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Abstract

Computing frequent itemsets is one of the most prominent problems in data min-
ing. We study the following related problem, called FREQSAT, in depth: given some
itemset-interval pairs, does there exist a database such that for every pair the fre-
quency of the itemset falls into the interval? This problem is shown to be NP-
complete. The problem is then further extended to include arbitrary Boolean ex-
pressions over items and conditional frequency expressions in the form of association
rules. We also show that, unless P equals NP, the related function problem—find
the best interval for an itemset under some frequency constraints—cannot be ap-
proximated efficiently. Furthermore, it is shown that FREQSAT is recursively axiom-
atizable, but that there cannot exist an axiomatization of finite arity.
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1 Introduction

The frequent itemset mining problem [3] is one of the core problems in data
mining. We are given a database D of sets, called transactions , and a threshold
minfreq . The frequency of a set I in D is the number of transactions in D that
contain all items of I divided by the total number of transactions in D. The
frequent itemset problem is to compute all sets I such that the frequency of I
in D is at least minfreq . The most important application of frequent itemsets is
forming the so-called association rules [3]. An association rule is an implication
of the form I → J , where I and J are itemsets. The strength of an association

1 Parts of the reported results were published in the extended abstract [12].
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rule is expressed by its support, i.e., the number of transactions in which I
and J are both present, and its confidence, i.e., the conditional probability
that a transaction contains J given that it contains I. Both support and
confidence of an association rule can be obtained from the frequency of I and
I ∪ J . Association analysis has been applied and shown to be useful in many
domains, such as web mining, document analysis, telecommunication alarm
diagnosis, bio-informatics, etc. Association rule and frequent itemset mining
form also often the basis of other algorithms for classification, regression, and
clustering. For an overview of relevant references to applications of association
analysis, see [43, Chapter 6].

During the last decade, many algorithms to solve this problem were developed.
For an overview, see [8, 24, 29]. All these frequent itemset mining algorithms
rely heavily on the monotonicity of frequency: if I ⊆ J , then the frequency
of J is bounded from above by the frequency of I. In general, this property
of frequency allows for pruning substantial parts of the search space. Besides
monotonicity, also other relationships between the frequencies can be identi-
fied. For example, in the MAXMINER algorithm [7], relations of the following
form are exploited: freq ({a, b, c}) ≥ freq ({a, b}) + freq ({a, c})− freq ({a}).
There are many more relations between the frequencies of itemsets. See [13]
for extensions based on the inclusion-exclusion principle. For a generalization
to other measures besides frequency, see [42].

FREQSAT. The relationships between the frequencies of itemsets can be seen as
consistency constraints; only configurations of frequencies that satisfy these
relationships, represent valid outcomes of frequent itemset mining. In this
context, we introduce the problem FREQSAT: given a collection of expressions
freq (I) ∈ [l, u], does there exist a transaction database that satisfies them?
For example, {freq ({a}) ∈ [0, 0.5], freq ({a, b}) ∈ [0.6, 1]} is not satisfiable,
because of the monotonicity of frequency.

This paper concentrates on the properties of FREQSAT. The results can roughly
be divided in three classes: the first type of results concerns the robustness of
the FREQSAT-problem: what is the influence if we replace the intervals in the
definition by single points? What if we allow arbitrary Boolean formulas or
association rules instead of simple itemsets? The second type of results con-
cerns the complexity of FREQSAT and the deduction of frequency constraints.
What is the complexity of FREQSAT and related (function) problems? Is there
an axiomatization for the deduction of frequencies? The third type concerns
a negative approximation result.

Equivalence with pSAT. We show that FREQSAT is equivalent to probabilistic
satisfiability (pSAT) [37]. pSAT is the problem of deciding if, given set of Boolean
formulas with probabilities, there exists a probability distribution that assigns
to for every given formula the given probability. The reduction from FREQSAT
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to pSAT is quite straightforward; a transaction database can be considered as
a probability distribution and the frequency of an itemset as the probability
of the conjunction of the items in it.

The reduction from pSAT to FREQSAT, however, is more surprising, as it shows
that even with simple itemsets we can express frequency constraints on arbi-
trary Boolean formulas. That is, in the probabilistic version of logical satisfia-
bility, conjunctive formulas are as powerful as arbitrary Boolean formulas with
negation and disjunction. Because pSAT is NP-complete [23], the equivalence
of the two problems shows at the same time that FREQSAT is NP-complete as
well.

Association Rules. We also show that in FREQSAT we are able to express the
confidence of association rules. This equivalence links FREQSAT to probabilistic
logic programming with conditional constraints , which was studied, e.g., by
Lukasiewicz [34].

Furthermore, from the fact that we can simulate satisfiability of arbitrary
Boolean formulas and conditional constraints with FREQSAT, we can easily
construct sets of frequency constraints such that the interval of possible fre-
quencies for a given itemset is either [0, 0], or [0, 0.5], and it is NP-complete
to decide which one of the two is the case. Therefore, it is not possible to
efficiently approximate the upper bound on the frequency of an itemset, given
a set of frequency constraints (unless P equals NP). As such, the entailed
interval cannot be approximated efficiently.

Axiomatization. We prove that there cannot exist a complete set of deduc-
tion rules with finite schema that axiomatizes FREQSAT. That is, there does
not exist a number n such that FREQSAT can be axiomatized with rules “if
R then ρ”, where R contains at most n parameterized frequency constraints.
Hence, there are infinitely many non-redundant relations between frequencies.
We do show, however, that FREQSAT is recursively axiomatizable, and that we
can always find locally complete axioms. That is, if we fix some sets I1, . . . ,
Im, and a target set I, we can give a sound and complete axiomatization for
the deduction

{freq (I1) ∈ [l1, u1], . . . , freq (I1) ∈ [lm, um]} |= freq (I) ∈ [l, u] ,

with l, u, l1, u1, . . . , lm, um being parameters. For example, for the sets {a},
{b}, and the target {a, b}, a sound and complete axiom is:

freq ({a}) ∈ [la, ua], freq ({b}) ∈ [lb, ub] `
freq ({a, b}) ∈ [max{0, la + lb − 1}, min{ua, ub, 1}] .

Organization. In Section 2, we formally introduce important notions, and we
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define the problems studied in the paper. In Section 3, the equivalence with
pSAT is shown, and the implications for the complexity of FREQSAT is studied.
In Section 4, we show how association rules can be expressed in FREQSAT. In
Section 5, the axiomatization of FREQSAT is discussed in detail. Section 6.1
describes related work, and Section 7 summarizes the most important results
and concludes the paper.

2 Preliminaries

In this section we formalize the problem statement as the FREQSAT-problem.

2.1 Itemsets

Let I be a finite set, called the set of items. A transaction over I is a pair
(tid, J), with tid an identifier, and J a subset of I. A transaction database
over I is a finite set of such transactions where no two transactions have the
same identifier. In the following, we assume that the transaction identifiers
are strictly positive integers. Hence, a transaction is a pair (tid, I), with tid ∈
{1, 2, 3, . . .}, and I ⊆ I.

Let I be some set of items. We say that the transaction (tid, J) contains I,
denoted I ⊆ (tid, J), if I ⊆ J .

The support of I in D, denoted supp(I,D), is the absolute number of trans-
actions in D that contain I. The frequency of I in D, denoted freq (I,D), is
supp(I,D) divided by the number of transactions in D. In all what follows, D
is a transaction database over I.

Example 1 Consider the following transaction database, with the frequencies
of some sets:

D =

TID Items freq ({a}) = 0.75

1 a, b freq ({b}) = 0.5

2 a, c freq ({c}) = 0.75

3 c freq ({a, b}) = 0.5

4 a, b, c freq ({a, b, c}) = 0.25
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2.2 Frequency Constraints

A Frequency Constraint is an expression freq (I) ∈ [l, u], with I an itemset,
and 0 ≤ l, u ≤ 1 rational numbers. We say that D satisfies this expression,
denoted D |= freq (I) ∈ [l, u], if the frequency of I in D is in the interval [l, u].
D satisfies a set of frequency constraints, if it satisfies all of them.

A set of frequency constraints C entails a constraint freq (I) ∈ [l, u], denoted
C |= freq (I) ∈ [l, u], if every database D that satisfies C, satisfies freq (I) ∈
[l, u] as well. The entailment is said to be tight , denoted C |=tight freq (I) ∈
[l, u], if for every smaller interval [l′, u′] ⊂ [l, u], C does not entail freq (I) ∈
[l′, u′]. That is, if [l, u] is the best interval derivable for I, based on C.

We often use freq (I) = f to denote freq (I) ∈ [f, f ].

Example 2 Consider the following set of frequency constraints:

C =





freq ({a}) ∈ [0.75, 1], freq ({b}) ∈ [0.5, 0.75],

freq ({c}) = 0.75, freq ({a, b}) = 0.5





.

This set of constraints is satisfied by the database D given in Example 1.

The constraint freq ({a, b, c}) = 0.5 is not entailed by the constraints in C.
The database D in Example 1 is a counter example; D satisfies C, but does
not satisfy freq ({a, b, c}) = 0.5.

The constraint freq ({a, b, c}) ∈ [0, 0.5] is entailed by C. Indeed, because of the
monotonicity of frequency, the frequency of {a, b, c} must always be less than
the frequency of {a, b}. Therefore, in any database that satisfies freq ({a, b}) =
0.5, the frequency of {a, b, c} will be less than 0.5. The entailment is not
tight, however, because the interval [0, 0.5] can be made even smaller; in ev-
ery database that satisfies C, the frequency of {a, b, c} must be at least 0.25.
This can be seen as follows: because of the constraints freq ({c}) = 0.75 and
freq ({a, b}) = 0.5, 75% of the transactions of a satisfying database for C con-
tain {c}, and 50% contain {a, b}. Therefore, there must be an overlap of at
least 25% transactions that contain both {a, b} and {c}.

The entailed interval [0.25, 0.5] for {a, b, c} given C is tight. We can prove this
by showing, with examples, that the lower and upper bound are indeed both
feasible. The tightness of the lower bound follows from the database given in
Example 1. For the upper bound, the following database shows the tightness:

{(1, {a, b, c}), (2, {a, b, c}), (3, {a, c}), (4, {b})} .
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2.3 Problem Statement

We are now ready to state the main problem studied in this paper: the
FREQSAT-problem.

Problem FREQSAT:
Input: A set of frequency constraints C = {freq (Ij) ∈ [lj, uj], j = 1 . . . m}
Accept: iff there exists a database D over

⋃m
j=1 Ij that satisfies C. 2

Example 3 Suppose that the following set C of frequency constraints C is
given:





freq ({a, b}) ∈ [3/4, 1], freq ({a, c}) ∈ [3/4, 1], freq ({b, c}) ∈ [3/4, 1],

freq ({d, e}) ∈ [3/4, 1], freq ({d, f}) ∈ [1/2, 1], freq ({e, f}) ∈ [1/2, 1],

freq ({a, b, c, d, e, f}) = 0





C is in FREQSAT, because it is satisfiable by the following database:

D =

TID Items TID Items

1 a, b, c, d, e 5 a, b, c, e, f

2 a, b, c, d, e 6 a, b, d, e, f

3 a, b, c, d, e 7 a, c, d, e, f

4 a, b, c, d, f 8 b, c, d, e, f

Notice incidentally that the FREQSAT-instance in the above example illustrates
that the relative frequencies in the definition of FREQSAT cannot be replaced
straightforwardly by absolute support; even though all bounds on the fre-
quencies can be written as a multiple of 1/4, there does not exist a satisfying
database with 4 transactions. To prove that such a satisfying database with
4 transactions cannot exist, it suffices to notice that from C it follows that
freq ({a, b, c}) ∈ [5/8, 1], and freq ({d, e, f}) ∈ [3/8, 1]. This is because in every
transaction database, the following relation between the frequencies holds [16]:

freq ({x, y, z}) ≥ freq ({x, y}) + freq ({x, z}) + freq ({y, z})− 1

2
.

From freq ({a, b, c, d, e, f}) = 0 we can conclude that {a, b, c} and {d, e, f}
cannot be in the same transaction. All these observations combined lead to
the conclusion that freq ({d, e, f}) must be 3/8, and freq ({a, b, c}) = 5/8, as
otherwise they would overlap.
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3 The Computational Complexity of FREQSAT

In this section we study the complexity of FREQSAT. We start by showing that
in the definition of FREQSAT, the intervals can be replaced by exact frequencies
while keeping the same expressibility. Thus, this simplification of the problem
does not change the properties of the problem, nor the complexity. Then we
prove that in FREQSAT we can express the frequency of arbitrary Boolean
formulas over items. This shows that FREQSAT is equivalent to probabilistic
satisfiability (pSAT) [37]. The implications of this relation with pSAT are then
discussed.

3.1 Replacing Intervals with Single Numbers

First of all, we show that in a FREQSAT-problem, we can replace intervals
with exact frequencies. That is, we can reduce arbitrary FREQSAT-problems
to FREQSAT-problems that only contain constraints of type freq (I) = f . Let
C = {freq (Ij) ∈ [lj, uj], j = 1, . . . , m} be a FREQSAT-instance. Let I =

⋃m
j=1 Ij,

and let a1, . . . , am, b1, . . . , bm be 2m items not in I. EQ(C) now denotes the
following set of frequency constraints:

EQ(C) =
m⋃

j=1

{freq (Ij ∪ {aj}) = lj, freq ({bj}) = 1−uj, freq (Ij ∪ {bj}) = 0} .

We are now ready to state and prove the main theorem of this subsection:

Theorem 1 C = {freq (Ij) ∈ [lj, uj], j = 1, . . . , m} is in FREQSAT if and only
if EQ(C) is.

Proof The proof is based on the following simple observation: if a set I that
has a frequency between l and u in a database D, then there exist at least a
fraction l of transactions that contains I, and a fraction 1−u that doesn’t. The
idea is to “mark” exactly l of the transactions containing I by adding an item
a, and 1− u transactions that do not contain I with item b. The existence of
such items a and b with respectively frequencies l and 1− u implies therefore
that the frequency of I is between l and u. There is, however, one problem: if
the denominator (let’s say k) of l is not a divisor of |D|, it is not possible to
add a to exactly a fraction l of the transactions. Luckily, this problem is easily
solved by constructing a new database

⊕
kD that consists of k copies of every

transaction in D. This database has the same frequencies for its itemsets,
and the number of transactions in it is a multiple of k. The full proof of this
theorem can be found in Appendix A. 2
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3.2 Probabilistic Satisfiability

Boolean formulas, truth assignments and valuations are defined as usual: let
x1, . . . , xn be Boolean variables. A truth assignment over x1, . . . , xn is a func-
tion from {x1, . . . , xn} to {0, 1}. The set of all 2n truth assignments over
x1, . . . , xn is denoted A(x1, . . . , xn). The tuple of variables (x1, . . . , xn) is omit-
ted when clear from the context. A probability distribution over x1, . . . , xn is
a function Π that maps every assignment in A(x1, . . . , xn) to a real number
between 0 and 1 such that

∑
A∈A Π(A) = 1.

Let ϕ be a Boolean formula over the variables x1, . . . , xn, and let Π be a
probability distribution over these variables. The probability of ϕ given Π is
defined as:

ProbΠ(ϕ) =
∑

A∈A
A(ϕ) · Π(A) .

That is, ProbΠ(ϕ) is the sum of Π(A) over all assignments A that make ϕ
true.

The probabilistic satisfiability problem (pSAT) [37] is defined as follows: Con-
sider m logical sentences ϕ1, . . . , ϕm over the variables x1, . . . , xn with the
usual Boolean operators ¬, ∨, ∧. Assume (rational) probabilities π1, . . . , πm

for these sentences to be true are given. Does there exist a probability distri-
bution Π over x1, . . . , xn such that for all j = 1 . . . m, ProbΠ(ϕj) = πj?

In [23], it is proven that pSAT is NP-complete. This proof relies on the fact
that if a pSAT-problem is satisfiable, then it is satisfiable by a distribution
Π that can be represented in a succinct way as follows: for all assignments
A ∈ A, Π(A) is a rational number with length polynomial in the length of the
input (ϕ1, . . . , ϕm, π1, . . . , πm), and there are at most m+1 truth assignments
A such that Π(A) 6= 0. Hence, the listing of those assignments A, together
with their probabilities Π(A) is a succinct certificate.

3.2.1 Reduction From FREQSAT to pSAT

Because of Theorem 1, we can—without loss of generality—consider only
FREQSAT-problems where exact frequencies are given; we can always reduce
C to EQ(C) as a first step.

There is a straightforward relation between FREQSAT and pSAT; every instance
of the FREQSAT-problem can be seen as an instance of pSAT in which only con-
junctions are used. Let EQ(C) = {freq (Ij) = fj, j = 1, . . . ,m} be a FREQSAT-
problem. Let I =

⋃m
j=1 Ij. Associate with every i ∈ I, a variable xi. PSAT (C)
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denotes the following pSAT-problem:

ϕj =


 ∧

i∈Ij

xi


 , πj = fj, j = 1 . . .m

Theorem 2 C is in FREQSAT if and only if PSAT (C) is in pSAT.

Proof The proof can be found in Appendix B. 2

3.2.2 Reduction From pSAT to FREQSAT

We can extend FREQSAT to include constraints over arbitrary Boolean formu-
las. An extended frequency constraint is an expression freq (ϕ) ∈ [l, u], with ϕ
a Boolean formula over the set of items I. We say that a transaction (tid, J)
satisfies ϕ, if the truth assignment V that assigns 1 to an item i if and only if
i ∈ J , makes ϕ true. E.g., the transaction (tid, {a, b, c}) satisfies a ∨ (b ∧ ¬c),
but does not satisfy a ∧ ¬c. The frequency of a Boolean formula is the num-
ber of transactions satisfying it. The satisfaction and entailment of extended
frequency constraint are defined in the same way as for frequency constraints.
The extension of FREQSAT to arbitrary Boolean formulas gives pSAT.

Lemma 1 Let Π = (ϕ1, . . . , ϕm, π1, . . . , πm) be a pSAT-problem with variables
taken from the set I. Π is satisfiable if and only if the following extended
FREQSAT-problem is: {freq (ϕ1) ∈ [π1, π1], . . . , freq (ϕm) ∈ [πm, πm]}.

We now show that in FREQSAT we can simulate extended frequency constraints.

Intuition behind the proof. For every subformula σ of the formulas ϕ1,
. . . , ϕm in the extended FREQSAT problem, (also for the items), we introduce
two new items, tσ and fσ. tσ stands for “σ is true in this transaction”, and fσ

for “σ is false in this transaction”. A transaction T = (tid, J) will represent
the truth assignment VT that assigns true to all items i with ti ∈ J , and false
to the items j with fj ∈ J . We add constraints such that tσ is in a transaction
T if and only if the truth assignment VT makes σ true. For example, suppose
that we have one formula a∨ b. The transaction consisting of the items {a, c}
will actually be represented as (tid, {a, c, ta, fb, ta∨b}). The reduction will be
such that there are constraints that enforce that the “special” items ta, tb,
fa, fb, ta∨b, fa∨b be consistent with the “regular” items a, b, and c. Notice
that there is, e.g., no item tc, because c does not occur as a subformula of
a∨ b. Notice that the number of subformulas of a Boolean formula ϕ is linear
in the size of ϕ, as there is one subformula for every variable and for every
connector used in ϕ. This linearity is important in showing that the reduction
is polynomial.
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The main trick used in the reduction is that only half of the transactions will
represent valid truth assignments. These transactions will contain the item d,
the others contain item d (hence, d is in fact not d):

freq ({d}) = 0.5, freq
(
{d}

)
= 0.5, freq

(
{d, d}

)
= 0 .

For every subexpression σ, we add the following constraints:

freq ({tσ}) = 0.5, freq ({fσ}) = 0.5, freq ({tσ, fσ}) = 0 .

In this way, we make sure that every transaction contains either tσ, or fσ, but
not both. We use the transactions containing d to compensate the fact that
we cannot know (at least not without solving an NP-complete problem) how
many transactions will have tσ (resp. fσ). For example, for a ∨ ¬a, half of the
transactions will contain {d, ta∨¬a}, and the other halve contains {d, fa∨¬a}.
Hence, even though only half of the transactions contain ta∨¬a, all transactions
representing valid truth assignments contain ta∨¬a.

We still have to make sure that within the d-part of a satisfying database,
the trues and falses are consistent with each other. For example, a transaction
validly representing a truth assignment cannot contain ta∨b, fa, and fb at the
same time. The consistency can easily be enforced by adding some simple
frequency constraints. For example, for a disjunction σ1 ∨ σ2 it suffices to add
the following three constraints:

freq ({d, tσ1∨σ2 , fσ1 , fσ2}) = 0, freq ({d, fσ1∨σ2 , tσ1) = 0, freq ({d, fσ1∨σ2 , tσ2) = 0

Finally, for all j = 1 . . . m, we add the constraint {freq
(
{d, tϕj

}
)
∈ [l/2, u/2]}.

Example 4 Consider the following set of extended frequency constraints P:

P =





freq (a) ∈ [0.4, 0.7], freq ((¬a) ∨ b) = 0.6,

freq (b ∧ c) ∈ [0.2, 0.4], freq (c) = 0.6





.

FSAT (P) is a set of frequency constraints over the items

{ta, fa, tb, fb, tc, fc, t¬a, f¬a, t(¬a)∨b, f(¬a)∨b, tb∧c, fb∧c, d, d} .

The first type of constraints in FSAT (P) makes sure that tσ and fσ are com-
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TID Items

1 a, b, c

2 c

3 c

4 a

5 a

−→

TID Items

1 d ta tb tc f¬a t(¬a)∨b tb∧c

2 d fa fb tc t¬a t(¬a)∨b fb∧c

3 d fa fb tc t¬a t(¬a)∨b fb∧c

4 d ta fb fc f¬a f(¬a)∨b fb∧c

5 d ta fb fc f¬a f(¬a)∨b fb∧c

6 d fa fb fc t¬a f(¬a)∨b fb∧c

7 d ta tb fc f¬a f(¬a)∨b tb∧c

8 d ta tb fc f¬a f(¬a)∨b tb∧c

9 d fa tb tc t¬a t(¬a)∨b tb∧c

10 d fa tb tc t¬a t(¬a)∨b tb∧c

P =





freq (a) ∈ [0.4, 0.7], freq ((¬a) ∨ b) = 0.6,

freq (b ∧ c) ∈ [0.2, 0.4], freq (c) = 0.6





.

Fig. 1. A database satisfying P and a corresponding database for FSAT (P).

plements of each other:

freq ({ta, fa}) = 0, freq ({ta}) = 0.5, freq ({fa}) = 0.5

freq ({tb, fb}) = 0, freq ({tb}) = 0.5, freq ({fb}) = 0.5

. . .

freq ({tb∧c, fb∧c}) = 0, freq ({tb∧c}) = 0.5, freq ({fb∧c}) = 0.5

The item d is in half of the transactions, and d is its complement:

freq
(
{d, d}

)
= 0, freq ({d}) = 0.5, freq

(
{d}

)
= 0.5 .

The second type of constraints makes sure that within the transactions that
contain d of a satisfying database, the trues and falses are consistent:

• freq ({d, ta, t¬a}) = 0, freq ({d, fa, f¬a}) = 0

• freq
(
{d, t¬a, f(¬a)∨b}

)
= 0, freq

(
{d, tb, f(¬a)∨b}

)
= 0,

freq
(
{d, f¬a, fb, t(¬a)∨b}

)
= 0

• freq ({d, fb, tb∧c}) = 0, freq ({d, fc, tb∧c}) = 0, freq ({d, ta, tb, fb∧c}) = 0

Finally, the third type of constraints translates the extended frequency con-
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straints:

freq ({d, ta}) ∈ [0.2, 0.35], freq
(
{d, t(¬a)∨b}

)
= 0.3,

freq (d, tb∧c) ∈ [0.1, 0.2], freq ({d, tc}) = 0.3

In Figure 1, two databases satisfying respectively P and FSAT (P) have been
given.

The complete formal construction of the reduction FSAT can be found in
appendix C.

We are now almost ready to state the main result of this section, namely that
FREQSAT is equivalent to extended FREQSAT, and thus also equivalent to pSAT.
We also want to relate the set of possible frequencies of an expression ϕ in
an extended FREQSAT-problem P , and the possible frequencies of the itemset
{tϕ, d} in FSAT (P). Therefore, we first introduce the entailed frequencies.

Definition 1 Let C be a FREQSAT-problem, and let P be a pSAT-problem. I is
an itemset, and ϕ is a Boolean formula.

ENT I(C) := {freq (I,D) | D |= C}
ENTϕ(P) := {ProbΠ(ϕ) | Π is a solution of P}

Theorem 3 P = (ϕ1, . . . , ϕm, π1, . . . , πm) is in pSAT if and only if FSAT (P)
is in FREQSAT.

Furthermore, ENTϕ(P) = [l, u], iff ENT {d,tϕ}(FSAT (P)) = [l/2, u/2].

Proof The proof of this theorem can be found in Appendix C. 2

3.3 Implications of the Equivalence between pSAT and FREQSAT

In [23], it was shown that pSAT is NP-complete. Therefore, the equivalence of
pSAT and FREQSAT leads to the following corollary.

Corollary 1 FREQSAT is NP-complete.

Notice that there is also a more direct proof possible of the NP-completeness
of FREQSAT [11], along the lines of the proof in [23]. We do, however, prefer the
proof via the reduction from pSAT, because of the fact that we can simulate
arbitrary Boolean formulas in FREQSAT will be very important in the rest of
the paper. For a direct proof, see [11].

The proof of NP-completeness of pSAT in [23], relies heavily on the follow-
ing property. If a satisfying probability distribution for an instance of pSAT
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exists, then there is one with at most m + 1 non-zero probabilities, and with
entries rational numbers with total precision O(m2). (m denotes the number
of Boolean formulas.) Also this result can be extended to FREQSAT.

Corollary 2 If there exists a satisfying database for an instance C of the
FREQSAT- problem, then there exists a database D such that |{J | (tid, J) ∈ D}|
is at most 3m + 1, and the number of transactions is at most 2p(m). (p(m) is
a fixed polynomial, independent of C.)

Proof This follows from results in [23], and the construction in Theorem 2.
A satisfiable FREQSAT-instance C with m frequency constraints is reduced to a
satisfiable pSAT-instance P(C) with 3m Boolean formulas (first EQ is applied
in order to eliminate the intervals; the application of EQ results in a new
FREQSAT-instance having 3m constraints.) Because the results in [23], there
exists a probability distribution Π that satisfies PSAT (C) with at most 3m+1
non-zero probabilities, and with entries rational numbers with total precision
O(m2). The database DΠ from the proof of Theorem 2 is the desired satisfying
database for C. 2

In [34], different decision and function problems related to pSAT were intro-
duced. We can do similarly for FREQSAT. Consider the following three entail-
ment problems associated with FREQSAT:
(1) FREQENT(C, freq (I) ∈ [l, u]): Decide whether C |= freq (I) ∈ [l, u].
(2) T-FREQENT(C, freq (I) ∈ [l, u]): Decide whether C |=tight freq (I) ∈ [l, u].
(3) Func T-FREQENT(C, I): Give [l, u] such that C |=tight freq (I) ∈ [l, u].

The complexity of these three problems is very related to the complexity of
FREQSAT. Since FREQSAT and pSAT are equivalent, we can directly use the
results of Lukasiewicz [34]. Hence, we obtain the following corollary:

Corollary 3 FREQENT is co-NP-complete, T-FREQENT is DP-complete,

and Func T-FREQENT is FPNP-complete.

Finally, it is well-known that for the pSAT-problem, the entailed sets are al-
ways intervals. This is due to the fact that a pSAT entailment problem can be
restated as an optimization problem that amounts to minimizing and max-
imizing a linear programme. In a similar way, it can be shown that for all
itemsets I, and FREQSAT-instances C, ENT I(C) is an interval, with a rational
lower and upper bound with precision polynomial in the sizes of C and I.
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(ϕ1 ∧ ¬ϕ2) ∨ r

↗

↘





{

ϕ1

ϕ2

r





(¬ϕ1 ∧ ϕ2) ∨ r

Fig. 2. Construction of ε(ϕ1, ϕ2)

4 Simulating Association Rules

In this section we show that the confidence of association rules can be ex-
pressed with FREQSAT. A key construction herein is the Multiplication Lemma.
This lemma illustrates that we can express constraints like freq (ϕ) = 2 ·
freq (ψ). From this lemma, the ability to express that a certain association
rule must have confidence in a given interval is immediate.

Definition 2 An association constraint is an expression conf (I → J) ∈ [l, u],
with I, J itemsets. A database D satisfies this association constraint if and only
if l · freq (I) ≤ freq (I ∪ J) ≤ u · freq (I).

Notice that this definition implies that if the frequency of I is 0, then the
association constraint conf (I → J) ∈ [l, u] is satisfied.

4.1 Multiplication Lemma

This Multiplication Lemma shows how we can construct a set of constraints
such that a new item m is forced to have exactly d times the frequency of a
given itemset I, for a given d.

One of the main constructions in this section is the following expression
ε(ϕ1, ϕ2), that enforces that two Boolean formulas ϕ1 and ϕ2 have the ex-
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act same frequency (ε of equals):

ε(ϕ1, ϕ2) := { freq (ϕ1 ∧ ¬ϕ2 ∧ r) = 0, freq ((ϕ1 ∧ ¬ϕ2) ∨ r) = 0.5,

freq (¬ϕ1 ∧ ϕ2 ∧ r) = 0, freq ((¬ϕ1 ∧ ϕ2) ∨ r) = 0.5 }

This construction of ε is illustrated in Figure 2. It is based on the fact that
ϕ1 and ϕ2 have the same frequency if and only if ϕ1 ∧ ¬ϕ2 and ¬ϕ1 ∧ ϕ2

have the exact same frequency. Furthermore, because these two expressions
cannot be true at the same time, if they have the same frequency, it is at most
0.5. Therefore, we can add a new item r such that r is in no transaction that
satisfies either ϕ1 ∧ ¬ϕ2, or ¬ϕ1 ∧ ϕ2, and the frequency of r is exactly the
difference between 0.5 and the frequencies of ϕ1 ∧ ¬ϕ2 and ¬ϕ1 ∧ ϕ2.

We often use more than one ε-expression at the same time. We assume im-
plicitly that for each use of ε, a new item is substituted for r. That is, if we
use, e.g., the set of constraints C ∪ ε(ϕ1, ϕ2) ∪ ε(ϕ3, ϕ4), we implicitly assume
that the item r in ε(ϕ1, ϕ2) differs from the one used in ε(ϕ3, ϕ4).

Using multiple ε-expressions, we construct the following expression δ(ϕ1, ϕ2)
enforcing that the frequency of ϕ2 is exactly twice the frequency of ϕ1 (δ
stands for double):

δ(ϕ1, ϕ2) := ε(ϕ1, k1) ∪ ε(ϕ1, k2) ∪ {freq (k1 ∧ k2) = 0, ε(ϕ2, k1 ∨ k2)} .

This δ-expression creates two disjoint items k1 and k2 that have the same
frequency as ϕ1, and sets the frequency of ϕ2 equal to the frequency of k1∨k2.
As k1 and k2 never occur in the same transaction, the frequency of ϕ1 must
hence be twice the frequency of ϕ1.

Again, the same remark as with ε applies: if we use multiple δ-expressions
simultaneously, we implicitly assume that the items k1, k2 are replaced by
unique, new items.

Obviously, we can also multiply by 3, 4, . . ., by making enough disjoint copies
of ϕ1 with ε, and setting ϕ2 equal to k1 ∨ k2 ∨ . . . This method, however, has
one big disadvantage: the formulas to multiply with n would be exponentially
large in the size of the representation of n. This can easily be solved though,
by iterative doubling and adding. Let n be a positive integer with binary
representation b` . . . b0. That is, n =

∑`
j=0 bj2

j. We introduce the expression
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MULT n(ϕ1, ϕ2) as follows:

MULT n(ϕ1, ϕ2) = ε(ϕ1, b0) ∪ δ(b1, b0) ∪ . . . ∪ δ(b`, b`−1)

∪ {freq (bi ∧ bj) = 0 | 0 ≤ i < j ≤ ` ∧ bi = bj = 1}
∪ ε(ϕ2,

∨

bj=1

0≤j≤`

bj)

This construction of ε is illustrated in Figure 3. The first line of this expression
makes sure that for all i = 1 . . . `, bi has frequency 2i · freq (ϕ1). bi corresponds
hence to the ith bit in the binary representation of n. The second line ensures
that no two items, that represent 1-bits, occur in the same transaction. Finally,
the last line sets ϕ2 equal to the disjunction of the 1-bits bj. Because the
frequency of bj is 2j times the frequency of ϕ1, and all items representing 1-
bits are in separate transactions, the frequency of this disjunction is exactly
n times the frequency of ϕ1.

The following Multiplication Lemma now states the correctness of the above
constructions:

Lemma 2 (Multiplication Lemma) If D satisfies MULT n1(ϕ
1
1, ϕ

1
2)∪. . .∪

MULT n`
(ϕ`

1, ϕ
`
2), then for all j = 1 . . . `, nj · freq

(
ϕj

1,D
)

= freq
(
ϕj

2,D
)
.

There exists a database D that satisfies C and with for all j = 1 . . . `, nj ·
freq

(
ϕj

1,D
)

= freq
(
ϕj

2,D
)

if and only if there exists a database D that satisfies

C ∪MULT n1(ϕ
1
1, ϕ

1
2) ∪ . . . ∪MULT n`

(ϕ`
1, ϕ

`
2).

Proof The proof of this lemma can be found in Appendix D. 2

Example 5 In Figure 3, the construction of MULT 11(ϕ1, ϕ2) is illustrated.
The binary representation of 11 is 1011. The expression for MULT 11(ϕ1, ϕ2)
is thus:

ε(ϕ1, b0) ∪ δ(b1, b0) ∪ δ(b2, b1) ∪ δ(b3, b2)

∪ {freq (b0 ∧ b1) = 0, freq (b0 ∧ b3) = 0, freq (b1 ∧ b3) = 0}
∪ {ε(ϕ2, b0 ∨ b1 ∨ b3)}

The first line ensures that for i = 0 . . . 3, freq (bi) = 2i · freq (ϕ1). The second
line expresses that no transaction contains more than one of b0, b1, and b3.
Therefore,

freq (b0 ∨ b1 ∨ b3) = freq (b0) + freq (b1) + freq (b3) = 11 · freq (ϕ1) .

Finally, the last line states that ϕ2 is in exactly those transactions that satisfy
freq (b0 ∨ b1 ∨ b3). Therefore, freq (ϕ2) = 11 · freq (ϕ1), as well.

16



ϕ1 b0

k1
1 k2

1

k1
2 b1 b2

k2
2

k3
1

ϕ2

b3

k3
2

Fig. 3. Construction of MULT 11(ϕ1, ϕ2)

4.2 Expressing Association Rules in FREQSAT

Assume that besides frequency constraints C, also a set of association con-
straints A has been given. We show that there exists an extended FREQSAT-
instance EFSAT (C ∪ A) that is equivalent to C ∪ A. Thus, because of the
equivalence between FREQSAT and extended FREQSAT proven in Section 3, this
implies that C ∪ A is equivalent to FSAT (EFSAT (C ∪ A)).

Consider the association constraint conf (ϕ → ψ) ∈ [l, u]. This constraint
holds in a database D if and only if

l · freq (ϕ,D) ≤ freq (ϕ ∧ ψ,D) ≤ u · freq (ϕ,D) .

Let L = N · l, and U = N · u. Then, The association constraint holds if:

L · freq (ϕ,D) ≤ N · freq (ϕ ∧ ψ,D) ≤ U · freq (ϕ,D) .

The translation now seems easy: we introduce new items α, β, and γ, and
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using the multiplication lemma, we enforce that:

freq (α) = L · freq (ϕ) freq (α ∧ ¬γ) = 0

freq (β) = U · freq (ϕ) freq (¬β ∧ γ) = 0

freq (γ) = N · freq (ϕ ∧ ψ)

That is, we create three new items α, β, γ with frequencies such that the
association constraint is satisfied if freq (α) ≤ freq (γ) ≤ freq (β). This relation
between the frequencies of the three items is enforced by the two constraints
of the right that require that every α occurs together with γ, and every γ
occurs together with a β.

However, it is very well possible that for example U · freq (ϕ) is larger than 1,
and hence the multiplications cannot be carried out. To resolve this problem,
we will embed the database that satisfies C ∪ A into a larger database. Let
NA be the smallest integer such that for all association constraints conf (ϕ →
ψ) ∈ [l, u], NA · l and NA · u are integers. That is, NA is the smallest common
multiple of the denominators of the bounds on the association constraints. The
larger database, in which the satisfying database D of C ∪A will be embedded
will have NA · |D| transactions. To indicate which transactions belong to the
database D, a new item d is introduced. The transactions containing d will
form a database satisfying C∪A. The other transactions are there to create the
space to do the multiplications. Since we maximally multiply with NA, there
will always be enough space to be able to apply the multiplication lemma.

Hence, we get the following constraints. Let

C= {freq (ϕj) ∈ [lj, uj], j = 1 . . .m}
A= {conf (ϕk → ψk) ∈ [Lk/NA, Uk/NA], k = 1 . . . `}

Then, we define the extended FREQSAT-instance EFSAT (C ∪ A) as

{freq (ϕj ∧ {d}) ∈ [lj/NA, uj/NA], j = 1 . . .m} ∪ {freq (d) = 1/NA}
⋃`

k=1 (MULTLk
(ϕk, αk) ∪ MULTUk

(ϕk, βk) ∪ MULTNA(ϕk ∧ ψk, γk))

∪ {freq (αk ∧ ¬γk) = 0, k = 1 . . . `} ∪ {freq (¬βk ∧ γk) = 0, k = 1 . . . `}

Theorem 4 C ∪A is satisfiable if and only if the extended FREQSAT-instance
EFSAT (C ∪ A) is satisfiable. Furthermore, ENT I(C ∪ A) = [l, u] if and only
if ENT I(EFSAT (C ∪ A)) = [l/NA, u/NA].

Proof This is a direct consequence of the multiplication lemma. 2
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Example 6 Let C ∪ A be the following set:

{freq (a) = 1/2, freq (a ∨ b) = 3/4} ∪ {conf (a → b) ∈ [1/2, 1]} .

N here equals 2. The association constraint conf (a → b) ∈ [1/2, 1] holds if
and only if

freq (a) ≤ 2 · freq (a ∧ b) ≤ 2 · freq (a) .

Hence, the items α and β will have frequency equal to respectively freq (a) and
2 · freq (a). γ will have frequency 2 · freq (a ∧ b). The association constraint is
enforced by requiring that every transaction with α also contains γ, and every
one with γ also has β.

The following databases satisfy respectively C ∪ A and EFSAT (C ∪ A):

TID Items

1 a

2 a, b

3 b

4

−→

TID Items TID Items

1 d, a 5 α, γ, β

2 d, a, b 6 α, γ, β

3 d, b 7 β

4 d 8 β

4.3 Implications for Approximation Results

In this subsection we discuss the approximation of the entailment version of
FREQSAT. Based on the ability to express association rules, it is not too hard to
prove that FREQSAT cannot be approximated. More concretely, we show that
the NP-complete satisfiability problem C can be reduced to the function prob-
lem Func(C) in such a way that if C is satisfiable, then ENT {d,ti}(Func(C)) =
[0, 0.5], otherwise ENT {d,ti}(Func(C)) = [0, 0]. Therefore, unless P equals NP,
there cannot exist an approximation algorithm that approximates the upper
bound of the interval with an absolute error less than 0.25, because otherwise
we would have a deterministic polynomial procedure to decide FREQSAT. Thus,
for any polynomial time approximation, the relative error on the upper bound
is unbounded.

Let C be {freq (I1) ∈ [l1, u1], . . . , freq (Im) ∈ [lm, um]}, and let i and a be items
in none of the Ij’s. Func(C) denotes the following FREQSAT-problem:

FSAT


EFSAT



{conf ({a} → I1) ∈ [l1, u1], . . . ,

conf ({a} → Im) ∈ [lm, um]}


 ∪ MULTN({a}, {i})
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with N being the least common multiplier of the denominators of l1, u1, . . .,
lm, um.

Theorem 5 Let C be a set of frequency constraints. If C is satisfiable then
ENT {d,ti}(Func(C)) = [0, 0.5], otherwise ENT {d,ti}(Func(C)) = [0, 0].

Proof If C is not satisfiable, then the only way to satisfy the following set of
association constraints is by a transaction database with freq ({a}) = 0:

{conf ({a} → I1) ∈ [l1, u1], . . . , conf ({a} → I1) ∈ [lk, uk]}

On the other hand, if C is satisfiable, then we can satisfy these association
constraints by adding the item a to every transaction of a database satisfying
C. Therefore, if C is not satisfiable, freq ({a}) is 0, otherwise freq ({a}) can be
any number in the interval [0, 1]. Because of Theorem 4, it follows that the
entailed frequency interval for freq ({a}) in the extended FREQSAT-instance

E := EFSAT ({conf ({a} → I1) ∈ [l1, u1], . . . , conf ({a} → Im) ∈ [lm, um]})

is [0, 0] if C is not satisfiable, and [0, 1/N ] otherwise. Because of the constraint
MULTN({a}, {i}), and the Multiplication Lemma 2, the entailed interval for
{i} given the extended FREQSAT-instance

E ∪ {MULTN({a}, {i})}

is [0, 0] and [0, 1] in these respective cases. Finally, because of Theorem 3, we
get that for the FREQSAT-instance

FSAT (E ∪ {MULTN({a}, {i})}) ,

the entailed interval for {d, ti} is [0, 0] if C is not satisfiable, and is [0, 0.5]
otherwise, as, going from extended FREQSAT to FREQSAT, we have to take into
account a factor of 1/2 on the bounds. 2

5 Axiomatization of FREQSAT

In this section we show that FREQSAT does not have an axiomatization of
finite arity. We use the same notations and approach to axiomatizations as in
[1]. We consider a countable infinite set of items I. The set of all frequency
constraints freq (I) ∈ [l, u], with I a finite subset of I is denoted S. It is clear
that any instance of the FREQSAT-problem can be mapped to the satisfiability
of a finite subset of S.

A ground inference rule is an expression of the form (if S then s), where
S ⊆ S, and s ∈ S. This rule is said to be sound, if S |= s. A set of ground
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inference rules R is sound is each rule in R is sound.

Let Σ∪ {σ} ⊆ S be a set of frequency constraints. A proof of σ from Σ using
R is a sequence σ1 . . . σn = σ such that for every i = 1 . . . n, either σi is in
Σ, or there is a rule (if S then s) in R, such that S ⊆ {σ1, . . . , σi−1}, and
σi = s. We write Σ `R σ if there is a proof of σ from Σ using R.

R is called complete if for each pair (Σ, σ), Σ |= σ implies Σ `R σ. A set of
rules R is an axiomatization if it is sound and complete.

Intuitively, an axiomatization is called finite if there is an axiomatization
R, such that there exists a finite set of inference rule schemas that can be
instantiated to form R. Instead of formalizing the somewhat fuzzy notion of
inference rule schemas, however, we concentrate on axiomatizations of ground
inference rules, and prove properties of them.

An implication rule (if S then s) is said to be k-ary for some k ≥ 0, if |S| = k.
An axiomatization R is k-ary if each rule in it is l-ary with l ≤ k. We show
next that FREQSAT is not finitely axiomatizable by an axiomatization of finite
arity. Thus, this implies that every axiomatization for FREQSAT, must include
inference rules of arbitrary large arity.

We furthermore show in this section that, nevertheless, there exists a recursive
axiomatization of FREQSAT, and when we fix the itemsets that can occur in
frequency constraints, we can always obtain a finite, and locally complete
axiomatization.

The most important property of an axiomatization system is that it provides
an effective procedure to reason about frequency constraints. Also, an axioma-
tization systems reveals the actual structure of the problem by giving all tools
to solve the problem. Therefore, if possible, having a complete axiomatization
system is very desirable. In this context, the axiomatization results in this
section address these issues. The importance of the negative results concern-
ing the axiomatization is that it shows that any local deduction procedure is
necessarily incomplete. Any complete method must, at one point, take into
account all given frequency constraints at the same time. Notice that this
is different than, e.g., the Armstrong axioms for functional dependencies. As
such, divide and conquer techniques are, inevitably, incomplete.

5.1 Any Axiomatization of FREQSAT Has Infinite Arity

We first give a theorem that provides a set of axioms that are sound and
complete in the special case that for every subset I of a finite set I, a frequency
constraints freq (I) = fI is given. The number of axioms depends on the set I,
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and the axioms are only complete in this very special case. In Theorem 7, we
then show that in general, no axiomatization of finite arity exists for FREQSAT.

Theorem 6 ([11]) Let for all I ⊆ I, fI be a rational number. There exists a
transaction database D such that for all I ⊆ I, freq (I,D) = fI if and only if,
for all I ⊆ I, the following rule holds:

RI(I) σI(I) =
∑

I⊆K⊆I
(−1)|K−I|fK ≥ 0

Theorem 7 Every axiomatization for FREQSAT that does not include an ax-
iom that involves the frequency of all nonempty itemsets is incomplete. There-
fore, for no k does there exist a k-ary sound and complete axiomatization for
FREQSAT.

Proof Let n be an arbitrary number. We construct a FREQSAT problem C over
the set I = {i1, . . . , in}, such that (a) C is not satisfiable, but, (b) every strict
subset of C is satisfiable. Furthermore, C contains one expression freq (I) = fI

for every I ⊆ I.

From (a) and (b) it follows then that an axiomatization for FREQSAT must
contain at least one axiom that involves every frequency constraint in the
input. Indeed; suppose that the axioms A1, A2, . . . , Am are sound and complete
for FREQSAT, but none of the axioms Ai involves all frequencies. Because C is
not satisfiable, there must be at least one axiom A that is not satisfied by
C. This is so because C contains an expression freq (I) = fI , for every subset
I of I. Hence, every expression freq (I) ∈ [l, u] entailed by C is either in
contradiction with freq (I) = fi, or is less expressive. Therefore, if it can be
derived by the axioms that C is not satisfiable, then this can be derived in one
step. Suppose that this unsatisfied axiom A does not involve itemset I, and c
is the constraint in C involving I. Then we have the following contradiction:
C \ {c} is satisfiable, but violates A.

The full proof can be found in Appendix E. 2

5.2 Recursive Axiomatization of FREQSAT

Theorem 8 FREQSAT is recursively axiomatizable. That is, it is decidable if
a given rule (if S then s) is sound.

Proof From Theorem 6, it follows that the set of frequency constraints

C = {freq (I1) ∈ [l1, u1], . . . , freq (Im) ∈ [lm, um]}
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is satisfiable if and only if the following system of linear inequalities Prog(C)
has a solution: Let, for every subset I of I =

⋃m
i=1 Im, xI be a variable.





∑
I⊆K⊆I(−1)|K−I|xK ≥ 0 ∀I ⊆ I

xIj
≥ lj ∀j = 1 . . .m

xIj
≤ uj ∀j = 1 . . .m

Via linear programming we can now compute the minimal and maximal fre-
quency of any given set I, by minimizing/maximizing the variable xI given
the linear program Prog(C). Hence, given C, for any set I we can compute
the tightly entailed interval [l, u], and therefore also check the soundness of a
given rule (if S then s). 2

5.3 Locally Complete Axioms

We show how we can construct an axiomatization for the case where the
input sets are fixed. This generic construction is based on the Fourier-Motzkin
elimination method [19, p. 84] for linear systems of inequalities.

Construction of Axioms. Suppose that we want to make axioms for the
specific case that we know bounds on the sets {a}, {b}, and {a, b, c}. We denote
the hypothetical bounds on a set I by [lI , uI ]. We can state the existence of a
satisfying database with a linear program, in the same way as in the proof of
Theorem 8:





xabc ≥ 0 xabc ≥ xab + xac − xa

xab ≥ xabc xabc ≥ xab + xbc − xb

xac ≥ xabc xabc ≥ xac + xbc − xc

xbc ≥ xabc xab + xac + xbc − xa − xb − xc + 1 ≥ xabc

xa ≥ la ua ≥ xa

xb ≥ lb ub ≥ xa

xabc ≥ labc uabc ≥ xabc

Thus, given bounds on the frequency of {a}, {b}, and {a, b, c}, there exists a
database that satisfies them if and only if the above system has a solution. It
would, however, be nicer if we had existence conditions that did not involve
the variables xI . For this, we can use the Fourier-Motzkin elimination method.
This elimination method allows to remove variables from linear systems of
inequalities, without affecting the satisfiability of the system.
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First we eliminate xa. This is done as follows. In all the inequalities that
involve xa, we isolate xa:

la ≤ xa xa ≤ ua

xab + xac − xabc ≤ xa xa ≤ xab + xac + xbc − xb − xc + 1− xabc

We can eliminate xa by replacing these inequalities with all inequalities lin1 ≤
lin2 such that lin1 ≤ xa and xa ≤ lin2 was in the original system. On the
one hand, it is easy to see that in every solution to the original system these
new inequalities are fulfilled. Hence, if the original system had a solution,
then the new system has a solution as well. On the other hand, if we have a
solution for the new system, the new inequalities ensure that there does exist
an xa. Indeed; suppose for the sake of contradiction that no such xa exists.
Then, there must exist inequalities lin1 ≤ xa and xa ≤ lin2 such that the
value of lin1 is larger than the value of lin2 in the solution. This is however in
contradiction with the fact that in the new system, the inequality lin1 ≤ lin2

is satisfied.

In our example, eliminating xa results in replacing the inequalities in (5.3)
with the following equivalent inequalities that no longer involve variable xa.





ua ≥ la xab + xac + xbc − xb − xc + 1− xabc ≥ la

ua ≥ xab + xac − xabc xbc − xb − xc + 1 ≥ 0

We then continue eliminating all other variables xI one by one. The final result
of all eliminations is:





0 ≤ ua la ≤ 1 la ≤ ua labc ≤ ua

0 ≤ ub lb ≤ 1 lb ≤ ub labc ≤ ub

0 ≤ uabc labc ≤ 1 labc ≤ uabc

The leftmost 3 columns just state that the intervals [l, u] must contain at least
one possible frequency; i.e., [l, u]∩ [0, 1] 6= {}. This translates to the conditions
l ≤ u, l ≤ 1, u ≥ 0. The rightmost two conditions state the monotonicity rules;
the lower bound on {a, b, c} must always be smaller than the upper bounds
of {a} and {b}. Thus, these conditions together with the implicit assumption
that [l, u] is a non-empty subinterval of [0, 1] for all bounds, gives the following
5 axioms for the special case in which bounds on {a}, {b}, and {a, b, c} have
been given:

{la ≤ ua lb ≤ ub labc ≤ uabc labc ≤ ua labc ≤ ub
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Entailment. With a slight variation on the elimination method, we can find
a complete set of deduction rules for the entailment problem as well.

Suppose that we want to entail formulas that give tight bounds on the fre-
quency of {a, b, c} in the case that {freq ({a}) ∈ [la, ua] , freq ({b}) ∈ [lb, ub]}
has been given. We construct a similar system as in last section:





xabc ≥ 0 xab + xac + xbc − xa − xb − xc + 1 ≥ xabc

xab ≥ xabc xabc ≥ xab + xac − xa

xac ≥ xabc xabc ≥ xab + xbc − xb

xbc ≥ xabc xabc ≥ xac + xbc − xc

xa ≥ la ub ≥ xa

ua ≥ xa xb ≥ lb

In this system we eliminate all xI ’s except for xabc. This gives the following,
equivalent system:





la ≤ 1 la ≤ ua xabc ≤ 1 xabc ≤ ub

lb ≤ 1 lb ≤ ub xabc ≤ ua 0 ≤ xabc

The two leftmost columns of conditions are again existence conditions. The
rightmost 4 conditions show that

{freq ({a}) ∈ [la, ua] , freq ({b}) ∈ [lb, ub]}
|=tight freq ({a, b, c}) ∈ [0, min {1, ua, ub}] .

6 Related Work and Applications

6.1 Related Work

Deduction of frequencies. Before the systematic study of the FREQSAT-
problem, several special instances have been studied. In [16], a complete ax-
iomatization is given and the complexity is studied of the case where only lower
bounds on the frequencies are known. An example of a deduction that can be
made with the axioms in [16], is that from freq (I) ≥ 60% and freq (J) ≥ 60%,
it follows that freq (I ∪ J) ≥ 20%. FREQSAT, however, is much more difficult
and complex. An example of a deduction that cannot be made using the
axioms of [16] is the following: from freq (I) ≥ 60%, freq (J) ≥ 60%, and
freq (I ∩ J) = 80% it follows that freq (I ∪ J) ≥ 40%. The relative simplicity
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of only considering lower bounds is also clear from the fact that the complete
deduction for the case studied in [16] can be performed in polynomial time,
while FREQSAT is NP-complete.

In [13, 14, 15], another special case is studied. In this case, for a given itemset
I, the frequency of all its strict subsets are known exactly. For this case,
deduction rules are given to derive tight bounds on the frequency of I. This
deduction can be done in polynomial time; on the one hand, the number of
deduction rules is exponential in the size of I, but, on the other hand, also the
size of the input, i.e., the frequency for every strict subset of I, is exponential
in the size of I. Based on these deduction rules, the non-derivable itemsets are
introduced as a condensed representation for itemsets. Again the FREQSAT-
problem is much more general, as it allows any collection of itemsets as input,
and it allows for intervals instead of exact frequencies.

In [44], Tatti studies the complexity of a set of boolean query problems, most
of which are in fact a special case of the FREQSAT-problem, in the sense that not
every collection of frequency constraints are allowed, but only anti-monotonic
collections, and exact frequencies. In this context, Tatti showed that deciding
consistency is still NP-complete, and deciding if it is possible that a certain
target itemset B has a frequency of at least b given an anti-monotonic, exact
set of frequency constraints remains NP-complete, even when the given set of
constraints is consistent. Tatti also studies a variant based on maximal entropy
that is provably more complex (given NP does not equal PP.)

In [45], Tatti studies the same entailment problem as studied in this paper
and [12] for frequencies of itemsets. Conditions are given for which the linear
programming problem that needs to be solved in order to determine tight
bounds can be simplified. In this context, the notion of a safe set is proposed;
a safe set is one on which the linear program can be “projected” without
changing the solutions of the program. In this way, safe sets can provide a
more time-efficient solution for the entailment problem in specific cases.

Probabilistic logics. In artificial intelligence literature, probabilistic logic [26]
and reasoning about uncertainty and belief [38] is studied intensively. The
link with this paper is that the frequency of an itemset I can be seen as the
probability that a randomly chosen transaction from the transaction database
satisfies I; i.e., we can consider the transaction database as an underlying
probability structure. Some examples of probabilistic logics include the pSAT-
problem introduced by Nilsson [37], and extensions to intervals, conditional
constraints, etc. [22, 27, 28, 33, 34], Another interesting probabilistic language
is formed by the weight formulas of Fagin et al. [21]. A basic weight formula
is an expression a1w(φ1) + . . . + akw(φk) ≥ c, where a1, . . . , ak and c are in-
tegers and φ1, . . . , φk are propositional formulas, meaning that the sum of all
ai times the weight of φi is greater than or equal to c. A weight formula is a
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boolean combination of basic weight formulas. The main contribution of [21] is
the description of a sound and complete axiomatization for this probabilistic
logic. All types of frequency constraints studied in this paper can be expressed
in this probabilistic logic.

Closely related to our work on axiomatizing FREQSAT are [30, 33]. In [33],
Lukasiewicz gives a locally complete rule for the inference of the conditional
probability of P (A|C), given intervals on the probabilities P (A|B), P (B|A),
P (C|B), and P (B|C), and a taxonomy on the premises. Jaeger [30] develops
a method for automatic derivation of probabilistic inference rules for condi-
tional probabilities comparable to the method we propose to get a locally com-
plete axiomatization. Given parameterized bounds on some input conditional
probabilities, a parameterized optimal bound for a target output conditional
probability is calculated. This parameterized solution is then the rule. Notice
that the problem studied by Jaeger is strictly more general than the prob-
lem studied here. As such, the methods applied by Jaeger also apply to our
problem. More specifically, Jaeger does not use the relatively simple Fourier-
Motzkin elimination methods as we do, but instead analyzes the list of the
parameterized vertices of the polytope V (C) consisting of the instantiations
that satisfy the input constraints. As such, Jaeger’s method might result in
less redundant rules, although essentially, both methods must result in the
same, or at least equivalent, results, although for large numbers of variables
the method proposed by Jaeger [30] will outperform our method.

6.2 Applications

Privacy preserving data mining. Data Mining can be a serious threat to
the privacy[4, 32]. In this context, methods have been developed that aim at
changing databases in such a way that still meaningful data mining results
can be produced from it, but the individual data is randomized [4]. Notice,
however, that in the approach given in [4], privacy might still be compromised.
A popular way to quantify anonymity of a released dataset is the notion of
k-anonymity [41]. A dataset is k-anonymous if every tuple in the published
data corresponds to at least k individuals. Another setting is that multiple
parties do not want to share their data, but nevertheless want to build data
mining models over the union of their databases. In this setting, cryptographic
techniques can be used to guarantee privacy [32].

It is, however, conceivable that the mining is done by a trusted party. In that
case, there is no risk of disclosure based on the original data. Even though, the
results of the mining themselves can disclose more of the original data than is
desirable [5]. Closely related to this concern is the research in statistical dis-
closure control [20]. There it is studied how to prevent that users can retrieve
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information of individuals from a statistical database by subsequently asking
queries. A popular technique here is to perturbate the output data. We can
make the connection between FREQSAT and statistical disclosure control, by
considering the class of queries asking for the frequency of itemsets. The dis-
closure question then becomes: “How much can be inferred from the original
database by knowing the frequencies of a collection of published itemsets?”

The process of trying to reconstruct parts of the original database from data
mining results is called inverse data mining [36]. The FREQSAT-problem, its
various variants and the entailment problems can be situated in this context.
The results of a frequent set mining operation can be represented as an in-
stance of FREQSAT. Inverse data mining would then amount to deriving the
frequencies of other itemsets, not in the result set. In this context, the high
complexities of the problems studied in this paper are bad news: suppose that
we want to publish some itemsets with their frequencies, but first we want
to assess how much these frequencies disclose of the original dataset. This
problem can be stated as one of the variants of FREQSAT. The high complex-
ity of the FREQSAT-problems in this paper, however, shows that there is little
hope that it is effectively possible to assess the degree of disclosure. On the
bright side, the high complexity means also that it is potentially very hard
to break the privacy. However, the situation is different from that of, for ex-
ample, public key encryption. In inverse mining, partial information can be
derived with incomplete methods, whereas, in general, in public key encryp-
tion, the code cannot be partially broken. Hence, in inverse mining, the more
computing power one has, the more one can derived. Therefore, unless one
has superior computing power over potentially malicious parties, the results
of mining cannot be guaranteed to be safe.

In [46], the following problem of approximate inverse frequent itemset min-
ing is studied. Given some itemsets with their absolute support, does there
exist a database such that these support constraints are approximately satis-
fied, in the sense that a difference proportional to the number of constraints
given is allowed. This problem is shown to be NP-complete. Also an approxi-
mate algorithm to determine information leakage is given. In [18, 47], heuristic
methods for generating a database (approximately) satisfying given frequency
constraints are given. The idea behind this database generation is to, instead
of publishing a confidential database, generate a new database with the same
frequency information that can be published for analysis purposes. The feasi-
bility of these approaches depends highly on the assumption that many of the
items are (conditionally) independent.

Condensed Representations. Another application is the construction of
condensed representations [35]. A condensed representation of a dataset is a
summary of the dataset that allows to answer a certain target class of queries
more efficiently than based on the complete dataset. In this context, in [35],
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the example is given of the collection of frequent itemsets that can serve as
a condensed representation to answer frequency queries for arbitrary Boolean
expressions over the attributes in a binary-valued dataset.

In many applications, however, even the collection of frequent itemsets is too
large to enumerate. In this context, condensed representations for the collec-
tion of frequent itemsets have been studied. A condensed representation of the
frequent sets is a summary of the data that allows to derive, for every itemset,
whether or not it is frequent in the database, and if it is frequent, its actual fre-
quency. As such, in the research on condensed representations of the frequent
itemsets, the query class is fixed to frequency queries for conjunctions only,
i.e., for itemsets. Often, condensed representations for itemsets are a subset
of the complete collection of itemsets that allow to derive or approximate the
frequency information of the other frequent sets. Some examples of exact rep-
resentations are the closed sets [39], the free sets [9, 10], and the non-derivable
itemsets [14, 15]. Examples of approximate representations include the δ-free
sets [9, 10]. Pavlov et al. [40] study how probabilistic models such as the max-
imum entropy model can be used to approximate answers to queries posed to
large sparse binary data sets. Sometimes, one is not interested in the exact
frequencies, but only in the frequent sets themselves. Afrati et at. [2] show an
approximate solution to how k sets can be selected that cover the complete
collection of frequent sets as good as possible. This work is then further ex-
tended by Yan et al. [48] to a profile-based approach that is not only good at
summarizing the patterns themselves, but also at integrating their supports.

For an overview of exact condensed representations for the itemset domain,
see [17]. In such condensed representations typically only non-redundant infor-
mation is stored. Entailment of frequencies as in the FREQSAT-problem allows
for derivation of frequencies. The stronger the deduction mechanism, the more
redundancy in the set of frequencies can be found. The complexity results in
this paper indicate that complete deduction in the most general context is
infeasible, and hence, incomplete, yet tractable methods are more appropri-
ate. Also for association rules condensed representations are of great inter-
est [25, 31]. Because of the simulation of association rules with itemsets as
shown in Section 4, any condensed representation for frequent itemsets has
direct implications for condensed representations on collections of association
rules.

Frequent Itemset Mining Algorithms. A third application is improving
the pruning of frequent itemset mining algorithms. All frequent set mining
algorithms use the monotonicity rule to prune substantial parts of the search
space. This monotonicity rule can be seen as a very simple example of de-
duction. Based on partial frequency information of some itemsets, bounds on
the frequencies of yet to be counted sets are derived. If these bounds establish
that a certain set must be certainly frequent or certainly infrequent, the count-
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ing of it can be omitted in some cases. In the context of FREQSAT, frequency
constraints can be used to model the frequency information gathered in previ-
ous scans over the database. The deduction can then be used to identify sets
that are certainly frequent/infrequent. In [6, 7, 14], in some form, deduction
rules are used in order to improve pruning and speed up frequent set mining
algorithms.

7 Summary and Conclusion

In this paper, we discussed the FREQSAT-problem. This problem was shown
to be NP-complete. It was also shown that restricting to exact frequencies
freq (I) = f , instead of intervals freq (I) ∈ [l, u] does not change the problem
significantly. Furthermore, extension to arbitrary Boolean formulas instead
of itemsets and to constraints on the confidence of association rules did not
result in higher complexity, as they can all be simulated in FREQSAT. A result
of this quite unexpected expressive power of FREQSAT is that the bounds on
the frequency of itemsets implied by some given frequency constraints cannot
be approximated efficiently.

Another indication of the complexity of FREQSAT comes from the fact that
any axiomatization of FREQSAT must have infinite arity. It was shown, however,
that there exists a recursive axiomatization, and a method to construct locally
complete axioms was given.

Finally, it was discussed that the study of the FREQSAT problem has applica-
tions in privacy preserving data mining, condensed representations, and fre-
quent itemset mining algorithms in general.
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A Proof of Theorem 1

Definition 3 Let D1 and D1 be two transaction database, and let k be a posi-
tive integer. Let M be max{tid | (tid, J) ∈ D1}. D1

⊕D2 denotes the following
transaction database: D1

⊕D2 := D1∪{(M + tid, J) | (tid, J) ∈ D2}. Hence,
D1

⊕D2 is the transaction database that consists of both the transactions of
D1 and D2.

Let D be a transaction database. Then
⊕

kD :=

k times︷ ︸︸ ︷
((. . . (D⊕D)

⊕
. . .)

⊕D.
Hence,

⊕
kD is the transaction database that consists of k copies of D.

Lemma 3 For all itemsets I, databases D1,D2, and integers k ≥ 1,

freq
(
I,D1

⊕D2

)
=

|D1|
|D1 +D2| · freq (I,D1) +

|D2|
|D1 +D2| · freq (I,D2) ,

freq (I,D1) = freq

(
I,

⊕

k

D1

)
.

Hence, if D1 and D2 satisfy C, then does D1
⊕D2, and D1 satisfies C if and

only if
⊕

kD1 does.

Theorem 1 Let C = {freq (Ij) ∈ [lj, uj], j = 1, . . . , m}. C is in FREQSAT if
and only if EQ(C) is.
Proof Only if: Let D be a database that satisfies C. Let k be the least common
multiplier of the denominators of the lj’s and uj’s. Hence, k is an integer, and

for all j, there exist integers Lj, Uj such that lj = Lj

k
, and uj = Uj

k
.

Let now, for all j = 1 . . .m, Aj and Bj be subsets of
⊕

kD such that:

• |Aj| = Lj · |D|, and all transactions in Aj contain Ij;
• |Bj| = (k − Uj) · |D|, and none of the transactions in Bj contain Ij.

Such sets exists, since

|{(tid, J) ∈ ⊕

k

D | Ij ⊆ J}|= k · |{(tid, J) ∈ D | Ij ⊆ J}|

= k · |D| · freq (Ij,D)

∈ [k · |D| · lj, k · |D| · uj]

= [Lj · |D|, Uj · |D|]

We will now construct a database D′ that satisfies EQ(C). This database is
formed as follows: we start with

⊕
kD, and to each transaction in Aj, we add
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aj, and to each transaction in Bj, we add bj. Hence, to a transaction (tid, J),
the items A[(tid, J)] = {aj | (tid, J) ∈ Aj, j = 1 . . .m}, and B[(tid, J)] =
{bj | (tid, J) ∈ Bj, j = 1 . . . m} are added. Thus, D′ is the following database:

{(tid, J ∪ A[(tid, J)] ∪B[(tid, J)]) | (tid, J) ∈ ⊕

k

D} .

D′ satisfies EQ(C).

If: Suppose D satisfies EQ(C). Then D also satisfies C. Indeed: because of
the monotonicity principle, l ≤ freq (Ij ∪ {aj},D) ≤ freq (Ij,D), and, since
(1 − uj) · |D| transactions contain bj (freq ({bj},D) = 1 − uj), and none of
the transactions contains both Ij and bj (freq (Ij ∪ {bj},D) = 0), at most
|D|−(1−uj)·|D| = uj ·|D| transactions contain Ij. Thus, also freq (Ij,D) ≤ uj.
Restricting D to the items in

⋃m
j=1 Ij does not affect the frequency of the sets

Ij. Hence there exists a database that satisfies C, and thus C is in FREQSAT. 2

B Proof of Theorem 2

Theorem 2 C is in FREQSAT if and only if PSAT (C) is in pSAT.
Proof Because of Theorem 1, it suffices to show that EQ(C) is in FREQSAT if
and only if PSAT (EQ(C)) is in pSAT.

Only if: Let D be a database that satisfies EQ(C). Let, for all subsets I ⊆ I,

φI(D) :=
|{(tid, J) ∈ D | J = I}|

|D| .

Hence, φI(D) denotes the fraction of transactions of D that are of the form
(tid, I). It is easy to see that freq (I,D) =

∑
I⊆J⊆I φJ(D).

We associate with every truth assignment A over xi, i ∈ I, a set of items I(A)
as follows: I(A) = {i ∈ I | A(xi) = 1}. Consider now the following distribution
over the truth assignments over {xi | i ∈ I}: for all A ∈ A, Π(A) = φI(A). We
claim that Π satisfies PSAT (EQ(C)): for all j = 1 . . . m,

ProbΠ(ϕj) =
∑

A∈A
A(ϕj) · Π(A) =

∑

A∈A
A


 ∧

i∈Ij

xi


 · Π(A)

=
∑{Π(A) | A ∈ A,∀i ∈ Ij : A(xi) = 1}

=
∑{φI(A)(D) | A ∈ A, Ij ⊆ I(A)}

=
∑{φJ(D) | J ⊆ I, Ij ⊆ J}

= freq (Ij,D) = fj = πj
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If: Suppose that P(EQ(C)) has a solution, then there exists a solution in which
all Π(A) are rational numbers [23]. Let now D be the least common multiplier
of the denominators of all Π(A). That is, every Π(A) can be written as NA

D
,

with NA an integer. We will construct a database D with D transactions
that satisfies EQ(C). The database D consists of NA transactions of the form
(tid, I(A)), for every assignment A. The number of transactions adds up to
D, since the Π(A) add up to 1. Hence,

D =
⊕

A∈A
{(tid, I(A)) | tid = 1 . . . NA} .

For the definition of
⊕

we refer to Appendix A.

Let for every itemset I, A(I) be the assignment that assigns 1 to xi if and
only if i ∈ I. EQ(C) is satisfied by D, since for all j = 1 . . .m, it holds that:

freq (Ij,D) =
|{(tid, J) ∈ D | I ⊆ J}|

|D|
=

∑{NA | A ∈ A, Ij ⊆ I(A)}
D

=

∑{D · Π(A) | A ∈ A,∀i ∈ Ij : A(xi) = 1}
D

=
∑



Π(A) | A ∈ A, A


 ∧

i∈Ij

xi


 = 1





= ProbΠ


 ∧

i∈Ij

xi


 = πj = fj

2

C Proof of Theorem 3

In this section wet give the full formal construction of the reduction FSAT
followed by the proof of Theorem 3.

Formal Construction Let

P = {freq (ϕ1) ∈ [l1, u1], . . . , freq (ϕm) ∈ [lm, um]}
be a set of m extended frequency constraints with ϕ1, . . . , ϕm Boolean formulas
over the set of items {i1, . . . , in}. SF (ϕ) denotes the set of all subformulas of
ϕ. For example, SF (i1 ∧ ¬i2) = {i1, i2,¬i2, i1 ∧ ¬i2} The set of items I over
which we construct the FREQSAT-instance will be {tσ, fσ | σ ∈ SF (ϕj), j =
1 . . . m} ∪ {d}.
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We define the reduction FSAT (P) in four steps:

(1) The constraints TF , that will allow for expressing negations. tσ stands for
“σ is true”, and fσ for “σ is false.”

TF (ϕ1, . . . , ϕm) :=
⋃

σ∈SF (ϕj)

j=1...m

{freq ({tσ}) = 0.5, freq ({fσ}) = 0.5, freq ({tσ, fσ}) = 0}

(2) Recursive definition of the consistency constraints Cons. Within the part
of the database that contains item d, the truth values for the sub-formulas
must be consistent.

Confs(ϕ1, . . . , ϕm) := Cons(ϕ1) ∪ . . . ∪ Cons(ϕm)

Confs(σ ∨ ψ) := freq ({d, tσ∨ψ, fσ, fψ}) = 0, freq ({d, fσ∨ψ, tσ) = 0,

freq ({d, fσ∨ψ, tψ}) = 0} ∪ Cons(σ) ∪ Cons(ψ)

Confs(σ ∧ ψ) := freq ({d, fσ∨ψ, tσ, tψ}) = 0, freq ({d, tσ∨ψ, fσ) = 0,

freq ({d, tσ∨ψ, fψ}) = 0} ∪ Cons(σ) ∪ Cons(ψ)

Confs(¬σ) := freq ({d, t¬σ, tσ}) = 0, freq ({d, f¬σ, fσ}) = 0}
∪ Cons(σ)

Confs(i) = {}
(3) The constraints Freq that express that freq (ϕj) must be in [lj, uj].

Freq({freq (ϕj) ∈ [lj, uj] | j = 1 . . . n}) :={
freq

(
{d, tϕj

}
)
∈

[
lj
2

,
uj

2

]
| j = 1 . . . m

}
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(4) The reduction F itself:

FSAT ({freq (ϕj) ∈ [lj, uj] | j = 1 . . . n}) :=

{freq ({d}) = 0.5} ∪ TF (ϕ1, . . . , ϕm)

∪ Cons(ϕ1, . . . , ϕm)

∪ Freq(ϕ1, . . . , ϕm, π1, . . . , πm)

Lemma 4 Let D be a database that satisfies TF (ϕ)∪Cons(ϕ). Then, for all
transactions (tid, J) such that d ∈ J , there exists a unique truth assignment
A over the variables of ϕ such that tσ is in J if and only if A(σ) = 1, and fσ

is in J if and only if A(σ) = 0.

Proof Because of TF (ϕ), for every subformula σ, the frequency constraints
freq ({tσ},D) = 0.5, freq ({fσ},D) = 0.5, and freq ({tσ, fsigma},D) = 0.5
hold. Therefore, every transaction of D contains either tσ, or fσ, but not both.

Let now T = (tid, J) be a transaction that contains d. Since the variables
i1, . . . , in of ϕ are subformulas of ϕ themselves, for every j = 1 . . . n, J contains
either tii , or fii , but not both. Let AJ now be the following truth assignment:
AJ(ii) = 1 if and only if tii ∈ J , for all i = 1 . . . n. Clearly, if there exists a
truth assignment A that is consistent with tσ ∈ J if and only if A(σ) = 1, it
can only be AJ . Therefore, the assignment associated with T will be unique.

We still need to show that AJ is consistent with the other subformulas σ.
Hence, for every σ ∈ SF (ϕ), we need to show that tσ ∈ J if and only if
AJ(σ) = 1. Since tσ ∈ J and fσ ∈ J are mutual exclusive, it follows then
that if AJ(σ) = 0, fσ must be in J . We show this claim by induction on the
structure of the subformula σ. The base case is trivially true; AJ was defined
such that AJ(ii) = 1 if and only if tii ∈ J . The general case is split in three
parts:

σ = ¬σ1: By induction, we can assume that AJ(σ1) = 1 if and only if tσ1 ∈ J .
Assume AJ(¬σ1) = 0. Then AJ(σ1) = 1, and hence tσ1 ∈ J . We need
to show that J does not contain t¬σ. This requirement is indeed enforced
by the following constraint in Cons(ϕ): freq ({d, tσ1 , t¬σ1}) = 0. Hence, D
cannot have a transaction that simultaneously contains d, tσ1 , and t¬σ1 . Since
T already contains d and tσ1 , it therefore does not contain t¬σ1 . The case
AJ(σ1) = 0 can be proven in a similar fashion, using freq ({d, fσ1 , f¬σ1}) = 0.

σ = σ1 ∧ σ2: By induction, we can assume that AJ(σi) = 1 if and only if
tσi

∈ J , i = 1, 2. Assume that AJ(σ1 ∧ σ2) = 0. Then, at least one of σi,
AJ(σi) = 0. We assume without loss of generality that AJ(σ1) = 0 (the
argument applies for σ2 as well). Therefore, tσ1 6∈ J , and thus fσ1 ∈ J . We
need to show that tσ1∧σ2 6∈ J . This requirement is fulfilled by the following
constraint in Cons(ϕ): freq ({d, fσ1 , tσ1∧σ2}) = 0. Since T already contains
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d and fσ1 , T cannot contain tσ1∧σ2 .
The case AJ(σ1 ∧ σ2) = 1 is proved in a similar fashion, using

freq ({d, tσ1 , tσ2 , fσ1∧σ2}) = 0.
σ = σ1 ∨ σ2: Similar to σ1 ∧ σ2, using freq ({d, tσ1 , fσ1∨σ2}) = 0, and

freq ({d, fσ1 , fσ2 , tσ1∨σ2}) = 0.

2

Corollary 4 Let D be a database with TF (ϕ1, . . . , ϕm) ∪ Cons(ϕ1, . . . , ϕm)
satisfied. Then, for all transactions (tid, J) such that d ∈ J , there exists a
unique truth assignment AJ over the variables of ϕ1, . . . , ϕm such that tσ is in
J if and only if AJ(σ) = 1, and fσ is in J if and only if AJ(σ) = 0.

Proof Since D satisfies TF (ϕ1, . . . , ϕm) ∪ Cons(ϕ1, . . . , ϕm), D also satisfies
TF (ϕj)∪Cons(ϕj), j = 1 . . . m. Therefore, for every transaction T = (tid, J)
with d ∈ J , there exist truth assignments A1, . . . , Am, such that for all j =
1 . . . m, for every subformula σ of ϕj, Aj(σ) = 1 if and only if tσ ∈ J . Since
these truth assignments AJ are uniquely determined by the presence or absence
of ti1 , . . . , tin in J , the truth assignments must agree on the common variables
and subexpressions. Hence, there exists one unique assignment AJ such that
tσ is in J if and only if AJ(σ) = 1, and fσ is in J if and only if AJ(σ) = 0. 2

Definition 4 Let D be a transaction database, and let d be an item.

- D−d denotes the following transaction database:

D−d := {(tid, J \ {d}) | (tid, J) ∈ D, d ∈ J} .

- D+d denotes the following transaction database:

D+d := {(tid, J ∪ {d}) | (tid, J) ∈ D} .

- σdD denotes the following transaction database:

σdD := {(tid, J) ∈ D | d ∈ J} .

Theorem 3 P = (ϕ1, . . . , ϕm, π1, . . . , πm) is in pSAT if and only if FSAT (P)
is in FREQSAT.

Furthermore, ENTϕ(P) = [l, u], iff ENT {d,tϕ}(FSAT (P)) = [l/2, u/2].
Proof We assume that the variables used in ϕ1, . . . , ϕm are i1, . . . , in. Let SF
be the set of subformulas of ϕ1, . . . , ϕm. We need to show that there exists a
database D such that D satisfies FSAT (ϕ1, . . . , ϕm, π1, . . . , πm) if and only if
there exists a probability distribution Π over the variables of ϕ1, . . . , ϕm such
that Prob(ϕj) = πj, for j = 1 . . . m. Furthermore, in the constructions we
will use to show this result, it will always be the case that freq ({d, tϕ},D) =
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ProbΠ(ϕ)/2, for any Boolean formula over i1, . . . , in, and hence, ENTϕ(P) =
[l, u], if and only if ENT {d,tϕ}(FSAT (P)) = [l/2, u/2].

If: Let Π be a probability distribution that satisfies (ϕ1, . . . , ϕm, π1, . . . , πm).
We construct a database DΠ that satisfies FSAT (ϕ1, . . . , ϕm, π1, . . . , πm).

Associate with every truth assignment A over i1, . . . , in, a set of items I(A)
as follows:

I(A) = {tσ | A(σ) = 1, σ ∈ SF} ∪ {fσ | A(σ) = 0, σ ∈ SF} .

Let D be the least common multiplier of the denominators of {Π(A) | A ∈ A}.
Hence, for all assignments A, NA = D ·Π(A) is a positive integer. Let D now
be the following database:

D =
⊕

A∈A
{(tid, I(A)) | tid = 1 . . . NA} .

Thus, D consists of NA transactions with set of items I(A), for every truth
assignment A. Notice incidently that in D, AI(A) = A. D has D transactions.

For every set of items I, let I be the smallest set of items that contains tσ, if
and only if I contains fσ, and contains tσ if and only if I contains tσ. That is,

I = {tσ | fσ ∈ I} ∪ {fσ | tσ ∈ I} .

Let D be the following transaction database:

D = {(tid, J) | (tid, J) ∈ D} .

The following database DΠ satisfies FSAT (ϕ1, . . . , ϕm, π1, . . . , πm):

DΠ = D+d ⊕D .

Notice that DΠ has 2 ·D transactions.

(1) DΠ satisfies TF (ϕ1, . . . , ϕm): Every transaction T = (tid, J) of D+d con-
tains tσ if and only if AT (σ) = 1, and fσ if and only if AT (σ) = 0.
Therefore, for every σ ∈ SF , T contains either tσ, or fσ, but not both.
The same is true for D, since a transaction (tid, I) in D that contains
both tσ and fσ would imply that there is a transaction (tid, I) in D that
contains both tσ and fσ as well. Therefore, for every σ ∈ SF , DΠ satis-
fies freq ({tσ, fσ}) = 0. Because of the way D and D are constructed, for

all σ ∈ SF , freq (tσ,D1) = freq
(
fσ,D1

)
, and freq (fσ,D) = freq

(
tσ,D

)
.

Since every transaction of D and D contain tσ, or fσ, but not both,
we have as well freq ({tσ},D) + freq ({fσ},D) = 1, and freq

(
{tσ},D

)
+

freq
(
{fσ},D

)
= 1. Henceforth,
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freq ({tσ},DΠ) =
|D|
|DΠ| freq ({tσ},D) +

|D|
|DΠ| freq

(
{tσ},D

)

=
1

2
freq ({tσ},D) +

1

2
freq ({fσ},D) = 1/2

We can show in a similar fashion that freq ({tσ},DΠ) = 0.5. Hence, DΠ

satisfies {freq ({tσ}) = 0.5, freq ({fσ}) = 0.5} for every σ ∈ SF .
(2) D satisfies Cons(ϕ1, . . . , ϕm): This follows directly from the fact that the

transactions that contain d have as set of items I(A)∪{d}, with A a truth
assignment. Indeed, tσ and t¬σ can never occur together in a transaction
T of D, since this would imply that AT (σ) = 1 and AT (¬σ) = 1 at the
same time.

(3) D satisfies freq ({d}) = 0.5: freq ({d},DΠ) = |D|
|DΠ| = 0.5.

(4) D satisfies freq ({d, ϕj}) = πj

2
, for all j = 1 . . . m:

freq
(
{d, tϕj

},DΠ

)
=
|D|
|DΠ| freq

(
{d, tϕj

},D
)

=
1

2
freq

(
{tϕj

},D
)

=
1

2

|{(tid, J) ∈ D | tϕj
∈ J}|

|D|
=
|⊕A∈A{(tid, I(A)) | tid = 1 . . . NA, tϕj

∈ I(A)}|
2 ·D

=
∑

A∈A
A(ϕj)=1

D · Π(A)

2 ·D

=
1

2

∑

A∈A
A(ϕj)=1

(Π(A)) =
ProbΠ(ϕj)

2
=

πj

2

Hence, D satisfies FSAT (ϕ1, . . . , ϕm, π1, . . . , πm).

Only If: Let D be a database that satisfies FSAT (ϕ1, . . . , ϕm, π1, . . . , πm). We
will construct a probability distribution Π over i1, . . . , in such that ProbΠ(ϕj) =
πj, for all j = 1 . . . m. Let Π be defined as follows:

∀A ∈ A : Π(A) = φI(A)(σdD) .

(Recall that φI(D) denotes |{tid | (tid,I)∈D}|
|D| )

We show that Π is (1) well-defined (i.e., the probabilities sum to 1), and (2)
has the desired properties (i.e., ProbΠ(ϕj) = πj).

(1) Π is well-defined: This amounts to showing that
∑

A∈A Π(A) = 1. Because
of Corollary 4, every transaction T of σdD can be written as I(AT ), and
thus, we have:
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∑

A∈A
Π(A) =

∑

A∈A
φI(A)(σdD)

=
∑

A∈A

|{(tid, J) ∈ σdD | J = I(A)}|
|σdD|

=

∑
A∈A |{(tid, J) ∈ σdD | J = I(A)}|

|σdD|
=
|σdD|
|σdD| = 1

(2) ProbΠ(ϕj) = πj, j = 1 . . . m: because of Corollary 4, for every transaction
T in σdD, it holds that tσ is in T , if and only if AT (σ) = 1. Hence,

ProbΠ(ϕj) =
∑

A∈A
A(ϕj)=1

Π(A) =
∑

A∈A
A(ϕj)=1

φI(A)(σdD)

=
∑

A∈A
tϕj∈I(A)

φI(A)(σdD) = freq
(
{tϕj

}, σdD
)

=
freq

(
{tϕj

},D
)

freq ({d},D)
= 2 · πj

2
= πj

2

D Proof of the Multiplication Lemma

Multiplication Lemma If a database D satisfies MULT n1(ϕ
1
1, ϕ

1
2) ∪ . . . ∪

MULT n`
(ϕ`

1, ϕ
`
2), then for all j = 1 . . . `, nj · freq

(
ϕj

1,D
)

= freq
(
ϕj

2,D
)
.

There exists a database D that satisfies C and with for all j = 1 . . . `, nj ·
freq

(
ϕj

1,D
)

= freq
(
ϕj

2,D
)

if and only if there exists a database D that satisfies

C ∪MULT n1(ϕ
1
1, ϕ

1
2) ∪ . . . ∪MULT n`

(ϕ`
1, ϕ

`
2).

The proof of this important lemma is divided into a couple of lemma’s.

Lemma 5 If a database D satisfies ε(ϕ1, ϕ2), then freq (ϕ1,D) = freq (ϕ2,D).

There exists a database D that satisfies C and with freq (ϕ1,D) = freq (ϕ2,D)
if and only if there exists a database D that satisfies C ∪ ε(ϕ1, ϕ2).

Proof Let D be a database that satisfies ε(ϕ1, ϕ2). Because for i, j = 1, 2,

freq (ϕi,D) = freq (ϕi ∧ ϕj,D) + freq (ϕi ∧ ¬ϕj,D) ,

freq (ϕ1,D) = freq (ϕ2,D) if and only if freq (ϕ1 ∧ ¬ϕ2,D) = freq (ϕ2 ∧ ¬ϕ1,D).
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Since D satisfies ε(ϕ1, ϕ2), freq (ϕ1 ∧ ¬ϕ2 ∧ r,D) = 0, and thus, there are no
transactions in D that simultaneously satisfy ϕ1 ∧ ¬ϕ2 and contain r. There-
fore, freq ((ϕ1 ∧ ¬ϕ2) ∨ r,D) = freq (ϕ1 ∧ ¬ϕ2,D) + freq (r,D). Together with
freq ((ϕ1 ∧ ¬ϕ2) ∨ r,D) = 0.5, this gives

freq (ϕ1 ∧ ¬ϕ2,D) = 0.5− freq (r,D) .

We can similarly show that freq (ϕ2 ∧ ¬ϕ1,D) = 0.5− freq (r,D), and hence,

freq (ϕ1 ∧ ¬ϕ2,D) = freq (ϕ2 ∧ ¬ϕ1,D) .

For the second claim, the if-direction follows trivially from the first claim.
For the only-if direction, assume that D satisfies C and has freq (ϕ1,D) =
freq (ϕ2,D). We assume without loss of generality that |D| is even (If |D| is
odd, we can switch to ⊕2D.)

Because freq (ϕ1) = freq (ϕ1 ∧ ϕ2) + freq (ϕ1 ∧ ¬ϕ2) ,

freq (ϕ2) = freq (ϕ1 ∧ ϕ2) + freq (¬ϕ1 ∧ ϕ2) , and

freq (ϕ1) = freq (ϕ2) ,

freq (ϕ1 ∧ ¬ϕ2) must equal freq (ϕ1 ∧ ϕ2) + freq (¬ϕ1 ∧ ϕ2). Furthermore, be-
cause no transaction can simultaneously satisfy ϕ1 ∧ ¬ϕ2 and ϕ2 ∧ ¬ϕ1,

freq (ϕ1 ∧ ¬ϕ2,D) = freq (ϕ2 ∧ ¬ϕ1,D) ≤ 0.5 .

Let fr be 0.5− freq (ϕ1 ∧ ¬ϕ2,D). It now suffices to add the item r to fr · |D|
transactions that do neither satisfy ϕ1 ∧ ¬ϕ2, nor ¬ϕ1 ∧ ϕ2. This addition is
possible: first of all, fr · |D| = (1/2 − freq (ϕ1 ∧ ¬ϕ2,D)) · |D| is a positive
integer, because |D| is even, and freq (ϕ1 ∧ ¬ϕ2,D) · |D| equals the number of
transactions that satisfy ϕ1 ∧ ¬ϕ2. Secondly, there are fr · |D| transactions
that do not satisfy any of ϕ1 ∧ ¬ϕ2 and ¬ϕ1 ∧ ϕ2;

fr + freq (ϕ1 ∧ ¬ϕ2,D) + freq (ϕ2 ∧ ¬ϕ1,D)

= 0.5 + freq (ϕ2 ∧ ¬ϕ1,D)

≤ 1 .

The database resulting from this addition of r satisfies ε(ϕ1, ϕ2). 2

Lemma 6 If a database D satisfies ε(ϕ1
1, ϕ

1
2) ∪ . . . ∪ ε(ϕ`

1, ϕ
`
2), then for all

j = 1 . . . `, freq
(
ϕj

1,D
)

= freq
(
ϕj

2,D
)
.

There exists a database D satisfying C and for all j = 1 . . . `, freq
(
ϕj

1,D
)

=

freq
(
ϕj

2,D
)

if and only if there exists a database D that satisfies C∪ε(ϕ1
1, ϕ

1
2)∪
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. . . ∪ ε(ϕ`
1, ϕ

`
2).

Proof This lemma follows easily from the way in which the databases in the
proof of Lemma 5 are constructed. 2

Lemma 7 If a database D satisfies δ(ϕ1, ϕ2), then 2·freq (ϕ1,D) = freq (ϕ2,D).

There exists a database D that satisfies C and with 2·freq (ϕ1,D) = freq (ϕ2,D)
if and only if there exists a database D that satisfies C ∪ δ(ϕ1, ϕ2).

Proof Let D be a database that satisfies δ(ϕ1, ϕ2). Because of Lemma 6, this
implies that freq (k1,D) = freq (k2,D) = freq (ϕ1). Because of freq (k1 ∧ k2) =
0, there are no transactions in D that contain both k1 and k2, and thus,
freq (k1 ∨ k2,D) = freq (k1,D) + freq (k2,D) = 2 · freq (ϕ1,D). Finally, ϕ2 =
k1 ∧ k2 makes sure that freq (ϕ2,D) = freq (k1 ∨ k2,D) = 2 · freq (ϕ1,D).

The if-part of the second claim follows trivially from the first claim. For
the only-if part: assume that D is a database that satisfies C and with 2 ·
freq (ϕ1,D) = freq (ϕ2,D). Select S1,S2 ⊆ D such that S1 and S2 are disjoint,
|S1| = |S2|, and S1 ∪ S2 is exactly the set of transactions that satisfy ϕ2.

Let now D′ be the database that is formed, starting from D, and adding
k1 to the transactions in S1, and k2 to the transactions in S2. D′ satisfies
C ∪ δ(ϕ1, ϕ2). 2

Lemma 8 If a database D satisfies δ(ϕ1
1, ϕ

1
2) ∪ . . . ∪ δ(ϕ`

1, ϕ
`
2), then for all

j = 1 . . . `, 2 · freq
(
ϕj

1,D
)

= freq
(
ϕj

2,D
)
.

There exists a database D that satisfies C and with for all j = 1 . . . `, 2 ·
freq

(
ϕj

1,D
)

= freq
(
ϕj

2,D
)

if and only if there exists a database D that satisfies

C ∪ δ(ϕ1
1, ϕ

1
2) ∪ . . . ∪ δ(ϕ`

1, ϕ
`
2).

Proof This lemma follows directly from the way in which the databases in
the proof of Lemma 7 are constructed. 2

The multiplication lemma now follows directly from Lemma 8.

E Proof of Theorem 7

Theorem 7 Every axiomatization for FREQSAT that does not include an ax-
iom that involves the frequency of all nonempty itemsets is incomplete. There-
fore, for no k does there exist a k-ary sound and complete axiomatization for
FREQSAT.
Proof Let n be an arbitrary number. We construct a FREQSAT problem C over
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the set I = {i1, . . . , in}, such that (a) C is not satisfiable, but, (b) every strict
subset of C is satisfiable. Furthermore, C contains one expression freq (I) = fI

for every I ⊆ I.

We assume that n is even. (a similar system can be found for n odd) Let C be



freq (I) =

2(n−|I|)

(2n)− 1

∣∣∣∣∣∣
∅ ⊂ I ⊂ I





⋃ {freq (I) = 0}

For all I 6= ∅, we have:

σI(I) =
∑

I⊆K⊂I
(−1)|K−I| 2

(n−|K|)

(2n)− 1

=
n−1∑

k=|I|
(−1)k−|I|

(
n− |I|
k − |I|

)
2(n−k)

(2n)− 1

=
1

(2n)− 1

n−|I|−1∑

k=0

(−1)k

(
n− |I|

k

)
2((n−|I|)−k)

=
1

(2n)− 1
(1− (−1)n−|I|)

Hence, for all I 6= ∅, σII equals 0 if |I| is even, and 2 if |I| is odd. For I = ∅,
we get:

σI(∅) =
∑

K⊂I
(−1)|K|

2(n−|K|)

(2n)− 1

=

(
n−1∑

k=1

(−1)k

(
n− |I|

k

)
2(n−k)

(2n)− 1

)
+ 1

=

(
1

(2n)
− 2n

(2n)− 1
− (−1)n

(2n)− 1

)
+ 1

=− 1

(2n)− 1

Thus, C is not satisfiable. However, for every nonempty set I, if we remove
the expression with I from C, the resulting system C ′ is satisfiable. Let I be
odd: C ′ ∪ {freq (I) = 2(n−|I|)−1

(2n)
} is satisfiable, if I 6= I is even, C ′ ∪ {freq (I) =

2(n−|I|)+1
(2n)

} is satisfiable, and for I = I, C ′ ∪ {freq (I) = 1
(2n)

} is satisfiable.

These claims can easily be proved by checking the changes in the sums σI(I)
given above. 2
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