclasses by default without
listing it explicitly). For instance, PJ is the class of queries
defined with the projection, join and renaming operators.

For example, the view given in Fig. 1(c) is a PJ view.

Key preservation. Consider Q(R1, . . . , Rk), an SPJ query
that takes the base relations R1, . . . , Rk (repeats permitted)
of R as input. From these base relation schemas and the
definition of Q, it is straightforward to derive the schema of
the output relation of Q, denoted by schm(Q).

We say that Q is key-preserving if all primary key at-
tributes (with possible renaming) of each occurrence of the
base relations involved in Q are included in the projection
fields of Q.

Example 2.1: The query Q1 (Fig. 1(c)) given in Exam-
ple 1.1 can be extended such that it is key-preserving as
follows: Q2= πPCName,Conf,Topic(PC �� Conf). The corre-
sponding view for Q2(D) is given in Fig. 1(d). �

Observe that queries without projection are always key-
preserving.

We remark that key-preservation is far less restrictive
than other conditions on view definitions proposed in earlier
work [11, 14]. Indeed, these earlier proposals ask for joins
to be defined on foreign keys, join attributes to be preserved
in schm(Q), join to form a single tree, and/or for selection
conditions not to include attribute comparison, etc.

The equivalence of the view side-effect problem
and the annotation placement problem. For a key-
preserving SPJ query Q(R1, . . . , Rk), the two problems co-
incide. To see this, consider a source database D and the
view V = Q(D). For any tuple t ∈ V , and for each oc-
currence of each base relation Ri, t retains a key of the Ri

relation. Hence one can identify a unique tuple ti from each
occurrence of the Ri relation, such that t in the view is
constructed from these ti’s via Q. Thus as will be seen in
Section 3, for the view side-effect problem, to delete t from
V it suffices to remove a single ti from some Ri relation.
In other words, to remove a tuple ΔV from V it is always
possible to find a single tuple to remove from the source.
Equivalently, for the annotation placement problem, to an-
notate a single field in t, one can always identify a single ti

such that annotation at a field in ti propagates to the field
in t. This allows us to consider only the view side-effect and
source side-effect problem in the sequel.

Example 2.2: The deletion analysis of Example 1.1 is sim-
plified for the key-preserving view of Example 2.1. Consider
the deletion ΔV = {(John, CIKM, DB)} from Q2(D). (1)
View-side effect problem: Due to the key preservation prop-
erty of Q2, it is obvious that the deletion can be performed
by deleting either (John, CIKM) from PC or (CIKM, DB,

30) from Conf. Here {(John, CIKM)} is the minimal dele-
tion with the minimal view side-effect. Note that the key
preservation property also helps check the view side-effect
by finding the occurrences of key values of deleted relation
tuples in the view. (2) Source side-effect problem: Similar
to (1), we can easily determine that the solution is either
{(John, CIKM)} or {(CIKM, database, 30)}. (3) Annotation
placement problem: Under key preservation, the problem is
the same as (1), and the solution is {(John, CIKM)}. �
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Difference between insertions and deletions. To insert
a tuple t into V , one can identify the key ki of the tuple ti

that needs to be inserted into each occurrence of each Ri

relation involved. As will be seen in Section 4, based on ki

one can either identify a tuple ti already in the Ri relation
with ki as its key, or otherwise, construct a tuple ti carrying
ki as its key and insert it into the Ri relation. Observe that
while view-tuple deletion can always be carried out when
side effect is allowed, in contrast, it is not always doable to
insert a tuple into view in the presence of keys even if side
effect is allowed, as illustrated below.

Example 2.3: Consider another key preserving view Q3 =
PC �� Conf in the setting of Example 1.1, and the insertion
of the tuple (Kate, SIGMOD, DB, 35) into the view Q3(D).
At first glance, it seems that this insertion can be carried out
by inserting (Kate, SIGMOD) into table PC and (SIGMOD,

DB, 35) into table Conf. However, in fact the insertion is not
possible: the insertion (SIGMOD, DB, 35) has to be rejected
since taken together with (SIGMOD, DB, 30) it violates the
key in the relation Conf. 1 �

3. Deletion Propagation
In this section we investigate the view and source side-

effect problems for key-preserving SPJ views, in Sections 3.1
and 3.2, respectively, for single-tuple and group deletions.

3.1 The View Side-Effect Problem

Given a view deletion ΔV , the view side effect problem
is to find a minimal set of source tuples to delete so that
other view tuples (not in ΔV ) deleted are minimized. The
table below gives the complexity of the problem for various
subclasses of SPJ queries for single-tuple or group deletions.

Query class Complexity of view side-effect problem
under key-preservation

single deletion group deletions

SPJ (PJ, SJ) PTIME NP-hard
SP PTIME PTIME

It is known [5] that without key preservation the view
side-effect problem for single deletion on a PJ view is NP-
hard. In contrast, the problem becomes tractable for key
preserving SPJ views. This shows that the key preservation
condition simplifies the analysis of annotation propagation.

Theorem 3.1: The view side-effect problem is in PTIME
for single-tuple deletion for SPJ (and thus PJ and SJ) views
under key preservation. �

Proof: It suffices to give a proof for SPJ views. Let R =
{R1,. . . ,Rn} be a relational schema, Q a key-preserving SPJ
query, D an instance of the schema R, and ΔV consist of
the single tuple t to be deleted from the view Q(D).

Due to the key-preservation, we can associate with t (nec-
essarily unique) tuples si in the base relations Ri appearing
in Q, such that si and t have the same key for this relation.
In order to delete t from Q(D) is suffices to delete a single

1In contrast, when replacements (i.e., a deletion followed by an
insertion) are allowed, the insertion (Kate, SIGMOD, DB, 35)
could be carried out by replacing (SIGMOD, DB, 30) with (SIG-
MOD, DB, 35) in table Conf. We do not consider replacements
in this paper.
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V = RS �� δf1(R) �� δf2(R) �� δf3(R) �� δf4(R)

Figure 2: Illustration of the proof of Theorem 3.2.

such si from its base relation Ri. Any such deletion obvi-
ously results in a ΔD of minimal size since ΔD consists of
a single tuple only, as illustrated in Example 2.2.

For ΔD to be a solution for the view side-effect problem,
we need to find tuple si that leads to the minimal number
of side-effects. Let Si be the set of tuples in Q(D) \ {t}
carrying the key of si (in Ri). Note that computing Si

requires only a linear scan over the view Q(D). Clearly,
the size of Si determines the number of side-effects obtained
when choosing ΔD = {si}. Let s be the tuple si such that
its corresponding Si is of minimal size. Then ΔD = {s} is
a solution. It is clear that s can be found in PTIME. �

The problem, however, becomes NP-hard if we consider
group deletions. This tells us that group updates may com-
plicate the analysis of annotation propagation. It should be
remarked that the complexity of group view deletions is not
considered in [5, 19].

Theorem 3.2: The view side-effect problem is NP-hard
for group deletions for SPJ, PJ and SJ views under key
preservation. �

Proof: It suffices to show that the problem is NP-hard for
views defined in terms of join only, by reduction from the
minimal set cover problem. An instance of the minimal set
cover problem consists of a collection C of subsets of a finite
set S; it is to find a subset C′ ⊆ C such that every element
in S belongs to at least one member of C′ and moreover,
|C′| is minimal. This problem is NP-complete (cf. [12]).

Given S and C, we define an instance of the view side-
effect problem. Let S = {xi | i ∈ [1, n]} and C = {cj | j ∈
[1, k]}. We construct two base tables R and RS, a join view
and a group view deletion, as follows.

Source database. We define two base relations R and RS.

• R(A), where A is the key and is to hold a number in [1, k].
Initially, R(A) contains k = |C| tuples {(1), (2), . . . , (k)}
that represent the index of k subsets.

• RS(j, A1, . . . , Ak), where all the columns are the key. We
encode each element in S with tuples in RS as follows. For
each xi in S, let Ti be the collection of all the subsets in
C that contain xi. We assume w.l.o.g. that Ti �= ∅ (other-
wise there is no solution for the minimal set cover problem).
Enumerate the elements of Ti as (ci1 , . . . , cini ). We gener-
ate a list of size k from Ti, Li = < i1, . . . , ini , . . . , ini >, by
replacing cij with its index ij and appending (k− |Ti|) ini ’s
at the end of the list (to make the size of the list to be k).

If |S| > k, then we generate |S| tuples by adding one
number in [1, |S|] at the beginning of each list Li. Otherwise,
we generate k + 1 tuples by adding one number in [1, |S|] at
the beginning of each list Li and generate k + 1− |S| tuples
by adding numbers [|S| + 1, k + 1] to Ln. Thus table RS

initially contains � = max{|S|, k + 1} tuples.
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Let the database instance D be the collection of all tuples
defined above. The construction is illustrated in Fig. 2 for
S = {a, b, c, d} and C = {c1 = {a, b}, c2 = {a, d}, c3 =
{b, c}, c4 = {b, c, d}}.
View. We define a view in terms of query Q = RS ��
δf1(R) �� · · · �� δfk

(R), where δfi renames A in R to Ai.
Initially, Q(D) consists of � view tuples, which are the same
as those in the relation RS .

Obviously, the view defined as above is key-preserving.

• View deletion. The group deletion ΔV is to remove all
tuples in the view Q(D).

The view side-effect problem is to find a smallest set of
the tuples from R and RS so that ΔV is deleted without
side-effect. For example, suppose that we want to delete all
tuples in the view V shown in Fig. 2. For each view tuple
t, we indicate with colors which tuples (or ci’s) in R should
be deleted in order to remove t from V . When all tuples are
to be removed from V , i.e., ΔV = V , then clearly deleting
1 and 4 from R achieves this goal (each tuple in V contains
either 1 or 4). Hence, ΔR = {1, 4} and C′ = {c1, c4} is a
minimal cover of S.

More formally, we next verify that the construction above
is indeed a reduction from the minimum set cover problem.
First suppose that C′ is a minimal cover of S. We define ΔD
such that it consists of deletion of tuples {(i1), . . . , (i|C′|)}
from R, where ij is the index of subset cj ∈ C′. In order to
delete a tuple t in ΔV , we delete either t[RS] (its component
in RS) or one of its components in R. Since C′ is a cover of
S, at least one of components of t in R is in ΔD. Hence, it
is clear that Q(D − ΔD) = Q(D) − ΔV = ∅. Furthermore,
ΔD is minimal since (1) although deleting all the � tuples
from table RS suffices to delete ΔV , it is not a minimal
solution since |C′| ≤ k (and by construction, � > k), and
(2) C′ is a minimal cover of S. Conversely, suppose that
ΔD is a solution to the view side-effect problem. Then as
discussed above ΔD will be only composed of tuples in R.
Let C′ be the subset of C such that an element cj of C is
in C′ if and only if ΔD involves deletion of the tuple (j)
from relation R. To see that C′ is a cover of S, note that
Q(D − ΔD) = Q(D) − ΔV = ∅, and thus for each xi ∈ S,
some set cij is in C′. Moreover, C′ is minimal since ΔD is
minimal. �

Fortunately, the problem remains tractable for SP views
and group deletions.

Theorem 3.3: The view side-effect problem is in PTIME
for group deletions for SP views under key preservation. �

Proof: Let ΔV be a group deletion. It is easy to see that we
can apply a simple modification of the algorithm given in the
proof of Theorem 3.1 for each tuple in ΔV independently.
Indeed, for each tuple t ∈ ΔV we have to delete a single
distinct tuple st in the base relation appearing in the SP
query Q. Let ΔD consist of the base relation tuples st for
t ∈ ΔV . Clearly, ΔD is of minimal size. Due to the key-
preservation of Q, the deletion of ΔD from D will only delete
the tuples in ΔV from the view Q(D). Hence, ΔD is indeed
a solution for the view side-effect problem. �

3.2 The Source Side-Effect Problem

Given a view deletion ΔV , the source side-effect problem
is to find a minimal set of source tuples to be deleted so that
the view tuples in ΔV are deleted. Although the source side-

effect problem relaxes the requirement of minimizing view
side-effects in the view side-effect problem, unfortunately
the problem does not become easier, and the complexity
remains the same as its view side-effect counterpart. The
table below gives the complexity of determining the mini-
mum source deletions for various subclasses of SPJ queries
for single-tuple or group deletions.

Query class Complexity of source side effect problem
under key-preservation

single deletion group deletions

SPJ (SJ, PJ) PTIME NP-hard
SP PTIME PTIME

It has been shown in [5] that the source side-effect prob-
lem is already NP-hard for single deletion for PJ view. The
problem for single deletion becomes polynomial-time solv-
able when the key preservation condition is imposed. This
again verifies our observation that the key-preservation con-
dition makes our lives easier.

Theorem 3.4: The source side-effect problem is in PTIME
for single-tuple deletion for PJ, SJ and SPJ views under key
preservation. �

Proof: It suffices to give a proof for SPJ views. We remark
that the PTIME algorithm presented in the proof of The-
orem 3.1 already gives a solution for the source side-effect
problem. Indeed, it is observed there that the computed up-
date ΔD is of minimal size. We can therefore use the same
algorithm for the source side-effect problem, except that we
do not have to perform the steps for selecting the update
which minimizes the number of view side-effects. �

In fact the proof of Theorem 3.3 also works for the source
side-effect problem. Hence, we have the following:

Theorem 3.5: The source side-effect problem is in PTIME
for group deletions for SP views under key preservation. �

However, the problem for group deletions remains NP-
hard, as its view side-effect counterpart. Again this problem
has not been considered by previous work.

Theorem 3.6: The source side-effect problem is NP-hard
for group deletions for PJ, SJ and SPJ views under key
preservation. �

Proof: The proof of Theorem 3.2 is applicable here. �

4. Insertion Propagation
We next investigate the view and source side-effect prob-

lems for insertions, i.e., when the view update ΔV consists
of tuples to be inserted into the view. We study these two
problems in Section 4.1 and 4.2 respectively, in the presence
and in the absence of the key preservation condition, and
for both single-tuple or group insertions.

4.1 The View Side-Effect Problem

We first study the view side-effect problem in the absence
of key-preserving condition: given a source database D, a
query Q, the view V = Q(D) and a set ΔV of tuples, it is
to find a minimal set ΔD of tuples such that Q(D)−Q(D⊕
ΔD) contains ΔV and is minimal, i.e., the insertion of ΔD
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Figure 3: Illustration of the NP-hardness proof of
Theorem 4.1.

into the source D gets ΔV into the view while incurring
minimal side effect on the view. This problem turns out to
be nontrivial: it is already intractable when Q is a PJ (and
thus SPJ) view, even if ΔV consists of a single tuple.

Theorem 4.1: The view side-effect problem is NP-hard for
PJ views and single-tuple insertion, when the PJ views are
not necessarily key preserving. �

Proof: We prove the NP-hardness by reduction from the
non-tautology problem. An instance of the latter problem is
φ = C1∨· · ·∨Cn, where all the variables in φ are x1, . . . , xk,
Cj is of the form lj1 ∧ lj2 ∧ lj3 , and lij is either xs or x̄s,
s ∈ [1, k]. The problem is to determine whether there is a
truth assignment such that φ is false, i.e., φ is not valid.
This problem is known to be NP-complete (cf. [12]).

Given φ, we define a source database D, a PJ view Q, and
a single tuple ΔV to be inserted into the view V = Q(D),
such that φ is not valid iff there exists a minimal ΔD that
is side-effect free, i.e., Q(ΔD ⊕ D) = V ⊕ ΔV .

Source D. The database consists of four base relations, R,
Rφ, RE , and RT defined as follows.

• R(A,B), where intuitively, A is to hold a number in [1, k]
encoding a variable, and B is a truth value (T or F ). That
is, R(A,B) is to encode a truth assignment for φ. Initially
R(A, B) consists of a single tuple (0, T ).

• Rφ(C, j, j1, X1, j2, X2, j3, X3) in which for each Cj = lj1 ∧
lj2 ∧ lj3 , there is a tuple (T, j, lj1 , X1, lj2 , X2, lj3 , X3) in Rφ

such that lji is s if lji = xs or lji = x̄s, Xi is T if lji = xs,
and Xi is F if lji = x̄s. Each of these tuples codes a clause
in φ. A special tuple (T, 0, 0, T, 0, T, 0, T ) is also in Rφ.

• RE(e1, e2, . . . , ek), in which ei is to code i in [1, k]. Ini-
tially, RE consists of a single special tuple (0, . . . , 0).

• RT (C,D, E) consisting of the four tuples (T, T, T ),
(T, F, F ), (F, T, F ), and (F, F, T ). That is, the E-attribute
is T if the other attributes are equal, and is F otherwise.

View. We define a PJ query Q = V0 �� V1 �� V2 as follows:

• V0 = πE(δf1(R) �� δf2(R) �� RT ), where δf1 renames B
to C and δf2 renames B to D.

• V1 = πj,j1,j2,j3(δf1(R) �� δf2(R2) �� δf3(R3) �� Rφ),
where δfi renames A to ji and B to Xi for i = 1, 2, 3. Intu-
itively, C holds if and only if one of the Cj ’s is true.

• V2 = πe1,e2,...,ek (RE �� δf1(R) �� · · · �� δfk
(R)), where δfi

renames A to ei for i ∈ [1, k].

Initially V = Q(D) has a single tuple (T, 0, . . . , 0).

View insert. We define ΔV to consist of a single tuple
(T, 0, 0, 0, 0, 1, . . . , k) into V .

The construction above is illustrated in Fig. 3. In this
figure, we have depicted the base relations R, Rφ, RE and
RT as well as the intermediate view relations V0, V1 and V2.
The final view V0 �� V1 �� V2 is shown at the bottom right.
The tuple inserted in the view, as well as the tuples to be
inserted in the base relations R and RE are indicated by the
bold rectangles. As we will show formally below, the key
observation is that a zero side-effect update exists as long
as V1 only contains the initial tuple (0, 0, 0, 0). This in its
turn is equivalent to saying that φ is a non-tautology.

We next verify that there is a minimal, side-effect free ΔD
iff φ is not a tautology. First, if φ is not a tautology, then
there is a truth assignment μ such that φ is false, and thus
Cj is false w.r.t. μ for all j ∈ [1, n]. We define ΔD based
on μ as follows: for i ∈ [1, k], we insert (i, T ) into R(A,B)
iff μ(xi) = T , and insert (i, F ) iff μ(xi) = F . We also insert
(1, . . . , k) into RE . Then obviously Q(ΔD ⊕D) = V ⊕ΔV .
To see that ΔD is minimal, note that for any side-effect free
ΔD, ΔD must contain k tuples of the form (i, Xi) to be
inserted into R for i ∈ [1, k], where Xi is either T or F , as
well as a tuple (1, . . . , k) to be inserted into RE. Thus the
ΔD given above is already minimal.

Conversely, suppose that there is a minimal, side-effect
free ΔD. Then again ΔD must insert (1, . . . , k) into RE;
in addition ΔD contains a unique tuple of the form (i, X)
to be inserted into the base relation R for each i ∈ [1, k],
where X is either T or F . To see why (i, X) is unique, note
that if for some i both (i, T ) and (i, F ) are in ΔD, then
a tuple of the form (F, 0, 0, 0, 0, 1, . . . , k) would also be in
Q(D⊕ΔD) by the definition of Q (and in particular V0 and
RT ), a contradiction. Hence the instance of R is a valid
truth assignment for φ. Since ΔD is side-effect free, V1 will
remain (0, 0, 0, 0) after ΔD is inserted, i.e., Cj will remain
false for each j ∈ [1, n]. Thus φ is not a tautology. �

Worse, key preservation does not make our lives easier:

Theorem 4.2: The view side-effect problem is NP-hard for
key preserving PJ views and single-tuple insertion. �

Proof: The proof is similar to that of Theorem 4.1, by re-
duction from the non-tautology problem.

Source D. The database consists of three base relations,
R, Rφ and RE . Here R(A,B) and RE(e1, e2, . . . , ek) are
the same as defined in the proof of Theorem 4.1, with A
and e1, . . . , ek as the key of R and RE , respectively. The
relation Rφ is defined to be Rφ(j, j1, X1, j2, X2, j3, X3), in
which j is the key, and j, j1, X1, j2, X2, j3, X3 are the same
as given in the proof of Theorem 4.1.

View. We define a PJ query Q = V1 ×V2, where V1 and V2

are the same as given in the proof of Theorem 4.1. Initially
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Figure 4: Illustration of the PTIME algorithm in the
proof of Theorem 4.3.

V = Q(D) has a single tuple (0, . . . , 0) (k+4 0’s). It is easy
to verify that Q is key preserving.

View insert. We define ΔV to consist of a single tuple
(0, 0, 0, 0, 1, . . . , k) to be inserted into V .

We next verify that there is a minimal, side-effect free
ΔD iff φ is not a tautology. When φ is not a tautology, a
minimal, side-effect free ΔD can be constructed as described
in the proof of Theorem 4.1. Conversely, suppose that there
is a minimal, side-effect free ΔD. Then ΔD must insert
(1, . . . , k) into RE , and inserts a unique tuple of the form
(i, X) into R for each i ∈ [1, k], where X is either T or F .
Note that if for some i both (i, T ) and (i, F ) are in ΔD,
then these tuples violate the constraint that A is a key of
R. Thus the instance of R is a truth assignment for φ. The
rest of the argument is the same as that of Theorem 4.1. �

The good news is that the problem becomes tractable for
SP and SJ views and for group insertions, in the presence
and in the absence of key preservation.

Theorem 4.3: The view side-effect problem is in PTIME
for (a) SP views and (b) SJ views, for group insertions, no
matter whether the views are key-preserving or not. �

Proof: The proof is constructive. For each of the cases we
provide a PTIME algorithm which either halts (indicating
that no solution exists) or outputs a solution for the view
side-effect problem. Note that some insertions on the view
may not be doable, as demonstrated in Example 2.3.

Key-preserving SP views. Let D be a source database,
Q a key-preserving SP query, and ΔV be a group update
consisting of insertions only. We may assume that Q is of the
form πB1,...,Bn(σC(δf (R))) where R is one of the relations
in the schema R. If we denote by A1, . . . , Ak the primary
key attributes of R, w.l.o.g., then by the key-preservation of
Q it is the case that {A1, . . . , Ak} ⊆ {B1, . . . , Bn}.

For each tuple t ∈ ΔV , we define its tuple template t̂ =

(	a,	b, 	z), where 	a = t[A1, . . . , Ak], 	b consists of the constants
in the remaining attributes in t, and finally, 	z consists of
distinct variables for each remaining attribute in schm(R).

The PTIME algorithm for the view side-effect problem
performs the following steps. We illustrate some of them in
Fig. 4 for the base relation R (with A as its key), SP view
Q = πAB(σC=“c′′(R)) and updates ΔV1, ΔV2 and ΔV3.

First, we check whether ΔV contains different tuples with
the same key attributes. If so, then clearly no solution for
the problem exists, and the algorithm halts. See e.g., for
ΔV2 in Fig. 4 (the gray color indicates the conflict: it is not
possible to insert two distinct tuples with the same key e).

Otherwise, the algorithm continues by testing for each
tuple t ∈ ΔV , whether there already exists a tuple s in
R with the same key attributes, i.e., s[A1, . . . , Ak] = 	a. If

this happens, then t̂ should be equal to s. If one of the 	b
attributes of t differs from those in s, then no solution exists
and the algorithms halts. This happens e.g., for ΔV1 in
Fig. 4 (the gray color indicates the conflict).

Moreover, in order to get t inserted into the view, a neces-
sary condition is that σC(s) holds. If not, then no solution
for the group update can be found and, again, the algorithm
halts. Otherwise, we can safely remove all t from ΔV whose
key already appears in R.

Finally, for each remaining tuple t in ΔV we need to in-
stantiate the variables in its template t̂. More specifically,
we need to instantiate these variable such that the resulting
tuple (this will be a tuple to be added to R) satisfies the se-
lection condition C in Q. Because Q does not contain joins,
we can treat each tuple in ΔV independently.

We recall that C is a conjunction of equalities of the form
x = y, where x, y are either attributes or constants. By
plugging in C the constants available in t̂, i.e., those in 	a

and 	b, we obtain a new conjunction C′ (with possibly less
variables). By constructing a dependency graph G between
the constants and variables in C′ and computing its transi-
tive closure G′, one can then easily check whether a desired
instantiation of the variables exists. Indeed, if there exists
an edge (a, b) ∈ G′ with a, b two different constants, then
no instantiation exists. We say that C′ is conflicting. Con-
sequently, in this case no solution of the view side-effect
problem exists and the algorithm halts. Otherwise, one as-
signs to all the variables in the same connected component
in G′ the same constant value (i.e., the value of the unique
constant in this component, or an arbitrary one if the con-
nected component consists of variables only). Variables not
appearing in C can be instantiated arbitrarily. The resulting
tuple is then added to ΔD.

The algorithm successfully computes a solution for the
view side-effect problem if for each tuple in ΔV (modulo
the ones whose key already appeared in R) a tuple is added
to ΔD. In all other cases, no solution exists. For example,
in Fig. 4 a solution for ΔV3 exists. First, the tuple in ΔV3

is expanded to a template (introducing the variable z), then
this variable is instantiated using the condition C = “c′′ of
the selection predicate of Q.

We remark that in case a solution exists, ΔD computed
by the above algorithm is of minimal size. Indeed, for each
new key in ΔV , a single tuple with this key is added to
ΔD. Since Q is key-preserving, this is the minimal number
of tuples required for any solution. Moreover, it is easy to
see that this solution is side-effect free, and hence is also
minimal on the view side.

The algorithm runs clearly in polynomial time.

Arbitrary SP views. Let us now drop the key-preserving
condition on the view Q. We use the same approach as
in the key-preserving case, except that we do not have to
check for conflicting keys. However, even in the absence of
key-preservation, the update to the view cannot always be
performed successfully. As we will see below, a necessary
condition is that the tuples to be inserted in the view can
be extended to tuples in the base relation satisfying the se-
lection condition C.

Indeed, for each tuple t in ΔV to be inserted in the SP
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view Q, we create a tuple template t̂ = (t, 	z) where 	z consists
of variables for the attributes in schm(R) \ {B1, . . . , Bm}.

We then proceed by checking for each template t̂ whether
there exists already tuples s in R such that (i) t̂ and s agree
on schm(Q); and (ii) σC(s) holds. If there exists such a
tuple s, then t̂ is set to s, and we can safely remove t from
ΔV to be inserted (it will automatically belong to the view).
Otherwise, if σC(s) does not hold or no such s exists, then
we need to instantiate the variables 	z in t̂ in such a way
that for the resulting tuple t′, σC(t′) holds. The tuples t′

will make up the update ΔD to the database.
Testing whether such an instantiation exists can be done

similarly as in the key-preserving case above. If this can
be done successfully for each template, then ΔD will be
a solution for the view side-effect problem. In fact, this
solution does not introduce any side effects. Also, ΔD is
minimal, because only the necessary tuples are inserted in
D (we use existing tuples where possible). The algorithm
runs clearly in polynomial time.

Key-preserving SJ views. We may assume that Q =
σC(δf1(R1) �� · · · �� δfk

(Rk)).
The PTIME algorithm consists of the following steps. Be-

cause Q does not contain projections, we can derive from
each tuple t in ΔV and for each relation Ri (i ∈ [1, k]) in

Q a tuple t̂i = (	ai,	bi) over the attributes of Ri. We then
check for each t ∈ ΔV whether (δf1(t̂1) �� · · · �� δfk

(t̂k))
satisfies the selection condition C. If not, then no solution
exists and the algorithm halts. Otherwise, it continues.

Similar to the cases above, we check for each t̂i whether
there exists already an si in Ri having the same key 	ai. If
this is the case, t̂i should be equal to si. If there exists a t̂i

for which this does not hold, then no solution exists and the
algorithm stops. Otherwise, the algorithm continues.

Denote by ΔRi the set of tuple t̂i for which no tuple in Ri

exists with the same key. We check whether ΔRi contains
two different tuples having the same key. If such tuples
exists, no solution can be found and the algorithm halts.
Otherwise, we define ΔD to be {ΔR1, . . . , ΔRk}.

We remark that ΔD is the minimal solution. Indeed, in
each instance Ri, the same number of tuples as the number
of new keys for Ri present in ΔV are inserted. This is the
minimum requirement for any solution, so we cannot do it
with less updates to D. Because we have no choice (due
to the lack of projections) about which tuples to insert, the
number of side-effects created is necessarily minimal. The
algorithm clearly runs in polynomial time.

Arbitrary SJ views. Let us now drop the condition of
key-preservation. Again, because Q does not have a pro-
jection, we can associate with each tuple t in ΔV and
each relation Ri in Q, a unique tuple t̂i over the attributes
of Ri. We simply check if t̂i already appears in the in-
stance Ri. If not, then we add t̂i to ΔRi. Assuming that
σC(δf1(t̂1) �� · · · �� δfk

(t̂k)) holds for each tuple t in ΔV ,
we define ΔD = {ΔR1, . . . , ΔRk}. For the same reasons
as in the key-preserving case, this is a solution of the view
side-effect problem. �

These results are summarized in Table below.
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Figure 5: Illustration of the PTIME algorithm in the
proof of Theorem 4.4.

Query class Complexity of view side-effect problem
key-preservation arbitrary

PJ, SPJ NP-hard (1 tuple) NP-hard (1 tuple)
SP PTIME (group) PTIME (group)
SJ PTIME (group) PTIME (group)

4.2 The Source Side-Effect Problem

Finally we study the source side-effect problem for in-
sertions: given a source database D, a query Q, the view
V = Q(D) and a set ΔV of tuples, it is to find a minimal
set ΔD of tuples such that Q(D) − Q(D ⊕ ΔD) contains
ΔV , i.e., we want to find a minimal set of tuples to insert
into the source such that the insertion will get ΔV into the
view, regardless of side effects on the view. We study this
problem for both key-preserving and general view queries Q
in SPJ and its subclasses. The main results of this section
are summarized in the Table below.

Query class Complexity of source side-effect problem
key-preservation arbitrary

PJ, SPJ PTIME (group) NP-hard (1 tuple)
SP PTIME (group) PTIME (group)
SJ PTIME (group) PTIME (group)

We first present the tractable results.

Theorem 4.4: The source side-effect problem is in PTIME
for (a) SP views and (b) SJ views, for group insertions, no
matter whether the views are key-preserving or not. It is
also in PTIME for (c) key-preserving SPJ views. �

Proof: The proofs of cases (a) and (b) are similar to those
of (a) and (b) for the view side-effect problem (see Theo-
rem 4.3). To show (c), it requires a bit more effort (recall
that the view side-effect problem for this case is intractable,
by Theorem 4.2).

Arbitrary SP and SJ views. The update ΔD returned
by the PTIME algorithm for the view side-effect problem
is a solution of the source side-effect problem. Indeed, only
the necessary tuples are inserted by those algorithms given
for Theorem 4.3. As a result, ΔD is of minimal size.

Key-preserving SPJ views. Consider a key-preserving
SPJ query Q = πB,...,BmσC(δf1(t̂1) �� · · · �� δfk

(t̂k)).
As before, for each tuple t in ΔV and each relation Ri in

Q, we associate a template t̂i = (	ai,	bi, 	zi).
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The PTIME algorithm first checks for incompatible tem-
plates: (i) there should be no two different templates with
the same key; or (ii) templates t̂i with the same key as an
existing tuple si in Ri, but which differ in another attribute.
As before, we use these existing tuples si (if they exist) to
instantiate the variables in t̂i.

Fig. 5 illustrates the algorithm for the base relations R1,
R2, R3, with keys A, C and D, respectively, the key-
preserving SPJ view Q = πACD(σA=E(R1 �� R2 �� R3)),
and view update ΔV . We also depict the templates for each
tuple in ΔV .

If no conflicts are found, we define ΔRi to be the set of
templates t̂i (note that some of then will have no variables
anymore, which means that they are already in Ri).

It remains to instantiate the variables in the templates.
For this, we proceed as follows: for each tuple t in ΔV we
compute a conjunctive formula φt representing the selec-
tion and join condition to hold on t̂1 × t̂2 × · · · × t̂k such
that it will generate t in the view. The formula φt con-
sists of a conjuncts of equations of the form x = y where x
and y are either variables or constants in t̂i, i ∈ [1, k]. We
group together all conjunctions φt into a big conjunction
Φ =

V
t∈ΔV φt and check (in a similar way as in case (a) of

Theorem 4.2) whether there exists an instantiation of the
variables which makes Φ true.

Since we are not concerned about the size of the side ef-
fects, we do not have to take into account constraints re-
garding existing constants in the database (this is in con-
trast with the NP-hardness proof in Theorem 4.1). Hence,
if an instantiation exists, we can complete the templates
into tuples which populate the update set ΔRi. Finally, we
define ΔD = {ΔR1, . . . , ΔRk}. For example, in Fig. 5 we
show Φ and a possible instantiation of the variables. The
updated view is shown on the bottom right. In this case no
side-effects were created (while in general, side effect cannot
be avoided).

We remark that ΔD is a solution and is also minimal.
Indeed, at most a single tuple for each new key in tuples in
ΔV is added, a necessary requirement for any solution. �

We next show that in the absence of the key preserva-
tion condition, the source side-effect problem becomes in-
tractable for PJ (and thus SPJ) views and single-tuple in-
sertion. Contrast this with Theorem 4.4 (b) and (c). Taken
together, these tell us that the key preservation condition
may also simplify the analysis of annotation propagation
when view insertions are concerned.

Theorem 4.5: The source side-effect problem is NP-hard
for PJ views and single-tuple insertion, when the PJ views
are not necessarily key preserving. �

Proof: We prove the intractability by reduction from the
minimal set cover problem (see the proof of Theorem 3.2
for the statement of this problem). It is known that this
problem is NP-complete [12].

Given S and C, we define an instance of the source side-
effect problem. Let S = {xi | i ∈ [1, n]} and C = {cj | j ∈
[1, k]}. We construct a source database D, a PJ view Q, the
view V = Q(D), and a single tuple ΔV to be inserted into V .
We show that we can find a minimal cover C′ of S iff there
exists a minimal set ΔD of tuples such that Q(D ⊕ ΔD)
contains ΔV .
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Figure 6: Illustration of the NP-hardness proof of
Theorem 4.5.

Source database. We define k+2 relations Ri
S, i ∈ [1, k+1]

and a relation RC .

• Ri
S(IS, IC), for i ∈ [1, k + 1], where IS and IC range

over [1, n] and [1, k], respectively. Initially, (i, j) is in D iff
xi ∈ cj , i.e., (i, j) indicates whether or not the element xi

of S is in the subset cj in the collection C. As will be seen
shortly, we keep k + 1 copies of the Ri

S(IS, IC) relation to
prevent insertions into any of these relations.

• RC(IC) is to hold the elements of C to be picked for
covering S. In other words, RC(IC) is to represent a cover
C′ (after it is picked) such that (j) is in D iff cj ∈ C′, for
j ∈ [1, k]. Initially RC in D is empty, i.e., no element of C
is picked yet.

View. We define a PJ view Q = δf1(Q
′) �� . . . �� δfn(Q′),

where Q′ is πIS (R1
S �� R2

S �� · · ·Rk+1
S �� RC), and δfi re-

names IS to a distinct name Ii
S in order to conduct cross

product (rather than natural join). A tuple in the view is a
n-vector (a1, . . . , an), where ai ∈ [1, n]. Initially, V = Q(D)
is empty. Note that Q is not key preserving.

View insertion. The tuple ΔV is (1, . . . , n). It is to force
a cover C′ to be picked, i.e., every element xi in S is to be
covered by some subset cj in C′.

The reduction is illustrated in Fig. 6 for S = {a, b, c, d}
and C = {c1 = {a, b}, c2 = {a, d}, c3 = {b, c}, c4 = {b, c, d}}.
The tuple inserted into the view and the tuples to be inserted
into RC are indicated by the bold rectangles. Tuples in RC

determine which sets in C is considered to be in a (minimal)
cover of S. The colors represent the two elements in C,
c1 = {a, b} and c4 = {b, c, d}, selected by the insertion of (1)
and (4) in RC . It can be seen that the intermediate relation
Q′ contains all elements in S, which implies that {c1, c4}
form a cover of S. The insertion of these two elements in
RC is forced by the insertion of (1, 2, 3, 4) in the view. As
explained below, k+1 copies of RS are needed to prevent an
insertion in those base relations (as updates to one relation
will cause an update in all k + 1).

More formally, we next show that this is indeed a reduc-
tion. First, assume that C′ is a minimal cover of S. Then
we construct source tuples ΔD such that (j) is inserted into
RC(IC) iff cj ∈ C′. Obviously, ΔD ∈ Q(D⊕ΔD) since C′ is
a cover, and moreover, ΔD is minimal since C′ is minimal.
Note that, however, ΔD is not side-effect free: Q(D ⊕ΔD)
contains all permutations of (1, . . . , n). But side effects are
not the concern of the source side-effect problem.

Conversely, suppose that there is a minimal ΔD such that
ΔD ∈ Q(D ⊕ ΔD). Note that ΔD consists of insertions
to RC(IC) only. Indeed, if one wants to insert tuples into
Ri

S(IS, IC), for some i ∈ [1, k +1], in order to add a tuple to
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the view, the same insertions always have to be performed to
all k+1 source relations Ri

S(IS, IC). Obviously, the minimal
solution always consists of maximal k updates.

Given the minimal update ΔD to RC(IC), we define a set
C′ such that cj is in C′ iff (j) is in RC(IC) in ΔD. Since
(1, . . . , n) is in Q(D⊕ΔD), from the definition of Q it follows
that ΔD consists of (j)’s such that for any i ∈ [1, k], there
is (i, j) ∈ RS(IS, IC). Thus C′ is a cover of S. In addition,
C′ is a minimal cover since ΔD is minimal. That is, C′ is a
minimal cover of S. �

5. Related Work
To our knowledge, the only known complexity results for

the analysis of annotation propagation were given in [5, 19].
We have remarked in Section 1 on the connection between
our work and [5, 19]. In particular, key preservation, group
updates and propagation of view insertions were not consid-
ered in [5, 19]. On relational view updates, surprisingly few
complexity bounds are known; in fact the only tractability
and intractability results we are aware of were established
in [2, 8, 15], for finding a minimal view complement for re-
lational views, a problem very different from ours.

There has also been work on the modelling and managing
of provenance information [10, 20, 4, 3]. Except for [10],
no complexity results were given. In [10], a key-preserving
condition was also considered. It was shown there that the
condition simplifies the computation of lineage. However,
views of [10] are defined in terms of generic mapping func-
tions, which are quite different from SPJ views studied in
this paper. As a consequence their complexity results do
not apply to the decision problems considered in this paper
and vice versa.

An algorithm was provided in [9] for translating view dele-
tions to base relations with zero side-effects, based on data
lineage. This algorithm performs an exhaustive search over
all candidate solutions, leading to an exponential time com-
plexity. In contrast, with our key-preservation condition,
the computation of data lineage can be simplified and the
view side-effect free deletion problem is PTIME resolvable.

There has been a host of work on relational view updates
(e.g., [8, 11, 14, 15, 3]). Algorithms were provided in [11]
for translating restricted view updates to base-table updates
without side effects in the presence of certain functional de-
pendencies. An algorithm was developed in [14] to translate
(with side effects) a class of SPJ view updates to base rela-
tions, with the following restrictions: base tables may only
be joined on keys and must satisfy foreign keys; a join view
corresponds to a single tree where each node refers to a re-
lation; join attributes must be preserved; and comparisons
between two attributes are not allowed in selection condi-
tions. As remarked in Section 2, our key preservation condi-
tion is less restrictive than those in [11, 14]. More recently
in [3], a bi-directional query language was proposed, which
imposes conditions on the operators in the language such
that arbitrary changes to views can be carried out. The
conditions are more restrictive than the key preservation
condition studied in this paper.

Commercial database systems [13, 16, 18] allow updates
on very restricted views, while allowing users to specify up-
dates manually with the instead of triggers. For example,
for views to be deletable ibm db2 [13] restricts the from
clause to reference only one base table.

6. Conclusion
We have re-investigated the propagation analysis of an-

notations under the key preservation condition. We have
shown that for key-preserving SPJ views, the view and
source side-effect problems are in PTIME as opposed to
NP-hard in the absence of the condition [5, 19]. We have
also investigated the impact of group updates on the com-
plexity of the propagation analysis, and shown that group
updates complicate the analysis: for group deletions the
view and source side-effect problems become NP-hard for
key-preserving SPJ views. In addition, we have established
the first complexity results for the analysis of view insertions
for SPJ views, both in the presence and in the absence of
the key preservation condition. These provide a complete
picture of the complexity of the propagation analysis of an-
notations. These results are not only important for data
provenance but are also useful for view-update processing.

We are currently studying approximation (heuristic) al-
gorithms for conducting the propagation analysis of anno-
tations when the associated problems are intractable. We
also plan to identify other practical conditions on view def-
initions such that the analysis can be performed efficiently.
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