
Analyzing Workflows implied by Instance-Dependent
Access Rules

Toon Calders1 Stijn Dekeyser2 Jan Hidders1 Jan Paredaens1

1 University of Antwerp (Belgium) 2 University of Southern Queensland (Australia)
toon.calders@ua.ac.be dekeyser@usq.edu.au jan.hidders@ua.ac.be jan.paredaens@ua.ac.be

ABSTRACT
Recently proposed form-based web information systems lib-
erate the capture and reuse of data in organizations by
substituting the development of technical implementations
of electronic forms for the conceptual modelling of forms’
tree-structured schemas and their data access rules. Signif-
icantly, these instance-dependent rules also imply a work-
flow process associated to a form, eliminating the need for
a costly workflow design phase. Instead, the workflows thus
created in an ad hoc manner by unsophisticated end-users
can be automatically analyzed, and incorrect forms rejected.

This paper examines fundamental correctness properties
of workflows that are implied by instance-dependent access
rules. Specifically, we study the decidability of the form
completability property and the semi-soundness of a form’s
workflow. These problems are affected by a choice of con-
straints on the path language used to express access rules
and completion formulas, and on the depth of the form’s
schema tree. Hence, we study these problems by examin-
ing them in the context of several different fragments deter-
mined by such constraints.

1. INTRODUCTION
In previous work [4] we presented a preliminary descrip-

tion of a novel web information system based on forms to
solve a practical problem that many organizations deal with.
The main goal of such a system is to enable staff to easily
and securely capture data using web forms, and reuse data
that others (possibly connected via other peers) have cap-
tured, provided such reuse does not violate security or pri-
vacy rules. Users should only concentrate on developing the
schema and access rules of their forms, and let the system
handle storage, security and other related issues. As such,
the proposed system already complements the capabilities
of commercial software such as Microsoft’s InfoPath [1] and
the new XForms [2] standard being defined by the W3C to
replace the original HTML-based web forms.

More significantly, from a theoretical point of view there

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’06, June 26–28, 2006, Chicago, Illinois, USA.
Copyright 2006 ACM 1-59593-318-2/06/0003 ...$5.00.

are many different, traditionally database-oriented formal
aspects associated to these form-based web information sys-
tems (fb-wis), including data and schema integration [3]
and workflow analysis [6, 10]. This paper studies the latter:
access rules included in a form’s definition imply a work-
flow process that—rather simply put—describes the order
in which data can be entered in a form. Hence, in this type
of workflow systems, the data-flow implies the control-flow.

In contrast to existing workflow systems and research, an
fb-wis does not require complex initial design and subse-
quent modification phases for workflows. This establishes
the motivation for our paper: workflow processes implied
by forms that were created in an ad hoc manner by un-
sophisticated users need to be analyzed automatically such
that forms with an incorrect workflow will be rejected by
the fb-wis and users can be told how they should modify
their form’s definition.

Importantly, the problems we study in this paper do not
only occur in the form-based wis setting. Indeed, even re-
lational database management systems suitably enhanced
with instance-dependent access rules imply workflows. While
the problem area is therefore a general one, we will use the
fb-wis setting as the practical application in which to study
it, since that setting is particularly well-suited to solve e-
government issues.

An example of a complex form used in this context is
the electronic version of a tax declaration: various parts of
the e-form may only be completed by certain persons and
then only depending on information that has already been
entered. The associated workflow process can be complex,
especially when the form allows interaction between citizens
and various levels of the administrative bureaucracy that
processes the data captured through the form.

Model and Fragments. The general model we use for the
fb-wis employs nested relations as the schema for forms,
and a subset of XPath’s abbreviated syntax for access rules
and completion formulas. Restrictions on either (or both)
the schema and the formula languages constitute various
fragments that we examine in depth. For instance, we will
at times restrict the depth of a schema (as in the depth-k
fragment) or prohibit the use of negation in either access or
completion formulas (as in the positive fragments).

Note that the original model we proposed for peer-to-peer
fb-wis [4] added isa constraints to create links between mul-
tiple forms’ schemas to enable reuse of data across peers. We
have omitted this feature in this paper since we will concen-
trate on a single workflow implied by a single form.

Problems. The restrictions employed in the various frag-
ments facilitate the study of some facets of the general prob-
lem which examines the properties of workflows implied by
instance-dependent access rules. We consider the decidabil-
ity of a form’s correctness, one aspect of which we call the
completability problem because it corresponds to determin-
ing whether a form can be completed (according to some
formula set by the form’s creator) given its access rules. A
related question, the semi-soundness problem1, is to decide
whether each reachable instance is completable.

Running Example. Consider that a web form exists that
enables staff to apply for recreational leave and managers to
decide on all applications. The Leave Application form has
a schema and data access rules that allow a person to cre-
ate new instances and update details such as start and end
dates. When the user submits the application (e.g. by check-
ing the appropriate box), those details cannot be changed
anymore, and the form (or rather that instance of the form)
becomes accessible by the manager. The latter can approve
or reject the leave application, possibly giving a motivation
for doing so. The form is completed by checking a final check
box, after which nothing can be changed. Hence, the form
completion formula simply checks the value of this check
box.

Structure. Section 2 discusses relevant research, while the
remainder of this paper is divided in two parts. Section 3 for-
mally defines the fb-wis model, the fragments we study and
the completability and semi-soundness problems. Sections 4
and 5 examine the complexity of deciding these properties
for forms with unrestricted access rules and form completion
formulas, and with only positive formulas, respectively. We
wrap up with a short conclusion.

2. RELATED WORK

2.1 Practical Work
The World Wide Web Consortium’s XForms [2] recom-

mendation is a specification for a declarative language used
to specify web forms—which may include data constraints
and conditional formatting logic—based on XML Schema
and XPath. Compared to traditional HTML forms, XForms
provide serialization of captured data to XML, separate pre-
sentation from content, minimize round-trips to the server,
offer device independence, and reduce the need for script-
ing. The main differences with fb-wis are that an fb-wis
is an active server-side system that (1) frees the form cre-
ator from having to explicitly specify access to a database
back-end; (2) includes data access rules in the form defini-
tions enabling a more fine-grained security specification; and
(3) implies and manages a workflow process automatically.
As XForms complements the functionality of an fb-wis, the
latter will normally make use of XForms for client-side con-
straint checking and serialization of data.

Microsoft’s InfoPath [1] software (msip) is an alternative to
XForms but simplifies “conditional formatting” and makes
its use explicit. While the focus is on presentation, condi-

1This property is called semi-soundness because it is a
weaker version of the usual notion of soundness for work-
flow nets [9] which also requires that each event occurs in at
least one possible run of the workflow.

tional formatting uses a powerful path expression language
to decide whether or not a specific field in a form should
be made visible to the user. This is usually determined on
the basis of data already entered in the form. Hence, this
technique is similar to the instance-dependent data access
rules we propose for fb-wis. The practical differences be-
tween the systems are: (1) our data access rules are simple
path expressions making the study of workflow correctness
feasible; (2) msip’s rules determine presentation issues in the
client, not data access in the storage back-end; and (3) form
creators in msip, as in XForms, are tasked with explicitly
creating access to data sources.

Of interest to this paper, both msip and XForms are popular
tools that allow unsophisticated users to imply a workflow
by using conditional formatting in their forms, but do not
analyze the correctness of these workflows. Hence, from a
theoretical point of view, both systems give rise to the same
set of workflow-related problems as those implied by an fb-
wis. Some of these problems are studied in this paper.

2.2 Theoretical Work
The idea to let access rules implicitly define a workflow is

partly inspired by Product-Based Workflow Design as intro-
duced by Hajo Reijers et al. [7] where a method is proposed
to design workflows based upon the final product, similar
to a form, and dependencies between the different pieces
of information in the form. There has also already been a
significant amount of research on specifying access control
policies for XML documents in terms of XPath expressions
(see Fundulaki and Marx [5] for an overview) but to the
best of our knowledge none of them attempt to analyse the
workflow that is implied by these access control policies.

3. PRELIMINARIES

3.1 Schemas
Informally a schema defines the underlying data structure

of a form. It is basically a schema of a nested relation as
defined in the nested relational model [8]. For example, in
the leave application, a possible schema could look like the
model given in Figure 1.

r

application

name

decision

dept period rejectapprove

reasonbegin end

submit final

Figure 1: The leave application schema.

We assume the existence of a set L of node labels, and a
special label r ∈ L that will be used to label the roots of
trees. In the following of this paper we will abbreviate the
node labels in Figure 1 to their first letter, i.e., application
to a, name to n, et cetera.

Definition 3.1 (Schema and Instance). A rooted
node-labelled tree is a four-tuple M = (V,E, r, λ) where the
graph (V,E) is a tree with root r ∈ V , and λ : V → L is a
labelling function on the nodes.

A schema is a rooted node-labelled tree in which no two
siblings have the same label, and the root has label r.

A rooted node-labelled tree I = (V ′, E′, r′, λ′) is called
an instance of the schema M = (V,E, r, λ) if there exists a
homomorphism from I to M . That is, there exists a function
h : V ′ → V such that (1) for all v1, v2 ∈ V it holds that if
(v1, v2) ∈ E′, then (h(v1), h(v2)) ∈ E, (2) h(r′) = r, and
(3) for all v′ ∈ V ′, λ′(v′) = λ(h(v′)).

r

a

n d p

b e

s

p

b e

r

a

n

d

d p r

b e

s f

(a) (b)

Figure 2: Instances of the leave application schema.

Example 3.2. In Figure 2 two examples of instances of
the schema in Figure 1 are given. The instance (a) shows a
submitted application for two periods, and (b) an application
for a single period that was rejected. Unless explicitly indi-
cated the fields in a form can contain zero or more elements.
It will be discussed later how fields can be made single-valued
by choosing appropriate access rules. Note that in practice
there will be values associated with the fields such as the ac-
tual name, department and the dates, but this is beyond the
scope of this paper.

Proposition 3.3. If a form I is an instance of a schema
M , then the homomorphism from I to M is unique.

Hence, every node v and edge e in an instance I of schema
M are always associated with a single node and edge in M .
We denote this unique node and unique edge as v̂ and ê,
respectively.

3.2 Formulas

Definition 3.4 (Formula). Formulas are defined by
the following abstract syntax:

F ::= P | ¬F | (F ∧ F) | (F ∨ F)

P ::= .. | L | (P/P) | P [F].

We will use formulas to specify access and update rules and
form completion formulas for forms.

The abstract syntax closely resembles XPath’s abbrevi-
ated syntax: the descendent-or-self (//) and self (.) axes
are omitted, the former because the schema’s depth—and
hence that of its instances—is fixed when it is created, and
the latter because it does not add expressive power in this
context. In [4] we also allowed any conditions in formu-
las to include comparisons to the system variables ‘user-id’

and ‘datetime’. In this paper we assume only one user; the
data access formulas are evaluated for this user and do not
include temporal conditions.

Definition 3.5 (Semantics of Formulas). The ex-
pression n |=T φ indicates that the formula φ is true for
the rooted node-labelled tree T = (V,E, r, λ) and a node n

in T . The expression n
p−→T n′ indicates that the path ex-

pression p is true for the rooted node-labelled tree T , a begin
node n, and an end node n′ in T . We will omit the subscript
T in both cases if it is clear from the context.

The following rules define both concepts:

n |= p ⇔ there exists a n′ ∈ V
such that n

p−→ n′

n |= ¬φ ⇔ n |= φ does not hold

n |= φ ∧ ψ ⇔ (n |= φ) and (n |= ψ)

n |= φ ∨ ψ ⇔ (n |= φ) or (n |= ψ)

n
..−→ n′ ⇔ (n′, n) ∈ E

n
l−→ n′ ⇔ (n, n′) ∈ E and λ(n′) = l

n
p/q−→ n′ ⇔ there exists a n′′ ∈ V

such that n
p−→ n′′ and n′′

q−→ n′

n
p[φ]−→ n′ ⇔ n

p−→ n′ and n′ |= φ

Example 3.6. We give some examples of formulas for
instances of the schema in Figure 1. They are assumed to
be evaluated for the root r:
¬a/p[¬b ∨ ¬e] : All periods have begin and end dates.
¬f ∨ d[a ∨ r] : The application cannot be final unless it was
rejected or approved.
d[¬(a∧ r)] : The application cannot be both rejected and ap-
proved.

3.3 Canonical Instance
We define a notion of formula equivalence that can be

informally described as bisimulation under the assumption
that all edges are bidirectional.

Definition 3.7 (Formula equivalence). A formula
equivalence between two form instances I = (V,E, r, λ) and
I ′ = (V ′, E′, r′, λ′) is a relation R ⊆ V × V ′, such that:

• (r, r′) ∈ R;

• for all (v, v′) ∈ R: λ(v) = λ(v′);

• for all (v, w) ∈ E: if (w,w′) ∈ R, then there exists a
v′ ∈ V ′ such that (v, v′) ∈ R, and (v′, w′) ∈ E′;

• for all (v′, w′) ∈ E′: if (w,w′) ∈ R, then there exists
a v ∈ V such that (v, v′) ∈ R, and (v, w) ∈ E;

• for all (v, w) ∈ E: if (v, v′) ∈ R, then there exists a
w′ ∈ V ′ such that (w,w′) ∈ R, and (v′, w′) ∈ E′; and,

• for all (v′, w′) ∈ E′: if (v, v′) ∈ R, then there exists a
w ∈ V such that (w,w′) ∈ R, and (v, w) ∈ E.

If there exists a formula equivalence between I1 and I2, we
call them formula equivalent, and this is denoted I1 ∼ I2.

Two nodes v, v′ of a form instance I are called formula
equivalent nodes if there exists a formula equivalence R be-
tween I and itself, such that (v, v′) ∈ R.

It is well-known that bisimilarity between instances, and
between the nodes of an instance are equivalence relations
between respectively the instances, and the nodes of an in-
stance, so this also holds for formula equivalence. Further-
more, if two instances are formula equivalent, all formulas
will evaluate to the same truth value on them. For every
class of formula equivalent instances, we can isolate a single
canonical (up to isomorphism) instance as is indicated in
the following definition and lemma.

Definition 3.8 (Canonical Instance). Let I be an
instance. Let [v] denote the equivalence class of a node
v. The canonical instance can(I) is the following form in-
stance: ([V], [E], [r], [λ]), with nodes [V] = {[v] | v ∈ V },
edges [E] = {([v], [w]) | (v, w) ∈ E}, and [λ]([v]) = λ(v).

Notice that [λ] is well-defined, because every pair of formula
equivalent nodes must have the same label. Moreover, the
result is a tree because if two nodes in I are formula equiva-
lent then they either are both the root r or both have parents
which are formula equivalent.

Lemma 3.9. Let I and J be two form instances. If R
is a formula equivalence between I and J and (v, w) ∈ R
then for all formulas ϕ, v |=I ϕ iff w |=J ϕ. Furthermore,
I ∼ can(I), and can(I) is isomorphic to can(J).

Example 3.10. In Figure 3 we see an example of an in-
stance (a) and the corresponding canonical instance (b).

(b)

r

a a b

c c c

e

d

e

d

(a)

r

a b

c d

e

a

c c

e

a

c c

e e

a

c

e

c

e

Figure 3: An instance and corresponding canonical
instance.

3.4 Access and Update Rules
We postulate the set of access rights R = {add, del} where

add and del are the right to create and delete respectively.

Definition 3.11 (Guarded Form). A guarded form
is a tuple (M,A, I0, ϕ) where M = (V,E, r, λ) is a schema,
A : R× E → F the access-rule function that maps each ac-
cess right and edge in M to a formula, I0 the initial instance
that is an instance of M , and ϕ a completion formula that
defines when the form is complete by being true for the root
node.

The only updates on instance trees that are considered are
the additions and deletions of edges that add and remove leaf
nodes, respectively. The addition of an edge e = (n, n′) is
allowed iff the formula A(add, ê) is true for n in the current
instance. Similarly, the deletion of an edge e = (n, n′) is
allowed iff the formula A(del, ê) is true for n in the current
instance. Given a guarded form (M,A, I0, ϕ) we call a se-
quence I0, . . . , In of instances of M a run of this guarded

form if for every 1 ≤ i ≤ n it holds that Ii can be obtained
from Ii−1 by a single edge addition or deletion which is al-
lowed by A for Ii−1, and a complete run if In satisfies ϕ.

Note that we do not consider read or update rights here
because to the extent that these are relevant for workflow
analysis these can be simulated in the presented formalism.
For example, it might be that the user can only see (and
therefore update) a node if he or she has read-rights on this
node and all its ancestors, but this can be simulated by
adding the formulas of the read rights to the formulas that
determine the create and delete-rights.

Example 3.12. To illustrate the concept of guarded form
take the schema M in Figure 1, the initial instance I0 that
consists only of the root r (we start with an empty form), a
completion formula ϕ = f (the final field has been marked)
and the access-rule function A as follows (schema edges are
identified by the paths to their end nodes):

A(add, a) = ¬a A(del, a) = ¬a
A(add, a/n) = ¬../s ∧ ¬n A(del, a/n) = ¬../s
A(add, a/d) = ¬../s ∧ ¬d A(del, a/d) = ¬../s
A(add, a/p) = ¬../s A(del, a/p) = ¬../s
A(add, a/p/b) = ¬../../s ∧ ¬b A(del, a/p/b) = ¬../../s
A(add, a/p/e) = ¬../../s ∧ ¬e A(del, a/p/e) = ¬../../s
A(add, s) = ¬s ∧ a[n ∧ d ∧ p] ∧ ¬a/p[¬b ∨ ¬e]

A(del, s) = ¬s
A(add, d) = s ∧ ¬d A(del, d) = ¬f
A(add, d/a) = ¬(a ∨ r) A(del, d/a) = ¬../f
A(add, d/r) = ¬(a ∨ r) A(del, d/r) = ¬../f
A(add, d/r/r) = ¬r A(del, d/r/r) = ¬../../f
A(add, f) = d[a ∨ r] ∧ ¬f A(del, f) = ¬f

In Example 3.12 A(add, a) requires that there is not already
an a field present and so there cannot be two applications
in an instance. The rule A(del, a) requires that there is no
a field so we can never delete an application field once it
has been added. For the edge a/n there are similar rules
except that it is also required that there is no s field yet,
i.e, the application was not yet submitted. Note that since
the formula is evaluated for the a node and not the root r

it reads ¬../s and not just ¬s. For adding an a/p edge it is
not required ¬p and so there can be more than one period
in an application. This is reflected in A(add, s) where it is
required that before submission there not only must be a
name, department and at least one period, but it must also
hold that there is no period without begin or end date.

3.5 Completability and Semi-soundness
To illustrate the problems that we will study consider the

guarded from in Example 3.12 except that ϕ = f ∧ ¬s. It
can be observed that if we start from the initial instance
there is no full run, i.e., we can never reach an instance that
satisfies ϕ via a sequence of allowed updates. Clearly such
a guarded form cannot be considered correct, so we define
the following problem.

Definition 3.13 (Completability Problem). For a
guarded form G = (M,A, I0, ϕ) the form completability
problem is to decide if there exists at least one complete
run of G.

Note that completability is not only interesting as a cor-
rectness requirement but also important for deciding in-
variants. For example, by checking completability for ϕ =
d[a ∧ r] we can check if at any stage there can be a decision
field that contains both accept and reject.

If a guarded form is completable it may still have comple-
tion problems. Consider again Example 3.12 but with ϕ =
f ∧d[a ∨ r], A(add, f) = d∧¬f, A(add, d/a) = ¬(a ∨ r)∧¬../f
and A(add, d/r) = ¬(a ∨ r) ∧ ¬../f. In this case the guarded
form is still completable but at the same time it is possible
to reach an instance where there is a final field but no ap-
proval or reject field. From that instance the form cannot
be completed because the final field prevents the addition
of the required approval/reject field. Obviously, if form com-
pletability is a decidable problem, a form manager might dis-
allow any updates that lead to such an instance from which
completion is not possible, but in a well-designed guarded
form the access rules should prevent this. This leads to the
following problem.

Definition 3.14 (Semi-soundness Problem). Given
a guarded form G = (M,A, I0, ϕ) the form semi-soundness
problem is to decide if for every run I0, . . . , In of G it holds
that (M,A, In, ϕ) is completable.

In the following sections, we study the complexity of de-
ciding the completability and the semi-soundness of guarded
forms. For the general case, we show that these problems are
both undecidable. Therefore, we also study more restricted
fragments of guarded forms, for which these properties are
decidable.

The restrictions are threefold: we study the cases in which
(a) the access rules do not contain negation (A+), (b) the
completion formula does not contain negation (ϕ+), and (c)
the depth is limited to either 1, or a fixed constant k. We
also study all possible combinations of these restrictions. We
will denote these classes of fragments by F (A,ϕ, d), with A
either A+ or A−, denoting respectively only positive access
rules or any access rules; ϕ is either ϕ+ or ϕ−, denoting re-
spectively a positive completion formula, or an unrestricted
completion formula; and d being 1, k, or ∞, denoting that
the depth of the schemas is respectively 1 (e.g., under the
root there is at most 1 level of nodes), a fixed constant k, or
unrestricted. For example, F (A+, ϕ−, 1) denotes the class of
guarded forms where all access rules are positive formulas,
the completion formula can contain negation, and the depth
of the schema is at most 1. The class without restrictions is
denoted F (A−, ϕ−,∞).

4. UNRESTRICTED ACCESS RULES

4.1 Unrestricted completion formulas
We will show that within the context of the form com-

pletability problem we can simulate a two-counter machine.
It is well-known that two-counter machines are Turing com-
plete, and that their halting problem is undecidable. From
the simulation it is straightforward, given a two-counter ma-
chine, to create an instance of the form completability prob-
lem that is completable if and only if the two-counter ma-
chine will eventually halt when the empty string is given as
input. This property of two-counter machines is undecid-
able.

A two-counter machine is a deterministic state machine
with two counters. The state transitions depend only on the
input symbol read, the current state, and on the counters
being zero. Furthermore, during a transition the counters
can be incremented or decremented by 1, independently, and
the input cursor can either stay in place, or advance one po-
sition. Because we only consider the problem of deciding

whether or not the two-counter machine halts on the empty
string, we do not have to take care of the input-cursor. Thus,
a two-counter machine without input can be modelled as a
three-tuple (Q,F, δ), with Q a finite set of states, F ⊆ Q
the set of accepting states, and δ the transition function
that maps Q×{0,+}× {0,+} to Q×{−, 0,+}× {−, 0,+}.
For example, δ(q,+,+) = (p,−, 0) denotes that if the two-
counter machine is in state q, and both counters are non-
zero, the state will change to p, the first counter will be
decremented, and the second remains unchanged. A config-
uration of a two-counter machine without input will be de-
noted as a three-tuple (q, n,m) with q the state, and n and
m positive integers that indicate the respective contents of
the two counters.

Theorem 4.1. For guarded forms in F (A−, ϕ−,∞) the
completability and semi-soundness problems are undecidable,
even if only forms of depth 2 are considered.

Proof. The proof proceeds by showing that the config-
uration of an inputless two-counter machine can be repre-
sented, and how we can move from one configuration to the
next by discussing the procedures for decrementing and in-
crementing the counters. Therefore, we can simulate the
halting problem of an inputless two-counter machine with
the completability of a guarded form. Because this property
is undecidable, the completability problem is undecidable
as well. Furthermore, the two-counter machines we con-
sider are deterministic. As a consequence, in every reach-
able instance of the guarded form we construct, only one
other instance (up to duplications of nodes) is reachable.
Thus, in this case, the completability problem and the semi-
soundness problem are equivalent. Notice incidentally that
the depth of the guarded form constructed below is always
2, independent of the simulated two-counter machine.
Configuration: Let (q, n,m) be a configuration of a two-
counter machine. This configuration will in the simulation
be represented by the following instance Conf(q, n,m): be-
low the root there is a node labelled q, n nodes labelled c1
andm nodes labelled c2. For example, the following instance
denotes the configuration (q, 5, 3).

r

q c1 c1 c1 c1 c1 c2 c2 c2

Transitions: The most complex part of the reduction is
to give an access-right function, such that we can guarantee
that when moving from one configuration tree to another,
we use the transition function δ. Once we can ensure this
guarantee, the stopping condition in the form will simply be
the disjunction of all accepting states.

For every possible transition δ(q, s1, s2) = (p, a1, a2), a
new node init(q, s1, s2) is introduced in the schema of the
guarded form. The presence of this node in an instance
will denote that the transition init(q, s1, s2) is in progress.
This is necessary in order to avoid that the execution of one
transition already starts before the previous transition is
completely finished. To achieve this, the addition condition
for init(q, s1, s2) will be:

q ∧ σ1 ∧ σ2 ∧
^

p∈Q,t1∈{0,+},t2∈{0,+}
(p,t1,t2) 6=(q,s1,s2)

¬init(p, t1, t2) ,

where σi is ci (resp. ¬ci) if si is + (resp. 0). That is, the
transition init(q, s1, s2) can only be initiated if we are in
state q, there is a ci iff si is + (indicating that counter i is
strictly positive), and none of the other transitions is still in
progress.
Increments: For the increment of counter 1, we need to
add exactly one c1 below the root. We have to be careful
in this case, because we want to avoid that more than one
c1 can be added. Therefore, we need to be able to make a
difference between the situation before the addition, and af-
ter. This can be done as follows: first we mark all c1-nodes,
by adding a node labelled d below them and adding a spe-
cial node m once this is done for all of them. Then, one
c1 is added. Notice that we can clearly make a distinction
between the situation before the addition, and the situa-
tion afterwards; before the addition all c1 nodes are marked;
hence ¬(c1[¬d]) is true, and after the addition, there is one
unmarked node; hence c1[¬d]) is true). The action is then
completed by removing all marks, and moving to the next
state.

What follows illustrates some of the corresponding ac-
cess rules if δ consists only of the transition δ(q0, 0,+) =
(q1,+, 0):

A(add, init(q0, 0, +)) = q0 ∧ ¬c1 ∧ c2 ∧ ¬init(q0, 0, 0)∧
¬init(q0, +, 0) ∧ ¬init(q0, +, +)∧
¬init(q1, 0, 0) ∧ ¬init(q1, 0, +)∧
¬init(q1, +, 0) ∧ ¬init(q1, +, +)

A(add, c1/d) = ../init(q0, +, 0)
A(add, m) = init(q0, +, 0) ∧ ¬c1[¬d]
A(add, c1) = init(q0, +, 0) ∧m ∧ ¬c1[¬d]
A(del, c1/d) = ../init(q0, +, 0) ∧ ../m
A(del, m) = init(q0, +, 0) ∧ ¬c1[d]
A(add, q1) = init(q0, +, 0)
A(del, q0) = init(q0, +, 0)
A(del, init(q0, 0, +)) = init(q0, +, 0) ∧ ¬c1[d] ∧ ¬m∧

q1 ∧ ¬q0

Decrements: The decrement is the most difficult operation
to translate. A first attempt could be to mark exactly one
c1-node, and subsequently remove the marked node. This
is, however, impossible, as we can only do operations on
leaves of the instance. A second attempt could be to mark
all nodes, except for one. But, this is not at all straightfor-
ward, because at the moment that we need to decide whether
or not to add an additional mark, we cannot distinguish be-
tween the situation where one node is unmarked, or where
two nodes are unmarked. Therefore, the following, rather
cumbersome, procedure is followed. First we mark exactly
one c1-node by adding a node labelled d below it. This is
the node that will be deleted later on. Then, we mark every
other c1-node with d′. Subsequently, we unmark the node
with mark d and then remove the sole unmarked c1-node
(this is the node that was marked with d before.) Finally,
we remove all marks d′.

It might be suspected that the presence of deletions makes
the problem hard but the following corollary shows other-
wise.

Corollary 4.2. For the class F (A−, ϕ−,∞) the com-
pletability problem and semi-soundness problem are unde-
cidable, even if only additions and forms of depth 3 are con-
sidered.

Proof. The proof is similar to that of Theorem 4.1 ex-
cept that (1) every deletion of an edge is replaced with the

addition of an edge under that edge that ends in a node
with a special label, say deleted, and (2) in all formulas we
replace path expressions of the from l with l[¬deleted].

Lemma 4.3. Let G be a guarded form in F (A−, ϕ−, 1)
and let C be a canonical instance of the schema of G. There
exists an instance J , reachable from I, with can(J) = C, if
and only if C is reachable from can(I).

Furthermore, in a guarded form of depth 1, instance I can
be completed if and only if can(I) can be completed.

Proof. Every addition that is allowed in I, is also al-
lowed in can(I). As such, every operation on I, resulting in
an instance J with a different canonical form, can be imi-
tated on can(I) to get can(J), and vice versa.

Lemma 4.4. Let ϕ be an arbitrary formula, and let T be
a rooted tree that satisfies ϕ, then there exists an embedded
subtree T ′ of T that also satisfies ϕ and has a branching
factor that is linear in the length of ϕ.

Proof. We start with the observation that the following
equivalencies hold, where ψ1 ≡ ψ2 means that for every
instance I and node n in I it holds that n |=I ψ1 ⇔ n |=I ψ2:

(p1/p2)[ψ] ≡ p1[p2[ψ]]

(p1[ψ1])[ψ2] ≡ p1[ψ1 ∧ ψ2]

(p1/p2)/p3 ≡ p1/(p2/p3)

(p1[ψ])/p2 ≡ p1[ψ ∧ p2]

l/p ≡ l[p]

../p ≡ ..[p]

By applying these rules from left to right to ϕ and its sub-
formulas we can obtain a formula ϕ′ that is linear in the size
of ϕ and belongs to the following syntax:

F ′ ::= P ′ | ¬F ′ | F ′ ∧ F ′ | F ′ ∨ F ′

P ′ ::= L | .. | L[F ′] | ..[F ′]

Given a formula ψ of the from F ′ we define a selection of
ψ as a set S of sub-formulas and negated sub-formulas of ψ
such that (1) S = {p} if ψ = p with p in P ′, (1) S = {¬p} if
ψ = ¬p with p in P ′, (3) S = S′ if ψ = ¬(ψ1∧ψ2) and S′ is a
selection of ¬ψ1∨¬ψ2, (4) S = S′ if ψ = ¬(ψ1∨ψ2) and S′ is
a selection of ¬ψ1∧¬ψ2, (5) S = S1∪S2 where ψ = ψ1∧ψ2

and S1 and S2 are selections of ψ1 and ψ2, respectively and
(6) S = S1 or S = S2 where ψ = ψ1 ∨ψ2 and S1 and S2 are
selections of ψ1 and ψ2, respectively. Observe that a node n
in an instance I satisfies a formula ψ iff there is a selection
of ψ such that all formulas in this selection are satisfied by n
in I. If this holds then we say that the selection is satisified
by node n in I.

From ϕ′ and T we construct T ′ that satisfies ϕ′ as follows.
We start by letting T ′ be the node n for which φ holds in
T and associate with n a set Φ(n) which is a selection of ϕ′

that was satisfied by n in T . Then we proceed by applying
the following rules:

• For each formula of the form l[ψ′] in Φ(n′) we add to
T ′ a child n′′ of n′ with label l that made this formula
true for n′ in T , unless such a child is already present in
T ′, and add to Φ(n′′) a selection of ψ′ that is satisfied
by n′′ in T , and for each formula of the form l in Φ(n′)
we add to T ′ a child n′′ with label l.

• For each formula of the form ¬l[ψ′] in Φ(n′) and in
T ′ each child n′′ of n′ with label l we add a selection
of ¬ψ′ that was was satisfied for n′′ in T to Φ(n′′),
and if there is a formula of the form ¬l in Φ(n′) and
in T ′ a child n′′ of n′ with label l then we abort the
construction.

• For each formula of the form ..[ψ′] in Φ(n′) we add to
T ′ the parent n′′ of n′, if it was not already in T ′, and
add to Φ(n′′) a selection of ψ′ that is satisfied by n′′

in T , and for each formula of the form .. in Φ(n′) we
add to T ′ a parent n′′ of n′, if it was not already in T ′.

• For each formula of the form ¬..[ψ′] in Φ(n′) and par-
ent n′′ of n′ we add n′′ to T ′, if it was not already in
T ′, and add to Φ(n′′) a selection of ¬ψ′ that is satis-
fied by n′′ in T , and if there is a formula of the form
¬.. in Φ(n′) and a parent n′′ of n′ then we abort the
construction.

It is easy to see that if ϕ′ was satisfied by n in T then the
construction of T ′ will not abort and ϕ′ will be satisfied
by n in T ′. Moreover, because of the way child nodes are
added the fan-out of each node is restricted by the number
of sub-formulas of ϕ′ and hence linear in the size of ϕ.

Corollary 4.5. Testing satisfiability of a formula ϕ is
NP-complete if the depth of the instances is limited by a
constant k, and is PSPACE-complete if the depth is un-
limited.

Proof. The NP upper bound follows from Lemma 4.4
since it shows that there is a succinct certificate of size O(nk)
for the satisfiability of ϕ if n is the size of ϕ

The NP-hardness proof is a straightforward reduction
from SAT to satisfiability; e.g., the satisfiability of the propo-
sitional formula (x1 ∨ x2) ∧ ¬x3 corresponds to the satisfia-
bility of the formula (a ∨ b) ∧ ¬c.

The PSPACE upper bound can be shown as follows. We
transform ϕ to ϕ′ and use the same generation rules as in
the proof of Lemma 4.4. Then we follow the same procedure
except that (1) we do not generate the whole tree but only
walk through it depth-first and (2) with each node n′′ that
is added we also guess immediately the set Φ(n′′) and check
if it consistent with that of n′. Since the size of Φ(n′′) is
bounded by the size of ϕ′ it follows that for each node in the
tree we have to do a polynomial amount of work. Moreover,
since the depth of the tree cannot become larger then the
size of ϕ′ it follows that the stack that is required for the
depth-first tree-walk is polynomial in the size of ϕ′.

The PSPACE-hardness can be shown with a reduction
from QSAT to satisfiability. E.g., the satisfiability of the
quantified Boolean formula ∃x∀y∃z : (x∨y∧¬z) corresponds
to the satisfiability of the path expression

(¬ax/ay/az[¬(../../x) ∨ (../y) ∧ ¬z]) (4.1)

∧(ax/x↔ (¬ax[¬x])) (4.2)

∧(¬(ax[¬ay/y])) ∧ (¬(ax[¬ay[¬y]])) (4.3)

∧(ax/ay[az/z ↔ (¬az[¬z])]) (4.4)

In this path expression, assignments for x are encoded with
an ax-node. The assignment making x true is encoded as a
node ax with a subnode x. Similarly for ay and az. The as-
signments are nested to represent the quantifier order. Fur-
thermore, line (4.2) makes sure that there is only one truth

assignment for x (possibly represented by multiple identi-
cal copies). Line (4.3) ensures that within every ax-node,
there is an assignment ay making y true, and one making y
false. Line (4.4) ensures again that a within every ay-node
a unique choice for z is made. Finally, line (4.1) expresses
that on every path, the given formula must be true.

Theorem 4.6. Deciding completability for F (A−, ϕ−, 1)
is PSPACE-complete.

Proof. The upper bound follows from Lemma 4.3 since
it implies that we can decide completability in NPSPACE
by guessing a sequence of canonical instances of the schema
such that (1) the first is can(I0) where I0 is the initial in-
stance, (2) each next instance can be obtained from the pre-
ceding one by applying one or more times a certain addition
or deletion that is allowed and (3) the last instance satisfies
the completion formula.

We show PSPACE-hardness by reducing the PSPACE-
complete problem reachable deadlock to the completability
problem.

The reachable deadlock problem is the following. The
input consists of a list of graphs G1 = (V1, E1), . . . , Gk =
(Vk, Ek) with disjoint sets of vertices, a sequence of vertices
v1, . . . , vk, with vi ∈ Vi, i = 1 . . . k, and a set T of pairs of
edges (ei, ej) with ei and ej in different graphs. A configura-
tion is any set a1, . . . , ak with a1 ∈ V1, . . . , ak ∈ Vk. There
is a transition of configuration a1, . . . , ak to configuration
b1, . . . , bk, if there exist two indices 1 ≤ i < j ≤ k such that
for every ` = 1 . . . k, ` 6= i, j, a` = b`, and ((ai, aj), (bi, bj))
is in T . We then call b1, . . . , bk a successor of a1, . . . , ak.
The reachable deadlock problem now is: does there exist a
configuration reachable from v1, . . . , vk that does not have
a successor?

We reduce the reachable deadlock problem to the form
completability problem for depth one. For every vertex v
in V1 ∪ . . . ∪ Vk, and for every transition t ∈ T , there is a
node n(v) respectively n(t) in the schema. A configuration
a1, . . . , ak will be encoded by the form instance that consists
of the root node and the nodes n(a1), . . . , n(ak). We denote
this instance I(a1, . . . , ak). Hence, the initial state will be
the instance I(v1, . . . , vk). The nodes n(t), t ∈ T will be
used to control the transitions. For ease of notation, we
introduce the notation conf for the formula ¬(

W
t∈T n(t)),

which is true if the instance does not contain any of the
control nodes.

An end configuration is one that has no successors. That
is, if there does not exist a transition t ∈ T with t =
((a, b), (c, d)) such that a and c are both in the configura-
tion. Hence, we can describe such a deadlock situation with
the following completion formula:

φ = conf ∧
^

((a,b),(c,d))∈T

¬(a ∧ c) .

In order to perform an actual transition t = ((a, b), (c, d))
in our form completability problem, we will use the control
node n(t) to denote that the transition is taking place. The
addition condition of the control node n(t) is thus (conf ∧
n(a) ∧ n(c)), and the deletion condition (¬n(a) ∧ ¬n(c) ∧
n(b) ∧ n(d)). Furthermore, for every vertex v, the addition
condition will be:

¬v ∧ (
_

t=((x,v),(y,z))∈T

n(t) ∨
_

t=((x,y),(z,v))∈T

n(t)) ,

and the deletion condition:

(
_

t=((v,x),(y,z))∈T

n(t) ∨
_

t=((x,y),(v,z))∈T

n(t)) .

There are no other access rights.
The form instance I(v1, . . . , vk) is completable if and only

if there is a reachable deadlock.

Corollary 4.7. Deciding semi-soundness for the class
F (A−, ϕ−, 1) is PSPACE-complete.

Proof. The proof of the upper bound is similar to that
of Theorem 4.6 except that we guess a sequence of canoni-
cal instances such that from the last canonical instance the
form is not completable. Note that by Theorem 4.6 this last
requirement can indeed be verified in PSPACE.

The PSPACE-hardness is shown by reducing the com-
pletability problem for this fragment to the semi-soundness
problem for the same fragment. From a guarded form G we
construct a guarded form G′ with the same initial instance
and a slightly larger schema. The access rules of G′ are sim-
ilar to that of G but ensure that for all reachable instances
I and I ′ of G it holds that I ′ is reachable from I in G′ iff I ′

is reachable from I in G or I ′ is the initial instance. It then
follows by Lemma 4.3 that G′ is semi-sound iff G is com-
pletable. The construction of G′ is detailed by the following
points:

• In the schema we add the fields reset and build under
r. Informally these will indicate the phase in which
the instance is deleted an in which the initial instance
is rebuilt, respectively.

• All access rules from G are copied except that for addi-
tions the formula ψ is transformed to ψ∨¬reset∨¬build
and for deletions it is translated to ψ ∨ reset.

• The completion formula ϕ is transformed to ϕ∧¬reset∧
¬build.

• A(add, reset) = ¬build ∧ ¬reset, A(del, reset) = build,
A(add, build) = reset ∧ ¬build ∧ ¬(l1 ∨ . . . ∨ ln) where
l1, . . . , ln are the fields in the schema under the root,
and A(del, build) is a formula that tests if the instance
is can(I0).

• Finally the access rules for additions are extended such
that while build holds can(I0) is built.

4.2 Positive completion formulas
All the preceding results for fragments with unrestricted

access rules and unrestricted completion formulas also hold
for the fragments with only positive completion formulas.
This is because we can simulate the unrestricted fragments
as follows. We add in the schema a new field final under the
root r, let the completion formula be final and add access
rules for final such that it can be added if the old completion
formula holds. It is clear that the resulting guarded form
has the completability and semi-soundness properties iff the
original guarded form has them.

5. POSITIVE ACCESS RULES

5.1 Unrestricted completion formulas
Theorem 5.1. Deciding completability for guarded forms

in the class F (A+, ϕ−, k) is NP-hard, and for the class
F (A+, ϕ−,∞) is PSPACE-hard.

Proof. Let ϕ be an arbitrary Boolean formula. We re-
duce deciding satisfiability of this formula to the completabil-
ity problem of a guarded form as follows: for every variable
x in ϕ, there is one node labelled x in the schema of the
guarded form. All access rules are set to true. The comple-
tion formula is the given formula ϕ. It is easy to see that the
guarded form is completable if and only if ϕ is satisfiable,
because the access rules allow any instance that satisfies the
schema to be constructed.

Theorem 5.2. Deciding the completability of an instance
I of a guarded form in F (A+, ϕ−, k) is in NP.

Proof. (Sketch) Suppose that the guarded form is com-
pletable by the instance J , and let o1, . . . , on be the path
from the initial instance I to J . Then, we can show that if
a deletion is followed by an addition we can swap the two
and again obtain a possible path from I to J . So we can
assume that there is a path between I and J that consists
of a sequence a1, . . . , ak of additions, followed by a sequence
d1, . . . , dn−k of deletions. In what follows we show that with
only a polynomially large subsequence of this sequence we
can also reach an instance that satisfies the completion for-
mula ϕ.

Because of Lemma 4.4, within the instance J , we can iden-
tify a subtree T that satisfies ϕ, with branching factor linear
in the length of ϕ. Because the depth of the guarded form
is constant, the size of T is polynomial in the length of the
completion formula ϕ. The whole construction that follows
is aimed at constructing a minimal reachable instance that
contains the tree T as a subtree. We call this tree the wit-
ness tree. During its construction we maintain two sets Add
and Del that contain subsets of the additions a1 . . . ak and
deletions d1, . . . , dn−k, respectively, and we start with Add
contain the addition that construct T and Del empty. Then
we add additions and deletions to Add and Del if they are
required by the access rules those that are already in these
sets or by the completion formula. We can do this in such a
way that in order to ensure that a certain formula ψ holds
for a certain node we add at most one addition that adds a
child under that node. Since all such formulas ψ will be sub-
formulas or negations of subformulas in the guarded from it
follows that the fan-out of the nodes in the trees that are
added by the additions in the resulting Add set is linear in
the size of the guarded form. Since the height of these trees
is at most k and their number is at most the number of
nodes in T it follows that Add is polynomial in the size of
the guarded form.

Theorem 5.3. Deciding the semi-soundness of guarded
forms in F (A+, ϕ−, k) is ΠP

2k-hard.

Proof. We show ΠP
2k-hardness by reducing theQSAT2k-

problem to the complement of semi-soundness. That is,
given an instance of the QSAT2k-problem, we construct a
guarded form of F (A+, ϕ−, k), that is not semi-sound if and
only if the QSAT2k-instance evaluates to true.

Consider the following QSAT2k-instance:

∃x1
1 . . .∃x1

n1∀y
1
1 . . .∀y1

m1∃x
2
1 . . .∃x2

n2∀y
2
2 . . .∀y2

m2

. . .∃xk
1 . . .∃xk

nk
∀yk

1 . . .∀yk
mk
ψ .

We can assume without loss of generality that all quantifier
blocks have the same number of variables; that is, n1 =
. . . = nk = m1 = . . . = mk = n. The guarded form we
construct for this QSAT2k-instance, will have the following
form schema:

r

ucx1
1 x1

n ∀1 yk
1 yk

n

x2
1 x2

n ∀2 y1
1 y1

n

x3
1 x3

n ∀3 y2
1 y2

n

∀k−1

xk
1 xk

n yk−1
1 yk−1

n

.

.

.

.

The access rules are relatively simple: for all nodes, except
yk
1 , . . . , y

k
n and uc, the addition and deletion conditions are:

r/uc; that is, they can be added and deleted, as long as the
uc-element is present (uc stands for “under construction”).
The access rules for addition and deletion of yk

1 , . . . , y
k
n are

always true. The addition condition for uc is uc; that is, uc
can only be added if it is already present. Put otherwise, if
an instance no longer contains uc, then none of the instances
reachable from this instance will contain uc. The deletion
condition for uc is always true. To summarize: as long as
uc is present, all elements can freely be added and deleted.
Once uc is deleted, only manipulations of yk

1 , . . . , yk
n are

allowed. The initial instance of the guarded form is the
instance consisting of only the root and one node labelled
uc.

We will now construct the completion formula in such a
way that there exists a reachable instance J that cannot
be completed if and only if the QSAT2k-instance evaluates
to true. Intuitively, this instance J will represent a situa-
tion where for the first existential block, a choice has been
made. For every possible assignment in the first universal
block, there is an element labelled ∀1 that represents this
assignment. Within every assignment block ∀1, a choice for
the second existential block is made. For every ∀1-element,
for every possible assignment for the variables in the second
universal block, an ∀2-element representing this assignment
is present, and so on, until the k-th existential block. Notice
that there are no elements with label ∀k to represent the last
universal quantifier block.

The completion formula is then defined as:
uc

∨
�Wk−1

i=1 ∀1/ . . . /∀i−1[¬∀i[(η
i
1 ∧ . . . ∧ ηi

n]]
�

∨ ∀1/ . . . /∀k−1[¬ψ′]
where ηi

j = yi
j ↔ r/yk

j and ψ′ is the following formula: all

variables xi
j are replaced by the path expression:

(k−i) timesz }| {
../ . . . /.. /xi

j

all variables yi
j , i 6= k, are replaced by:

(k−1−i) timesz }| {
../ . . . /.. /yi

j

and the variables yk
j are replaced by:

(k−1) timesz }| {
../ . . . /.. /yk

j

The completion formula is of the form uc∨ . . . so a reach-
able incompletable instance does not contain uc.

Suppose that there exists an element ∀i−1, such that there
exists an assignment v that is not represented by a child
element ∀i. Then, we can complete the instance J by making
the following disjunct in the completion formula true:

∀1/ . . . /∀i−1[¬∀i[(y
i
1 ↔ r/yk

1) ∧ . . . ∧ (yi
n ↔ r/yk

n)]]

Finally, suppose that the QSAT2k formula is true. Then
we can find an assignment for x1

1, . . . , x1
n, such that for all

assignments for y1
1 , . . . , y1

n there exists an assignment for x2
1,

. . . , x2
n, such that for all ..., et cetera, ψ holds. We construct

the instance that corresponds to these assignments. That
is, we represent the assignment for x1

1, . . . , x1
n under r, for

each assignment for y1
1 , . . . , y1

n we introduce an ∀1 node
that represents this assignment. Under this ∀1 node we also
add the corresponding assignment for x2

1, . . . , x2
n and for

each corresponding assignment for y1
1 , . . . , y1

n we introduce
an ∀2 node that represents this assignment. Et cetera, until
we have added the nodes for the assignment for xk

1 , . . . , xk
n

under the ∀k−1 nodes. Note that if this instance is reached
only manipulations of yk

1 , . . . , yk
n are allowed since there is

no uc field. Moreover, from this instance the form cannot be
completed since (1) the uc wil remain absent, (2) the second
part of the completion formula cannot be satisfied because
there are nodes for all possible assignments and (3) the third
part cannot be satisfied because theQSAT2k formula is true.
On the other hand, assume that the QSAT2k formula is
not true. Then from every reachable instance the form can
be completed since at least one of the following holds: (1)
uc has not yet been removed, or (2) not at all levels i all
assignments for the xi

1, . . . , xi
n have corresponding ∀i nodes

that represent them, or (3) there is an assignment for yk
1 ,

. . . , yk
n such that when encoded in the corresponding fields

ensures that the instance satisfies ∀1/ . . . /∀k−1[¬ψ′].

Corollary 5.4. Deciding the semi-soundness of guarded
forms in the class F (A+, ϕ−,∞) is PSPACE-hard.

Proof. We can reduce any QSAT2k-instance to deciding
semi-soundness for guarded forms of depth k. The proof in
the previous proof was constructive, and uniform for differ-
ent k’s. Hence, QSAT can be reduced to deciding semi-
soundness for F (A+, ϕ−,∞).

5.2 Positive completion formulas

Theorem 5.5. Deciding the completability of a guarded
form in F (A+, ϕ+,∞) is in P.

Proof. (Sketch) The completability of a guarded from
in F (A+, ϕ+,∞) can be verified by adding as much edge
as possible without adding a sibling with the same label as
an already existing sibling. The result will satisfy ϕ iff the
guarded form is completable. The only-if part is proved by

showing that a sequence of additions that leads from the
initial instance to an instance that satisfies ϕ can be trans-
formed to a sequence additions that never adds a second
sibling with the same label by removing such additions and
replacing subsequent additions under the second sibling with
similar additions under the first sibling. Since the interme-
diate instances cannot become larger than the product of
the size of the initial instance and the size schema this can
be done in polynomial time.

Theorem 5.6. Deciding semi-soundness of guarded forms
in the class F (A+, ϕ+, 1) is coNP-hard.

Proof. (Sketch) We give a reduction of the NP-complete
SAT problem to the problem of deciding whether a guarded
form is not semi-sound. This shows that deciding semi-
soundness is coNP-hard.

Let ψ be a Boolean formula in 3-conjunctive normal form,
and let x1, . . . , xk be the variables in ψ. For every variable
xi, i = 1 . . . k, we introduce two nodes, labelled respectively
xi and xi, in the schema of the guarded form. The presence
of nodes with these labels represent respectively xi is true
and xi is false. The initial form instance I in the semi-
soundness problem consists of the root-node with all xi and
xi, i = 1 . . . k. The access rules are as follows: A(del, xi) =
xi, A(del, xi) = xi, A(add, xi) = xi, and A(add, xi) = xi.
Finally, the acceptance condition ϕ will reflect the negation
of the SAT formula ψ, and is defined as neg(ψ), with neg(ψ)
recursively defined as follows: neg(xi) = xi, and neg(¬xi) =
xi. Furthermore, for every conjunct of ψ, neg(`1 ∨ `2 ∨ `3)
is defined as neg(`1) ∧ neg(`2) ∧ neg(`3). Finally, neg(C1 ∧
C2∧ . . . Cm) is defined as neg(C1)∨neg(C2)∨ . . .∨neg(Cm).
It can then be shown that ψ is satisfiable iff the constructed
guarded form is not semi-sound.

Corollary 5.7. Deciding semi-soundness of a guarded
form in the class F (A+, ϕ+, 1) is coNP-complete.

Proof. Because of Lemma 4.3, to show that a guarded
form in F (A+, ϕ+, 1) is not semi-sound, it suffices to give a
canonical instance J , such that J cannot be reached from
can(I), and J is incompletable. Thus, we can guess such
a canonical instance J . Because of the depth of 1, J is
succinct. Both checking the reachability of J from can(I)
and the incompletability of J can be done in polynomial
time. (Theorem 5.5)

Table 1: Summary of the complexity results.
Fragment Completability Semi-

Soundness

A+, ϕ+, 1 P coNP-compl.

A+, ϕ+, k P coNP-hard

A+, ϕ+,∞ P coNP-hard

A+, ϕ−, 1 NP-compl. ΠP
2 -compl.

A+, ϕ−, k NP-compl. ΠP
2k-hard

A+, ϕ−,∞ PSPACE-hard PSPACE-hard

A−, ϕ−, 1 PSPACE-compl. PSPACE-compl.

A−, ϕ−, k undecidable undecidable

A−, ϕ−,∞ undecidable undecidable

A−, ϕ+, 1 PSPACE-compl. PSPACE-compl.

A−, ϕ+, k undecidable undecidable

A−, ϕ+,∞ undecidable undecidable

6. SUMMARY AND CONCLUSION
In this paper we have analyzed the complexity of de-

ciding correctness properties, viz. completability and semi-
soundness, for workflows that are implicitly defined by a
form and instance-dependent access rules that determine
which updates are allowed on the contents of the form. The
results in this paper are summarized in Table 1. The un-
derlined results indicate open problems since there an upper
bound of the problems has not been determined yet.

In future research we intend to investigate the presented
formalism as a mechanism for expressing workflows and see
under which restrictions certain workflows can or cannot be
expressed.

Acknowledgment
We would like to thank Ron Addie, Hua Wang, and Richard
Watson from the University of Southern Queensland for par-
ticipating in valuable early discussions about form-based
web information systems that inspired the work discussed
in this paper.

7. REFERENCES
[1] Microsoft Office InfoPath, 2003,

http://www.microsoft.com/office/infopath/

prodinfo/default.mspx.

[2] J. Boyer, D. Landwehr, R. Merrick, T. Raman,
M. Dubinko, and L. Klotz, XForms 1.0 (second
edition), W3C Recommendation, March 2006,
http://www.w3.org/MarkUp/Forms/.

[3] D. Calvanese, G. De Giacomo, M. Lenzerini, and
R. Rosati, Logical foundations of peer-to-peer data
integration, PODS, 2004, pp. 241–251.

[4] S. Dekeyser, J. Hidders, R. Watson, and R. Addie,
Peer-to-peer form based web information systems,
ADC 2006 (Hobart, Tasmania, Australia) (Gill Dobbie
and James Bailey, eds.), Australian Computer Society,
Inc., January 2006.

[5] Irini Fundulaki and Maarten Marx, Specifying access
control policies for XML documents with XPath,
SACMAT 2004 (Yorktown Heights, New York, USA),
ACM Press, 2004, pp. 61–69.

[6] J. Hidders, M. Dumas, W. van der Aalst, A. ter
Hofstede, and J. Verelst, When are two workflows the
same?, CATS, 2005, pp. 3–11.

[7] Hajo A. Reijers, Selma Limam, and Wil M. P. van der
Aalst, Product-based workflow design, Journal of
Management Information Systems 20 (2003), no. 1,
229–262.

[8] Hans-Jörg Schek and Marc H. Scholl, The relational
model with relation-valued attributes, Inf. Syst. 11
(1986), no. 2, 137–147.

[9] W. van der Aalst, The application of petri nets to
workflow management, Journal of Circuits, Systems,
and Computers 8 (1998), no. 1, 21–66.

[10] W. van der Aalst, A. Hirnschall, and H. Verbeek, An
alternative way to analyze workflow graphs, CAiSE,
2002, pp. 535–552.

