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Abstract

In data mining association rules are very popular. Most of the algo-
rithms in the literature for finding association rules start by searching for
frequent itemsets. In this paper we consider frequent set expressions. A
frequent set expression is a pair containing an itemset and a frequency
indicating that the frequency of that itemset is greater than or equal to
the given frequency. A system of frequent sets is a collection of such ex-
pressions. We give and prove an axiomatization for these systems. This
axiomatization characterizes complete systems. A system is complete when
it explicitly contains all information that it logically implies. Every system
of frequent sets has a unique completion. We show that this completion is
computable. We proof that deciding completeness is in coNP. Finally we
also study some special cases.
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1 Introduction

Association rules are one of the most studied topics in data mining. They have
many applications [3]. Since their introduction, many algorithms have been
proposed to find association rules [1][2][5].

We first give the formal definition of the association mining problem as
stated in [1]: Let I = {I1, I2, . . . , Im} be a set of literals, called items. Let D
be a set of transactions, where each transaction T is a set of items, T ⊆ I,
and a unique transaction ID. We say that a transaction T contains X, a set of
some items in I, if X ⊆ T . The fraction of transactions containing X is called
the frequency of X. An association rule is an implication of the form X ⇒ Y ,
where X ⊆ I, Y ⊆ I, and X ∩ Y = φ. The rule holds in the transaction set
D with confidence c if the fraction of the transactions containing X, that also
contain Y is at least c. The rule X ⇒ Y has support s in the transaction set D
if the fraction of the transactions in D that contain X ∪ Y is at least s.

Most algorithms start with searching itemsets that are contained in at least
a fraction s of the transactions. To optimize the search for frequent itemsets,
most algorithms use the following monotonicity principle [6]:

if X ⊆ Y , then the frequency of X will never be smaller than the
frequency of Y .

This information is then used to prune parts of the search space a priori .
Although the monotonicity of frequency is commonly used, there is to our

knowledge no previous work that discusses whether this rule is complete, in the
sense that it tells us everything we can derive from a set of given frequencies.
In this paper we consider the notion of a system of frequent sets. A system of
frequent sets contains, possibly incomplete, information about the frequency of
every itemset. For example, A :: 0.6, B :: 0.6, AB :: 0.1, φ :: 0.5 is a system of
frequent sets. In this system, A :: 0.6 expresses the knowledge that itemset A

has a frequency of at least 0.6. In this case, the system can be improved. Indeed:
from the system we can conclude that AB :: 0.2 since A :: 0.6 and B :: 0.6 and
there must be an overlap of at least a 0.2-fraction between the transactions
containing A and the transactions containing B. we can also improve φ :: 0.5,
because φ :: 1 always holds. Therefore, this system is called incomplete. When
a system cannot be improved, it is complete.

In this paper we give three rules F1, F2, and F3, for complete systems
of frequent sets. A system is complete iff it satisfies F1, F2, F3. After a
small modification of F3, we conclude that the question whether a system is
complete, is decidable. We also show that for every system there is a unique
equivalent system that is complete. We prove that this unique completion of a
system is computable.

To facilitate the notations in the proofs, we introduce rare sets. A rare set
expression K : pK expresses that at most a pK-fraction of the transactions does
not contain at least one item of K.

We proof that deciding completeness is in coNP.
Finally we study some special cases, in which not all frequencies are given.

We call such systems sparse. For example, the system S = {A :: 0.5, B ::
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0.3, C :: 0.5, AB :: 0.3} is a sparse system, because there are no rare set expres-
sions for AC, AB, ABC and φ. We proof that for sparse systems, completeness
is still decidable and computable, and we give an axiomatization for sparse
systems.

Although the results in this paper cannot directly be used to improve exist-
ing algorithms, we strongly believe that a theoretical framework on the impli-
cations between frequent itemsets is an interesting and important topic in data
mining.

The structure of the paper is as follows: in Section 2 we formally define a
system of frequent sets. In Section 3, an axiomatization for complete systems
of frequent sets is given. In Section 4, decidability and computability issues are
studied. In Section 5, some limited complexity results of deciding whether a
system is complete are given. In section 6 we study some special cases. Section
7 concludes the paper.
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Matrix R

A B C D E F

1 0 1 0 1 1
1 0 1 0 1 1
0 1 0 1 1 0
1 1 1 0 0 1
1 0 0 1 0 1
0 1 0 1 1 1
1 1 0 1 1 1
0 0 1 0 0 1
1 1 1 0 1 0
1 0 0 1 0 1

freq(A, R) = 0.7
freq(B, R) = 0.5
freq(AB, R) = 0.3
freq(DEF, R) = 0.2

R satisfies A :: 0.5, AB :: 0.3,
DEF :: 0.1
R does not satisfy A :: 0.8,
ABC :: 0.4, DEF :: 0.3

Figure 1: A matrix together with some frequent set expressions

2 Complete System of Frequent Sets

We formally define a system of frequent sets. We also define what it means for
a system to be complete.

To represent a databases with transactions, we use a matrix. The columns
of the matrix represent the items and the rows represent the transactions. The
matrix contains a one in the (i, j)-entry if transaction i contains item j, else
this entry is zero. When R is a matrix where the columns represent the items
in I, we say that R is a matrix over I. In our running example we regularly
refer to the items with capital letters. With this notation, we get the following
definition:

Definition 1 Let I = {I1, . . . , In} be a set of items, and R be a matrix over
I. The frequency of an itemset K ⊆ I in R, denoted freq(K, R) is the fraction
of rows in R that have a one in every column of K. /

Example 1 In Fig. 1, a matrix is given, together with some frequencies. The
frequency of DEF is 0.2, because 2 rows out of 10 have a one in every column
of DEF 1. Note that, because R is a matrix, R can have identical rows. /

Definition 2 Let I = {I1, . . . , In} be a set of items.

• A frequent set expression over I is an expression K :: pK with K ⊆ I and
0 ≤ pK ≤ 1.

• A matrix R over I satisfies K :: pK iff freq(K, R) ≥ pK . Hence itemset
K has frequency at least pK .

1DEF denotes the set {D, E, F}
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• A system of frequent sets over I is a collection
{

K⊆I
K :: pK

of frequent set expressions, with one expression for each K ⊆ I.

• A matrix R over I satisfies the system
{

K⊆I
K :: pK iff R satisfies all

K :: pK .

/

Example 2 In Fig. 1, the matrix R satisfies A :: 0.6, because the frequency
of A in R is bigger than 0.6. The matrix does not satisfy B :: 0.7, because the
frequency of B is lower than 0.7. /

Definition 3 Let I = {I1, . . . , In} be a set of items.

• A system of frequent sets S logically implies K :: pK , denoted S |= K ::
pK , iff every matrix that satisfies S, also satisfies K :: pK . System S1

logically implies system S2, denoted S1 |= S2, iff every K :: p in S2 is
logically implied by S1.

• A system of frequent sets S =
{

K⊆I
K :: pK is complete iff for each K :: p

logically implied by S, p ≤ pK holds.

/

Example 3 Let I = {A, B, C, D, E, F}. Consider the following system: S ={
K⊆I

K :: pK , where pA = 0.7, pB = 0.5, pAB = 0.3, pDEF = 0.2, and pK = 0

for all other itemsets K. The matrix in Fig. 1 satisfies S. S is not complete,
because in every matrix satisfying DEF :: 0.2, the frequency of DE must be
at least 0.2, and S contains DE :: 0. Furthermore, S does not logically imply
EF :: 0.5, since R satisfies S, and R does not satisfy EF :: 0.5.

Consider the following system over I = {A, B, C}:
{φ :: 1, A :: 0.6, B :: 0.8, C :: 0.8, AB :: 0.6, AC :: 0.4, BC :: 0.6, ABC :: 0.4}.
This system is complete. We prove this by showing that for every subset K of
I, there exists a matrix RK that satisfies S, and freq(K, RK) is exactly pK .
These matrices then prove that for all K, we cannot further improve on K;
i.e. make pK larger. These proof-matrices are very important in the proof of
the axiomatization that is given in the next section. In Fig. 2, the different
proof-matrices are given. /

When a system S is not complete, we can improve this system. Suppose a

system S =
{

K⊆I
K :: pK is not complete, then there is a frequent set expression

K :: p′k that is logically implied by S, and p′K > pK . We can improve S by
replacing K :: pK by K :: p′K . The next proposition says that there exists a
unique system C(S), that is logically implied by S and that is complete.

First of all, we need to prove a rather technical lemma. It may seem trivial,
but its importance to the rest of this paper cannot be overestimated! With-
out this lemma, we would have no guarantee that there always exists a closed
system.
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B, C, BC, ABC

A B C

1 1 0
1 1 1
1 0 1
1 1 1
0 1 1

A, AB, AC

A B C

1 1 0
1 1 1
1 1 1
0 1 1
0 1 1

ABC :: 0.4

AB :: 0.6 AC :: 0.4 BC :: 0.6

A :: 0.6 B :: 0.8 C :: 0.8

φ :: 1

"
""

b
bb

b
bb

"
""

"
""

b
bb

"
""

b
bb

Figure 2: Proof-matrices for a system of frequent sets

Lemma 1 Let S be a system of frequent sets, and P ⊆ [0, 1]. If for all p ∈ P

holds that S |= K :: p, then also S |= K :: supremum(P ).

Proof. Let R be an arbitrary matrix that satisfies S. R is by definition finite;
say |R| = n. Therefore, the frequencies of the itemsets in R can only take
values in F = { i

n
| 0 ≤ i ≤ n} (the frequencies are defined as ratios). Let

m := max{f ∈ F | f < sup(P )} (m is well-defined; F is finite). There must
exist an element p in P such that m < p ≤ supremum(P ). Because K :: p

holds in R, freq(K, R) ≥ p > m. We can conclude that freq(K, R) ≥ sup(P ),
and thus R satisfies K :: sup(P ). Since R was arbitrary, the lemma holds. /

Proposition 1 Let I = {I1, . . . , In} be a set of items, S =
{

K⊆I
K :: pK .

There exists a unique system C(S), the completion of S, such that S |= C(S),
and C(S) is a complete system.

Proof. Let mK = max{pK | S |= K :: pK} (well-defined, see Lemma 1). The

system
{

K⊆I
K :: mK is clearly the unique completion of S. /

Example 4 I = {A, B, C}. The system {φ :: 1, A :: 0.6, B :: 0.8, C :: 0.8, AB ::
0.6, AC :: 0.4,BC :: 0.6, ABC :: 0.4} is the unique completion of the system
{φ :: 0.8, A :: 0.6, B :: 0.8, C :: 0.8, AB :: 0.6, AC :: 0.4,BC :: 0.4, ABC :: 0.4}.
BC :: 0.6 is implied by the second system, since there is an overlap of at least
0.6 between the rows having a one on B and the rows having a one on C. /

Remark that when a system is complete, it is not necessary that there
exists one matrix such that for all itemsets the frequency is exactly the fre-
quency given in the system. Consider for example the following system: {φ ::
1, A :: 0.5, B :: 0.5, C :: 0.1, AB :: 0, AC :: 0, BC :: 0, ABC :: 0}. This sys-
tem is complete. However, we will never find a matrix in which the follow-
ing six conditions are simultaneously true: freq(A) = 0.5, freq(B) = 0.5,
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freq(C) = 0.1, freq(AB) = 0, freq(AC) = 0, and freq(BC) = 0, because due
to freq(A) = 0.5, freq(B) = 0.5, and freq(AB) = 0, every row has a one in A

or in B. So, every row having a one in C has also a one in A or in B, and thus
violates respectively freq(AC) = 0, or freq(BC) = 0.
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3 Axiomatizations

We give an axiomatization for frequent sets. An axiomatization in this context
is a set of rules that are satisfied by the system iff it is complete. In order to
simplify the notation we first introduce rare sets.

3.1 Rare Sets

Definition 4 Let I = {I1, . . . , In} be a set of items.

• Let R be a matrix over I. The rareness of an itemset K ⊆ I in R, denoted
rare(K, R), is the fraction of rows in R that have a zero in at least one
column of K.

• A rare set expression over I is an expression K : pK with K ⊆ I and
0 ≤ pK ≤ 1.

• A matrix R over I satisfies K : pK iff rare(K, R) ≤ pK . Hence itemset
K has rareness at most pK .

• A system of rare sets over I is a collection
{

K⊆I
K : PK of rare set ex-

pressions, with one expression for each K ⊆ I.

• A matrix R over I satisfies the system
{

K⊆I
K : pK iff R satisfies all

K : pK .

• A system of rare sets S logically implies K : p, denoted S |= K : p iff every
matrix that satisfies S also satisfies K : p. System S1 logically implies
system S2, denoted S1 |= S2, iff every K : p in S2 is logically implied by
S1.

• A system of rare sets S =
{

K∈I
K : pK is complete iff for each K : p

logically implied by S, pK ≤ p holds.

/

Example 5 In Fig. 1, the matrix R satisfies A : 0.4, because the rareness of
A in R is smaller than 0.4. The matrix does not satisfy B : 0.3, because the
rareness of B is greater than 0.3. Let I = {A, B}. The system {AB : 0.8, A :
0.3, B : 0.4, φ : 0.4} is not complete. The unique completion of this system is
{AB : 0.7, A : 0.3, B : 0.4, φ : 0}. /

The next proposition connects rare sets with frequent sets. The connection
between the two is straightforward. Indeed: the rows that have a zero in at
least one column on K are exact the complement of the rows having only ones in
these columns. The second part of the proposition shows that an axiomatization
for rare sets automatically yields an axiomatization for frequent sets.

Proposition 2 Let I = {I1 . . . In} be a set of items. For every matrix R over
I and every subset K of I holds that
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• freq(K, R) + rare(K, R) = 1.

• R satisfies K : pK iff R satisfies K :: 1 − pK .

In the following subsection we prove an axiomatization for complete systems
of rare sets. From this axiomatization, we can easily derive an axiomatization
for frequent sets, using the previous proposition.

3.2 Axiomatization of Rare Sets

Before we give the axiomatization, we first define bags.

Definition 5

• A bag over a set S is a total function from S into IN .

• Let K be a bag over S and s ∈ S. We say that s appears n times in K iff
K(s) = n.

• If K and L are bags over S, then we define the bag-union of K and L,
notation K

⋃
L, as follows: for all s ∈ S, (K

⋃
L)(s) = K(s) + L(s).

• Let K be a bag over the subsets of a set S. Then
⋃

K denotes the bag⋃
K∈K K. The degree of an element s ∈ S in K, denoted deg(s,K) is the

number of times s appears in
⋃

K.

• Let S = {s1, s2, . . . , sn}. {{ c1
′s1, . . . , cn

′sn }} denotes the bag over S in
which si appears ci times for 1 ≤ i ≤ n.

• Let S be a set, K a bag over S.
∑

s∈S K(s) is the cardinality of K, and
is denoted by |K|.

/

The next three rules form an axiomatization for complete systems of rare
sets in the sense that the complete systems are exactly the ones that satisfy
these three rules. The pK ’s that appear in the rules, indicate the rareness-values
given in the systems for the set K; i.e. K : pK is in the system.

R1 pφ = 0

R2 If K2 ⊆ K1, then pK2
≤ pK1

R3 Let K ⊆ I, M a bag of subsets of K. Then

pK ≤

∑
M∈M pM

k
,

with k = mina∈K(deg(a,M))
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Lemma 2 Given a set of indices I and given aK , bK for every non-empty K ⊆
I. Consider the following system of inequalities:

{

K⊆I
aK ≤

∑

i∈K

Xi ≤ bK

This system has a solution (x1, . . . , x#I), xi rational, iff for all K and L, bags
of subsets of I with

⋃
K =

⋃
L holds that

∑
K∈K aK ≤

∑
L∈L bL.

The rather technical proof is given in the appendix.

Theorem 1 Let S be a system of rare sets over I. The following two statements
are equivalent:

• S is a complete system.

• S satisfies R1, R2, and R3.

We first prove the soundness of the rules R1, R2, and R3.

Proposition 3 Let S be a system of rare sets over I. If S is complete, then S

satisfies R1, R2, and R3.

Proof. R1 and R2 are trivial.
R3 Let S =

{
K∈I

K : pK be a complete system, and let M be a bag of subsets

over K ⊆ I. We will prove that

∑
M∈M

pM

k
≥ pK with k = mina∈K(deg(a,M)).

Suppose R is a matrix over I, and R satisfies S. Let for all Z ⊆ I, DZ be the
set of rows having a zero in at least one column of Z. Then we know that every
row in DK , appears in at least k of the following sets: {{ DM | M ∈ M }},
because t ∈ DK implies that there is an a ∈ K, such that t(a) = 0. Because
deg(a,M) ≥ k, there must be at least k sets in M that contain a. For each
set M ∈ M with a ∈ M must t ∈ DM . Therefore, we can conclude that
k|Dk| ≤

∑
M∈M |DM | ≤ n

∑
M∈M pM . S is complete, and in every matrix R

that satisfies S, k
|Dk|

n
≤

∑
M∈M pM holds. We can conclude pK ≤

∑
M∈M

pM

k
.

/

Now we will prove the completeness of R1, R2, and R3.

Proposition 4 Let S be a system of rare sets over I. If S satisfies R1, R2,
and R3, then S is complete.

Proof. Let S =
{

K∈I
K : pK be a system that satisfies R1, R2, and R3. We

will proof that S is complete. Therefore, we will prove that for every K : pK

in the system, there exists a matrix R over I, such that R satisfies S, and the
rareness of K in R is exactly pK

2.
Let βZ be the exact fraction of rows in R that have a zero in every column of

Z, and a one everywhere else. Then the rareness of a set L becomes:
∑

Z⊆L βZ .
We will construct a matrix that satisfies S and has rareness exactly pK for K,

2Remark the similarity with Armstrong-relations in functional dependency theory [4]
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by specifying all βZ ’s. We can construct such a matrix if the following system
of inequalities has a solution:



∀Z ⊆ I : 0 ≤ βZ ≤ 1 (1)∑
Z⊆I βZ = 1 (2)

pK =
∑

Z⊆K βZ (3)
∀L ⊆ Z, L 6= K : pL ≥

∑
Z⊆L βZ (4)

(1) states that all fractions are between zero and one.
(2) states that the sum of all fractions must be one.
(3) states that the rareness of K must exactly be pK .
(4) states that for every other subset of I, the rareness must be below the
rareness value in the system.

We will even prove that there exists a solution to the following system of in-
equalities:



∀a ∈ I : 0 ≤ βa ≤ 1 (1′)
0 ≤ β0 ≤ 1 (2′)
(
∑

a∈I βa) + β0 = 1 (3′)
pK =

∑
a∈K βa (4′)

∀L ⊂ K : pL ≥
∑

a∈L βa (5′)

When this second system has a solution, then also the first system has a solu-
tion. Starting from a solution to the second system, we construct a solution for
the first one:
∀Z ⊆ I : Z 6∈ {{a} | a ∈ I} ∪ {φ} ⇒ βZ = 0
∀a ∈ I : β{a} = βa

βφ = β0

(1),(2), and (3) are trivially fulfilled.

(4) Take L 6= K, then pL ≥(R2) pL∩K ≥
∑

a∈L∩K βa =
∑

Z⊆L βZ

This system, on its turn, has a solution if the following system has a solu-
tion:{

∀L ⊆ K : pK − pL ≤
∑

a∈K βa −
∑

a∈L βa ≤ pK (1′′)

1’ is ok: choose L = K − {a}, then 0 ≤(R2) pK − pK−{a} ≤ βa ≤ pK ≤ 1
2’+3’ are ok: let β0 = 1 −

∑
a∈K βa = 1 − pK

4’ is ok: choose L = φ, pL = 0 (R1), and thus pK ≤
∑

a∈K βK ≤ pK

5’ is ok: pL − pK ≥
∑

a∈L βa −
∑

a∈K βa + 4’.

According to Lemma 2, this third system has a solution iff for all bags M and N

over the subsets of K , such that
⋃

M =
⋃

N,
∑

M∈M pK − pK−M ≤
∑

N∈N pN

holds.
Let L = N

⋃
{{ K − M | M ∈ M }}.

Then, by R3 we have that

∑
L∈L

pL

k
≥ pK , with k = mina∈K#({{ N | a ∈

N ∧ N ∈ N }}
⋃

{{ M | M ∈ M ∧ a 6∈ M }}).
Because #{{ M | M ∈ M ∧ a ∈ M }} = #{{ N | N ∈ N ∧ a ∈ n }}, k = #M.
We have:

∑
L∈L pL ≥ #MpK .
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Since
∑

L∈L pL =
∑

N∈N pN +
∑

M∈M pK−M

and #MpK =
∑

M∈M pK ,∑
M∈M pK − pK−M ≤

∑
N∈N pN holds. /

Example 6 The system {φ : 0.5, A : 0.5, B : 0.25, C : 0.5, AB : 0, AC : 1, BC :
0, ABC : 1} is not complete, since φ : 0.5 violates R1.
The system {φ : 0, A : 0.5, B : 0.25, C : 0.5, AB : 0, AC : 1, BC : 0, ABC : 1} is
not complete, since for example AB : 0 and A : 0.5 together violate R2.
The system {φ : 0, A : 0, B : 0, C : 0, AB : 0, AC : 1, BC : 0, ABC : 1} is not
complete, since A : 0, C : 0, and AC : 1 together violate R3.
The system {φ : 0, A : 0, B : 0, C : 0, AB : 0, AC : 0, BC : 0, ABC : 0}
is complete, since it satisfies R1, R2, and R3. This system is the unique
completion of all systems in this example. /

3.3 Axiomatization of Frequent Sets

From Proposition 2, we can now easily derive the following axiomatization for
frequent sets.

F1 pφ = 1

F2 If K2 ⊆ K1, then pK2
≥ pK1

F3 Let K ⊆ I, M a bag of subsets of K. Then

pK ≥ 1 −
#M −

∑
M∈M pM

k
,

with k = mina∈K(deg(a,M))

Theorem 2 Let S =
{

K⊆I
K :: pK be a system of frequent sets over I. The

following two statements are equivalent:

• S is a complete system.

• S satisfies F1, F2, and F3.

Proof. The Theorem holds since:

• K :: pK is equivalent with K : 1 − pK , and

• R1, R2, and R3 are sound and complete for rare sets.

/
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4 Decidability and Computability

In the rest of the text we continue working with rare sets. The results obtained
for rare sets can, just like the axiomatization, be carried over to frequent sets.

In the previous section we introduced and proved an axiomatization for rare
and frequent sets. There is however still one problem with this axiomatization.
R3 states a property that has to be checked for all bags over the subsets of
K. This number of bags is infinite. So, we cannot conclude that completeness
of a system is decidable. In this section we show that it suffices to check only
a finite number of bags: the minimal multi-covers. We show that the number
of minimal multi-covers over a set is finite, and can be computed. Therefore,
deciding completeness is decidable.

We also look at the following problem: when an incomplete system is given,
can we compute its completion? We show that the completion is indeed com-
putable. We use R1, R2, and R3 as rules to adjust rareness values in the
system; whenever we detect an inconsistency with one of the rules, we improve
the system. When the rules are applied in a systematic way, this method leads
to a complete system within a finite number of steps.

4.1 Minimal Multi-covers

Definition 6

• A k-cover of a set S is a bag K over the subsets of S such that for all
s ∈ S, deg(s,K) = k.

• A bag K over the subsets of a set S is a multi-cover of S if there exists
an integer k such that K is a k-cover of S.

• A k-cover K of S is minimal if it cannot be decomposed as K = K1
⋃

K2,
with K1 and K2 respectively k1- and k2-covers of S, k1 > 0 and k2 > 0.

/

Example 7 Let K = {A, B, C, D}. {{ 1′AB, 1′BC, 1′CD, 1′AD, 1′ABCD }}
is a 3-cover of K. It is not minimal, because it can be decomposed into the
following two minimal multi-covers of K: {{ 1′AB, 1′BC, 1′CD, 1′AD }} and
{{ 1′ABCD }}. /

The new rule that replaces R3 states that it is not necessary to check all
bags; we only need to check the minimal multi-covers. This gives the following
R3’:

R3’ Let K ⊆ I, M a minimal k-cover of K. Then

pK ≤

∑
M∈M pM

k
.

Lemma 3 Let a1, . . . an, b1, . . . , bn be strict positive reals. Then a1+...+an

b1+...+bn
< p

implies that at least for one i, ai

bi
< p holds.
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Proof. We will prove the lemma by induction.

base case n = 2. Suppose a+c
b+d

< p and a
b
≥ p and c

d
≥ p. a, b, c, d and p are

all positive. This yields the following inequalities:{
a
b

> a+c
b+d

c
d

> a+c
b+d

⇒

{
a > ba+c

b+d

c > da+c
b+d

⇒ a + c > (b + d)a+c
b+d

.
This is clearly a contradiction.

general case a1+...+an

b1+...+bn
< p, therefore either a1

b1
< p, in which case the lemma

is proven, or a2+...+an

b2+...+bn
< p, in which case we can apply the induction

hypothesis.

/

Lemma 4 Every k-cover M can be decomposed into a number of minimal
multi-covers M1, . . . ,Mn, such that

⋃
i=1...n Mi = M.

Theorem 3 Let S be a system of rare sets over I. The following statements
are equivalent:

1. S is a complete system.

2. S satisfies R1,R2, and R3.

3. S satisfies R1,R2, and R3′.

Proof. 1 ⇔ 2 is already established in the previous section. 2 ⇒ 3 is trivial,

since R3’ is more specific than R3. Suppose that the system S =
{

K⊆I
K : pK

satisfies R1 and R2, but does not satisfy R3. We will show that it is impossible
that it satisfies R3’.

There must be a set K ⊆ I, and a bag M over the subsets of K, such

that pK <

∑
m∈M

pM

k
with k = mina∈K(deg(a,M)). For each a ∈ K such that

deg(a,M) > k, we replace deg(a,M) − k of the sets A ∈ M that contain a by
A − {a}. In this way, we construct a k-cover M′ of K.
Because S satisfies R2,

∑
M∈M pM ≤

∑
M∈M′ pM . The k-cover M′ can be

decomposed into different minimal multi-covers M1, . . . ,Mn of K (Mi is a ki-

cover of K ). Because

∑
m∈M′ pM

k
=

∑
M∈M1

pM+...+
∑

M∈Mn
pM

k1+...+kn
, for at least one

i,

∑
M∈Mi

ki
> pK must hold.

Therefore, R3′ is violated. /

Definition 7 A predicate C on IN n, is a concave predicate iff for every a1 ≤
a′1, . . . , an ≤ a′n the following holds: C(a1, . . . , an) and C(a′1, . . . , a

′
n) implies

that (a1, . . . , an) = (a′1, . . . , a
′
n). /
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Figure 3: A concave predicate C, together with rectangles, indicating zones
that cannot contain points that satisfy C.

In IN 2 this definition can be visualized as follows: a predicate is concave iff
for every point a such that the predicate on a is valid, there are no other points
that satisfy the predicate in the quadrant above and on the right of a. This is
illustrated in figure 3. The figure shows the points that fulfill a certain concave
predicate C. The grayed area indicates the region that cannot contain points
that fulfill the predicate.

Example 8 The following predicates on IN 2 are concave:

• C(x, y) iff x + y = a, a ∈ IN .

• C(x, y) iff x.y = a, a ∈ IN .

The following predicate on IN 7 is concave:

• C(x1, x2, x3, x4, x5, x6, x7) iff x1.{a, c}
⋃

x2.{b, c}
⋃

x3.{a, b}
⋃

x4.{a}⋃
x5.{b}

⋃
x6.{a, b}

⋃
x7{a, b, c} is a minimal 3-cover of {a, b, c}.

/

Proposition 5 If C is a concave predicate over IN n, then the number of points
in IN n that satisfy C is finite.

Proof. We will proof the proposition by induction on the number of dimen-
sions n:

base case The base case n = 1 is trivial.

general case We assume that the proposition is valid if the number of dimen-
sions is strictly less than n. When there is no point satisfying C, the
proposition is true. In the other case, we can choose a point p that sat-
isfies C. Starting from this point, we divide IN n into a finite number of
(overlapping) sets:

• P = {q ∈ IN n | ∀i : qi ≥ pi}

• Pi=j = {q ∈ IN n | qi = j}, ∀ 1 ≤ i ≤ n ∀ 0 ≤ j < pi

16



The number of sets is clearly finite (there are
∑

i=1...n pi + 1 sets). Since
C is a concave predicate, P contains only one point that satisfies C (the
point p). Pi=j contains only a finite number of elements that satisfies
C by induction. Indeed, we can identify Pi=j with IN n−1 through the
1-1 function fij : Pi=j → IN n−1 that is defined as follows: fij(a) =
(a1, . . . , ai−1, ai+1, . . . , an). Now we define C ′ on IN n−1: C ′(b) iff C(f−1

ij (b)).

It is an easy verification that C ′ is a concave predicate on IN n−1. By in-
duction, the number of elements in IN n−1 that satisfy C ′ and thus the
number of points in Pi=j that satisfy C is finite.

/

Proposition 6 Let K be a finite set. The number of minimal multi-covers of
K is finite.

Proof. Let |K| = n. Order the subsets of K; i.e. 2K = {S1, . . . , S2n}. Define
now the following predicate C on IN (2n): C(c1, . . . , c2n) iff

⋃
i=1...2n ci.Si is a

minimal multi-cover for K. The predicate C is clearly concave, and is as such
finite. Therefore, the number of minimal multi-covers is finite. /

Proposition 7 Let K be a finite set. The minimal multi-covers of K are
computable.

Proof. Let f : 2K → {c1, . . . , c|2K |} be an isomorphism between the subsets
of K and the set of variables {c1, . . . , c|2K |}; i.e. to each subset of K, a distinct

variable f(K) is assigned. Every |2K |-tuple (c1, . . . , c|2K |) represents a bag over
the subsets of S, namely

⋃
S⊆K cS .S.

This bag is a k-cover of K iff
∀a ∈ K :

∑
S⊆K,a∈S cS = k, (a appears exactly k times in the bag.)

and all cS ’s are positive integers.

Together with the requirements k > 0 and ∀S : cS ≥ 0, we can find at least
one solution (s1, . . . , s|2K |), using integer programming. We can easily check
whether this solution is a minimal multi-cover. Since we are only interested
in minimal multi-covers, all other solutions of interest to us have c1 < s1, or
c2 < s2, ..., or c|2K | < s|2K |. Therefore, all minimal covers in this case have
c1 = 0 or c1 = 1 or . . . or c1 = s1 − 1 or c2 = 0 or c2 = 1 or . . . or c2 = s2 − 1 or
. . . or c|2K | = s|2K | − 1. For each of these cases we recursively solve the original
system, where in the case of cj = l, all cj ’s are replaced by l. These systems
have one variable less than the original system. We can proof by induction on
the number of variables in the system, that we can find the minimal solutions.
/

4.2 Computing the Completion of a System

We prove that by applying R1, R2, and R3 as rules, we can compute the
completion of any given system.
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Applying for example rule R2 means that whenever we see a situation
K1 ⊆ K2, and the system states K1 : pK1

and K2 : pK2
, and pK2

< pK1
, we

improve the system by replacing K1 : pK1
by K1 : pK2

. It is clear that R1 can
only be applied once; R2 and R3 never create situations in which R1 can be
applied again.

R2 is a top-down operation, in the sense that the rareness values of smaller
sets is adjusted using values of bigger sets. So, for a given system S we can
easily reach a fixpoint for rule R2, by going top-down; we first try to improve
the frequencies of the biggest itemsets, before continuing with the smaller ones.

R3 is a bottom-up operation; values of smaller sets are used to adjust the
values of bigger sets. So, again, for a given system S, we can reach a fixpoint
for rule R3, by applying the rule bottom-up.

A trivial algorithm to compute the completion of a system is the following:
apply R1, and then keep applying R2 and R3 until a fixpoint is reached.
Clearly, the limit of this approach yields a complete system, but it is not clear
that a fixpoint will be reached within a finite number of steps. Moreover, there
are examples of situations in which infinite loops are possible. In Fig. 4, such
an example is given. The completion of the first system, is clearly all rareness
values equal to zero, because for every matrix satisfying the system, none of the
rows have a zero in AB, and none have a zero in BC, so there are no zeros at
all in the matrix. When we keep applying the rules as in Fig. 4, we never reach

this fixpoint, since in step 2n, the value for ABC is
(

1
2

)n
. This is however no

disaster; we show that when we apply the rules R2 and R3 in a systematic
way, we always reach a fixpoint within a finite number of steps. This systematic
approach is illustrated in Fig. 5. We first apply R2 top-down until we reach
a fixpoint for R2, and then we apply R3 bottom-up until we reach a fixpoint
for R3. The general systematic approach is written down in Fig. 6. We prove
that for every system these two meta-steps are all there is needed to reach the
completion.

Definition 8 Let I be a set of items, J ⊆ I, and S =
{

K⊆I
K : pK a system

of rare sets over I. The projection of S on J , denoted proj(S, J), is the system

S′ =
{

K⊆J
K : pK . /

Lemma 5 Let I be a set of items, J ⊆ I, and S =
{

K⊆I
K : pK a system of

rare sets over I.

• If S is complete, then also proj(S, J) is complete.

• if S satisfies R2, then proj(C(S), J) = C(proj(S, J)) .

Proof. The first statement is trivial.
2) Let C(proj(S, J)) =

{
K⊆J

K : pK . Then, for every K ⊆ J , we can construct

a matrix RK , such that rare(K, RK) = pK , and for all L ⊆ J , rare(L, RK) ≤
pL

3. We will now extend this matrix RK over J to the matrix R̂K over I.

3This fact can easily be derived from the proof of the completeness of R1, R2 and R3.
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Figure 4: “Random” application of the rules can lead to infinite loops
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Figure 5: Systematic application of the rules avoids infinite computations

19



Input: System of rare sets S =
{

K⊆I
K : pK over I = {I1, . . . , In}.

Output: Completion of S.

Close(S)
pφ = 0
TopDown(S)
BottomUp(S)

TopDown(S)
i = n

while(i > 0)
for all itemsets K of cardinality i do

make pK = minK⊆L(pL)
end for

i = i − 1
end while

BottomUp(S)
i = 1
while(i ≤ n)

for all itemsets K of cardinality i do

make pK = min
K, minimal k-cover of K

(∑
K′∈K

pK′

k

)

end for

i = i + 1
end while

Figure 6: Algorithm for finding the completion of a system

R̂K contains the same number of rows as RK , and for each row r ∈ RK , there
is a row r′ in R̂K , such that r′(i) = r(i) for all i ∈ I, and r′(i) = 1 else.
R̂K satisfies S, since it is constructed in such a way that for all L ⊆ I holds

that rare(L, R̂K) = rare(L ∩ K, RK) ≤ pL∩K ≤(R2) pL. Since R̂K satisfies S,
and rare(K, R̂K) = pK , C(S) must contain K : pK ; R̂K is a proof-matrix for
K : pK . Because K was an arbitrary subset of J , the lemma holds. /

Theorem 4 The algorithm in Fig. 6 computes the closure of the system of
rare sets S.

Proof.

It is easy to see that after the top-down step the system satisfies R1 and R2.
Now we will proof by induction, that after the i-th iteration in the bottom-up
loop, all itemsets with at most i items will satisfy R1, R2, and R3; i.e. we
cannot apply any of these rules to change the rareness of an itemset with less
than i items. For the base case i = 0 this is trivially true. Suppose the induction
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hypothesis holds for 1, . . . , i − 1. Then, when we start the i-th iteration, all
itemsets of cardinality less than i will have their final values. Applying the
for-loop for itemset K, with |K| = i, will then yield the closure of proj(S, K),
because after this loop, proj(S, K) will be closed for R3, and R2 cannot be
applied, because otherwise the value of at least one subset of K will be changed.
Because S satisfies R2, K will also have reached its final value (Proposition 5).
Therefore after the i-th iteration all itemsets of cardinality up to i will be final.
/
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5 Complexity

In this section we give some limited results on the complexity of deciding com-
pleteness. Because we only know that the number of minimal multi-covers is
finite, and we only have a very naive algorithm to compute them, we have no
real idea about the complexity of the proposed algorithm.

We cannot state strong results concerning the complexity of deciding com-
pleteness of a system, but the complexity of deciding whether is system is
incomplete, is easy to establish:

Proposition 8 Deciding completeness of a system of rare sets is in coNP.

Proof. Consider the proof of Theorem 1. We can derive from this proof that
if a system is complete, then for every K there must exist a solution to the
following system:



∀Z ⊆ I : 0 ≤ βZ ≤ 1∑
Z⊆I βZ = 1

pK =
∑

Z⊆K βZ

∀L ⊆ Z, L 6= K : pL ≥
∑

Z⊆L βZ

When all these systems of inequalities can be satisfied for all itemsets K, the
system must be complete. When there is one K such that the system of in-
equalities has no solution, the system of rare sets is incomplete. Thus, we guess
an itemset K, and we can check in polynomial time if the corresponding system
has a solution, because it is an instance of linear programming. When this
system has no solution, the system of rare sets is not complete. /
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6 Sparse Systems

Definition 9 Let I be a set of items.

• A sparse system of rare sets is a collection

{
K∈P

K : pK

of rare set expressions, with P ⊆ 2I . Hence, not every subset of I has to
be present in the system.

• A matrix R over I satisfies a sparse system S if it satisfies every rare set
expression in the system.

• A sparse system logically implies a rare set expression, if every matrix
that satisfies the system, also satisfies the rare set expression.

• A sparse system
{

K∈P
K : pK is complete if for all K : p with K ∈ P ,

that are logically implied by the system, pK ≤ p holds.

/

The following proposition says that ever complete sparse system can be
extended to a full system.

Proposition 9 Let I be a set of items, and S =
{

K∈P
K : pK be a sparse

system. The following two statements are equivalent:

• S is complete

• there exists a complete full system S =
{

K⊆I
K : p̂K , such that for all

K ∈ P , pK = p̂K holds.

Proof. (⇒) Let R be an arbitrary system satisfying S. Then R satisfies the

system Ŝ =
{

K⊆I
p : qK , with qK = pK if K ∈ P , and qK = 1 else. Hence, R

satisfies the complete system S = C(Ŝ) =
{

K⊆I
K : cK . Therefore, R satisfies

the sparse system
{

K∈P
K : cK . This system has to be equal to S, because S

is complete, and all cK ≤ pK .
(⇐) S is complete. Therefore, for every K ∈ P , there exists a proof-relation
RK such that RK satisfies S, and rare(K, RK) = p̂K . Since RK also satisfies
S, S must be complete. /

Corollary 1 Completeness for sparse systems is decidable, and the completion
of a sparse system is computable.

The proposition and the corollary give the following algorithm for computing
the completion of a sparse system: make the system full by adding K : 1 for all
itemsets K 6∈ P and compute the closure of this full system with the methods
in Section 4. Then adjust the values of the sparse system to the values in the
full system. If there are no values that can be adjusted in the sparse system,
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the sparse system was complete. Otherwise, we computed the completion of
the sparse system.

It is however clear, that this approach is not very efficient. Suppose that we
are given a sparse system with n rare set expressions and over a set with m items.
To compute the completion, we calculate the completion of a system with 2m

expressions, where the input only has n expressions. The following proposition
shows that there are more efficient ways to calculate the completion of a sparse
system.

Proposition 10 The following rules form an axiomatization for the complete-
ness of the sparse system {K1 : p1, . . . , Kn : pn}

S1 pφ = 0

S2 If K2 ⊆ K1, then pK2
≤ pK1

S3 Let M be a minimal k-cover of Ki. Then

pKi
≤

∑
M∈M minM⊆Kj

(pKj
)

k
.

Proof.

Soundness of the three rules is trivial.

Completeness. Suppose S satisfies S1, S2, and S3. We proof that there
exists a complete full super-system of S. We construct this system as follows:
for all itemsets K 6∈ P , add K : 1 to the system, and calculate the completion

of this system. The resulting system is full and complete. Let S =
{

K⊆I
K : qK

be this system. We will show by contradiction that for all K ∈ P , pK = qK

holds.
So, suppose there is a K ∈ P such that pK 6= qK . S is computed by first going
top-down, and then bottom-up. Since S satisfies S1 and S2, the rareness of K

in S comes from the bottom-up step, and thus there exists a minimal k-cover

K over the subsets of K, such that

∑
L∈K

qL

k
< pK . The qL’s in this step can on

their turn be obtained in the top-down step, or in the bottom-up step. If qL was
obtained in the top-down step, then it is easy to see that qL = minL⊆Ki

pKi
; i.e.

the minimum rareness of all supersets of L that were given as input. In the other
case, qL was obtained by a bottom-up step. In that case, there exists a minimal
l-cover L over the subsets of L, such that qL =

∑
L′∈L qL′ . We now construct a

kl-cover K′ of K as follows: K′ = (K−L)
⋃

L. K′ is clearly a kl-cover. This way
we can get rid of all qL’s that were obtained by application of a bottom-up step,
because we can iteratively replace each qL that was obtained by application of
R3, by a sum of qL′ ’s, were all L′ ⊂ L. When these L′ are obtained by R3, we
can replace them by qL′′ of even smaller sets L′′. Since the singleton sets can
only be obtained by R2, this recursion must stop, and thus there exists a m-

cover M such that

∑
M∈M

qM

m
< pK , and all qM ’s are obtained by R2. As such,
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for all M , qM = minM⊆Ki
pKi

, and thus

∑
M∈M

minM⊆Ki
pKi

m
< pK . There is still

one problem: M is not necessarily minimal. We can cope with this problem in
exactly the same way as at the end of the proof of Proposition 3. /

The proposition learns us that we don’t need to compute the completion of
a full system in order to see whether a sparse system is complete. This saves
us already a considerable amount of work. We would however like to improve
this result; the fact that M is an arbitrary minimal k-cover of Ki still bothers
us.
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7 Summary

We presented an axiomatization for complete systems of frequent sets. As an
intermediate stage in the proofs, we introduced the notion of a system of rare
sets. The axiomatization for rare sets contained three rules R1, R2, and R3.
From these rules we could easily derive the axiomatization, F1, F2, and F3 for
frequent sets. By replacing R3 with R3’, we showed that completeness is
decidable. We also showed that the completion can be computed, by applying
R1, R2, and R3 as rules. If these rules are applied first top-down, and then
bottom-up, the completion is reached within a finite number of steps. We
showed that deciding completeness is in coNP.

We also studied sparse systems. In these systems, not for every itemset a
rareness value is given. We proved that also for these sparse systems, completion
is decidable and computable. The most obvious way to do this, is to make the
sparse system into a full one and then compute the completion. This is however
computationally very costly. We showed though, that more efficient algorithms
are possible. We gave an axiomatization consisting of three rules S1, S2, and
S3 for sparse systems.

This paper is to our knowledge the first paper that discussed an axiomati-
zation for frequent itemsets.

References

[1] R. Agrawal, T. Imilienski, and A. Swami. Mining association rules between
sets of items in large databases. In Proc. ACM SIGMOD, 1993

[2] R. Agrawal, R. Srikant. Fast Algorithms for Mining Association Rules. In
Proc. VLDB, 1994

[3] D. S. Associates. The new direct marketing. Business One Irwin, 1990

[4] R. Fagin, M. Y. Vardi. Armstrong Databases for Functional and Inclusion
Dependencies. In IPL 16(1): 13-19 , 1983.

[5] J. Han, J.Pei, and Y. Yin. Mining frequent patterns without candidate
generation. In Proc. ACM SIGMOD, 2000

[6] H. Mannila and H. Toivonen. Levelwise search and borders of theories in
knowledge discovery. In Data Mining and Knowledge Discovery 1(3), 1997.

[7] J. Paredaens. Axiomatization of Frequent Sets. Technical Report TR9911,
University of Antwerp, Belgium, Oktober 1999

26



A Proof of Lemma 2

Proof. (⇒) Let (x1, . . . , x#I) be a solution.∑
K∈K aK ≤

∑
K∈K

∑
i∈K xi =

∑
L∈L

∑
j∈L xj ≤

∑
L∈L bL

(⇐) We proof by induction that there exist c1, . . . , c#I , such that for all positive
integers αi, βi holds that

⋃

K∈K

K ∪
⋃

1≤i≤#I

αi{i} =
⋃

L∈L

L ∪
⋃

1≤i≤#I

βi{i}

implies ∑

K∈K

aK +
∑

1≤i≤#I

αici ≤
∑

L∈L

bL +
∑

1≤i≤#I

βici .

Base case: We remark that
⋃

K∈K

K =
⋃

L∈L

L

implies ∑

K∈K

aK ≤
∑

L∈L

bL .

General case: Suppose that we already chose c1, . . . , cj such that

⋃

K∈K

K ∪
⋃

1≤i≤j

αi{i} =
⋃

L∈L

L ∪
⋃

1≤i≤j

βi{i}

implies ∑

K∈K

aK +
∑

1≤i≤j

αici ≤
∑

L∈L

bL +
∑

1≤i≤j

βici .

We will chose cj+1 such that

⋃

K∈K

K ∪
⋃

1≤i≤j

αi{i} ∪ αi{j + 1} =
⋃

L∈L

L ∪
⋃

1≤i≤j

βi{i} ∪ βi{j + 1}

implies
∑

K∈K

aK +
∑

1≤i≤j

αici + αj+1cj+1 ≤
∑

L∈L

bL +
∑

1≤i≤j

βici + βj+1cj+1 (∗)

Consider M, γi, N, δi, M′, γ′
i, N′, δ′i arbitrary such that

⋃

M∈M

M ∪
⋃

1≤i≤j

γi{i} =
⋃

N∈N

N ∪
⋃

1≤i≤j

δi{i} ∪ δj+1{j + 1}

⋃

M ′∈M′

M ′ ∪
⋃

1≤i≤j

γ′
i{i} =

⋃

N ′∈N′

N ′ ∪
⋃

1≤i≤j

δ′i{i} ∪ (δj+1
′){j + 1}

Then
⋃

M∈M

δ′j+1M∪
⋃

1≤i≤j

δ′j+1γi{i} =
⋃

N∈N

δ′j+1N∪
⋃

1≤i≤j

δ′j+1δi{i}∪(δ′j+1δj+1){j + 1}
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and

⋃

M ′∈M′

δj+1M
′∪

⋃

1≤i≤j

δj+1γ
′
i{i} =

⋃

N ′∈N′

δj+1N
′∪

⋃

1≤i≤j

δj+1δ
′
i{i}∪(δj+1δ

′
j+1){j + 1}

Hence,

⋃

M∈M

δ′j+1M ∪
⋃

1≤i≤j

δ′j+1γi{i} ∪
⋃

N ′∈N′

δj+1N
′ ∪

⋃

1≤i≤j

δj+1δ
′
i{i}

=
⋃

M ′∈M′

δj+1M
′ ∪

⋃

1≤i≤j

δj+1γ
′
i{i} ∪

⋃

N∈N

δ′j+1N ∪
⋃

1≤i≤j

δ′j+1δi{i}

and thus, by induction hypothesis we see that:

∑

M∈M

δ′j+1aM +
∑

N ′∈N′

δj+1aN ′ +
∑

1≤i≤j

(δ′j+1γi + δj+1δ
′
i)ci ≤

∑

M ′∈M′

δj+1bM ′ +
∑

N∈N

δ′j+1bN +
∑

1≤i≤j

(δj+1γ
′
i + δ′j+1δi)ci

and thus

δ′j+1(
∑

M∈M

aM−
∑

N∈N

bN+
∑

1≤i≤j

(γi−δi)ci) ≤ δj+1(
∑

M ′∈M′

bM ′−
∑

N ′∈N′

aN ′+
∑

1≤i≤j

(γ′
i−δ′i)ci)

Since M, γi, N, δi, M′, γ′
i, N′, and δ′i are arbitrary chosen, we can conclude

that for every M, γi, N, δi with

⋃

M∈M

M ∪
⋃

1≤i≤j

γi{i} =
⋃

N∈N

N ∪
⋃

1≤i≤j

δi{i} ∪ δj+1{j + 1}

there is a cj+1 such that

∑

M∈M

aM +
∑

1≤i≤j

γici −
∑

N∈N

bN −
∑

1≤i≤j

δici ≤ δj+1cj+1

and
δj+1cj+1 ≤

∑

M∈M

bM +
∑

1≤i≤j

γici −
∑

N∈N

aN −
∑

1≤i≤j

δici

Now that we have chosen cj+1 we will proof (*).
Let

⋃

K∈K

K ∪
⋃

1≤i≤j

αi{i} ∪ αj+1{j + 1} =
⋃

L∈L

L ∪
⋃

1≤i≤j

βi{i} ∪ βj+1{j + 1}

There are three cases:

1. αj+1 = βj+1

Then ⋃

K∈K

K ∪
⋃

1≤i≤j

αi{i} =
⋃

L∈L

L ∪
⋃

1≤i≤j

βi{i},
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hence by induction:
∑

K∈K

aK +
∑

1≤i≤j

αici ≤
∑

L∈L

bL +
∑

1≤i≤j

βici,

and thus
∑

K∈K

aK +
∑

1≤i≤j

αici + αj+1cj+1 ≤
∑

L∈L

bL +
∑

1≤i≤j

βici + βj+1cj+1 .

2. αj+1 < βj+1

Then
⋃

K∈K

K ∪
⋃

1≤i≤j

αi{i} =
⋃

L∈L

L ∪
⋃

1≤i≤j

βi{i} ∪ (βj+1 − αj+1){j + 1},

hence:
∑

K∈K

aK +
∑

1≤i≤j

αici −
∑

L∈L

bL −
∑

1≤i≤j

βici ≤ (βj+1 − αj+1)cj+1

so
∑

K∈K

aK +
∑

1≤i≤j

αici + αj+1cj+1 ≤
∑

L∈L

bL +
∑

1≤i≤j

βici + βj+1cj+1

3. αj+1 > βj+1

Then
⋃

K∈K

K ∪
⋃

1≤i≤j

αi{i} ∪ (αj+1 − βj+1){j + 1} =
⋃

L∈L

L ∪
⋃

1≤i≤j

βi{i},

hence:

(αj+1 − βj+1)cj+1 ≤
∑

L∈L

bL +
∑

1≤i≤j

βici −
∑

K∈K

bK −
∑

1≤i≤j

αici

so
∑

K∈K

aK +
∑

1≤i≤j

αici + αj+1cj+1 ≤
∑

L∈L

bL +
∑

1≤i≤j

βici + βj+1cj+1

Finally we take #I for j and hence
⋃

K∈K

K ∪
⋃

1≤i≤#I

αi{i} =
⋃

L∈L

L ∪
⋃

1≤i≤#I

βi{i}

implies ∑

K∈K

aK +
∑

1≤i≤#I

αici ≤
∑

L∈L

bL +
∑

1≤i≤#I

βici .

c1, . . . , c#I is a solution. Indeed:
Let K = {{ K }},L = φ, αi = 0, βi = 0 ⇔ i 6∈ K, βi = 1 ⇔ i ∈ K

then
aK ≤

∑
i∈K ci

Let K = φ,L = {{ K }}, αi = 0, βi = 0 ⇔ i 6∈ K, αi = 1 ⇔ i ∈ K

then∑
i∈K ci ≤ bK

This concludes the proof. /
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