
Mining Binary Expressions: Applications and

Algorithms

Toon Calders∗ Jan Paredaens

Universiteit Antwerpen,

Departement Wiskunde-Informatica,

Universiteitsplein 1, B-2610 Wilrijk, Belgium.

{calders,pareda}@uia.ua.ac.be

Technical report TR0008, June 2000

Abstract

In data mining, searching for frequent patterns is a common basic op-
eration. It forms the basis of many interesting decision support processes.
In this paper we present a new type of patterns, binary expressions. Based
on the properties of a specified binary test, such as reflexivity, transitivity
and symmetry, we construct a generic algorithm that mines all frequent
binary expressions. We present three applications of this new type of
expressions: mining for rules, for horizontal decompositions, and in in-
tensional database relations. Since the number of binary expressions can
become exponentially large, we use data mining techniques to avoid expo-
nential execution times. We present results of the algorithm that show an
exponential gain in time due to a well chosen pruning technique.

∗Research Assistant of the Fund for Scientific Research - Flanders (Belgium)(F.W.O. -
Vlaanderen).

1

Contents

1 Introduction 3

2 Definitions 4

3 Applications 5

3.1 Rule Discovery . 5
3.2 Horizontal Decompositions . 5
3.3 Intensional Database Relations 6

4 The Search Space 7

5 Algorithm 10

5.1 Testing . 11
5.2 Generation . 12

5.2.1 Comments on the refinement operators 15
5.3 Pruning . 15

6 Complexity 17

6.1 Theoretical Complexity Results 17
6.2 Experimental Results . 18

7 Conclusion 20

A Approximation of the number of partial orders 22

B Example run of the algorithm 24

2

1 Introduction

In data mining, searching for frequent patterns is a basic operation. It forms
the basis of many interesting decision support processes. Most data mining
algorithms first start searching frequent patterns. In association rule mining
[1][2][3][7], frequent itemsets are mined. In episode rule mining [4][12], frequent
episodes are mined. In this paper we present a new type of patterns, binary
expressions, that is the basis of three applications. A binary expression is a
conjunction of binary tests between attributes. An example of such an ex-
pression using the test < is (1 < 2) ∧ (2 < 3), expressing that attribute 1 is
smaller than attribute 2 and attribute 2 is smaller than attribute 3. A binary
expression is frequent iff the number of tuples satisfying the expression is big-
ger than a given threshold. Based on the properties of a specified binary test,
such as reflexivity, transitivity and symmetry, we construct a generic algorithm
that searches all frequent binary expressions. The properties are used to avoid
syntactically different, but semantically equal expressions. The following two
different expressions

(1 < 2) ∧ (2 < 3)

(1 < 2) ∧ (2 < 3) ∧ (1 < 3)

select exactly the same tuples. This is due to the fact that the binary test < is
transitive. We give a method to avoid generating both expressions.

In this paper we present three applications that have the mining of frequent
binary expressions in common. The first one is rule mining. Just like frequent
itemsets form the basis of association rules, binary expressions form the basis
of a new type of rules. A binary association rule is a rule X → Y , where X

and Y are binary expressions. Just like in association rule mining, we define
notions of support and confidence for this type of rules. The similarities with
association rules are elaborated in Section 3.

The second application is in making horizontal decompositions. Horizontal
decompositions have already been studied extensively[5] and are important in
the context of distributed databases. When we want to make a horizontal
decomposition, it is important to find a good criterion to split the relation.
We use the frequent binary expressions to make an optimal decomposition of a
relation, based on target sizes of the fragments.

A third application is mining with intensional database relations[6]. In
Inductive Logic Programming (ILP), the mining base typically contains inten-
sional relations besides the traditional extensional relations. In this context, in
the mining process, the intensional relations can be viewed as tests, in addi-
tion to the traditional tests such as <, =, . . ., and rules that contain intensional
relations can be mined in much the same way as other tests.

The outline of the paper is as follows: in Section 2 binary expression, equiv-
alence of expressions and some other notions are formally defined. In Section 3
the applications mentioned above are studied. In Section 4 we give some prop-
erties of the search space of the algorithm. In Section 5 we present a generic
algorithm to find all frequent binary expressions. In Section 6 some experi-
mental result of the algorithm are given. These results show good scalability
properties of the algorithm. Section 7 concludes the paper.

3

2 Definitions

Before we elaborate the three applications given in the introduction, we define
formally the notions of respectively a relation, a binary test, a binary expression
and equivalence of expressions

First we fix the relations we consider. We only look at relations where all
attributes have the same domain U 1. U is a, possibly infinite, recursive set. We
use an unnamed perspective; i.e. we refer to the attributes by their number.

Definition 1 An n − ary relation is a finite subset of Un.
A binary test2 θ over U is a recursive subset of U × U . When (u1, u2) ∈ θ, we
write u1θu2. /

We now define the notion of an expression.

Definition 2 Let θ be a binary test. A (θ, n)-expression (θ and n is omitted
when clear from the context) is a conjunction of (iθj)’s, where 1 ≤ i, j ≤ n.
The set of all (θ, n)-expressions is denoted by E(θ, n). /

The previous definition gave the syntax of an expression. The next definition
gives the semantics of expressions.

Definition 3 Let R be an n-ary relation, e is a (θ, n)-expression. σeR = {r ∈
R | (∀(i, j) in e)r(i)θr(j)}3 is the selection on e of R. /

We are now ready to state the problem of mining all frequent binary ex-
pressions.

Definition 4 Let R be an n-ary relation. The frequency of the binary expres-
sion e ∈ E(θ, n), denoted freq(e) is |σeR|

|R| .

Let t be a number between 0 and 1. A binary expression e ∈ E(θ, n) is t-frequent
iff freq(e) ≥ t. (t is omitted if clear from the context.)
The solution of the freq(R, t, θ)-problem is the set of all t-frequent (θ, n)-
expressions. /

Example 1 Consider the relation given in Fig. 1. The solution of the
freq(R, 5

7 , <)-problem is the set {1 < 2, 1 < 4}. /

1
U stands for Universe.

2We use the name binary test instead of relation, to avoid confusion with database relations.
Actually, a binary test is just a relation in the mathematical sense.

3r(i) denotes the i-th component of r; e.g. (a, b, c)(2) = b.

4

1 2 3 4 5

1 2 2 4 1
1 5 6 2 1
1 5 1 3 7
3 5 6 2 3
2 7 2 4 5
3 2 4 4 6
6 2 3 5 5

Figure 1: The relation R

3 Applications

In this section we describe three applications of mining frequent binary expres-
sions.

3.1 Rule Discovery

First we define a binary association rule.

Definition 5 A binary association rule is a rule X → Y , where X and Y are
(θ, n)-expressions.
The support of the rule X → Y is freq(X ∧ Y).

The confidence of the rule X → Y is freq(X∧Y)

freq(X)
. /

Example 2 Consider the relation given in Fig. 1. The support of the binary
association rule 1 < 2 → 1 < 4 is 4

7 . The confidence is 4
5 . /

There are multiple similarities between association rules and binary associ-
ation rules. Both rules give frequent dependencies that hold within the tuples
themselves. Unlike for example roll-up dependencies [16] or approximate de-
pendencies [9][10], that describe relations between different tuples, association
rules and binary association rules relate properties of attributes. In association
rule mining, frequent itemsets can be considered as a conjunction of unary pred-
icates. In this setting, binary association rules are a straightforward extension
of the unary predicates to binary predicates. A binary association rule finds as-
sociations between binary predicates, where association rules find associations
between unary predicates.

3.2 Horizontal Decompositions

Horizontal decompositions are very important for distributed databases. In
many cases it is desirable to fragment the database over different locations.
In that case it is important to find good criteria to divide the database. In
this paper we study how one can apply data mining to find expressions such
that the number of tuples that satisfy the expression approximates as good as

5

possible an in advance fixed goal. We call this a split-problem. The solution
to a split-problem is an expression that selects a fraction of the tuples whose
cardinality is as close to the given goal as possible.

Example 3 Consider the relation given in Fig. 1. 3 < 4 is a solution for the
split-problem where the goal is 1

2 , and the binary test <, since |σ3<4R| is as

close to |R|
2 as possible. /

In the following definition the split-problem is formalized.

Definition 6 Let R be a relation with n attributes, g a number between 0 and
1, and θ a binary test. e ∈ E(θ, n) is a solution of the Split(R, g, θ)-problem if

| |σeR|
|R| − g| is minimal; i.e. there is no other expression e′ in E(θ, n) such that

|
|σe′R|
|R| − g| is smaller. /

3.3 Intensional Database Relations

In Inductive Logic Programming (ILP) [6], mining conjunctions with intensional
relations besides extensional relations is very common. The mining base used
in Logic Programming typically contains a number of extensional relations and
some intensional relations. The intensional relations are given by a set of de-
scribing rules in a logic programming language, for example Prolog or Datalog.
In the context of mining, the intensional relations can be viewed as tests, in
addition to the traditional tests such as <, =, . . .

Example 4 Suppose the following logic program is given:
Related(X,Y):-Father(X,Y);

Related(X,Y):-Mother(X,Y);

Related(X,Z):-Related(X,Y) & Related(Y,Z);

Related(X,Y):-Related(Y,X);

Related(X,X);

From the last three rules we can conclude that the binary relation Related

is transitive, symmetric, and reflexive. /

In this example the intensional relation Related is in fact a binary test. Using
this similarity, we can apply all results we obtain for mining binary expressions
to this case. Suppose for example than we have a predicate King and we
use the binary test Related. We could for example find that the expression
Related(X, Y)&King(X)&King(Y) is frequent. Because we know that Related
is symmetric, we know that testing Related(X, Y)Related(Y, X)&King(X)&
King(Y) is redundant.

6

4 The Search Space

The freq(R, t, θ)-problem is essentially a search-problem. We want to find all
frequent binary expressions in the search space E(θ, n). For all binary tests
θ, the number of expressions in E(θ, n) is 2(n2), since the number of pairs of
attributes is n2, and for every pair (x, y), xθy is present or absent. However, it
is not always necessary to consider all expressions. When there are equivalent
expressions, there is no need to consider them all. We now define formally when
two expressions are equivalent. Therefore, we introduce an ordering on the set
of expressions, based on query containment [15].

Definition 7 Let e1, e2 ∈ E(θ, n), θ is a binary test, n is a positive integer.

• e1 is more specific than e2, denoted e1 � e2, iff for every n-ary relation R
the following holds: σe1

R ⊆ σe2
R4.

• e1 is more general than e2 iff e2 � e1.

• We write e1 ≺ e2 iff e1 � e2 and not e2 � e1.

• e1 and e2 are equivalent iff e1 � e2 and e2 � e1.

/

Example 5 (1 < 2) ∧ (2 < 3) ≺ (1 < 2)
(1 < 2) ∧ (2 < 3) ≺ (1 < 3)
1 = 2 ∧ 1 = 3 is equivalent to 1 = 2 ∧ 2 = 3. /

In Tab. 1, for some binary tests and different number of attributes, the
total number of non-equivalent elements in the search space is given (i.e. equiv-
alent expressions are considered equal). For example, for the equality and 3
attributes, the search space is {1 = 1, 1 = 2, 1 = 3, 2 = 3, 1 = 2 = 3}. There-
fore, in Tab. 1, the row for n = 3 contains 5, the size of the search space, for the
equality. The value of 2(n2) is also given for each value of n. It is clear that the
number of non-equivalent expressions with for example < is much smaller than
the total number of expressions. So, when we search for an optimal solution it
is a good idea to exploit the equivalence between expressions. When we neglect
this fact, we are doomed to search a space with up to 2n2

expressions.
In definition 7, equivalence is introduced as a semantic notion. Two ex-

pressions are equivalent, if for all relations they select the same subsets. This
definition cannot be used in a practical solution. To exploit the equivalence of
expressions we need some properties of the expressions to decide when two ex-
pressions are equivalent. Based on these properties we construct a mechanism
to avoid generation of equivalent expressions. In this paper we restrict our-
selves to combinations of the properties (anti-) transitivity, (anti-) symmetry
and (anti-) reflexivity.

4e1 � e2 iff query σe1
is contained in σe2

.

7

Table 1: Size of the search space for some binary tests

n < ≤ 6= = 2n2

1 2 1 2 1 2
2 3 4 2 2 16
3 19 29 8 5 512
4 219 355 64 15 65536

Definition 8 A binary test θ has property
P1 = reflexive iff for all 1 ≤ i ≤ n, (iθi) holds.
Q1 = anti-reflexive iff for all 1 ≤ i ≤ n, (iθi) does not hold.
P2 = symmetric iff for all 1 ≤ i, j ≤ n, if (iθj) then also (jθi) holds.
Q2 = anti-symmetric iff for all 1 ≤ i, j ≤ n, if (iθj), then (jθi) does not hold.
P3 = transitive iff for all 1 ≤ i, j, k ≤ n, if (iθj) and (jθk), then also (iθk) holds.
Q3 = anti-transitive iff for all 1 ≤ i, j, k ≤ n, if (iθj) and (jθk), then (iθk) does
not hold. /

Remark that a binary test cannot have both properties Pn and Qn. On the
other hand it can have only Pn, or only Qn, or none of the two. Indeed, =
has property P2, < has property Q2, and ≤ has P2 nor Q2. Hence, for each
n = 1, 2, 3, there are three possibilities for a binary test; Pn, Qn or none. This
means that there could be at most 27 possibilities for a binary test. Table 2
shows however that only 16 of them really exist, and it gives an example for
each of them.

Definition 9 Let θ be a binary test, and let P ⊆ {P1, P2, P3} be the set of
P -properties of θ. An expression e ∈ E(θ, n) is closed iff every conjunct (iθj)
that is necessary by the properties of P appears in e.
Let Q ⊆ {Q1, Q2, Q3} be the set of Q-properties of θ. An expression e ∈ E(θ, n)
is valid iff all conjuncts that are forbidden by the properties of Q, do not appear
in e. /

Example 6 Clearly, e = (1 < 2)∧ (2 < 3) is not closed since 1 < 3 is necessary
by the transitivity and does not appear in e. On the other hand e′ = (1 < 2)∧
(2 < 3)∧ (1 < 3) is closed. e and e′ are both valid expressions. (1 < 2)∧ (2 < 1)
is not valid, since the anti-symmetry forbids (2 < 1) when (1 < 2) is present. /

Lemma 1 Given a valid (θ, n)-expression e, there is a unique valid and closed
expression e′, that is equivalent with e. e′ is obtained by augmenting e with all
conjuncts that are necessary by the properties of P of θ. e′ is called the closure
of e.

In example 6, e′ is the closure of e. It is clear now that in every equivalence
class of expressions there is a unique closed expression. Since we have to test
only one expression of each equivalence class, for solving the split problem
freq(R, t, θ), it is sufficient to test each closed expression.

8

Table 2: Combinations of reflexivity, symmetry and transitivity. A and B

indicate attributes, 1, 2, . . . are used as constants

Reflexive Symmetric Transitive Possible relation

yes yes yes A = B

yes yes |A − B| ≤ 1
yes yes anti Impossible

yes yes A ≥ B

yes A − B ≤ 1
yes anti Impossible

yes anti yes Impossible

yes anti Impossible

yes anti anti Impossible

yes yes (A = 1) ∧ (B = 1)
yes (A = 1) ∨ (B = 1)
yes anti Impossible

yes A ≤ 1 ≤ B

A(B+1)=2
anti Impossible

anti yes Impossible

anti Impossible

anti anti Impossible

anti yes yes AθB always false
anti yes A 6= B

anti yes anti |A − B| = 1
anti yes Impossible

anti ((AB = 0) ∧ (A + B 6= 0)) ∨ (A < B)
anti anti |A − B| = 1 ∨ A − B = 3
anti anti yes A < B

anti anti A < B < 3A
anti anti anti A − B = 1

An important property, that we use in our algorithm is that the projection
of closed expressions is closed.

Definition 10 Let θ be a binary test.
Let e ∈ E(θ, n), I ⊆ {1, . . . , n}. πIe, the projection of e on I , is the expression
that contains all conjuncts (iθj) of e where i, j ∈ I.
/

Proposition 1 If e ∈ E(θ, n) is closed, then also is πIe, for all I ⊆ {1, . . . n}.

9

1<2 2<31<3

(1<2) (1<3) (1<3) (2<3)

(1<2) (2<3) (1<3)

Figure 2: A part of the search space

5 Algorithm

In this section we describe an algorithm that finds all frequent binary expres-
sions given a binary test and a relation. Basically, the algorithm performs a
levelwise search as described in [13]. The levelwise algorithm is a generate-and-
test algorithm. It highly depends on a monotonicity principle saying, roughly
speaking, that whenever e1 � e2, and the result of e2 is too small then the result
of e1 is also too small. The next proposition states this monotonicity principle.

Proposition 2 Let e1 and e2 be two expressions, R is a relation, and e1 � e2,
then |σe1

R| ≤ |σe1
R|.

Consider the following situation: We want to solve the freq(R, 1
2 , <)-problem,

and we know that the expression 1 < 2 is not frequent. Then, using proposition
2, we know that 1 < 2 ∧ 1 < 3 cannot be frequent, since 1 < 2 ∧ 1 < 3 � 1 < 2.
So, in this situation there is no need to count the frequency of 1 < 2 ∧ 1 < 3.
We can prune the expression 1 < 2 ∧ 1 < 3.

Another important aspect of the algorithm is that only the closed and valid
expressions are evaluated. All other expressions are equivalent to such an ex-
pression. So, the search space of our algorithm consists of all closed and valid
expressions. The ordering � induces a lattice-structure on this search space.
We can proof that true is always the unique top element in this lattice, and
we denote this top element by >. In Fig. 2 a part of the search space of the
freq(R, 3, <) is showed. When we use the term children of an expression, we
mean the expressions that are next more specific in the lattice. An important
result of the fact that we only consider closed expressions is the next proposi-
tion.

Proposition 3 Let e1, e2 be closed and valid expressions. The following two
statements are equivalent:

• e1 � e2

• {(iθj) | (iθj) is a conjunct in e2} ⊆ {(iθj) | (iθj) is a conjunct in e1}

Example 7 Suppose we want to test whether (1 < 2)∧(2 < 3)∧(1 < 3)∧(1 <

4) � (1 < 3) ∧ (2 < 3) ∧ (1 < 4). This is equivalent with the question whether
{(1 < 3), (2 < 3), (1 < 4)} ⊆ {(1 < 2), (2 < 3), (1 < 3), (1 < 4)}. /

10

1. candidates = {>}; Output = {}; TooLow = {}
2. while(candidates 6= {}) do

Test

3. Test candidates against the database.
4. fcan = {c ∈ candidates | c is frequent}
5. nfcan = candidates − fcan

6. Output = Output
⋃

fcan

7. TooLow = TooLow
⋃

nfcan

Generate

8. candidates =
⋃

p∈fcan{c | c is a child of p}

Prune

9. candidates = candidates − {c | ∃n ∈ TooLow : c � n}
10. end while

Figure 3: Algorithm for finding frequent expressions

Our algorithm tries to prune as much of the search space as possible. We
start with the most general expression of our search space, and we iteratively
test more specific expressions, without ever evaluating those expressions that
cannot be frequent given the information obtained in earlier iterations. More
precisely, the search space is traversed level by level, from general to specific. In
each iteration, the set candidates contains the candidate frequent expressions.
An “apriori trick” is used; if the frequency of e is below the threshold, and
e′ � e, then we know a priori that e′ must fail the frequency threshold. For this
reason, all expressions that failed the frequency threshold are stored in the set
TooLow. This gives us the framework of Fig. 3, which actually is a levelwise
search [13]. Steps 3 to 7 are testing the candidates against the database and
bookkeeping. In step 8 the children of the frequent candidates are generated
as the candidates for the next iteration. In step 9, we use the apriori trick to
prune away candidates that cannot be frequent due to information obtained in
previous iterations.

The three important operations in this framework are the testing of candi-
dates, the generation of new candidates and the pruning.

5.1 Testing

In the test-phase, the frequencies of the candidates are tested against the data-
base. The calculation of the frequency of an expression is very costly, since we
need to iterate over all tuples in the relation to count the number of tuples that
satisfy the expression. To limit the overhead, all candidates in an iteration are
tested in the same run over the database.

11

1=2 1=3

1=2=3 1=3=4

1=2=3=4

1=2 1=3

1=2=3 1=3=4

1=2=3=4

1=2 1=3

1=2=3 1=3=4

1=2=3=4

Figure 4: Three spanning lattices of a searchspace

5.2 Generation

In the generation phase, we need to generate all closed and valid children of
the frequent candidates. As can be seen in Fig. 2, all children are generated
by adding one conjunct, and taking the closure. However, not all conjuncts can
be used for generating children; in Fig. 2, the closure of (1 < 2), augmented
with (2 < 3) is (1 < 2)∧ (2 < 3)∧ (1 < 3), and this is no child of (1 < 2), since
(1 < 2) ∧ (1 < 3) lies between them. In the generation phase this problem is
handled.

In the framework of the algorithm, in the generation phase, all children of the
frequent candidates are generated. It is however sufficient that every expression
only generates a subset of its children, as long as for every expression there is
still at least one generating parent. We only generate those children that are
induced by a sublattice of the search space.

Example 8 In Fig. 4 some examples of this are given. The bold dots represent
the elements of the search space; these are the closed and valid expressions. The
bold lines represent the ways the generation takes place. In the first lattice,
for example, the top-element generates both its children. The right child only
generates a subset of its children. In the second search space, the spanning
sublattice is a tree. /

Not generating all children does no harm; still all expressions are generated.
On the other hand, not generating all children has a couple of advantages.

• In step 8. of the algorithm, all expressions generated by frequent can-
didates are added as new candidates. Probably lots of duplicates are
generated. These duplicates need to be removed. The less children are
generated, the less duplicates need to be removed.

• By not generating all children, some early pruning is applied. We discuss
this in more detail in the subsection on pruning.

From this discussion we can conclude that ideally each expression has exactly
one generating parent. This is the case when the spanning sublattice is a tree.

In Fig. 6 and 7, two functions that describe sublattices of the search space
are given. The functions give for every expression its successors; i.e. when ρ

is such an expression, and c ∈ ρ(p), then p is a generating parent for c. These
functions correspond with the so-called refinement operators in [6]. The first
function ρ1 always defines a spanning tree. The second function, ρ2, does not

12

1 2 3 4 5

1 1 4 9 16 25

2 2 3 8 15 24

3 5 6 7 14 23

4 10 11 12 13 22

5 17 18 19 20 21

Figure 5: The numbers assigned to the edges by the function number(i,j). The
square corners are bold

number(1, 1) = 1
number(1, j) = number(j − 1, 1) + 1
number(i, j) = number(i − 1, j) + 1, i ≤ j

else number(i, j) = number(i, j + 1) + 1
Edge(m) = (i, j) iff number(i, j) = m

SquareCorner(i, j)=true iff i = 1.
Last(i, j)=true iff i = j = n.

GenerateClosedSuccessors(e, m)
output: set S.
while ((closed(e) and not Last(Edge(m))) or not SquareCorner(Edge(m))) do

1. m=m+1

2. if (e ∧ Edge(m)) is valid then

• if (e ∧ Edge(m)) is closed then
Add e ∧ Edge(m) to S
else Add GenerateClosedSuccessors(e ∧ Edge(m), m) to S.

end while

m = max{number(i, j) | (iθj) ∈ e}
ρ1(e) = GenerateClosedSuccessors(e, m)

Figure 6: Refinement operator ρ1

13

Generate(e, m)

candidates = {(iθj) 6∈ e, with m ∈ {i, j}}
implies = {}
for all tests (iθj) ∈ candidates do

• Calculate the closure of e ∧ (iθj)

• Add (iθj) → (i′θj′) to implies for all (i′θj′) ∈ candidates ∩ cl(e) ∧ (iθj).

end for
for all tests t in candidates do

• if ∃t′ ∈ candidates : and t → t′ in implies and t′ → t not in implies then
remove t from candidates.

• if ∃t′ ∈ candidates : number(t′) < number(t) and both t → t′ and t′ → t

in implies then remove t from candidates.

end for
Generate(e, m) = {cl(e ∧ t) | t ∈ candidates}

m = max{i | (i, j) ∈ e ∨ (j, i) ∈ e}
ρ2(e) =

⋃

i≤m Generate(e, i)

Figure 7: Refinement operator ρ2

14

define a spanning tree, but is on the other hand more efficient in generating
successors. In the experiments we compare the two functions. The proof that
ρ1 and ρ2 are correct, is beyond the scope of this paper.

5.2.1 Comments on the refinement operators

As said earlier, the refinement operators calculate children of nodes. Using
these refinement operators, we can, starting with the top-element, enumerate
all elements in the search space by going top-down. ρ1 and ρ2 are designed
to go through the search space E(θ, n). Thus, given an expression, ρ1 and ρ2

calculate some of its children. In order to be able to iterate over the full search
space, for every expression e 6= >, there must be an expression p such that
ρ∗(p) contains e.

In both ρ1 and ρ2, every possible conjunct iθj in an expression is assigned
a unique number; number(i, j). In this way the conjuncts are ordered. This
order is chosen as showed in Fig. 5. So, all conjuncts iθj with both i and j

smaller than k, come before all conjuncts (i′, j′) with either i′ ≥ k or j′ ≥ k.
SquareCorner(i, j) = true means that the conjunct iθj is the last conjunct

with both attributes smaller than or equal to j. Every expression can now be
expressed as a set of numbers. Using Proposition 1, we have: if number(i, j) =
sc and SquareCorner(i, j), and E = {c1, c2, . . . , cm} represents a closed and
valid expression e, then E ′ = {c ∈ E | c ≤ sc} represents also a closed and valid
expression, since E ′ represents the projection of e on {1, . . . , j}. Both ρ1 and
ρ2 rely heavily on this observation.

ρ1 is based on brute force searching of children of an expression. To avoid
multiple generations of the same expression, ρ1 generates only the children e′

of e, such that the numbers of the conjuncts in e′ that aren’t in e are bigger
than the biggest number of a conjunct in e. It is clear that in this way every
expression can only be generated by one parent. ρ1 adds conjuncts until the
expression is complete or until a square corner is reached. When this corner is
reached and the expression is not complete, every super-expression will not be
complete, since the incomplete expression will be a projection. For the exact
definition of ρ1, see Fig. 6.

ρ2 calculates first the impact of adding a certain conjunct. For example:
adding 1 < 2 to 2 < 3 implies 1 < 3. Therefore, 1 < 2 → 1 < 3 will be stored in
implies. After this step, only the conjuncts that do not imply other conjuncts
are added. For example: 1 < 3 is added to 2 < 3, but 1 < 2 is not added to
2 < 3, because 1 < 2 → 1 < 3 is in implies. For the exact definition of ρ2, see
Fig. 7.

5.3 Pruning

A basic operation of the algorithm is the pruning. It is essential that this
operation is performed as efficiently as possible. The pruning implies that
for every expression e that is generated in step 8 of the algorithm, we need
to investigate whether there is an expression l in TooLow such that e � l.
If this is the case, we can prune e. Since the algorithm only generates closed

15

1 2 3 4

2 3 5 7 5 7

5 6

Figure 8: A trie containing the items 125,13,256,27,35,37 and 4

expressions, the test e � l is equal to the test {(iθj) | (iθj) is a conjunct in l} ⊆
{(iθj) | (iθj) is a conjunct in e}.

From previous research, we can conclude that a trie is a good structure to
store sequences. A trie uses common prefixes between the sequences to store
them more efficiently. In Fig. 8 an example of a trie is given. A trie is in fact a
tree, in which the sequences are stored as paths from the root to the leaves. The
test whether a sequence is a subsequence of a sequence in the trie can be done
very efficiently. We are not going into detail on tries, for a more elaborated
work on tries, we refer to [8] and [14].

Step 8 is not the only step in which pruning occurs. When all generating
parents of an expression are infrequent, the expression will never be generated,
even when there are other parents that are frequent. Thus, the less parents a
node has, the bigger the chance that it never will be generated if some of its
parent are infrequent. This type of pruning is called early pruning . When an
expression is not pruned early, it can still be pruned in step 8 of the algorithm.
This situation occurs when at least one generating parent is frequent, and at
least one other parent is infrequent. Due to the monotonicity principle the
expression is pruned.

Early pruning does not compromise the completeness of the algorithm; i.e.
still all frequent expressions are generated. This is due to the monotonicity
principle; whenever an expression is frequent, also its generating parents are
frequent. By induction we can now conclude that every frequent expression is
generated.

In Appendix B we give an example showing the algorithm.

16

6 Complexity

In this section we give both theoretical and empirical complexity results. For
reasons of simplicity we assume in this section that in the input relations, equal
rows can appear more than once; i.e. relations are rather bags than sets.

6.1 Theoretical Complexity Results

Definition 11 Let θ be a binary test. An instance of the FREQθ-problem is
a 3-tuple (R, t, k). FREQθ(R, t, k) is true iff there is an expression e ∈ E(θ, n)
with freq(e,R) ≥ t, and the number of conjuncts in e is at least k. /

Proposition 4 Let θ be a binary test. If θ can be decided in polynomial time,
then FREQθ is in NP.

Proof. Note, that when an expression is frequent, all its sub-expressions are
frequent too. Thus, if there is an expression of length at least k, there is also
an expression of exactly length k. We can guess an expression of length k. The
evaluation of this expression can be done in polynomial time, because θ can be
decided in polynomial time, and the number of conjuncts is at most n2, with n

the number of attributes of R. /

The previous proposition states that the FREQθ-problem can be solved in
non-deterministic polynomial time. Whether this is a tight upper bound on
the complexity depends on θ. For example, suppose that aθb is always false,
then FREQθ can obviously be solved in constant time. The next proposition
however, states that under reasonable assumptions, FREQθ is NP-complete.

Proposition 5 If there exist a, b, c, d ∈ U such that aθb, cθd, a 6 θc, a 6 θd,
b 6 θc, and b 6 θd, then FREQθ is NP-complete.

Proof. We will show that under the this assumption, we can always reduce
the following problem to FREQθ:

Given a transaction database D, a threshold t and k, is there an
itemset with at least k items that has a frequency of at least t in D?

This problem is well-known to be NP-complete [11]. The reduction works as
follows: the input (D, t, k) of the frequent itemset problem is reduced to a input
of the FREQθ-problem (RD, t′, k).
We will now give the construction of RD. This construction is illustrated in
Fig. 9. RD is a relation over A1, B1, A2, B2, . . . , An, Bn, with n the number of
items in D. For each transaction T , RD contains a row with Ai = a for all i,
Bi = b if the i-th item is in T , and Bi = c else. In this relation, the expression
Ai1θBi1 ∧ Ai2θBi2 ∧ . . . AimθBim has frequency t iff the itemset {i1, i2, . . . , im}
has frequency t in D.

There is however still a problem: there will also be frequent expressions
that contain conjuncts of the form AiθBj with i 6= j, AiθAj and BiθBj . Hence,
additionally, RD contains |D| + 1 times the following rows: for each 1 ≤ i ≤ n,
RD contains r, with r.Ai = c, r.Bi = d, and r.Ak = a, r.Bk = b for all k 6= i. In

17

1 2 3 4 5

0 1 1 1 0
1 1 1 1 0
1 1 1 0 1
1 0 0 0 0
1 1 1 1 0
1 1 0 1 1
1 1 1 1 0
0 0 1 0 1
1 0 0 0 1
1 1 1 1 0

t=0.5
k=3

is reduced to

A1 B1 A2 B2 A3 B3 A4 B4 A5 B5

1 2 1 1 1 1 1 1 1 2
1 1 1 1 1 1 1 1 1 2
1 1 1 1 1 1 1 2 1 1
1 1 1 2 1 2 1 2 1 2
1 1 1 1 1 1 1 1 1 2
1 1 1 1 1 2 1 1 1 1
1 1 1 1 1 1 1 1 1 2
1 2 1 2 1 1 1 2 1 1
1 1 1 2 1 2 1 2 1 1
1 1 1 1 1 1 1 1 1 2

and 11 times

1 1 2 2 2 2 2 2 2 2
2 2 1 1 2 2 2 2 2 2
2 2 2 2 1 1 2 2 2 2
2 2 2 2 2 2 1 1 2 2
2 2 2 2 2 2 2 2 1 1

with k′ = 6, and t′ = 60
65 = 0.307...

The frequent itemset {2, 3, 4} corresponds with the frequent expression (A2 =
B2) ∧ (B2 = A2) ∧ (A3 = B3) ∧ (B3 = A3) ∧ (A4 = B4) ∧ (B4 = A4).

Figure 9: Illustration of the construction of RD

these (|D|+ 1)n extra rows, every row satisfies AiθBi, for all i. For every other
pair of attributes C, D, there are at least |D|+1 rows that do not satisfy CθD,
except for BiθAi. If bθa and dθc are both true, also all BiθAi are true in the
extra rows, otherwise at least |D| + 1 rows do not satisfy BiθAi.

Then, for every expression that only contains conjuncts of the form AiθBi

(or BiθAi if bθa and dθc are both true), the number of rows in RD that satisfies
them, is the number of transactions in D that satisfy them, plus (|D| + 1)n.
For every other expression e, the number of rows satisfying e is at most |D| +

(|D| + 1)n − (D + 1) = (|D| + 1)n − 1. Therefore, with t′ = t|D|+(|D|+1)n
(|D|+1)n+|D| , there

is a frequent expression with i (or 2i if bθa and dθc are both true) conjuncts iff
there is a frequent itemset of size i and vice verse. So, in the case bθa and dθc

are both true, we choose k′ = 2k, else k′ = k. /

6.2 Experimental Results

In this section we present some experimental results. We implemented both
refinement operators ρ1 and ρ2. The source code of both implementations can
be obtained at http://cc-www.uia.ac.be/u/calders/.

Effectiveness of Pruning In Fig. 10 (left), a lower bound for the total
number of closed and valid expressions in E(<, n) is given for n = 2, 4, . . . , 20
for reference. The calculation of this lower bound is given in Appendix A. In
Fig. 10(right), some tests on a randomized dataset are given for increasing

18

number of attributes. The number of expressions that are examined by our
algorithms is given for a threshold 0.3, and for increasing number of attributes.
Note that the scale of the graph representing the total size of the search space
is logarithmic. The number of expressions examined by the algorithms in this
example is exponentially less than the total number of elements in the search
space.

Figure 10: The size of the search space versus the number of expressions that
were investigated

Scalability In Fig. 11, the running time of the two algorithms is measured.
When the number of attributes grows, refinement operator ρ2 becomes much
more efficient than ρ1. In the left graph, a threshold of 0.4 was used, and the
binary test was <. In the right graph, the binary test = was used, and the
test was done with the refinement operator ρ2, with a threshold of 0.5. In both
graphs, the dataset was randomly generated. The number of values in U was 2
in the right graph, and 7 in the left one.

Figure 11: Scalability in the number of attributes

19

7 Conclusion

Binary expressions are an interesting type of patterns for data mining. In this
paper we presented three applications of frequent binary expressions; binary
rules, that essentially are extensions of association rules to binary predicates,
horizontal decompositions and the mining of extensional database relations. We
presented and tested an algorithm for finding frequent binary expressions. The
algorithm exploited background information such as reflexivity, transitivity and
symmetry about the binary tests to optimize the search.

References

[1] A. Agrawal and R. Srikant. Fast algorithms for mining association rules.
In Proc. VLDB , Santiago, Chile, 1994.

[2] R. Agrawal, T. Imilienski, and A. Swami. Mining association rules between
sets of items in large databases. In Proc. ACM SIGMOD, Washington,
D.C., 1993

[3] R. Agrawal, H.Manilla, R. Srikant, H. Toivonen, and A. Verkamo. Fast
discovery of association rules. In Advances in Knowledge Discovery and
Data Mining , chapter 12. 1996.

[4] R. Agrawal and R. Srikant. Mining sequential patterns. In P. S. Yu and A.
L. P. Chen, editors, ICDT . IEEE Computer Society, 1995.

[5] P. De Bra. Horizontal decompositions based on functional-dependency-set-
implications. In ICDT . Springer-Verlag, 1986.

[6] L. Dehaspe. Frequent pattern discovery in first-order logic. PhD thesis,
Katholieke Universiteit Leuven, Dec. 1998.

[7] J. Han and Y. Fu. Discovery of multiple-level association rules from large
databases. In Proc. VLDB, Zürich, Switzerland, 1995.

[8] J. Han, J.Pei, and Y. Yin. Mining frequent patterns without candidate
generation. In Proc. ACM SIGMOD, 2000

[9] Y. Huhtala, J.Kärkkäinen, P. Porkka, and H. Toivonen. Efficient discovery
of functional and approximate dependencies using partitions. In ICDT.
IEEE Computer Society, 1998.

[10] M. Kantola, H. Mannila, K.-J. Räihä, and H. Siirtola. Discovering func-
tional and inclusion dependencies in relational databases. International
Journal of Intelligent Systems, 7, 1992.

[11] Y.-D. Kwon, R. Nakanishi, M. Ito, M. Nakanishi. Computational Complex-
ity of Finding Meaningful Association Rules. IEICE Trans. Fundamentals
Vol.E82-A No.9 pp.1945-1952, september 1999

20

[12] H. Mannila and H. Toivonen. Discovery of frequent episodes in event se-
quences. In Data Mining and Knowledge Discovery 1(3), 1997.

[13] H. Mannila and H. Toivonen. Levelwise search and borders of theories in
knowledge discovery. In Data Mining and Knowledge Discovery 1(3), 1997.

[14] J. Pei, J. Han, B. Mortazavi-Asl, and H. Zhu. Mining access patterns
efficiently from web logs. In PAKDD , 2000.

[15] M. Y. Vardi. The decision problem for database dependencies. In Inf. Proc.
Letters 12(5), 1981.

[16] J. Wijsen, R. Ng, and T. Calders. Discovering roll-up dependencies. In
Proc. ACM SIGKDD , 1999.

21

A Approximation of the number of partial orders

Proposition 6

αn
m = 2nm − 1 −

∑

1 ≤ k ≤ n, 1 ≤ l ≤ m

k + l < n + m

(

n

k

)(

m

l

)

αk
l (1)

βn
m = 2nm − 1 −

∑m−1
l=1

(

m

l

)

βn
l (2)

α1
m = αn

1 = 1
β1

m = βn
1 = 1

γ(i1, . . . , is) = αi1
i2

βi2
i3

βi3
i4

. . . β
is−1

is
(3)

N(n) =
∑n

s=2

∑

1 ≤ i1, . . . is ≤ n
∑

ij ≤ n

(

n

i1

)(

n − i1
i2

)

· · ·

(

n − i1 − i2 − . . . − is−1

is

)

γ(i1, . . . , is) (4)

N(n) is a lower bound for the number of partial orders on a set of n elements.

Proof. We denote the number of binary relations between the set A (with
n elements) and B (with m elements) such that each element of A and each
element of B participates in the relation, by αn

m. We clearly have (1), which
defines all αn

m recursively.
We denote the number of relations between the sets A and B such that

each element of B participates in the relation by βn
m. We clearly have (2),

which defines βn
m recursively.

Consider now C, a set with n elements and C a sequence C1, C2, . . . , Cs of
nonempty, disjoint subsets of C. Let Cj have ij elements. We associate to C
the set of those partial orders where

1. all direct successors of elements in Ci−1 are in Ci;

2. each element in Ci has at least one predecessor, 2 ≤ i ≤ s;

3. each element of C1 has at least one direct successor;

4. only elements of C1, . . . , Cs are involved in the partial order.

Clearly the number of partial orders associated to C is (3).
Since the sets of partial orders that are associated to two different sequences

are disjoint, we have at least N(n) different partial orders on C. /

In table A, the value of N(n) is shown for n = 1, . . . , 20.

22

Table 3: Values of N(n).

n N(n)

1 1
2 3
3 19
4 195
5 3031
6 67263
7 2086099
8 89224635
9 5254054111
10 426609529863
11 47982981969979
12 7507894696005795
13 1641072554263066471
14 502596525992239961103
15 216218525837808950623459
16 130887167385831881114006475
17 111653218763166828863141636911
18 134349872458038183085622069028183
19 228228035274548646520045389483662539
20 547642615378471734887402619869035943475

23

B Example run of the algorithm

In this appendix we give a large sample run of the algorithm described in the
paper. All steps of the algorithm are discussed, and both refinement operators
ρ1 and ρ2 are considered.

R =

1 2 3 4

1 2 2 4
1 5 6 2
1 5 1 3
3 5 6 2
2 7 2 4
3 2 4 4
6 2 3 5

, threshold = 3
7 , θ =“<”

Initialization

• candidates = {>}

• Output = {}

• TooLow = {}

Iteration 1

Test fcan = {>}, nfcan = {}, Output = {>}, TooLow={}

Generate and Prune candidates = { (1 < 2), (1 < 3), (1 < 4), (2 <

1), (3 < 1), (4 < 1), (2 < 3), (2 < 4), (3 < 2), (4 < 2), (3 < 4), (4 < 3)}

Iteration 2

Test Output = fcan = { (1 < 2), (1 < 3), (1 < 4), (2 < 3), (2 < 4), (4 <

2), (3 < 4)}
TooLow = nfcan = { (2 < 1), (3 < 1), (4 < 1), (3 < 2), (4 < 3)}

Generate and Prune candidates = { (1 < 2 ∧ 1 < 3), (1 < 2 ∧ 1 < 4), (1 <

2∧ 4 < 2), (1 < 2∧ 3 < 4), (1 < 3∧ 1 < 4), (1 < 3∧ 2 < 3), (1 < 3∧ 2 <

4), (1 < 3∧4 < 2), (1 < 4∧2 < 3), (1 < 4∧2 < 4), (1 < 4∧3 < 4), (2 <

3 ∧ 2 < 4), (2 < 4 ∧ 3 < 4)}

24

Iteration 3

Test fcan = { (1 < 2 ∧ 1 < 3), (1 < 2 ∧ 1 < 4), (1 < 2 ∧ 4 < 2), (1 < 2 ∧ 3 <

4), (1 < 3 ∧ 1 < 4), (1 < 3 ∧ 2 < 3), (1 < 4 ∧ 3 < 4)}
nfcan = { (1 < 3∧ 2 < 4), (1 < 3∧ 4 < 2), (1 < 4∧ 2 < 3), (1 < 4∧ 2 <

4), (2 < 3 ∧ 2 < 4), (2 < 4 ∧ 3 < 4)}

Generate and Prune candidates = { (1 < 2 ∧ 1 < 3 ∧ 1 < 4), (1 < 2 ∧ 1 <

4 ∧ 3 < 4)}

Iteration 4

Test fcan = { (1 < 2 ∧ 1 < 4 ∧ 3 < 4)}
nfcan = {(1 < 2 ∧ 1 < 3 ∧ 1 < 4)}

Generate and Prune candidates = {}

25

