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Abstract. Mining frequent itemsets from transactional datasets is a
well known problem with good algorithmic solutions. In the case of un-
certain data, however, several new techniques have been proposed. Un-
fortunately, these proposals often suffer when a lot of items occur with
many different probabilities. Here we propose an approach based on sam-
pling by instantiating “possible worlds” of the uncertain data, on which
we subsequently run optimized frequent itemset mining algorithms. As
such we gain efficiency at a surprisingly low loss in accuracy. These is
confirmed by a statistical and an empirical evaluation on real and syn-
thetic data.

1 Introduction

In frequent itemset mining, the transaction dataset is typically represented as
a binary matrix where each line represents a transaction and every column cor-
responds to an item. An element Mij represents the presence or the absence
of the item j in transaction i by the value 1 or 0 respectively. For this basic
traditional model, where an item is either present or absent in a transaction,
many algorithms have been proposed for mining frequent itemsets; i.e., sets of
columns of M that have all ones in at least a given number of transactions (see
e.g. [5] for an overview on frequent itemset mining).

In many applications, however, an item is not present or absent in a trans-
action, but rather an existence probability of being in the transaction is given.
This is the case, for example, for data collected from experimental measurements
or from noisy sensors. Mining frequent patterns from this kind of data is more
difficult than mining from traditional transaction datasets. After all, computing
the support of an itemset now has to rely on the existence probabilities of the
items, which leads to an expected support as introduced by Chui et al. [4].

If the binary matrix is transformed into a probabilistic matrix, where each
element takes values in the interval [0, 1], we have the so called uncertain data
model. Under the assumption of statistical independence of the items in all
transactions in the dataset, the support of an itemset in this model, as defined
by Chui et al. [4], is based on the possible world interpretation of uncertain
data. Basically, for every item x and every transaction t there exist two sets of
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possible worlds, one with the worlds in which x is present in t and one with
the worlds where x is not present in t. The probability of the first set of worlds
is given by the existence probability of x in t (P (x, t)) and the probability of
the second set of worlds by 1−P (x, t). The probability of a single world is then
obtained by multiplying the probabilities for all its individual items; i.e., P (W ) =
∑

t∈W

∏

x∈t P (x, t)
∏

x 6∈t(1 − P (x, t)). The expected support of an itemset can
be obtained by summing the support of that itemset over all possible worlds,
while taking into consideration the probability of each world. There exist 2|D|×|I|

worlds, where |D| is the total number of transactions in the probabilistic dataset
and |I| is the total number of items. This rather complicated formula can be
reduced to:

expSup(X) =
∑

t∈D

∏

x∈X

P (x, t)

Every transaction thus supports an itemset with the probability given by the
product of existence probabilities of all items in the itemset and in that trans-
action. The expected support of an itemset over the entire dataset is the sum of
the existence probabilities of that itemset in every transaction of the dataset.

In the remainder of this paper we revisit the related work, then we present
our proposed method based on sampling, followed by theoretical and empirical
analysis of the quality of the results.

2 Related Work

The efficient data structures and techniques used in frequent itemset mining
such as TID-lists [2], FP-tree, which adopts a prefix tree structure as used in
FP-growth [6], and the hyper-linked array based structure as used in H-mine [8]
can no longer be used as such directly on the uncertain data. Therefore, recent
work on frequent itemset mining in uncertain data that inherits the breadth-first
and depth-first approaches from traditional frequent itemset mining adapts the
data structures to the probabilistic model.

U-Apriori [4] is based on a level wise algorithm and represents a baseline
algorithm for mining frequent itemsets from uncertain datasets. Because of the
generate and test strategy, level by level, the method does not scale well.

UCP-Apriori [3] is based on the decremental pruning technique which con-
sists in maintaining an upper bound of the support and decrementing it while
scanning the dataset. The itemset is pruned as soon as its most optimistic value
falls below the threshold. This approach represents the state of the art for mining
frequent patterns from uncertain data with a generate-and-prune strategy.

UF-growth [7] extends the FP-Growth algorithm [6]. It is based on a UF-tree
data structure (similar to FP-tree). The difference with the construction of a FP-
tree is that a transaction is merged with a child only if the same item and the
same expected support exist in the transaction and in the child node, leading to a
far lower compression ratio as in the original FP-tree. The improvements consist
in discretization of the expected support to avoid the huge number of different
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values and in adapting the idea of co-occurrence frequent itemset tree (COFI-
tree). The UF-trees are built only for the first two levels. It then enumerates the
frequent patterns by traversing the tree and decreasing the occurrence counts.

Aggarwal et al. [1] extended several existing classical frequent itemset mining
algorithms for deterministic data sets, and compared their relative performance
in terms of efficiency and memory usage. The UH-mine algorithm, proposed in
their paper, provides the best trade-offs. The algorithm is based on the pattern
growth paradigm. The main difference with UF-growth is the data structure
used which is a hyperlinked array.

The limitations of these existing methods are the ones inherited from the
original methods. The size of the data for the level-wise generate-and-test tech-
niques affects their scalability and the pattern-growth techniques require a lot
of memory for accommodating the dataset in the data structures, such as the
FP-tree, especially when the transactions do not share many items. In the case
of uncertain data, not only the items have to be shared for a better compression
but also the existence probabilities, which is often not the case.

3 Sampling the Uncertain Dataset

The first method we propose, called Concatenating the Samples, takes the un-
certain dataset and samples according to the given existential probabilities. For
every transaction t and every item i in transaction t we generate an independent
random number 0 ≤ r ≤ 1 (coin flip) and we compare it with the probability
p associated with the item i. If p ≥ r then item i will appear in the currently
sampled transaction. For every transaction in the uncertain dataset we repeat
the step above n times, for a given n. The result is a dataset which can be mined
with any traditional frequent itemset mining algorithm. To obtain the estimated
support of an itemset in the uncertain dataset, its support in the sampled dataset
still needs to be divided by n.

The difficulty of this method resides in the fact that we physically instantiate
and store the sampled “certain” dataset which can be up to n times larger than
the original uncertain dataset. Fortunately, for most efficient itemset mining al-
gorithms, we do not actually have to materialize this samples database. After
all, most efficient techniques read the database from disk only once, after which
their advanced data structures contain the database in the main memory. There-
fore, the sample can be generated immediately in memory when the database is
being read from disk for the first time. We call this method Inline Sampling.

To this end, we made minor modifications of the frequent itemset mining
algorithms. We will briefly describe U-Eclat and UFP-growth, the modified
versions of the ECLAT and FP-growth algorithms.

U-Eclat is an adaptation of the ECLAT algorithm [11] with an improvement
based on diffsets as described in [10]. In only one scan of the dataset the relevant
items are stored into memory together with the list of transactions where the
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items appear, called tid-list. The candidates are then generated using a depth-
first search strategy and their support is computed by intersecting the tid-list of
the subsets. The only adaptation for U-Eclat consists in reading the uncertain
transactions and instantiating them as described above. More specifically, given
the number of iterations n, for every transaction t and every item i in transaction
t we generate n independent random numbers r1, . . . , rn betweeen 0 and 1 and
we compare them with the probability p associated with the item i. If p ≥ rj ,
for 1 ≤ j ≤ n, then n · t + j will appear in the tid-list of item i. From there on,
the standard Eclat algorithm is being executed.

UFP-growth extends the initial FP-growth algorithm [6]. The FP-tree con-
struction needs two scans of the dataset. The first scan collects the frequent items
and their support and in the second scan every transaction is accommodated in
the FP-tree structure. The frequent itemsets are then generated recursively from
the FP-tree. In order to adapt this algorithm to our method, the first scan com-
putes the expected support of every itemset exactly by computing their support
as the sum of existential probabilities in every transaction where it occurs. In
the second scan, every transaction is instantiated n times, according to the ex-
istential probability of the items in the transaction and then it is inserted in
FP-tree structure. The algorithm then extracts the frequent itemsets the same
way as the FP-growth algorithm.

4 Statistical Bounds on the Quality of the Approximation

As before, D denotes the set of transactions, and I the set of items. P (x, t)
denotes the probability assigned to item x by transaction t. We extend this
notation to itemsets X ; i.e., P (X, t) will denote

∏

x∈X P (x, t). Our whole analysis
will be based on the numbers P (X, t) only and hence, will not depend on the
assumption of independence between the items. Notice that this implies that our
sampling-based method, in contrast to the other existing proposals, could also
be applied when a more involved probabilistic model is assumed. We first start
our analysis for a single itemset X and will extend it later on for the complete
collection of itemsets.

Suppose that, for every transaction t ∈ D, we sample n deterministic versions
of this tuple, t1, . . . , tn. Let X i

t be the stochastic variable denoting if X ⊆ ti; i.e.,
X i

t = 1 if X ⊆ ti, and X i
t = 0 otherwise. Notice that the variables X i

t are statis-
tically independent as they are sampled using independent coin flips. X i

t follows
a Bernoulli distribution with mean P (X, t). It is easy to see that the stochastic
variable Xt =

∑n
i=1 X i

t follows a binomial distribution with mean nP (X, t) and

variance nP (X, t)(1 − P (X, t)). Consider now the sum: S(X) :=
P

t∈D
Xt

n The
expected value and variance of this sum are as follows:

E[S] = expSup(X)

V [S] = V

[
∑

t∈D Xt

n

]

=

∑

t∈D V [Xt]

n2
=

∑

t∈D nP (X, t)(1 − P (X, t))

n2
≤

|D|

4n
.
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Hence, not surprisingly, the sum S we use to approximate the expected support
is an unbiased estimator with a variance that decreases linearly with n. For the

relative version, rS = S
|D| , we get V [rS] = V

[

S
|D|

]

= V [S]
|D|2 ≤ 1

4n|D| .

We now apply Hoeffding’s inequality. This inequality is as follows: given
independent (but not necessarily identically distributed) stochastic variables
X1, . . . , Xm such that for all i = 1 . . . n, P (ai ≤ Xi − E[Xi] ≤ bi) = 1, then

p

[

∣

∣

∑

i

Xi − E

[

∑

i

Xi

]

∣

∣ ≥ mǫ

]

≤ 2 exp

(

−
2m2ǫ2

∑n
i=1(bi − ai)2

)

.

In our case, for all X i
t , X i

t − E(X i
t) is in the interval [−1, 1], and hence we get:

p

[

∣

∣

∣

∑

t∈D

n
∑

i=1

X i
t − E

[

∑

t∈D

n
∑

i=1

X i
t

]

∣

∣

∣
≥ n|D|ǫ

]

≤ 2 exp

(

−
2(n|D|)2ǫ2
∑n|D|

i=1 22

)

= 2 exp

(

−
n|D|ǫ2

2

)

.

If we now rewrite in function of rS(X) and rsupp(X) := expSup(X)
|D| , we get:

p[|rS(X) − rsupp(X)| ≥ ǫ] ≤ 2 exp

(

−
n|D|ǫ2

2

)

.

Hence, for given ǫ, δ > 0, we have: If δ ≥ 2 exp
(

−n|D|ǫ2

2

)

, i.e., n ≥ − 2 ln(δ/2)
|D|ǫ2 ,

then p[|rS(X) − rsupp(X)| ≤ ǫ] ≥ 1 − δ .
The significance of this result can best be illustrated by an example. Suppose

D contains 100 000 probabilistic transactions and X is an itemset. In order to
guarantee that the support of X is approximated with 99% probability with

less than 1% error, we need to have n ≥ − 2 ln(0.01/2)
100 000(0.01)2 ≈ 1. Hence, we need

approximately 1 sample per transaction in D to achieve this result. Furthermore,
suppose that we have a collection of 1 000 000 frequent itemsets. In order to
guarantee that all these itemsets have less than 1% error with 99% probability,

we need to have (using the union rule) n ≥ − 2 ln(1/200 000 000)
100 000(0.01)2 ≈ 3.8; i.e., less

than 4 samples per transaction.
As a side note, even tighter bounds can be gotten by approximating the

distribution of rS with a normal distribution, using a weaker form of the Cen-

tral Limit Theorem, called Lyapunov’s central limit theorem. That is, S−supp(X)
nV [S]

converges in probability to N(0, 1).

5 Experiments

The experiments were conducted on a GNU/Linux machine with a 2.1GHz CPU
with 2 Gb of main memory. We used the datasets and the executables for com-
parison from [1]. Kosarak contains anonymized click-stream data. It is a very
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sparse dataset, with a density of less than 0.02%, about 1 million transactions,
42170 distinct items and an average of 8 item per transaction. The dataset
T40I10D100K was generated using the IBM synthetic data generator, having
100K transactions, 942 distinct items and a density of 4.2%. The original datasets
were transformed by Aggarwal et al. [1] into uncertain datasets by assigning to
every item in every transaction existential probabilities according to the nor-
mal distribution N(µ, σ2), where µ and σ were randomly and independently
generated with values between [0.87, 0.99] and [1/21, 1/12] respectively.
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Fig. 1. kosarak Dataset

For different values of the minimum support, we ran our implementations of
U-Eclat and UFP-growth. The number of times we instantiate the uncertain
dataset varies between 1 and 50. The higher the number of instantiations, the
better the accuracy of the results becomes, at the cost of an increase in exe-
cution time. We also experimented with the original ECLAT and FP-growth

algorithms after materializing the sampled datasets. Obviously the size of these
datasets become very large for multiple iterations, and thus, those experiments
always resulted in a decrease in performance as compared to their inline versions.
Experimentally we show that for relatively low number of instantiations we reach
highly accurate results. The gain in time motivates the use of our method which
outperforms in execution time the existing state of the art methods mentioned
in [1]. For every dataset, we plot the execution times we obtained for different
values of the minimum support and for some different numbers of iterations. It
turns out that U-Eclat always outperformed UFP-growth. In many cases, the
FP-tree simply became too large to handle [5]. In the experiments, for clarity,
we thus only show the results for U-Eclat. For a fair comparison we also only
show the best performing implementations of the algorithms mentioned in [1],
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Fig. 2. t40 Dataset

being UCP-Apriori and UH-mine. The execution times are depicted in Figures
1(a) and 2(a).

For low support threshold, our U-Eclat outperforms UCP-Aprori and UH-
mine for up to 5 sampling iterations of the dataset. Note that more efficient
frequent set mining algorithms as can be found in the FIMI repository will per-
form even better, also for a higher number of iterations. As our theoretical results
already indicated that 2 iterations already result in a very accurate approxima-
tion of the expected supports of all itemsets. This also shows in practice.

To this end, we compare the collections of frequent patterns and their support
obtained using the exact method and our sampling method. First, the collection
of frequent itemsets is generated using UCP-Aprori [1]. Based on this, we eval-
uate the errors in support computed with the sampling method.

kosarak
precision recall

Iter min avg max min avg max
1 97.67 98.95 100 97.93 99.28 100
2 98.27 99.41 100 98.88 99.62 100
5 99.13 99.63 100 99.10 99.70 100
10 99.43 99.77 100 99.34 99.74 100
20 99.32 99.74 100 99.60 99.83 100
30 99.53 99.79 100 99.60 99.83 100
40 99.69 99.87 100 99.60 99.84 100
50 99.60 99.83 100 99.75 99.92 100

t40
precision recall

Iter min avg max min avg max
1 92.88 96.16 100 93.66 96.95 100
2 94.22 97.25 99.54 95.91 97.73 100
5 97.10 98.52 100 96.88 98.48 100
10 98.16 99.12 100 98.43 99.14 100
20 98.87 99.37 100 95.25 98.70 100
30 99.39 99.65 100 99.26 99.64 100
40 99.46 99.65 100 99.42 99.71 100
50 99.63 99.82 100 99.68 99.80 100

Fig. 3. Summary of Precision and Recall

In terms of support error, we compute the average of the absolute difference
between the support of itemsets found by both methods. The error is depicted
in Figures 1(b) and 2(b). It can be seen that, as expected and predicted by
the statistical evaluation, the higher the number of iterations grows, the lower
the error becomes. But even for relatively low number (5 or 10 iterations), the
average error in support estimation drops below 1%.
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For itemsets having the support close to the minimum support threshold,
small variations of support can introduce false positives when the real support
is overestimated or false negatives when the real support is underestimated.
To evaluate the impact of this, we report Precision and Recall of our method
w.r.t. the true collection in terms of patterns found as frequent. We plot in
Figures 1(c), 1(d), 2(c) and 2(d) the values of precision and recall for different
number of iterations. A summary of these values is reported in Figure 3 as the
overall minimum, average and maximum for each dataset and different numbers
of iterations. The values confirm the quality of the approximation.
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