
Expressive Power of an Algebra For Data Mining

TOON CALDERS

University of Antwerp, Belgium

and

LAKS V.S. LAKSHMANAN and RAYMOND T. NG

University of British Columbia, Canada

and

JAN PAREDAENS

University of Antwerp, Belgium

The relational data model has simple and clear foundations on which significant theoretical and

systems research has flourished. By contrast, most research on data mining has focused on al-

gorithmic issues. A major open question is “what’s an appropriate foundation for data mining,

which can accommodate disparate mining tasks.” We address this problem by presenting a data-

base model and an algebra for data mining. The database model is based on the 3W-model

introduced by Johnson et al. [2000]. This model relied on black box mining operators. A main

contribution of this paper is to open up these black boxes, by using generic operators in a data
mining algebra. Two key operators in this algebra are regionize, which creates regions (or models)

from data tuples, and a restricted form of looping called mining loop. Then, the resulting data
mining algebra MA is studied and properties concerning expressive power and complexity are
established. We present results in three directions: (1) expressiveness of the mining algebra; (2)
relations with alternative frameworks, and (3) interactions between regionize and mining loop.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complex-

ity]: Nonnumerical Algorithms and Problems; H.2.4 [Database Management]: Systems; I.2.6
[Artificial Intelligence]: Learning-Knowledge Acquisition

General Terms: Languages, Theory

Additional Key Words and Phrases: Algebra, Expressive power, Data Mining

1. INTRODUCTION

The mainstay of data mining research has largely concerned itself with algorithmic
issues. The initial series of papers focused on efficient algorithms for individual

This is a preliminary release of an article accepted by ACM Transactions on Database Systems.

The definitive version is currently in production at ACM and, when released, will supersede this

version.
Contact author: Toon Calders. Address: Middelheimlaan 1, 2020 Antwerpen, Belgium. Tel.:

(+32)32653264. Fax: (+32)32653777.
e-mail addresses: {toon.calders,jan.paredaens}@ua.ac.be, {rng,laks}@cs.ubc.edu

Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and

notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2006 ACM 0362-5915/2006/0300-0001 $5.00

ACM Transactions on Database Systems, Vol. V, No. N, July 2006, Pages 1–44.

2 · Toon Calders et al.

mining tasks such as mining frequent itemsets, correlations, decision trees, and
clusterings [Hand et al. 2001]. Subsequently, researchers realized the importance of
setting mining in the larger context of knowledge discovery from databases (KDD)
involving other components. One key component is how to integrate mining with
the underlying database systems [Sarawagi et al. 1998; Netz et al. 2001; Chaudhuri
et al. 2002]. As a further step, a few data mining “query languages” have been
proposed [Han et al. 1996; Meo et al. 1996; Imielinski and Virmani 1999], based on
ad hoc extensions to SQL. However, conspicuously absent from the above picture
is a uniform model and algebraic framework for supporting data mining. By con-
trast, the relational model started with clean foundations and algebraic and logical
frameworks. Substantial research then followed on both theoretical and systems
fronts, leading to an extremely successful technology and science.

So how could an algebraic framework impact and further the field of data mining
today? Firstly, it is widely agreed (e.g., see [Imielinski and Mannila 1996; Boulicaut
et al. 1999]) that it is important to treat results of mining on a par with data ob-
jects and manipulate them further. Secondly, there are natural and useful mining
computations which can only be expressed as combinations and compositions of
known mining tasks. For example, an analyst might find a collection of frequent
itemsets bought. He may further analyze these sets using a decision tree to de-
termine under what situations such frequent co-purchases are made. See Section
2 for more detailed examples. However, in the current state of affairs where each
mining task is identified with specific algorithms, such “compositions” are not easy.
Besides, since each mining task is treated as a “black box”, there is little scope for
optimization. Thirdly, while a wealth of knowledge is available about the expressive
power of database query languages, the field of data mining is in its infancy as far
as such foundational pursuits are concerned, where we can ask questions like “what
is (or is not) data mining?” and hope to answer them.

In this paper, we present a database model and an algebraic framework for data
mining. The framework allows both data and the results of mining to be manip-
ulated as first class citizens. The framework presented here is based on the 3W
model [Johnson et al. 2000]. While an overview of the extended 3W model will be
presented in the next section, it suffices to say that the 3W model from Johnson
et al. [2000] relied on black box mining operators. A first contribution of this paper
is to extend the 3W model by “opening up” these black boxes, by using generic
operators in a data mining algebra.

Then, the resulting data mining algebra MA is studied and properties concerning
the expressive power and complexity are established. We present results in three
directions: (1) expressiveness of the mining algebra; (2) relations with alternative
frameworks, and (3) interactions between the new generic operators.

As a preview, our contributions are as follows:

(1) The 3W-model proposed by Johnson et al. [2000] is extended and further re-
fined.

(2) Examples, such as frequent itemset mining and decision trees show the useful-
ness and expressiveness of the model. In particular, the framework allows to
treat the results of data mining (i.e., regions or patterns) on a par with data
objects and allows them to be manipulated further via algebraic operations.

ACM Transactions on Database Systems, Vol. V, No. N, July 2006.

Expressive Power of an Algebra For Data Mining · 3

(3) Theoretical results about properties of the algebra are given. This study shows
that our model allows to reason about integration and combination of different
data mining problems at a formal level.

The organization of the paper is as follows. In Section 2, we give several moti-
vating examples of the significance of an algebraic framework for data mining. In
section 3, we introduce the three worlds of the 3W-model. Each of the three worlds
and its function is discussed in detail. In Section 4, the algebra operations that
form the bridges between the three worlds are introduced. In Section 5, the data
mining algebra is formally studied. Section 6 discusses related work. In Section 7,
we discuss the advantages and the limitations of the algebra, as well as optimization
opportunities. Section 8 concludes the paper.

2. MOTIVATING EXAMPLES

All previous studies are almost always geared toward one mining task at a time.
In real data mining applications, KDD is rarely a one-shot activity. Rather, it is a
multi-step process involving different mining operations, data partitioning, aggre-
gation, and data transformations. Thus, previous work fails to address the funda-
mental need of supporting KDD as a multi-step process. In the following examples,
we illustrate several multi-step scenarios, extracted from real mining applications,
which call for the ability to manipulate (e.g., analyze, query, transform) the results
of mining tasks, making the output of one mining operation the input to another.

Example 1. Associations and Decision Trees Suppose an analyst analyzes
the sales data of a chain store to determine which items were co-purchased with a
certain promotional item p, generating a collection of frequent sets. As part of his
exploration, he decides to roll up this collection of frequent sets from specific items
(e.g., specific brands of meat products) to kinds of items (e.g., the general class
of meat). He then wishes to determine the “circumstances” (e.g., location, time,
etc.) under which the frequent co-purchases were made. He does so by constructing
a decision tree. The decision tree, when combined with frequent sets, might reveal
interesting patterns such as “in northern New Jersey, meat products (not dairy
products) are often bought together with p, whereas in southern New Jersey, dairy
products (not meat products) are often bought together with p.” This example
illustrates interesting observations/patterns that can only be discovered by freely
combining the outcomes of different mining tasks.

Example 2. Stacking Decision Trees Suppose T1 is a decision tree that clas-
sifies customers in New Jersey into the categories of highRisk and lowRisk for
credit rating. Let T2 be a decision tree that predicts under what conditions people
in New Jersey live in cities vs. the countryside. The analyst may want to combine
the two decision trees so as to be able to predict under what conditions people have
a certain credit rating and tend to live in a certain neighborhood.1 One option is
to take a cross product between T1 and T2. An alternative is to “stack” T2 below
T1, i.e. each leaf of T1 is further classified on the basis of T2 (see Figure 1). Such a
classification may be further analyzed, e.g., used as a basis of a group-by.

1The training data that led to the two trees may be presently unavailable to the analyst, or doing

the combined classification from scratch may take too long for his purpose.

ACM Transactions on Database Systems, Vol. V, No. N, July 2006.

4 · Toon Calders et al.

Risk
high

low
Risk Risk

high low
Risk Risk

high

degree
yes no

city age

city country

age

age
<25 >50in

[25,45]
income income

high low high low

(a) (b)

<30 >=30

<25 >50in
[25,45]
income income

high low high low
deg.

deg. deg.deg. deg.

Risk
high

&
city

yes no

age

<30 >=30

Risk
high

Risk
high

& &
city country

yes no

Risk
high

&
city

(c)
Fig. 1. Stacking Decision Trees

Example 3. Computing Special Regions Consider a sales data warehouse
with measures like revenue, profit, and dimensions such as part, time, location.
The dimensions may have associated hierarchies. For example, a “region” such as
location = ‘quebec/montreal’ may be a child of the region location = ‘quebec’.
Suppose the analyst wants to find the minimal regions which satisfy some aggregate
property P, e.g., P ≡ “the total sales exceeds $100,000”, where minimality means
children of the region do not satisfy P. The analyst might similarly want to find
regions whose sales are significantly different from their siblings.

A key aspect exhibited by the above examples is that the data set/space is split
by data mining/analysis operations into (possibly overlapping) subsets or “regions”.
This observation naturally leads to the development of the 3W model.

3. THE 3W MODEL

“3W” stands for the “Three Worlds” for data mining: the D(ata)-world, the
I(ntensional)-world, and the E(xtensional)-world. Ordinary data are manipulated
in the D-world, regions representing results of mining manipulated in the I-world,
and extensional representations of regions manipulated in the E-world. Below we
give an overview of these three worlds. See [Johnson et al. 2000] for more details
on the original proposal.

Before we start the description of the 3W-model as used in this paper, to avoid
confusion for those familiar with the original 3W-proposal [Johnson et al. 2000],
we would like to remark that the 3W-model proposed here has some subtle, yet
important differences with the model proposed by Johnson et al. [2000]. First of all,
the algebraic framework we propose here will contain very important new operators
to manipulate regions: the mining loop, the grouping and the ungrouping operators.
These new operators enable us to open up the black box mining operators proposed
by Johnson et al. [2000]. Secondly, for the sake of theoretical evaluation, the model
has been simplified as much as possible, without losing the essence. For example,
in [Johnson et al. 2000], there was a large emphasis on the attribute domains being
hierarchically organized. In practical systems, such an ordering of the domains will
be a key feature that cannot be neglected. For the theory developed here, however,
such an hierarchical ordering of the domains is immaterial, as it can be simulated
easily by adding relations that express the hierarchy. E.g., the hierarchical ordering
of cities into states can easily be simulated with an explicit relation City State.
Another difference is that in [Johnson et al. 2000], so-called region identifiers were
used to refer to regions. Here, however, we have opted not to explicitly model

ACM Transactions on Database Systems, Vol. V, No. N, July 2006.

Expressive Power of an Algebra For Data Mining · 5

region identifiers, but to consider them merely as implementation details.
To illustrate the 3W-model, we will consider the following use case as a running

example throughout this and the next section.

Example 4. Let two relations are given: Training(shp, col, odor, pois), and
Testing(shp, col, odor, pois). Based on the contents of Training, a decision
tree T is constructed that predicts the value of pois based on the values in shp,
col, and odor. Then, the correctness of the tree T is evaluated on the relation
Testing. The tuples that are misclassified in Testing are selected and stored in
Misses(shp, col, odor, pois). In this example, the relations Testing, Training,
and Misses live in the D-world. The tree is constructed in the I-world. For the
evaluation of the tree on the relation Testing and the subsequent construction of the
relation Misses, the tree T and the relation Training are combined in the E-world.

3.1 The D-World

In the D-world, data are represented as nested relations. We assume standard
notions of the relational database model here. In particular, we assume an infinite
set of attribute names A, and two basic attribute types – categorical with domain
U , for some countable set U , and rational with domain Q. Every attribute A ∈ A
has a domain dom(A), which is either U or Q. Composed attributes are recursively
defined as follows: every attribute is a composed attribute, and if B1 . . . , Bk are
composed attributes, then {B1 . . . , Bk} is a composed attribute. A schema in the
D-world is a finite set of composed attributes. Tuples, relations, and domain are
introduced in the usual (recursive) way; that is:

(1) A tuple t over schema {B1, . . . , Bk} is a function from {B1, . . . , Bk} to ∪k
i=1Bi

such that t(Bi) ∈ dom(Bi), i = 1 . . . k.

(2) A relation R over schema {B1, . . . , Bk} is a finite set of tuples over {B1, . . . , Bk}.

(3) The function dom is extended to composed attributes: dom({B1, . . . , Bk}) is
the set of all relations over the schema {B1, . . . , Bk}.

The set consisting of all attributes and composed attributes is denoted A. A D-
world database is a finite set of D-world relations.

For notation convenience, we use the following conventions: D(A1, . . . , An) de-
notes a relation D over the attributes A1, . . . , An. (a1, . . . , an) ∈ D(A1 . . . An) de-
notes the tuple t that maps Ai to ai, i = 1 . . . n. Finally, we will use t[A1, . . . , Ak]
to denote the restriction of a tuple t to the attributes A1 . . . , Ak.

The algebra for the D-world is the nested relational algebra extended with aggre-
gation (with the standard set of aggregate functions SUM, COUNT, AVG, MIN,
MAX) and arithmetic. We have chosen for the nested relational model because nest-
ing makes it easier to express more complex structures without adding too much
expressive power. E.g., Paradaens and Van Gucht [1998] show that any query from
a flat relation to a flat relation expressible in nested relational algebra is also ex-
pressible without nesting. Furthermore, for many data mining problems, the input
or the output are given as a collection of sets. For example, for frequent item-
set mining, the input consists of a database of sets, the result of a clustering is a
partitioning of the tuples into disjoint sets, etc.

The D-world algebra hence consists of the following algebraic operations:

ACM Transactions on Database Systems, Vol. V, No. N, July 2006.

6 · Toon Calders et al.

(1) The traditional relational operators: π〈attributes〉 (projection), σcondition (se-
lection), ∪ (union), \ (set difference), × (Cartesian product), and ρattr→attr

(renaming).

(2) Nest 〈attributes〉 (nesting), and Unnestattribute (unnesting). Let D(A,B) be a
relation. NestB D is the following relation over the schema {A, {B}}:

{(a, [b]) | [b] = {b | (a, b) ∈ D}, [b] 6= {}} .

For unnest, let D′(A, {B}) be a relation over {A, {B}}. Then, UnnestB D′

is the following relation over the schema {A,B}: {(a, b) | ∃s ∈ D′ : s(A) =
a ∧ b ∈ s({B})}.

(3) ΓAggregate as attribute

〈grouping attributes〉 (aggregation): for example, let D(A,B,C) be a relation,

with dom(C) = Q. Γ
SUM(C) as S
〈A,B〉 D is the following relation over {A,B, S}:

{(a, b, s) | ∃v : (a, b, v) ∈ D ∧ s =
∑

{t[C] | t ∈ D, t[A,B] = (a, b)}}. Notice
that the grouping attributes can be the empty list, indicating that only one
tuple (s) is constructed, where s is the sum of all values in C.

(4) Calc expr as attribute (arithmetic): for example, let D be a relation over the
schema {A,B}, then, Calc A+B as S D is the relation over {A,B, S} that consists
of a tuple (a, b, a + b) for every tuple (a, b) of D. Here, expr is any arithmetic
expression over attributes of D.

Example 5. In the D-world we can manipulate our relations Training and
Testing with the nested relational algebra with aggregation and arithmetic. For
example, we can count the number of instances in each class in the training set with

Γ
COUNT(∗) as Nr

〈pois〉 Training, where * denotes all attributes in the schema of Training.

The ratio of correctly classified examples versus the total number of examples can
be calculated as follows:

Calc(t−m)/t as ratio

(

Γ
COUNT(∗) as t

〈〉 Testing× Γ
COUNT(∗) as m

〈〉 Misses
)

3.2 The I-World

shape
=

bell

shape
=

bell

odor
=

none

odor
=

none

color
=

red

color
=

red

poisonous
= true

poisonous
= true

poisonous
= true

poisonous
= true

region class

{shp=‘bell’,odor=‘none’} {pois=‘f’}
{shp=‘bell’,odor6=‘none’} {pois=‘t’}
{shp6=‘bell’,col=‘red’} {pois=‘t’}
{shp6=‘bell’,col6=‘red’} {pois=‘f’}

Fig. 2. Example decision tree

Objects in the I-world correspond to regions, defined by a set of constraints.
A region is defined as a finite set of basic constraints over attributes. A basic
constraint over the set of attributes A is an expression of one of three forms:

(1) α1A1 + . . . + αkAk θ β, with αi’s and β rational numbers, θ is <, ≤, =, or 6=,
and all Ai’s have domain Q; or,

(2) Aθu, with dom(A) = U , u ∈ U , and θ is = or 6=; or,

ACM Transactions on Database Systems, Vol. V, No. N, July 2006.

Expressive Power of an Algebra For Data Mining · 7

(3) {x1, . . . , xk}θ{B}, with dom(B) = dom({A1, . . . , Ak}), and xi is either Ai, or
an element of dom(Ai). θ is either ∈ or 6∈.

The semantics of a region reg = {C1, . . . , Cn} is the set of all data tuples that
satisfy the conjunction

∧

i=1...n Ci.
The set of all regions is denoted REG.
The equality on regions is defined syntactically. That is, two regions {C1, . . . , Cn}

and {C ′
1, . . . , C

′
n′} are considered the same if and only if both sets contain exactly

the same expressions. Hence, even though the regions {A ≥ 5, A ≤ B} and {A ≥
5, A ≤ B,B ≥ 5} have the same semantics (since (A ≥ 5) ∧ (A ≤ B) ∧ (B ≥ 5) is
equivalent to (A ≥ 5) ∧ (A ≤ B)), they are considered to be different. The reason
for defining the equality to be syntactic is twofold; firstly, semantic equivalence will
be expressible with the selection predicate, as substantiated later. Secondly, we will
often consider a region as being defined by a set of constraints, that can be composed
and decomposed. In this perspective, considering two regions to be equivalent if
they are semantically the same, would result in misleading interpretations. This
effect becomes especially important in the E-world, where we combine regions with
data, but at the same time we do not want to allow manipulations of the regions,
as such operations belong to the I-world.

We assume an infinite countable set of region description attributes RDA. The
function dom is extended to RDA as follows: for all R ∈ RDA, dom(R) = REG.
A schema in the I-world is a finite subset RDA. An I-world tuple t over an I-world
schema {R1, . . . , Rm} is a function from {R1, . . . , Rm} to REG, an I-world relation
R over a schema {R1, . . . , Rm} is a finite set of tuples over that schema, and an
I-world database is a finite set of I-world relations.

For manipulating regions, the dimension algebra allows the following operators:

(1) Relational operators: ρ (rename), π (project), × (Cartesian product), \ (mi-
nus), ∪ (union), and σ (select), which have their usual meaning. That is, REG
is treated as an ordinary domain, with equality defined syntactically. Further-
more, on the domain REG, the predicate � is defined as follows: {C1, . . . , Cn} �
{C ′

1, . . . , C
′
n′}, if and only if

∧

i=1...n′ C ′
i is a logical consequence of

∧

i=1...n Ci.
Thus, the set of points described by {C1, . . . , Cn} is included in that described
by {C ′

1, . . . , C
′
n′}. For example, {A ≤ 5, B ≥ 3} � {A ≤ 7, B ≥ 3}. We will use

r1 ≺ r2 to denote r1 � r2 ∧ r1 6= r2.

The relational operators in the I-world allow for comparing regions and forming
complex relations between them. For example, let R(R) be an I-world relation.
The following query constructs a relation over (R1, R2) consisting of tuples
(r1, r2), such that r1 ≺ r2, and for every other region r in R, such that r1 �
r � r2, r is either r1 or r2. Put otherwise, r2 is a direct ancestor of r1 according
to � when restricted to the regions in R(R).

σR1≺R2
(ρR→R1

R× ρR→R2
R) \ πR1,R2

(σR1≺R≺R2
(ρR→R1

R×R× ρR→R2
R))

E.g., below, a relation, and the result of this query applied to it have been

ACM Transactions on Database Systems, Vol. V, No. N, July 2006.

8 · Toon Calders et al.

given:

R
{A < 3}
{A < 4}

{A < 4, B < 5}
{A < 4, B < 3}

→

R1 R2

{A < 3} {A < 4}
{A < 4, B < 5} {A < 4}
{A < 4, B < 3} {A < 4, B < 5}

(2) Grouping and Ungrouping: Besides being able to express complex relationships
between the regions, it is also important to be able to decompose and recombine
the basic constraints to form new regions. This functionality is provided by the
following group and ungroup operators.

Although these operations are relatively simple, they allow to express many
complex operations on constraints. Ungrouping allows for decomposing a con-
straint into its basic building blocks, while grouping does the opposite, that is,
constructing more complex regions by combining together sets of constraints.

Grouping GR(R), for an I-world relation R, and an RDA attribute R of R,
does the following: partitions R on the basis of equality on all attributes except
R; for each block of tuples {t1, ..., tk} in the partition, output one tuple t, such
that t[R′] = ti[R

′], for all attributes R′ of R except R, where i is any one of
1, ..., n, and t[R] =

⋃

1≤j≤n tj [R]. E.g., consider the following I-world relation
R over the attributes R1, R2:

R1 R2

{A < 5, B < 4} {}
{B < 3} {}
{A < 5} {C > 5, D + E > 4}

{A < 5, B > 3} {C > 5, D + E > 4}

.

The result of the operation GR1
(R) is the following relation R′, in which the

sets in the R1-attribute have been aggregated by taking the union:

R1 R2

{A < 5, B < 3, B < 4} {}
{A < 5, B > 3} {C > 5, D + E > 4}

.

Notice that grouping an attribute is very similar to the nesting operator of the
nested relational algebra. The only difference is that grouping does not pack
elements in a set, but instead takes the union. The reason for this difference is
that in the I-world all regions are defined by sets of constrains, and not sets of
sets.

Ungrouping UR(R), for an I-world relation R and an RDA attribute R, replaces
each tuple t ∈ R with t[R] = {C1, . . . , Cn} by n tuples t1, . . . , tn with ti[R] =
{Ci}, and ti[R

′] = t[R′], for all attributes R′ except R. E.g., consider again
the I-world relation R′ given above. The result of the operation UR1

(R′) is the

ACM Transactions on Database Systems, Vol. V, No. N, July 2006.

Expressive Power of an Algebra For Data Mining · 9

following relation:

R1 R2

{A < 5} {}
{B < 3} {}
{B < 4} {}
{A < 5} {C > 5, D + E > 4}
{B > 3} {C > 5, D + E > 4}

.

Ungrouping an attribute is very similar to unnesting; the only difference being
that ungrouping does not unpack a set, but instead partitions it into its sin-
gleton subsets. The reason for this difference is again that in the I-world all
regions need to stay sets of constrains.

With grouping and ungrouping and the relational operators together, we can im-
plement various set-operations at the syntactic level. For example, given a binary
relation in the I-world, we can construct for every tuple (r1, r2), the region that
corresponds to the union of the sets of constraints, that is r1 ∪ r2. We can also ex-
press the intersection, and the minus. We now illustrate the minus. Let R(R1, R2)
be an I-world relation. We show how for each tuple (r1, r2) we calculate the tuple
(r1, r2, r1 \ r2).

Diff (R) := GDiff(UDiffπR1,R2,R1 as Diff R \ UDiffπR1,R2,R2 as Diff R)

E.g., the result of Diff (R), with R the following relation:

R1 R2

{A < 5, B < 3, B < 4} {A < 5}
{A < 5, B > 3} {B > 4}

,

is the relation

R1 R2 Diff

{A < 5, B < 3, B < 4} {A < 5} {B < 3, B < 4}
{A < 5, B > 3} {B > 4} {A < 5, B > 3}

,

Unlike in the D-world, no arithmetic and aggregation are allowed in the I-world,
since these operations would create non-RDA attributes.

Example 6. In Figure 2, an example decision tree is given. In the root of the
tree, the condition shp=‘bell’ is tested. Tuples satisfying shp=‘bell’ go to the
left branch, the other tuples follow the right branch. As such, the instance space can
be split into two regions: the region defined by shp=‘bell’ and the region defined
by shp 6=‘bell’. Also in Figure 2, a possible translation of a decision tree as a set
of regions can be seen.

3.3 The E-World

While a region in the I-world is represented by the defining set of constraints, a
region in the E-world is represented by an explicit enumeration of the data tuples
contained in the region. Aggregations by region of data tuples will be performed
here. The relations in the E-world will be formed by combining a D-world relation
with an I-world relation. The resulting E-world relation will contain both region

ACM Transactions on Database Systems, Vol. V, No. N, July 2006.

10 · Toon Calders et al.

T
region class

{shp=‘bell’,odor=‘none’} {pois=‘f’}
{shp=‘bell’,odor6=‘none’} {pois=‘t’}
{shp 6=‘bell’,col=‘red’} {pois=‘t’}
{shp 6=‘bell’,col6=‘red’} {pois=‘f’}

Testing

shp col odor pois

bell red none f

bell yellow none f

flat yellow anise t

flat green none f

Cl

region class shape color odor poison

{shp=‘bell’,odor=‘none’} {pois=‘f’} bell red none f

{shp=‘bell’,odor=‘none’} {pois=‘f’} bell yellow none f

{shp 6=‘bell’,col6=‘red’} {pois=‘f’} flat green none f

Fig. 3. The E-world relation Cl formed by populating T and Testing

description attributes and regular D-world attributes. Subsequently, in the E-world,
the data can be aggregated and selected, and then the results can be transferred
back to their respective worlds.

Hence, an E-world schema is the union of a D-world schema and an I-world
schema. Let {R1, . . . , Rm, B1, . . . , Bn} be an E-world schema, with R1, . . . , Rm ∈
RDA, and B1, . . . , Bn ∈ A. An E-world relation over {R1, . . . , Rm, B1, . . . , Bn} is
a finite set of tuples over {R1, . . . , Rm, B1, . . . , Bn}, where a tuple again is defined
as a function on the attributes that respects the domains.

The algebra in the E-world is very restricted. This is because in the E-world we
want to maintain the strong connection between the regions and the tuples. There-
fore, operators that can break this connection, such as projection and Cartesian
product are disallowed. The E-world algebra thus consists of only the following
operators:

(1) ΓAggregate as attribute

〈grouping attributes〉 (aggregation) and Calc expr as attribute (arithmetic), as de-

fined in the D-world. Since E-world relations also have region description at-
tributes, the grouping attributes can be regions as well. Again two regions are
considered the same if and only if they are syntactically equal; that is, they are
exact the same set of basic constraints. The new attributes that hold the result
of the aggregation and arithmetic, must be attributes from A with domain Q.

(2) σcondition (selection). Selection is defined as for the relational algebra. Again,
RDA attributes are interpreted syntactically.

Example 7. We continue our running example. The D-world contains the re-
lation Testing, and the I-world the relation T (region, class) that is given in
Figure 2, that represents a decision tree. In the E-world these two relations can be
combined to form the relation Cl(region, class, shp, col, odor, pois). For every
tuple ({r1, . . . , rn}, {c}) of T , and every tuple (s, c, o, p) of Testing that satisfies
all constraints r1, . . . , rn, c, Cl contains the tuple ({r1, . . . , rn}, {c}, s, c, o, p). In
Figure 3, an example of combining T and Testing is given. The correctly classi-
fied examples of Testing can be obtained by projection on the D-world attributes of
Cl. We call the relation consisting of the correct examples Correct. Finally, the

ACM Transactions on Database Systems, Vol. V, No. N, July 2006.

Expressive Power of an Algebra For Data Mining · 11

I

D

E

λ

π

κ

π

Pop

RDA

A

Fig. 4. Bridges between the worlds

relation Misses can be defined as Misses = Testing \ Correct.

3.4 3W-Database

A database in each world is a set of relations in that world. A 3W-database is now
defined as a triplet (D, I,E) where D, I, and E are respectively D-, I-, and E-world
databases.

4. MINING AND OTHER BRIDGING OPERATIONS

Till now, we have described intra-world manipulations. Next, we describe how to
move from one world to another, which we call bridging operations. The most
important bridging operations are those performing data mining. Specifically, a
mine operation µ() takes data from the D-world to construct a set of regions in the
I-world. In [Johnson et al. 2000], each data mining task was represented by a black
box operator from the D-world to the I-world, e.g., µ1() for frequent sets, µ2() for
decision tree, etc. In this paper, we study the alternative of replacing these black
box operators by generic operators introduced in the next subsection: the regionize
κ and the mining loop λ operators. Figure 4 summarizes the three worlds and the
bridging functions. There is no edge labelled µ, as it is replaced by the two new
operators – loop and regionize.

4.1 Bridges From and To the E-world

An important bridging operation is the populate operation, which associates with
each region, the set of data tuples contained in it. More precisely, Pop(D,R), upon
inputs D a relation in the D-world, and R an I-world relation, yields a relation E
in the E-world with schema schema(D) ∪ schema(R). E consists of the concate-
nation of a tuple td ∈ D and a tuple tr ∈ R, whenever td satisfies every constraint
associated with tr.

Furthermore, to go from the E-world to the I-world, we use πRDA(E) to retain
only the RDA attributes. To go from the E-world to the D-world, we use πA(E)
to retain only the non-RDA attributes.

Example 8. In Figure 3, an example of the populate operation is given. Starting
from the I-world relation T and the D-world relation Testing, Pop(Testing, T)
creates an E-world relation, which is called Cl in Figure 3.

To go from E to I or D, we can use projection. πRDA Cl creates a new relation
in the I-world over the attributes region and class that consists of two tuples (the

ACM Transactions on Database Systems, Vol. V, No. N, July 2006.

12 · Toon Calders et al.

first two tuples of Cl collapse on the RDA-attributes).
πA Cl creates the D-world relation Correct as explained in Example 7.

4.2 The Mining Operations

4.2.1 The Basic Regionize Operator. The regionize bridging operator is used to
create regions from data. The format of this operator is: κtemplate as attr (D), where
D(B1, . . . , Bn) is a D-world relation, and template is a constraint over the attributes
B1, . . . , Bn, and over the terms val(B1), . . . , val(Bn). template gives a description
of how to compute a constraint from a tuple over the schema {B1, . . . , Bn}. The
result of κtemplate as R(D) is the following I-world relation R over schema {R}: for
each tuple (b1, . . . , bn) of D, R will contain the tuple ({template[b1, . . . , bn]}), where
{template[b1, . . . , bn]} is the template with each occurrence of val(Bi) replaced with
bi. The resulting expression must be a (syntactically) valid constraint.

Example 9. Let D(A,B,C) be the relation with tuples (2, 2, 4) and (5, 1, 3). The
expression κB+C≤val(B)+val(C) as R(D) creates the I-world relation over the schema
{R} with tuples ({B + C ≤ 6}), and ({B + C ≤ 4}).

The definition is κ is simple. However, when combined with I-world manipula-
tions, it can be quite powerful. Notice, e.g., that κ is not restricted to constraints
over the attributes of one relation in the D-world. Indeed; we can take the Carte-
sian product of two relations, effectively allowing the construction of constraints
over pairs of tuples, or we can use the aggregation and arithmetic operations in the
D-world to first construct new values, ... The expressive power of such combina-
tions is clearly very large. For instance, we can express regions such as convex hulls
and minimum bounding rectangles.

4.2.2 The Mining Loop Operator. The mining loop operator is inspired by the
viewpoint that most data mining algorithms start out with an initial set of regions,
possibly empty. This set of regions is then iteratively refined until a termination
condition is satisfied. For example, in frequent itemset computation, the Apriori
algorithm [Agrawal and Srikant 1994] begins with candidate singleton itemsets,
each of which is represented as a region. These regions are refined to retain only
the frequent ones. New candidate regions are then generated based on the frequent
regions. This loop continues until no more candidates can be generated. This
example motivates the following definition of a mining loop.

R := Seed;
While(∆R) loop

R := Expr(R);
End loop

Return R;

The set Seed can be any I-world relation. In fact, Seed can be any algebraic
expression returning a set of regions. In this way we can easily compose different
data mining algorithms, by setting the output of one algorithm as the seed of
another. Expr is an algebraic expression that returns an I-world relation. In the
sequel, we will often use the following (more concise) notation λExpr[X](Seed) to
denote the mining loop. X is a dedicated n-ary I-world relation symbol. Expr is

ACM Transactions on Database Systems, Vol. V, No. N, July 2006.

Expressive Power of an Algebra For Data Mining · 13

an arbitrary algebraic expression over the I-world. The result of λ is defined as the
fixpoint of the loop, that is: let X0 := Seed, and Xi := Expr(Xi−1), for all i ≥ 1.
The result of λExpr[X](Seed) is the first Xi in the sequence 〈X0,X1, . . .〉 such that
Xi = Xi+1. If no such fixpoint exists, the result of the loop is undefined.

The loop as defined here, only updates the value of one variable X between the
different iterations, and stops when a fixpoint for X has been reached. It can be
proven though, that the extensions where more than one variable is allowed, or
the condition (testing the non-emptiness of) ∆X can be any comparison between
expressions, do have the exact same expressive power as the loop defined here. For
example, let S and R1,R2 be I-world relations. Consider for example the following
extended loop construction that will be used in the next subsection:

(1) S := Seed;
(3) While(S 6= {}) loop

(4) R1 := Expr1 (S);
(5) R2 := Expr2 (R1,S);
(6) S := Expr3 (R2);
(7) End loop

(8) Return R2;

It can be shown that such an extended loop can be expressed by the regular mining
loop. For notational convenience we will often use the extended version of the loop.
For details on how an extended loop can be expressed with a regular data mining
loop, we refer to Appendix A.

4.3 A Full Example: Frequent Itemset Mining

In the following, we give an example of the operations introduced so far. Specifically,
we show how to perform the frequent itemset [Agrawal et al. 1993] computation. In
the next subsection, we also give another example showing how to perform decision
tree construction.

To begin, the input is a D-world relation D({Product}) that stores transactions
as follows: {({a, b}), ({b, c}), ({a, b, c})}.

The domain of Product is, e.g., the set of all products of a store, and the domain
of the nested attribute {Product} is consequently all sets of products.

Let the minimal support threshold be 2. Hence, we are interested in all sets of
items I that are a subset of at least two sets in D. The itemsets will be represented
as regions in the I-world. The region associated with itemset I will describe all
transactions that contain it. That is, the itemset {a, b} will be represented by the
region {a ∈ {Product}, b ∈ {Product}} .

We get the set of the items I as follows: Items := Unnest{Product} D. In our
example, the result of this operation is the relation {(a), (b), (c)} over the schema
{Product}.

The regions associated with the singleton items are formed with κ:

C := κval(Product)∈{Product} as Set Items .

ACM Transactions on Database Systems, Vol. V, No. N, July 2006.

14 · Toon Calders et al.

The resulting relation is

Set

{a ∈ {Product}}
{b ∈ {Product}}
{c ∈ {Product}}

Counting the candidates in set C is done by combining C and D in the E-world:

P := Pop(C, D) ,

resulting in

Set {Product}
{a ∈ {Product}} {a, b}
{a ∈ {Product}} {a, b, c}
{b ∈ {Product}} {a, b}

{b ∈ {Product}} {b, c}
{b ∈ {Product}} {a, b, c}
{c ∈ {Product}} {b, c}
{c ∈ {Product}} {a, b, c}

Subsequently, the support of the itemsets is counted with the aggregation function
COUNT, and the sets with support higher than 2 are selected

E := σsupp≥2 Γ
COUNT({Product}) as supp

〈Set〉 P ,

resulting in the E-world relation

Set supp

{a ∈ {Product}} 2
{b ∈ {Product}} 3
{c ∈ {Product}} 2

which is projected back to the I-world by F := πRDA E. Note that in our running
example, there is one RDA-attribute, namely Set. πRDA only retains the these
attributes, and hence this expression gives the following I-world relation:

Set

{a ∈ {Product}}
{b ∈ {Product}}
{c ∈ {Product}}

New candidates can be formed by extending the successful candidates with one
extra item that is not yet in the set, and then doing the monotonicity check. The
first step, extending successful candidates with one extra item, can be done as
follows:

S := USet as Single F

PreC := ρU→SetπUUnion(σSet6�Single (F × S))

Union denotes the following expression that, for each tuple ({i1, . . . , in}, {i}) gen-
erates a new tuple ({i1, . . . , in}, {i}, {i1, . . . , in, i}):

Union(X (Set, Single)) := GU UU

(

πSet,Single,Set as U X
∪ πSet,Single,Single as U X

)

ACM Transactions on Database Systems, Vol. V, No. N, July 2006.

Expressive Power of an Algebra For Data Mining · 15

E.g., Union applied to the following relation:

Set Single

{a ∈ {Product}, b ∈ {Product}} {c ∈ {Product}}

results in the following relation:

Set Product U

{a ∈ {Product}, b ∈ {Product}} {c ∈ {Product}}







a ∈ {Product},
b ∈ {Product},
c ∈ {Product}







.

The monotonicity check is then performed for an itemset {i1, . . . , ik}: for every
item ij , check whether {i1, . . . , ik} \ {ij} was a frequent set. First we make the
relation PC (parent-child) that contains the tuples ({i1, . . . , in}, {i1, . . . , in} \ {ij})
for all regions {i1, . . . , in} in C, and j = 1 . . . n:

PC := πSet,C GC σM6=C UC UM(πSet,Set as M,I as CPreC)

Then we select those itemsets that have a child that was not frequent:

IF := πSet(PC \ (PreC × F))

Finally, we get the new candidates by removing the sets in IF : C := PreC \ IF .
The complete candidate generating expression will be denoted genCan(F).

The same procedure is repeated; the candidates are counted, frequent itemsets are
selected, new candidates are generated, until no new candidates can be generated
anymore.

These points combined give the following expression:

(1) Items := Unnest{Product}D;
(2) C := κval(Product)∈{Product} as Set Items;
(3) While(C 6= {}) loop

(4) P := Pop(C, D);

(5) E := σsupp≥2 Γ
COUNT({Product}) as supp

〈Set〉 P ;

(6) F := F ∪ πRDA E;
(7) C := genCan(F);
(8) End loop

(9) return F ;

4.4 Decision Tree Example

In this subsection we give a detailed description of an expression for constructing
a decision tree in MA. The expression is based on the well-known CART algo-
rithm [Breiman et al. 1984] for tree induction. In the CART-algorithm a divide-and-
conquer methodology is followed. For numeric data, CART will construct decision
trees with binary splits of the form A < n, A ≥ n, where A is an attribute, and
n is a number. CART constructs the tree as follows. For a given database, first
it is checked whether the labels of the instances are homogeneous. In this case,
one node, labelled with this unique class label is returned. If the class label is not
homogeneous in the database, then all possible ways to split the database are con-
sidered, and the split A < n, A ≥ n that maximizes a goodness measure, such as,

ACM Transactions on Database Systems, Vol. V, No. N, July 2006.

16 · Toon Calders et al.

e.g., information gain, is chosen. CART is then recursively applied to the two parts
defined by the split. The resulting trees are attached to the root by respectively an
edge labelled A < n and an edge labelled A ≥ n.

In our example expression, we assume that the input of the problem is a relation
D(A1, . . . , An, DL) in the D-world of the form:

A1 A2 . . . An DL
a b . . . c 0
a d . . . c 1
b c . . . e 1

.

For simplicity, we assume that for all attributes the domain is Q. Each tuple in D
is an instance, and DL, the decision label, identifies the class the instance is in.

The complete expression is given in Figure 5. In this section, we show step-by-
step how the complete expression is constructed. The output will be an I-world
relation T that holds the regions associated with the leaves of the tree, together with
their label. That is, for each leaf in the tree we consider the set of all inequalities
on the edges from the root to that leaf. The region associated with the leaf hence
consists of this set of inequalities. For example, suppose that there is a leaf in the
tree which is reached via edges labelled respectively A < 3, B ≥ 5, and C < 2, and
having class label “1”. For this leaf, the relation T will contain the tuple

({A < 3, B ≥ 5, C < 2}, {DL = 1})

The complete set of all leaves with associated class labels describes the tree. For a
more elaborated example, see Figure 3.

Before we give the expression for the decision tree construction, we first introduce
two important constructions. The first construction selects one region from a set
of regions in the I-world. This construction is important to handle those cases
where we have to choose one region. This case occurs, for example, when there
are multiple splits that evaluate to the exact same goodness measure. Even though
each of the best splits is equally good, one has to be chosen for the correct working
of the algorithm. The second construction we treat separately, is the computation
of the gini-score for all splits.

4.4.1 Selecting a Region. In the decision tree example, we often need to select
one region from a relation. This situation occurs, e.g., when we need to select an
open node to expand, or when there are different splits that evaluate to the exact
same goodness measure. In these situations, for the correct working of the decision
tree expression, one of the regions or splits needs to be selected. In this subsection
we will give an expression that unambiguously does select one region. Given a
relation S(Reg) consisting of regions of the form

{Ai1 ≤ v1, . . . , Aik
≤ vk, Aik+1

> vk+1, . . . , Ail
> vl} ,

SelectRegion(S) selects a unique region in S. This selection is done by imposing a
total linear order on the regions, and selecting the smallest region in S w.r.t. this
order. Before we discuss the total order on the regions, we first introduce an order
on the basic constraints. This basic order is then later on extended to regions.

ACM Transactions on Database Systems, Vol. V, No. N, July 2006.

Expressive Power of an Algebra For Data Mining · 17

Basic Order: Let Ai1θ1v and Ai2θ2w be two basic constraints. Then, Ai1θ1v
comes before Ai2θ2w in the order iff either:

(1) i1 < i2, or

(2) Ai1 = Ai2 , and θ1 =“≤”, and θ2 =“>”, or

(3) Ai1 = Ai2 , and θ1 = θ2, and {(Ai1θ1v)} ≺ {(Ai2θ2w)}. (Recall that ≺ denotes
strict containment of regions)

It is straightforward to create a relation BOrder(B,A) that consists of all pairs
({Ai1θ1v}, {Ai2θ2w}), such that Ai1θ1v comes before Ai2θ2w. We construct all
expressions of the form Ai ≤ v with the following expression:

ExprAi,≤ := κAi≤val(Ai) as R D .

Similarly, there are expressions ExprAi,> that construct all expressions of the form
Ai > v. The relation BOrder(B,A) can now be formed with the following expres-
sion:

ρR→BExprA1,≤ × ρR→AExprA1,>

∪ σB≺A(ρR→BExprA1,≤ × ρR→AExprA1,≤)
∪ σB≺A(ρR→BExprA1,> × ρR→AExprA1,>)
∪ ρR→BExprA1,≤ × ρR→AExprA2,≤

∪ ρR→BExprA1,≤ × ρR→AExprA2,>

∪ . . .
∪ ρR→BExprAn,≤ × ρR→AExprAn,>

∪ σB≺A(ρR→BExprAn,≤ × ρR→AExprAn,≤)
∪ σB≺A(ρR→BExprAn,> × ρR→AExprAn,>)

With the relation BOrder it is easy to express the following query First(S(Reg)),
that creates the relation consisting of the tuples ({c1, . . . , ck}, {ci}), with ci the first
element among c1, . . . , ck in the basic order, and ({c1, . . . , ck}) in S, over the schema
{Reg, F}:

First(S(Reg)) := (UF πReg,Reg as F S) \ πReg,F σT=B,F=A

((UF UT πReg,Reg as T,Reg as F S) × BOrder) .

Order on Regions: We extend the total order on the basic constraints to a
total order on regions. Because we have a total order on the basic constraints, we
can represent the regions as a bit string; the ith bit in the bit string is 1 if and
only if the basic constraint with rank i in the total order, is in the region. The
total order on the regions that we construct, corresponds to the natural order on
the binary numbers represented by the bit strings. In practice, this principle is
implemented as follows. A region r1 comes before another region r2 iff either r2 \r1

is empty (that is, every non-zero bit in the bit string of r2 is also non-zero in r1) or
both r1 \ r2 and r2 \ r1 are nonempty, and the smallest basic constraint in r2 comes
before the smallest basic constraint in r1 (that is, the first non-zero bit in the bit
string for r1 which is zero in the bit string of r2 is more significant than the first
non-zero bit for r2 that is zero for r1).

The following expression Order(S) does the following: given a relation S(Reg),
it returns the relation Order(R1, R2) that consists of all pairs of regions (r1, r2)

ACM Transactions on Database Systems, Vol. V, No. N, July 2006.

18 · Toon Calders et al.

with r1, r2 in S, such that r1 comes before r2 in the total order on regions. First
we construct all pairs of regions of S.

P := πReg as R1
S × πReg as R2

S

Then, for each pair (r1, r2), the tuple (r1, r2, r1 \ r2, r2 \ r1) is formed using the
difference operator Diff introduced in Section 2.2:

D := Diff R2\R1 as D2
Diff R1\R2 as D1

(P) .

Order(S) consists of two parts O1 and O2 that are respectively those pairs (r1, r2)
with r2 \ r1 empty, and those where the first element of (r1 \ r2) comes before
the first element of (r2 \ r1) (the expression FirstD1 as F1,D2 as F2

(D), denotes the
construction that adds two attributes F1 and F2 to D that hold respectively the
first basic constraint in D1 and the first basic constraint in D2. This construction
is similar to First(S)):

O1 := πR1,R2
σD2={} D

O2 := πR1,R2
σB=F2,A=F2

(FirstD1 as F1,D2 as F2
(D) × BOrder)

Order(S) := O1 ∪ O2

Finally, we can select the first region of S in the order; the first region is the one
that does not occur as second component in Order:

SelectRegion(S) := S \ πR2 as Reg Order(S) .

4.4.2 Computing the GINI-Index. Let T denote a dataset with examples from
n classes. The GINI-index gini(T) of T is defined as 1 −

∑n
i=1 p2

i , where pi is the
relative frequency of the ith class in T . The GINI-index is often used to evaluate
the quality of a split in the construction of a decision tree. Consider, e.g., a split
that divides the dataset T into two disjoint datasets T1 and T2. The gini score of

this split is defined to be |T1|
|T | gini(T1) + |T2|

|T | gini(T2). The split that minimizes the

score is considered to be the best one.
In this subsection we show how we can compute the gini-index in MA. We

assume the following setting: in the D-world we have the dataset D over attributes
A1, . . . , An, DL, and in the I-world we have a relation S(Reg) consisting of different
regions that in fact represent one side of the split. That is, for each region r in S,
we will evaluate the gini-index of splitting D into the set of tuples that do satisfy
r, and the set of tuples that do not satisfy r.

First we compute the total number of positive examples, and the total number
of negative examples:

Stats := Γ
COUNT(∗) as npos
〈〉 σDL=1 D × Γ

COUNT(∗) as nneg
〈〉 σDL=0 D

Then we populate the regions in S with D and the statistics:

P := Pop(S, D × Stats)

From P we can compute, for every region r, the numbers of positive examples np1

and np2, and the numbers of negative examples nq1 and nq2, in respectively r and
the complement of r:

N := Calcnpos−p1 as p2,nneg−q1 as q2
Γ
SUM(DL) as p1,SUM(1−DL) as q1

〈Reg,npos,nneg〉 P

ACM Transactions on Database Systems, Vol. V, No. N, July 2006.

Expressive Power of an Algebra For Data Mining · 19

The gini-index for the split based on r is

p1 + q1

npos + nneg

(

1 −
p2
1 + q2

1

(p1 + q1)2

)

+
p2 + q2

npos + nneg

(

1 −
p2
2 + q2

2

(p2 + q2)2

)

For notational convenience, we denote this sum gini. The expression for computing
the gini-index for all splits is: Gini(S) := Calcgini as G N .

The minimal gini score is computed by aggregation. Recall that we did not
include Cartesian product in the E-world. This absence of the Cartesian product
makes the expression to select the regions with the minimal score a bit trickier.
Using the connections between the worlds and D-world algebra, however, we can
still express this query. Indeed, we can project the minimal gini score to the D-
world, add it with the Cartesian product in the D-world to the relation Stats,
and repeat the computation above. Of course, it is highly unrealistic to select the
region with the minimal gini-score in this way in real situations. This construction,
however, is of theoretical interest, as it shows that the Cartesian product in the
E-world is not necessary to express the query under construction. For notational
convenience we denote the expression selecting the tuples of Gini(S) with minimal
gini index as σG=min(G) Gini(S)

4.4.3 Decision Tree Expression. The complete expression for the construction
of a decision is now given in Figure 5. In step (1), the variable T , which will hold
the decision tree, is initialized to the empty tree. In (2), the set of open nodes Open
is set to the relation with one region {}. This empty region actually represents the
constraint “true”, which holds for all data points. In steps (3) to (5), variables
Splits, N egLabel and PosLabel are initialized. They represent respectively the set
of all possible ways to split a node in the tree, the negative label, and the positive
label. The initialization of these variables occurs before the mining loop, that is,
κ is not used inside a mining loop. Then the main loop (6) to (22) is entered.
In this loop, the tree will be refined until the set of open nodes does not change
anymore. This occurs when either the tree is pure; i.e. Open became empty, or,
when the leaves of the tree are still impure, but cannot be split anymore. This
second situation can happen when the input is inconsistent. The refinement in the
loop goes as follows: first, an open node is selected in (7), and removed from Open
in (8). It is checked whether the selected region in S is pure, by populating it with
the input data in (9). If there are no instances of the positive class in the input
that fall into the region in S, then the region in S is purely negative. In that case,
S is annotated with the negative label and added to the tree (lines (10) and (11)).
Lines (12) and (13) handle the case if S is purely positive. If the region in S is
neither purely positive, nor purely negative, it is further split in lines (14) to (20).
First, all possible splits of the region in S are listed in (15), and scored in (16). In
(17) and (18), one of the splits that minimizes the gini score is selected. Finally,
in (19) and (20), the two regions resulting from splitting S are added to the set of
open nodes. After the loop has ended, in (23), the list of pure regions forming the
decision tree is returned.

ACM Transactions on Database Systems, Vol. V, No. N, July 2006.

20 · Toon Calders et al.

(1) T := {};
(2) Open := {{}};
(3) Splits := κA1<val(A1) as RL,A1≥val(A1) as RR D

∪ . . .
∪ κAn<val(An) as RL,An≥val(An) as RR D

(4) N egLabel := κDL=0 as ClassD;
(5) PosLabel := κDL=1 as ClassD;
(6) While(∆Open) loop

Select an open node and check if it is pure

(7) S := SelectRegion(Open);
(8) Open := Open \ S;
(9) P := Pop(S, D);
(10) if (πRDA σDL=1P = {}) then (pure, DL = 0)
(11) T := T ∪ S ×N egLabel;
(12) else if (πRDAσDL=0P = {}) then (pure, DL = 1)
(13) T := T ∪ S × PosLabel;
(14) else (impure)

Consider all splits and select the best

(15) AllSplits := UnionReg∪RL as LReg,Reg∪RR as RRegS × Splits;
(16) Score := Gini(πLReg AllSplits);
(17) Best := πRDA σG=min(G) Gini(S);
(18) SelectedBest := SelectRegion(Best);

Add the split to the set of open nodes

(19) BSplit := σLReg=RegAllSplits × SelectedBest;
(20) Open := Open ∪ πLReg BSplit ∪ πRReg BSplit;
(21) end if

(22) End loop

(23) return T ;

Fig. 5. Constructing a Decision Tree in MA.

5. EXPRESSIVENESS OF DATA MINING QUERIES

In this section, we give formal results on the expressive power of the algebraic
framework introduced in Sections 2 and 3. In this section we only give proof
sketches of the theorems. For the full proofs we refer to the appendices.

The 3W-algebra introduced so far is denoted MA. First we prove that on the one
hand the mining algebra MA as is, is too powerful; it is computational complete.
On the other hand, if we disallow looping, the resulting language DA has the same
expressive power as the relational algebra. Therefore, we introduce a restricted form
of looping, called the static mining loop. The restriction of MA to expressions with
only static loops is denoted static MA. It is shown that static MA is strictly less
powerful than MA. We also compare our framework with an alternative framework
MAFI without mining loop, but where frequent itemset mining is introduced as a
black box operator. The relations between the different languages is studied in this
section. The results we prove are summarized in Figure 6.

We begin with a definition of a data mining query. A data mining query is a

ACM Transactions on Database Systems, Vol. V, No. N, July 2006.

Expressive Power of an Algebra For Data Mining · 21

MA

static MA

MA
FI

loop-free MA=DA

(Theorem 2)

= Turing Complete
(Theorem 1)

(Theorem 3)

(Theorem 4)(Theorem 5)

Fig. 6. Summary of the Results of Section 4

computable function that maps a 3W-database W = (D, I,E) to an X-database,
where X is one of D, I, or E. We assume that there exist fixed input and output
schemas for the query q; i.e., we want to avoid queries where the schema of the
output depends on the input. Furthermore, following standard practice in data
mining, we assume that in an input 3W-database to a data mining query, I and
E are empty. We call such a query a D→X data mining query, reflecting that it
maps a D-world database to an X-world database.

We will denote the language of all expressions we can form with the algebra
operations in Sections 2 and 3 by MA. An MA-expression is any legal expression
composed of the operators presented so far in this paper. A data mining query q
is expressible in MA if there exists an MA-expression E such that for each 3W-
database W, E(W) = q(W). To facilitate the calibration of the expressive power
of the mining algebras MA, static MA, and MAFI in relation to known query
languages, we mostly consider D→D data mining queries. We refer to the D-world
base query language of nested relational algebra extended with aggregation and
arithmetic as DA. We now show that MA-expressions, as such, are too powerful
for our purposes.

Before we give the theorem, we first introduce the notion of genericity. Because
the elements of the unordered set U only can be compared with =, in some situa-
tions, it is impossible to distinguish between two elements of U without mentioning
them explicitly in the query. For example, consider the D-world consisting of one
relation R(A,B) = {(a, b), (a, c)}. In this situation, an algebra expression cannot
distinguish between b and c without mentioning them explicitly. So, every expres-
sion that does not use the constants b and c, either returns both b and c, or neither.
In short, if it is impossible to distinguish between two elements in the input, it
should not be possible to distinguish between them in the output. This principle is
called genericity and is formally defined as follows. We call a query q generic, if, for
all input databases D, for all permutations h of U , q(h(D)) = h(q(D)). That is, q
does not depend on a specific ordering of the elements of U , only on their relation
in D.

Theorem 5.1. Every generic computable D→D data mining query is MA-
expressible.

Proof sketch

(1) In the I-world we can simulate increment and decrement of integers, comparison

ACM Transactions on Database Systems, Vol. V, No. N, July 2006.

22 · Toon Calders et al.

and looping. It is well-known that these operators are Turing Complete for
integer computations; i.e., they are sufficient for expressing every computable
function from integers to integers. The simulation is roughly as follows.
Increment: The number n is represented by the following I-world relation
N r[n]:

Reg

{Nr ≤ 0}
{Nr ≤ 1}
{Nr ≤ 2}

. . .
{Nr ≤ n}

Let R be the following D-world relation over schema {Nr}: {(0)}. This relation
R can easily be constructed using a D-world algebra expression. Let X be an
I-world relation representing a number n. The increment operation on X is im-

plemented in the algebra as follows: X∪κNr≤val(C) πA Γ
COUNT(Reg) as C

〈Nr〉 Pop(X , R).

That is, first the relation X is populated with R to form the E-world relation

Reg Nr

{Nr ≤ 0} 0
{Nr ≤ 1} 0
{Nr ≤ 2} 0

.
{Nr ≤ n} 0

Then the number of regions per Nr-value is counted, and this count is projected
back into the D-world, resulting in the D-world relation over schema {Nr, Cnt}:
{(0, n + 1)}. Finally, with the regionize operation κNr≤val(Cnt), a new region
{Nr ≤ n + 1} is constructed, which is added with the union to the I-world
relation X . The resulting relation represents the number n + 1.
Looping: is done with the data mining loop. As illustrated in Appendix A,
the data mining loop λ has the same expressive power as extended loops.
Comparison: can be done in the condition of the extended data mining loop.
These three operations together form a Turing Complete computation paradigm
for integers, assuming that the integers are given as relations N r[n].

(2) Every D-world relation can be encoded as an integer, on this integer we can do
all Turing expressible computations, and the resulting integer can be mapped
back to a relation. For the details of this encoding, we refer to the electronic
appendix of this paper.

2

Corollary 5.2. The data mining algebra MA can express any computable
D→X query.

Proof. In Theorem 5.1, it is shown that every computable D→D-query is MA-
expressible. Given the completeness for D→D-queries, for D→I and D→E it suffices
to show that there exist encodings of I-world relations in the D-world, and of E-
world relations in the D-world, that can be mapped back with the MA-algebra to
the encoded relations.

ACM Transactions on Database Systems, Vol. V, No. N, July 2006.

Expressive Power of an Algebra For Data Mining · 23

Indeed, let enc(R) denote the encoding of an I-world relation R in the D-world.
Let q be a computable D→I-query. Then, the D→D query enc ◦ q (q followed
by enc) is computable, and can hence be computed with an MA-expression expr.
The result of q can then be obtained by mapping the result of expr to the I-world
relation it represents.

We illustrate the encoding of an I-world relation with an example. Let R be
an I-world relation over the schema {R}, dom(R) = REG(A,B) with A and B
attributes over domain Q. Hence, the constraints in the attribute R will be of
the form aA + bB θ c, with a, b, and c rational numbers. We will encode such
a constraint as a tuple (a, b, t, c), with t a constant that denotes the comparison
operator; e.g. t = 0 denotes θ=‘=’, t = 1 denotes θ=‘≤’. The relation D in the
D-world encoding R has schema {{A,B, T,C}}. This encoding can be mapped to
R by an MA-expression.

For the D→E-queries a similar encoding can be used.

The theorem and its corollary imply that the proposed framework – MA with κ
allowed inside a mining loop – is too powerful. Henceforth, we seek to restrict the
class of MA-expressions allowed. We call a mining loop operation λExpr[X](Seed)
static provided Expr does not contain any occurrences of κ and λ. The latter condi-
tion disallows nested loops whereas the former one disallows the ability to apply κ to
newly constructed data objects (hence the term static). We call an MA-expression
E static if all occurrences of λ in it are static. The example in section 3.3 shows
that the frequent itemset query can be expressed with static MA-expressions. The
following theorem shows that while being sufficiently expressive to capture interest-
ing data mining tasks, static MA-expressions are not computationally complete,
making them more suitable for data mining.

Theorem 5.3. There exist data mining queries expressible in MA but not in
static MA.

Proof. First we will show a bound on the size of the output of a static MA-
expression. Then we will give a computable D→D-query that violates this bound.
Since MA is Turing Complete, this query is expressible in MA, and because the
query violates the bound, it cannot be expressed in static MA.

Bound on static queries. Let Expr be a static MA-expression containing
k loops. Then, there exist polynomials p0, . . . , pk that only depend on Expr such
that, given input-relations with at most n tuples, the output can contain at most
the following number of tuples:

p0(
p1(

p2(
. . .

pk(n) . . .)))
2

2
2

2

That is, there is a constant number of exponentiations. Intuitively, this formula
comes from the fact that except for the looping operation in the I-world, all other
operations generate at most a polynomial number of tuples in the D-world. Then,
the only way to get new basic constraints in the I-world is by κ. Since the number

ACM Transactions on Database Systems, Vol. V, No. N, July 2006.

24 · Toon Calders et al.

of different basic constraints in the I-world is limited, only a polynomial number of
new basic constraints can be formed. Furthermore, despite the power looping gives,
the output of the looping operation is bounded by the number of regions that can
be formed with the basic constraints. Because a region is a set of basic constraints,
the number of different regions that can be formed with b basic constraints is 2b.
A relation with ` attributes in the I-world can thus at most have 2`b tuples.

We start out with n tuples in the D-world. Without looping we can only create
a polynomial number pk(n) of tuples, and thus, at the moment that the first loop
starts, there are at most pk(n) basic constraints in the I-world. Therefore, the
looping creates at most 2`pk(n) tuples. This reasoning can now be repeated; the
non-looping operators create at most pk−1(2

p(n)) new basic constraints. The second

loop can thus generate 2`pk−1(2
p(n)) tuples, and so on.

Query not in static MA. Consider the following query: given a D-world
relation D, it creates the following relation over schema {A}: {(i) | i = 1 . . . N},
with N the number

2
...

2
2



















|D|

This function is clearly computable, but cannot be calculated by a static MA-
expression, because the number of exponentiations is unbounded.

The key questions at this point are how expressive static MA-expressions are,
and where the expressiveness comes from. To answer these questions, we give the
following definition. We call an MA-expression in which there is no occurrence of
λ, a loop-free MA-expression.

Notice that loop-free MA-expressions are necessarily static. The following the-
orem says that when we restrict attention to D→D, the class of such data mining
queries that can be expressed using MA are not “new”, in that they can already be
expressed in DA, i.e., such queries can be expressed without leaving the D-world!
Thus, despite the ability to apply κ to construct constraints, compare sets of con-
straints, group and ungroup sets of constraints, loop-free MA-expressions cannot
do anything beyond what nested relational algebra with aggregation and arithmetic
can do. The fact remains, of course, that DA cannot express D→X mining queries
where X is I or E, whereas loop-free MA can express a whole class of such queries.
Call an MA-expression D→X whenever it expresses a D→X mining query. As we
shall see later, static MA-expressions (involving mining loop) can indeed express
new D→D mining queries that cannot be expressed in DA.

Theorem 5.4 Loop-free. For every loop-free MA-expression that is D→D,
there exists an equivalent expression in DA.

Proof sketch The proof is based on a simulation of the operations in the I- and
E-world within the D-world. As is already illustrated in the proof of Corollary 5.2,
I-world relations can be represented in the D-world. Instead of interpreting them
directly, as κ does, the constraints are evaluated only when they are needed to.
Thus, for example, when a union is applied to two regions in the I-world, the corre-

ACM Transactions on Database Systems, Vol. V, No. N, July 2006.

Expressive Power of an Algebra For Data Mining · 25

sponding sets of tuples are unioned in the D-world. For most operations it is easy to
simulate them. One case, however, requires special attention: Selection based on

containment of regions over rational attributes. A non-trivial I-world opera-
tion to simulate in the D-world is selection based on region containment. Suppose,
e.g., that we have a relation D({A,B, T,C}) encoding an I-world relation R(R) with
constraints of the form aA + bB θ c. A tuple ({(a1, b1, t1, c1), . . . (ak, bk, tk, ck)}) of
D encodes the tuple ({a1A + b1B θ1 c1, . . . , akA + bkB θk ck}) of R, with θi=‘=’ if
ti = 0, θi=‘≤’ if ti = 1. In this setting, simulating a selection based on containment
of regions, comes down to solving a system of linear inequalities whose coefficients
are given as attribute values in the D-world. In Appendix C it is shown that solving
such a system of linear inequalities can indeed be expressed with a DA-expression.
2

Without the mining loop, all D→D data mining queries expressible in the mining
algebra are already expressible in DA. Indeed, the mining loop brings substantial
expressive power to the mining algebra. Having seen the power that mining loop
brings to a data mining algebra, we can ask whether there is an alternative to mining
loop, that is somehow less powerful. Indeed, there have been several attempts (e.g.,
[Boulicaut et al. 1999; Netz et al. 2001]) at incorporating specific data mining tasks
into a database system, where the whole task (e.g., frequent itemsets, decision trees,
etc.) is captured as a “black box” operator. We examine this alternative in the
next section, specifically for frequent itemsets.

5.1 Frequent Itemsets as a Black Box Operator

In the following, we define a new class of MA-expressions, which uses this oper-
ator, referred to as the FI operator. The FI-operator takes as input a D-world
relation D({Item}) and is parameterized by a support threshold ts. The output of
the FI-operator is then defined as the I-world relation R consisting of the tuples
({i1 ∈ {Item}, . . . , ik ∈ {Item}}), 1 ≤ k ≤ n, such that the support of the itemset
{i1, . . . , ik} is at least ts. By MAFI , we mean the language MA, with κ and λ
replaced by the FI-operator. MAFI -expressions have the obvious meaning.

A natural question is whether MAFI -expressions have an expressive power be-
yond DA. Superficially, this question may seem trivial since FI essentially has an
ability similar to the powerset operator. However, the collection of frequent sets
lives in the I-world, and our focus is on D→D queries! The following example shows
that finding frequent itemsets that are maximal w.r.t. the inclusion ordering, can
be expressed in DA.

Example 10. Let D({Item}) be a transaction database, and I be a maximal
frequent itemset for threshold ts. Since I is frequent, I must be present in at least
ts transactions, say {t1, . . . , tts}. As well, the intersection of any ts transactions
is a frequent itemset. Because I is maximal, I equals every intersection of ts
transactions in which it is contained. Therefore, every maximal frequent itemset
is the intersection of exactly ts transactions. We can now find all maximal ts-
frequent itemsets with the query that takes all ts-intersections, and selects the
maximal sets among those. This query is expressible in relational algebra, since ts
can be considered as a constant here.

The following theorem establishes nevertheless that D→D MAFI -expressions

ACM Transactions on Database Systems, Vol. V, No. N, July 2006.

26 · Toon Calders et al.

are more expressive than DA.

Theorem 5.5 FI-expressiveness. There exists a D→D MAFI-expression for
which there does not exist an equivalent expression in DA.

Proof sketch The transitive closure query TC can be expressed in MAFI . Let
D(A,B) be a relation in the D-world, and A and B have domain U . The result of
TC on D is the transitive closure of D; i.e., TC(D) contains (a, b) if and only if there
exist tuples (a, x1), (x1, x2), . . . , (xk, b) in D. The expression for TC in MAFI

works as follows: first, nesting is used to create the items for the FI-operator. Each
item will represent one pair (a, b) in D. The transaction database will consist of
one transaction that contains all edges. Then, FI is applied with threshold equal to
1. Hence, in fact, FI is used to create all subsets of the set of all pairs. From these
sets of pairs, those are selected that represent chains (a, x1), (x1, x2), . . . , (xk, b) in
D. Based on these chains, the pairs (a, b) of TC(D) can be found. For details we
refer to Appendix D.

On the other hand, it is well-known that this query cannot be expressed in
nested relational algebra with arithmetic and aggregation, as TC is not local, and
the nested relational algebra with arithmetic and aggregation can only express local
queries [Libkin and Wong 1997]. Also the ability to do nesting does not help, as
the flat-flat theorem [Paradaens and Van Gucht 1998] states that every nested
relational algebra expression that maps a flat relation to a flat relation can be
expressed without nesting. The proof in of Paradaens and Van Gucht [1998] is
actually for the nested relational algebra without arithmetic and aggregation, but
the simplified proof of the flat-flat theorem of Van den Bussche [2001] can easily be
adapted to include arithmetic and aggregation. 2

Transitive closure is not a very natural query in the data mining context. One
might wonder how the situation is for more natural data mining queries. The
answer is as follows. There are a lot of natural queries expressible in MAFI that
are NP-complete. For example: given two transaction databases T1,T2, find all
transactions in T2 that do contain an itemset I such that the support of I in T1

is strictly smaller than its support in T2. The comparative containment problem,
which is known to be NP-complete [Garey and Johnson 1979], can be reduced to
this query. If DLOGSPACE 6= NP, the latter problem cannot be expressed by an
expression in DA. This is because we can show via a similar reasoning as in [Consens
and Mendelzon 1993], that our D-world algebra can be evaluated in deterministic
logspace.

5.2 Expressiveness of the Mining Loop Operator

So far, our analysis addresses most of the expressiveness issues concerning MAFI -
expressions. The only exception is the question whether there is a difference in
expressive power between static MA-expressions and MAFI -expressions. The next
theorem shows that using κ and mining loop operators is strictly more expressive
than using only the black box operator FI.

Theorem 5.6. There exists a static MA-expression for which there is no equiv-
alent MAFI-expression.

ACM Transactions on Database Systems, Vol. V, No. N, July 2006.

Expressive Power of an Algebra For Data Mining · 27

Proof sketch The intuition is as follows. We can use MA-expressions and MAFI

to decide languages of 0 and 1’s as follows: the input to the expression is given as
a binary relation D(Nr, Bit) in the D-world. We require that Nr is a key, and the
input string then is the string of bits, according to the order in Nr. The decision
whether or not this string is in the language is then reflected by non-emptiness of
the output. The non-emptiness of an MAFI -expression can be decided in PSPACE
via a similar pipelining argument as in [Abiteboul and Hillebrand 1995]. On the
other hand we can simulate every exponential space Turing Machine in the I-world
with MA. We can carry over the order on Nr to an order on the subsets of
{Nr ≤ nr | nr ∈ πNrR}. This order allows us to represent the work tape now as a
unary relation in the I-world. Bit i is 1 if and only if the ith set is in the relation.
Therefore, static MA can be used to decide exponential space languages. It is
well-known that there exist languages decidable in exponential space, but not in
polynomial space. For more details we refer to Appendix B. 2

Together with Theorem 5.4, the above theorem indicates that mining loops lead to
additional expressive power. We can now ask the following questions for static MA-
expressions: does each application of the mining loop operator leads to additional
expressiveness? Does the ability to combine and compose loop operators increase
the expressiveness? The following theorem answers this question positively.

Theorem 5.7. For each k, there exists a static MA-expression with k loops
such that it is not equivalent to any static MA-expression with k − 1 loops.

Proof. Recall from the proof of Theorem 5.3 that for any static MA-expression
containing k loops, there exist polynomials p0, . . . , pk, such that, given input-
relations with at most n tuples, the output can contain at most the following
number of tuples:

p0(
p1(

p2(
. . .

pk(n) . . .)))
2

2
2

2

We will now show that for every k, there exists a query expressible with k loops,
that, given the relation D(A) = {(1), (2), (3), . . . , (n)} in the D-world, outputs the
relation {(i) | i = 1 . . . N}, with N the number

. . .
n

2
2

2
2



























k

As this query cannot be expressed with k − 1 loops (it violates the bound), such
an expression with k loops shows that there exists a query expressible with k loops
but not with k − 1 loops.

First, the regionize operator is used to create n basic constraints in the I-world
with κA≥val(A)D. Then, with a static loop, it is possible to construct all regions

ACM Transactions on Database Systems, Vol. V, No. N, July 2006.

28 · Toon Calders et al.

based on the basic constraints in a relation R(R). That is, suppose that R is the
following I-world relation:2

R

{}
{A ≥ 1}

. . .
{A ≥ n}

Then there exists an expression using one static loop that outputs the following
“powerset” relation P:

R

{}
{A ≥ 1}

{A ≥ 1, A ≥ 2}
. . .

{A ≥ 1, A ≥ 2, . . . , A ≥ n}

Notice that the constraints are totally ordered; we can say that A ≥ a1 comes
before A ≥ a2 if a1 ≤ a2. This order can be carried over to the sets in P. We can
for example order the regions lexicographically. Based on this order, a relation O
over attributes R1, R2 is constructed, of pairs (r1, r2), with r1, r2 ∈ P, and r1 ≤ r2.
This ordering can be constructed in the same static loop as the powerset. Starting
from the set P given above, the relation O would look like:

R1 R2

{} {}
{} {A ≥ 1}
{} {A ≥ 1, A ≥ 2}
.
{} {A ≥ n}

{A ≥ 1} {A ≥ 1}
{A ≥ 1} {A ≥ 1, A ≥ 2}

.
{A ≥ 1} {A ≥ n}

.
{A ≥ n} {A ≥ n}

Subsequently, the relation O is populated with the relation over attribute A that
consists of only one tuple, (1). This results in the following E-world relation E:

{(r1, r2, 1) | (r1, r2) ∈ O} .

Then, the following aggregation is applied: Γ
COUNT(∗)
〈R1〉

E. The result is a relation

with all tuples (r, n), where r is a region of P, and n is the number of successors of
r, given the order in O. Since the order is total, for every number i from 1 to 2n,
there is a tuple (r, i) in the answer. Finally, projecting this relation to the D-world

2Where {} represents the TRUE region.

ACM Transactions on Database Systems, Vol. V, No. N, July 2006.

Expressive Power of an Algebra For Data Mining · 29

results in: {(i) | i = 1 . . . 2n}. For this construction, only one static loop is needed.
To get the relation {(i) | i = 1 . . . N}, with N the number

. . .
n

2
2

2



















k ,

it suffices to apply the same expression k times; the first time, the relation with
numbers form 1 to 2n is generated, the second time the numbers 1 to 22n

is gener-
ated, and so on. Hence, there exists an expression with k loops that computes the
desired query.

6. RELATED WORK

Meo et al. [1996] introduce a SQL-like operator for mining association rules. Han
et al. [1996] propose a data mining query language extending SQL, which allows
various data mining tasks to be specified. In both studies, however, the mining
results cannot be explicitly manipulated. Netz et al. [2001] and Chaudhuri et al.
[2002] explore the integration of data mining and relational databases (e.g., adding
a classification capability to SQL server via the OLE-DB interface). A classifica-
tion model M can be created and later populated with different data sets to give
predictions, via the so-called prediction joins. However, other than browsing and
prediction, their framework does not provide any other operation for manipulat-
ing M . Furthermore, there is no notion of composing mining operations in their
framework.

The inductive database framework presented by Boulicaut et al. [1999] allows to
query the theory of the database. As a concrete example, a possible instantiation of
this principle in the context of frequent set mining is that there exists a virtual table
with frequent itemsets that can be queried [Boulicaut et al. 1999]. Similar in nature
is MSQL, developed by Imielinski and Virmani [1999]. However, in both studies,
there is no notion of composing mining operations. Furthermore, the mined itemsets
merely appear as syntactic objects, i.e., they are not interpreted, as opposed to the
spatial constraint objects in our framework. We are not aware of any expressibility
results of their frameworks. Geist and Sattler [2002] propose a uniform framework
for data mining based on constraint databases. However, they do not provide
generic operators capable of capturing various mining tasks, nor address expressive
power issues.

Tsur et al. [1998] explore how similar optimizations as in the apriori algorithm
can be extended and applied in the larger context of database queries. This study
results in the query flock as a generate-and-test model for data mining problems.
However, our focus is broader, as we try to integrate data mining queries into
database systems, where in [Tsur et al. 1998], the main focus is on optimizing
database queries using techniques developed in frequent itemset mining.

Studies on constraint databases such as [Paradaens et al. 1994] have clear rele-
vance to our framework. However, the relevance is solely for manipulating regions
once they are created from data by means of mining. A main contribution of our
paper is a mining algebra and constraint database algebras do not fulfill this need.

ACM Transactions on Database Systems, Vol. V, No. N, July 2006.

30 · Toon Calders et al.

Imielinski and Mannila [1996] set out a research agenda for the database and data
mining research community challenging it to come up with a framework whereby
data mining results can be treated as first-class objects and be subjected to further
manipulation, and different mining tasks can be composed. The data mining model
and algebra proposed in this paper takes a significant step in addressing the above
challenge.

Very related to the spirit of our work, are LDL++ [Wang and Zaniolo 2000]
and ATLaS [Zaniolo 2005; Law et al. 2004; Wang and Zaniolo 2003]. LDL++

and ATLaS are extensions of respectively LDL and SQL that add the ability of
defining new user defined aggregates (UDAs), making them suitable for data mining.
Especially ATLaS is very interesting with respect to our proposal, as it is also based
on the principles of relational databases and query languages. The UDAs are defined
by giving three expressions: initialize, iterate, and terminate. These expressions
are given in SQL, and can use some temporary tables to store results. The SQL
expressions in the definition of the aggregation can again, recursively, make use of
UDAs. Notice that, even though this is clearly a kind of looping construction, there
are important differences with our data mining loop; UDAs iterate over streams of
tuples, whereas our looping construction is a fixpoint loop, iteratively refining a set
of constraints.

Another difference between our model and ATLaS is that in ATLaS there is no
notion of constraints, patterns or regions. Indeed, ATLaS is a query language en-
abling data mining operations, on top of relational databases. There is, however,
no notion of an architecture such as the three worlds we propose. Hence, in ATLaS,
the results of mining have to be encoded into the relational model, and subsequent
queries of found patterns have to deal with decoding and encoding the found pat-
terns. Also, the ATLaS query language seems to be more procedurally driven,
making it less attractive for query optimization. For the expressiveness results,
in [Law et al. 2004], it was shown that ATLaS can simulate Turing machines, and
hence has similar computational and expressive power as MA. Furthermore, it was
shown how frequent itemset mining and prediction methods can be declared in AT-
LaS. There are no sub-fragments defined of ATLaS that are not Turing complete.
Nevertheless, the treatment of data mining operations as manipulations of streams
is very interesting, because it inherently implies a pipelined evaluation, avoiding
unnecessarily materializing temporary results.

Lastly, there is a huge body of literature on the expressive power of database
query languages (e.g., see [Abiteboul et al. 1995] for a survey). However, both the
proposal of a comprehensive data mining algebra and a study of expressive power
in this context, to the best of our knowledge, are novel.

7. DISCUSSION

In this section we discuss the proposed framework, and try to answer, or at least
provide some insight into, the following questions:

—Of the different proposed algebras, what’s the most appropriate foundation for
data mining, and why?

—What are the limitations of the model we propose? Are there data mining op-
erations that cannot be expressed in our model? For what kinds of data mining

ACM Transactions on Database Systems, Vol. V, No. N, July 2006.

Expressive Power of an Algebra For Data Mining · 31

operations is the model best suited?

—What are the opportunities for optimization in the model?

7.1 Appropriate Foundation for Data Mining

Given the properties on the expressive power proven in the paper, we believe that of
the proposed algebras, static MA comes closest to the desired foundation for data
mining. First of all, static MA not being Turing complete should not be considered
a problem. The main reason why a Turing complete language is less interesting is
optimization; optimizing a query language becomes typically more difficult as the
expressive power increases. Therefore, the most interesting situation is to have a
query language that can express exactly the intended class of queries, and nothing
more. Clearly, a Turing complete language is not desirable in this perspective, as
it represents the complete opposite. “Too powerful” is also a problem as one of the
goals of our research is to learn about the true nature of data mining. Ideally, the
algebraic operations reflect common building blocks of data mining algorithms. A
Turing complete language won’t give us a lot of insight in this matter.

On the other hand, a non-Turing complete language cannot express all queries.
We hypothesize, however, that static MA still includes the practical relevant data
mining queries. Unfortunately, it is impossible to justify this thesis, as there does
not exist a generally accepted notion of what is a data mining query. We can,
however, give some more intuition on why we believe static MA does not lose
too many interesting queries. The true difference between static MA and the
Turing complete MA is that in static MA, no new constraints can be created
inside a mining loop. As the mining loop iteratively refines sets of constraints,
this restriction, in some sense, corresponds to first fixing the search space (i.e.,
constructing all needed constraints), and then locating desired regions in this space.
Hence, intuitively, static MA is able to express exactly those queries that ask for
all elements in a predefined search-space. This condition seems to be fulfilled for
many data mining algorithms; often, mining consists of locating one, some, or all,
suitable patterns of a certain fixed pattern type. E.g., in decision tree construction,
the search space is limited to the set of decision trees, where the splitting conditions
have a predefined format. Similarly, in itemset mining, the itemsets are known in
advance. In K-medoids clustering, the potential clusterings are defined by the
possible mid-points of the clusters, and so on.

We don’t see this paper as the last word on what is mining or even what is the
most appropriate algebra for mining. Instead, we see this as the first work that
points the right direction and the right kind of framework in which such fundamental
questions can be rigorously studied. In this perspective, it is also worth remarking
that it is not necessary that every (efficient) algorithm someone comes up with
for a given operation (e.g., frequent set computation) be expressible in an algebra.
This is not the main purpose of an algebra. Instead, what is important is that the
algebra covers what are considered to be the core set of operations. It should be
expressive and at the same time flexible enough to allow various alternate efficient
realizations.

ACM Transactions on Database Systems, Vol. V, No. N, July 2006.

32 · Toon Calders et al.

7.2 Limitations of the Algebra

The most important limitation of the algebra is in the I-world, where we restrict the
regions to be expressible as sets of linear inequalities. This limitation means that
the results of some data mining operations might not be expressible, as they require
more complex mathematical objects. Straightforward examples are, e.g., non-linear
regression methods, support vector machines, and clustering methods resulting in
non-linear regions, etc. Notice, however, that for these applications the nature of
the results remains the same. For example, for clustering, the goal is to generate
groups of similar objects that can be described succinctly, as to summarize the
database. These succinct descriptions of clusters, in many cases, can be constraints
describing the region of the cluster. E.g., for the K-means clustering algorithm, a
cluster with center c is the set of points p for which the following constraints hold:
for all other centers of clusters c′, the distance between p and c is smaller than or
equal to the distance between p and c′. Unfortunately, unless the L1-norm is being
used, this constraint is non-linear.

Therefore, the description of the output of some data mining tasks requires more
sophisticated constraints than the ones used in the paper. Nevertheless, in most
cases, the theoretical results presented in the paper still hold when more sophis-
ticated constraints are used, because the interpretation of the regions does not
change. For example, when the constraints are extended to include polynomial
inequalities instead of linear inequalities, only the proof of the equality of loop-free
MA and DA requires some work. Nevertheless, similar techniques can be used to
show that elimination methods as used in the linear case still obtain. From a de-
scription point of view, such extensions to ease the expression of data mining tasks
requiring sophisticated constraints is an interesting direction for further work. In
this paper, however, for reasons of simplicity, we have opted to restrict to linear
constraints.

7.3 Optimization Opportunities

In the algebraic framework we propose, we see many opportunities for optimization.
First of all, a large part of the data mining algebra is the (nested) relational algebra.
Obviously, we can use currently existing optimization techniques for the nested
relational algebra for this sub-fragment. There are, however, also optimizations
possible that are specially aimed at the mining operators:

(1) For the data mining loop operation, loop fusion techniques [Kennedy and
McKinley 1994] might be appropriate, especially when, in practical systems,
macros and other “syntactic sugar” is used. For example, suppose that in the
context of frequent itemset mining, a user is interested in all itemsets frequent
in one relation and infrequent in another one. This user might write this query
in the following, declarative, way. First, two mining loops are written, similar
to the frequent itemset example given in Section 4.3, one to find all itemsets
frequent in the first relation, and one to find all frequent itemsets in the second
relation. Then, the final answer is found by taking the difference of the two
sets. In this construction, however, in practice it will be far more interesting to
fuse the two mining loops into one loop, especially when the number of frequent
sets in the first relation is rather small compared to the second relation. Such

ACM Transactions on Database Systems, Vol. V, No. N, July 2006.

Expressive Power of an Algebra For Data Mining · 33

situations, where two or more similar mining queries are used, might be quite
common, especially in practical systems where often a graphical interface that
is between the user and the database system constructs the queries.

(2) For the I-world, spatial indexing techniques such as R-trees [Guttman 1984],
can help answering topological queries on regions, such as, e.g., give all regions
that are maximal. Even though from an expressivity viewpoint such a physical
operator is not necessary, some topological queries might turn out to be so
prevalent, that a specialized, physically optimized operator is justified; e.g.,
queries asking for the most specific or most general patterns in a relation might
turn out to be very common in data mining operations.

(3) For the populate operation, it is important to be able to quickly locate all
regions containing a certain point, and to enumerate all points that fall in a
given region. Another consideration is that the result of a populate operation
can be very large. Because the constraints that need to be populated by the
data are in fact composed of a limited set of basic constraints, techniques
from frequent itemset mining will be appropriate in this context. There is
a straightforward mapping; if basic constraints are considered as items, the
regions can be considered as itemsets. Thus, the storage and querying of regions
can be very similar as for itemsets.
Another example of the usefulness of frequent itemset mining techniques is the
following: it is not always possible to fully materialize the result of a populate
operation, because, in fact, a populate operation implies a join between a rela-
tion from the D-world, and a relation in the I-world containing regions. If the
goal is, e.g., to count the number of tuples per region, optimizations might in-
clude techniques such as condensed representations for frequent itemsets, that
only store non-redundant frequency information from which other frequencies
can be derived [Mannila and Toivonen 1996; Calders et al. 2006]. Also efficient
counting mechanisms like, e.g., FP-trees [Han et al. 2000], can be useful in this
respect.

(4) Another technique that might be applicable is that of performing aggregation
on streaming data. Using this we can avoid having to first fully materialize
the results of a populate operation and can instead aggregate the data being
populated, on the fly. Notice that this optimization is very much related to the
evaluation of queries in ATLaS [Law et al. 2004].

8. CONCLUSION

In this paper, we present an algebraic foundation for understanding the integration
of data mining and relational systems. We propose a data mining algebra that
includes two generic operators regionize and mining loop. We analyze the expressive
power of our mining algebra, for different combinations of operators.

More concretely, we show the following results. For the relation between regionize
and looping, it turns out that on the one hand, when regionize is permitted inside
the mining loop, the language is too powerful for data mining, i.e., computationally
complete. On the other hand, when a mining loop is not allowed, the resulting
language DA becomes too restricted, i.e., it has the same expressive power as the
nested relational algebra with aggregation and arithmetic. A more interesting sit-

ACM Transactions on Database Systems, Vol. V, No. N, July 2006.

34 · Toon Calders et al.

uation is when both regionize and loop are allowed, but regionize is only allowed
to appear outside of a mining loop. The sub-language of MA satisfying this con-
straint is called static MA. For the expressiveness, it is shown that static MA
is less expressive than MA, but is still powerful enough to express mining queries
such as frequent itemset mining and decision trees. Besides, the algebra provides a
natural mechanism for composing mining tasks.

We also compare our approach with alternative frameworks. The most straight-
forward alternative framework is to add mining operations such as frequent itemset
computation as a “black box” operator. The resulting algebraic framework is de-
noted MAFI . However, we show that this alternative is strictly less expressive
than static MA. Hence, we get a hierarchy of languages which can be summarized
as follows:

DA ≡ loop-free MA < MAFI
< static MA < MA

In particular, MA is too powerful, in that it is Turing complete. At the other
extreme, loop-free MA is too weak: it is no more expressive than DA. Static MA
is less expressive than MA, although it is strictly more expressive than MAFI .
The latter cannot express decision trees, e.g., while static MA can.

In future work, we will compare static MA with other black box mining oper-
ator extensions, such as a decision tree operator. We will evaluate whether static
MA is more expressive than these alternatives. If true, this paves the way for
understanding the true nature of integration, as well as for developing unified op-
timization strategies. Another important direction is to evaluate expressiveness
based on D→X mining queries, where X is I or E. Finally, it would be interesting
to pursue the optimization opportunities in the model proposed here.

APPENDIX

A. EXTENDED LOOP

In this appendix we show that the simple loop construction λExpr (Seed) is powerful
enough to express more complicated types of loops. Formally, we will rewrite the
following type of loop as a simple loop.

S1 := Seed1;
. . .

Sn := Seedn;
While(C1θC2) loop

R1 := Expr1 ;
. . .

Rm := Exprm ;
End loop

Return Ret;

In this loop construction, Seed1, . . . , Seedn are I-world relations or expressions,
and Expr1, . . . , Exprm, and Ret are algebra expressions that return an I-world
relation. S1, . . . , Sn, and R1, . . . , Rm are dedicated symbols that denote variables.
With every variable a fixed schema is associated. C1 and C2 are algebra expressions
that return relations over the same schema. θ is one of =, 6=, ⊆. The variables

ACM Transactions on Database Systems, Vol. V, No. N, July 2006.

Expressive Power of an Algebra For Data Mining · 35

R1, . . . , Rm, and S1, . . .Sn can be used in the expressions as if they were regular
I-world relations.

The rewriting of the extended loop construction into a simple loop will be done
in four steps:

(1) The variables Si and Rj will be replaced by one single variable X ;

(2) The group of n assignments before the loop and the group of m assignments
inside the loop are both replaced by only one assignment;

(3) The looping condition C1θC2 is replaced by the simple construction ∆X ;

(4) The expression Ret in the return clause is replaced with X .

After these four steps have been completed, the resulting loop is an equivalent,
simple loop.

Removing multiple variables. Let S1
i , . . . , Ski

i be the attributes of the rela-

tion Si, for i = 1 . . . n, and let R1
j , . . . , R

lj
j be the attributes of the relation Rj ,

for j = 1 . . . m. Let a be the maximal arity of the Si’s and Rj ’s. That is,
a = max({ki | i = 1 . . . n} ∪ {lj | j = 1 . . . m}). We will replace all variables
Si and Rj by one variable X of arity a + 1, over the schema {ID , X1 . . . , Xa}.
Every tuple of the Si’s and Rj ’s will be represented as a tuple of X . The variables
X1, . . . , Xa will be used to store the tuple, and the attribute ID is used to link the
tuples in X to the correct variable among the Si’s and Rj ’s. For this purpose, the
constants {V ar = i} will be used to denote that the tuple corresponds to the i-th
variable in the list S1, . . . ,Sn,R1, . . . ,Rm. These constants {V ar = i} can easily
be constructed with our data mining algebra, with the expression

Vi =def κV ar=i as ID D ,

with D an arbitrary D-world relation. Notice that not all variables have the same
arity a. Hence, we need a special constant to pad the tuples in X representing
a tuple of arity less than a. Let {X = 0} be this special value, and denote the
expression κX=0 as Xi

D generating the relation over schema {Xi} with only one
tuple ({X = 0}) by Ni (N of “Null”).

Example 11. Suppose that there are two variables: R with schema {R1, R2} and
S with schema {S1}. Then, a is 2, and the variable X will have schema {ID, X1, X2}.
Suppose that the variable R and S are instantiated as follows:

R =
R1 R2

{A = 1} {}
{A = 1} {B = 1}

S =
S1

{A = 1, B = 1}

This situation corresponds to the following instantiation for the variable X :

ID X1 X2
{Var = 1} {A = 1} {}
{Var = 1} {A = 1} {B = 1}
{Var = 2} {A = 1, B = 1} {X = 0}

The tuples in X representing the tuples of Si are now constructed by the following
expression Encodei(Ri): Vi × ρ

S1
i
→X1,...,S

ki
i
→Xki

Si × Nki+1 × . . . × Na. A similar

ACM Transactions on Database Systems, Vol. V, No. N, July 2006.

36 · Toon Calders et al.

construction is used for the Rj ’s. For the other direction, that is, from X to Si,
the following expression Extracti(Si) can be used:

ρ
X1→S1

i
,...,Xki

→S
ki
i

πX1,...,Xki
σID={V ar=i}X

Again, a similar construction applies for the Rj ’s.
With the expressions Encode(·) and Extract(·), we can replace all variables Si,

Rj by the variable X . Indeed, on the one hand, every occurrence of Si’s and Rj ’s
can be replaced with Extract-expressions that are only based on X . On the other
hand, assignment of the form Si := Expr can be replaced by

X := σID 6={V ar=i}X ∪ Encodei(Expr) .

Removing Multiple Assignments After the removal of multiple variables, the
rewritten loop has the following form:

X := Seed1;
. . .

X := Seedn;
While(C1θC2) loop

X := Expr1 ;
. . .

X := Exprm ;
End loop

Return Ret;

It is easy to see that both the block of n assignments before the loop and the
block of m assignments inside the loop can be rewritten into a single assignment
statement. We illustrate the construction for the n assignments before the loop.
Let Seedj [Expr/X] denote the expression Seedj in which every occurrence of X
is substituted by the expression Expr. We recursively define SExpri as follows:
SExpr1 = Seed1, and for all i = 2 . . . n, SExpri equals Seedi[SExpri−1/X]. Thus,
we get SExpr2 by filling in the expression Seed1 in Seed2. Hence, the assignment
X := SExpr2 will result in the same instantiations for X as the sequence of assign-
ments X := Seed1;X := Seed2. By induction, we can show that the sequence of
the first i assignments is equivalent to X := SExpri. Therefore, the n assignments
can be replaced by the single assignment X := SExprn.

For the assignments within the loop, a similar procedure can be applied to replace
them by one expression. Hence, after this rewriting step, the loop looks like:

X := Seed;
While(C1θC2) loop

X := Expr ;
End loop

Return Ret;

Replacing C1θC2 with ∆X For replacing the looping condition, we need a
special operator: the “if-then-else”. This operator has the following form:

If (C1θC2) Then Expr1 Else Expr2 Endif

ACM Transactions on Database Systems, Vol. V, No. N, July 2006.

Expressive Power of an Algebra For Data Mining · 37

The semantic of this construction is as follows: if the condition (C1θC2) evaluates
to true, the result of the complete expression is the result of Expr1, else the result
is that of Expr2. We now show that this operator can be expressed in the algebra.
First of all: we rewrite C1 ⊆ C2 as C1 \ C2 = {}; C1 = C2 as (C1 \ C2) ∪ (C2 \
C1) = {}, and C1 6= C2 is first rewritten as C1 = C2 and switching the “then”
and “else” expressions of the if, and subsequently the equality is rewritten. In
this way, we can always get a condition of the form C = {}. Let {R1, . . . , Rk}
be the schema of the relations returned by Expr1 and Expr2. We rewrite the
expression if (C = {}) then Expr1 else Expr2 as (Expr1\(πR1,...,Rk

(C×Expr1)))∪
(πR1,...,Rk

(C ×Expr2)). The equivalence of these two expressions is due to the fact
that πR1,...,Rk

C × Expr1 is always Expr1, except in the case that C evaluates to
the empty relation, then this expression is empty. Therefore, Expr1 \ (πR1,...,Rk

C×
Expr1) is empty if C is not, and is Expr1 if C is empty. Similarly, πR1,...,Rk

C ×
Expr2 is empty if C is, and is Expr2 if C is not empty. Hence, the complete
expression evaluates to Expr1 if C is empty, and to Expr2 if C is not empty.
Therefore, we can express an if-construction in our algebra.

We will assume in our construction that the value of X changes, as long as
the condition C1θC2 is satisfied. This assumption can easily be made true without
changing the result of the loop; indeed, in the original extended loop (that is, before
we removed multiple variables), we can add a dummy variable D over schema {X1},
that is instantiated to N1 before the loop. Furthermore, we add D := N1 \D inside
the loop. In this way, the value of D will iterate between N1 and the empty
relation, and thus never become stable. The result of the loop is not affected by
this dummy variable. However, the dummy variable makes sure that the value the
unique variable X after the removal of the multiple variables, will always change
between two loop iterations. The reason for this rather technical requirement will
become clear after the definition of the rewriting of the looping condition.

With the if-construction we have a tool to replace the condition C1θC2 by ∆X
as follows:

X := Seed;
While(∆X) loop

X :=
(If (C1θC2) Then

Expr
Else

X
End if);

End loop

Return Ret;

Since we assumed that the value of X changes as long as the condition C1θC2 is
satisfied, X remains the same between two iterations if and only if C1θC2 does no
longer hold. In that case the Else-branch of the If-operator is chosen, resulting in
the assignment X := X , thus leaving X unchanged, which results in an exit of the
loop. Therefore, the result of the loop remains the same. Notice that the rewriting
did not change the number of assignments within the loop; the if-structure is one
expression.

ACM Transactions on Database Systems, Vol. V, No. N, July 2006.

38 · Toon Calders et al.

Replacing Ret by X This is far the most easy rewriting; instead of returning the
expression Ret, we let the loop return X , and evaluate the expression Ret outside,
on the result of the simple loop.

B. MAFI CAN ACCEPT EXPSPACE LANGUAGES

Let L be a language over the alphabet {0, 1} in SPACE(2n), but not in PSPACE.
We will reduce deciding L to the non-emptiness problem of an expression in MA.
For a string x ∈ {0, 1}∗, construct the following relation R(Nr, Bit): R consists of
the tuples (i, x[i]), 1 ≤ i ≤ |x|. Since L ∈ SPACE(2n), there exists a deterministic
Turing machine M that decides L using at most 2|x| space on input x. We assume
without loss of generality that M only uses the symbols “0”, “1” and blanco on its
tapes. We will simulate the working of M in the I-world. We first show how we
can encode the tape in the I-world, then how to move the input to the I-world and
finally how to simulate the finite control of M .

Work tape We will simulate the work tape with two I-world relations T0(Reg)
and T1(Reg). First we generate 2n regions as follows: for each Nr-value in R, we
generate a constraint: C := πRegκNr≤val(Nr)πNrR. Notice that because of the use of ≤
in the template, the order ≤ on the Nr-values carries over to S via →. Thereafter we
generate all subsets of C. In this way we have generated 2n sets. Furthermore, we
can carry over the total order on πNrR to S as follows: a region reg1 comes before
reg2 if either reg1 ⊂ reg2 or reg1 and reg2 are incomparable w.r.t. ⊂ and the
smallest constraint (w.r.t. ≺) in reg1 − reg2 comes before the smallest constraint
in reg2 − reg1. This order is well-defined. In fact, if we consider a region as a
binary number in which bit i is 1 iff the ith constraint in C is in Reg, this order
coincides with the natural order on the numbers. For convenience we materialize
the successor table SUCC(Reg1, Reg2) among the regions in S. It is clear that this
table can be constructed with I-world algebra. The work tape is encoded as follows:
the i-th symbol si on the tape is captured by the i-th region ri in the order on S;
si is blanco iff ri is not in T0 or T1; si is 0 iff ri is in T0; si is 1 iff ri is in T1. Move

the input to the I-world We select two sets of Nr-values in R: the ones that
index a 0, and the ones that index a 1.

ONE := κNr≤val(Nr)(σBit=1R)

ZERO is defined similarly. We then put the input on the tape with a loop that
iteratively picks the smallest region w.r.t. ≺ in ONE ∪ ZERO, and puts it on
the tape. Finite Control We assume that M has k states. Since the simulation
depends on M , we can treat k as a constant. We generate the set {0, . . . , k − 1} as
follows.

States(0) := Γ
COUNT (∗) as State
< > (R − R)

States(n) :=
(

Γ
COUNT (∗) as State
< > States(n − 1)

)

∪ States(n − 1)

The set of states then becomes States(k − 1). We use κState≤val(State) to get the
states in the I-world. Again we make use of ≺ to maintain the order in the I-world.
This order makes it possible to write expressions that select the i-th state. We will
during simulation store the state in the I-relation ST AT E . The tape-head is stored
in HEAD. The tape head is on the i-th symbol if HEAD contains the i-th region

ACM Transactions on Database Systems, Vol. V, No. N, July 2006.

Expressive Power of an Algebra For Data Mining · 39

in the order. It is easy to see that with the if-then-else type of expressions we can
simulate a single step of M . Finally, we write a loop that will compute one step
per iteration until we reach the accept or reject state. Depending on the state we
will then return R or the empty relation.

C. SOLVING SYSTEMS OF INEQUALITIES IN DA

Let R(A1, . . . , An, B) be a relation over rational numbers. The tuple (a1, . . . , an, b)
of R expresses the linear inequality a1x1 + a2x2 + . . . + anxn ≤ b. We will show
an expression SAT (R) in the relational algebra that decides whether the system
represented by R is satisfiable.

For solving the satisfiability problem, we will iteratively eliminate variables xi,
using the elimination method of Fourier and Motzkin [Murty 1983; Dantzig 1963].
We will illustrate the elimination method with an example. Consider the following
relation together with the system of inequalities represented by it.

A1 A2 A3 A4 A5 B
1 3 0 0 0 5
1 0 0 1 −7 3
−1 0 1 0 0 5
0 0 1 0 1 4

x1 + 3x2 ≤ 5
x1 + x4 − 7x5 ≤ 3

−x1 + x3 ≤ 5
x3 + x5 ≤ 4

We will rewrite this system into an equivalent system without x1. This goes as
follows: in all inequalities, x1 can be isolated. That is, for x1 + x4 − 7x5 ≤ 3,
we get: x1 ≤ 3 − x4 + 7x5, and for −x1 + x3 ≤ 5, we get x1 ≥ x3 − 5, when we
isolate x1. In this way, we get lower and upper bounds on x1. It is easy to see that
{x1 ≤ 3−x4+7x5, x1 ≥ x3−5} has a solution if and only if there exist x2, x3, x4, x5

such that x3 − 5 ≤ 3− x4 + 7x5, or equivalently, x3 + x4 − 7x5 ≤ 8, has a solution.
The Fourier-Motzkin elimination method is now based on making this combination
for every lower and upper bound. Hence, for the given system, we get all lower
bounds L on x1, by selecting those tuples t in R with t.A1 < 0, and all upper
bounds U by selecting those with t.A1 > 0. Combining all lower bounds with all
upper bounds, can be done by taking the Cartesian product, and then applying the
appropriate mathematical operations. The new system without x1 is then found
by unioning together all tuples of R in which A1 was 0 with the newly constructed
inequalities. In this case, this expression (broken down into subexpressions) is:

L = σA1<0 R

U = σA1>0 R

N = ρA1→A′

1,...,A5→A′

5,B→B′L × ρA1→A′′

1 ,...,A5→A′′

5 ,B→B′′ U

I = Calc(A′′

1 ·A
′

2−A′

1·A
′′

2) as A2,...,(A′′

1 ·B
′−A′

1·B
′′) as B N

R′ = πA2,...,A5,B(σA1=0R ∪ I)

So, for our example, the resulting relation and system of inequalities are:

A2 A3 A4 A5 B
3 1 0 0 10
0 1 1 −7 8
0 1 0 1 4

3x2 + x3 ≤ 10
x3 + x4 − 7x5 ≤ 8

x3 + x5 ≤ 4

ACM Transactions on Database Systems, Vol. V, No. N, July 2006.

40 · Toon Calders et al.

This new system does no longer contain variable x1, and has a solution if and only
if the original system has one.

In this way, we can eliminate the variables one by one with one large relational
algebra expression. Finally, when all variables are eliminated, a relation S with
only the column B is left, with the tuples (b) representing the inequalities 0 ≤ b.
Obviously, this system is satisfiable if there is no tuple (b) in S with b < 0; that is;
when σB<0 S is empty.

D. TC IS IN MAFI

Let D(A,B) be a relation in the D-world, and A and B have domain U . The result
of TC on D is the transitive closure of D; i.e., TC(D) contains (a, b) if and only if
there exist tuples (a, x1), (x1, x2), . . . , (xk, b) in D.

In the construction of the TC query, we will represent an edge (a, b) as a constraint
({(a, b)}) ∈ {{A,B}} in the I-world. We will use the frequent set operator FI with
support threshold 1 to construct all subsets of edges in D. Then, those subsets of
edges are selected that fulfil the following path conditions:

—No two edges have the same start node;

—No two edges have the same end node;

—There exists exactly one node s that has an outgoing edge in the set, but no
incoming edge; we call this node s the starting node;

—There exists exactly one node e that has an incoming edge in the set, but no
outgoing edge; we will call this node e the ending node.

If a set of edges fulfils these conditions, then there exists a path from s to e. This
can easily be shown by induction on the number of edges in the set of edges S.
For |S| = 1, there is trivially a path between s and e; namely, the one edge in S
connects them. In general, let s′ be the node such that (s, s′) is the unique outgoing
edge from s in S. Then, S \ {(s, s′)} again fulfils the conditions, with as starting
and ending nodes respectively the nodes s′ and e. By induction there must exist
a path between s′ and e. Therefore, there is a path between s and e, namely, the
edge (s, s′) followed by the path from s′ to e.

Notice that the other direction holds as well; if there exists a path between
two nodes s and e, then this path is a set of edges fulfilling the above conditions.
Therefore, the edges in the transitive closure of D are exactly those pairs (s, e) such
that there exists a set of edges of D fulfilling the above conditions and having s
and e as starting and ending nodes respectively.

To illustrate the construction of the expression for the transitive closure, we will
use the following example database: D = {(a, b), (a, c), (b, c), (c, d)}. The transitive
closure TC(D) of this relation is {(a, b), (a, c), (a, d), (b, c), (b, d), (c, d)}.

D.1 Constructing the sets of edges

We will nest the relation D twice; once to form the pairs {(a, b)}, and the second
time to form a relation with one tuple over the schema with one attribute {{A,B}}
representing one large transaction {({(a, b)}), ({(a, c)}), ({(b, c)}), ({(c, d)})}. The
expression to form this transaction database TDB is the following:

Nest{A,B}π{A,B}NestA,B σA=A′,B=B′(ρA→A′,B→B′D × D)

ACM Transactions on Database Systems, Vol. V, No. N, July 2006.

Expressive Power of an Algebra For Data Mining · 41

We then apply the frequent itemset operator with threshold 1 to this transaction
database: FI(TDB, 1) to get the relation Sets in the I-world. To make the nota-
tions less heavy, we denote the constraint {(a, b)} ∈ {{A,B}} with [a, b]. With this
notation, the relation Sets becomes:

Set

{}
{[a, b]}
{[a, c]}

. . .
{[c, d]}

{[a, b], [a, c]}
. . .

{[a, b], [a, c], . . . , [c, d]}

D.2 Selecting the sets representing paths

Because it is impossible to unnest the pairs representing the edges in the I-world,
it is not easy to select those sets that meet the path conditions. In order to express
these conditions, we first construct a helper relation. To make the notations less
heavy, we introduce the following notations: [a, ∗] will denote the region consisting
of all constraints [a, x], with x any other vertex. E.g., in the running example,
[a, ∗] denotes the region:

{

[a, a], [a, b], [a, c], [a, d]
}

. Similarly, [∗, a] will denote the
region consisting of all constraints [x, a], with x any other vertex. In the running
example, [∗, a] denotes

{

[a, a], [b, a], [c, a], [d, a]
}

. Finally, [a] will denote the set of
constraints [x, y] with x or y equal to a, and the other variable any other vertex.
That is, in the running example, [a] is: {[a, a], [a, b], [a, c], [a, d], [b, a], [c, a], [d, a]}.

We give an expression that constructs the following relation Edges in the I-world:

{([x], [x, ∗], [∗, x]) | x is a vertex}

That is, for every vertex x in our original relation D, Edges will contain a tuple
([x], [x, ∗], [∗, x]). We will first construct three relations, holding respectively ([x])
for all x, ([x, ∗]) for all x, and ([∗, x]) for all x. Then, Edges is formed by taking
the Cartesian product, and exploiting the quality [x] = [x, ∗] ∪ [∗, x].

Forming [x, ∗], [∗, x], and [x] First we select all vertices:

V := πA D ∪ πB as A D

In our running example, V is {(a), (b), (c), (d)}. Then, all possible pairs are formed,

P := π{{A,B}}Nest{A,B}πA′,{A,B}NestA,B

σA′=A,B′=B(ρA as A′ V × ρA as B′ V × V × ρA as B V)

For our running example, this expression gives:

{{A, B}}
{ {(a, a)}, {(a, b)}, {(a, c)}, {(a, d)} }
{ {(b, a)}, {(b, b)}, {(b, c)}, {(b, d)} }
{ {(c, a)}, {(c, b)}, {(c, c)}, {(c, d)} }
{ {(d, a)}, {(d, b)}, {(d, c)}, {(d, d)} }

ACM Transactions on Database Systems, Vol. V, No. N, July 2006.

42 · Toon Calders et al.

Subsequently, we use the frequent set mining operator with threshold 1 to form all
subsets of the tuples in P . From these subsets we only keep the maximal ones, thus
effectively selecting the sets [x, ∗]:

FI(P, 1) − πRegσReg′≺Reg(FI(P, 1) × ρReg→Reg′FI(P, 1))

That is, we select those itemsets S such that there does not exist another itemset
S′ with S′ ≺ S. Hence, we select the maximal itemsets.

The relations for [x] and [∗, x] can be constructed in a similar way.
Combining [x, ∗], [∗, x], and [x] We now combine the relations for [x, ∗], [∗, x],

and [x] into one relation, by taking the Cartesian product, and selecting those
tuples ([x], [y, ∗], [∗, z]) with [x] = [y, ∗]∪ [∗, z]. In this way we only keep the tuples
with x = y = z. This selection can be expressed using the Union introduced in
Section 4.3. This concludes the construction of Edges.

Selecting the sets that fulfil the path conditions We will use the helper
relation Edges to construct the relation SE over schema {Set, Starting,Ending}:
for every tuple ({[x1, y1], . . . , [xn, yn]}), SE will contain for i = 1 . . . n, the tu-
ples ({[x1, y1], . . . , [xn, yn]}, [xi], [yi]). Now it is straightforward to select those sets
({[x1, y1], . . . , [xn, yn]}) that fulfil the path conditions. For example, selecting those
sets that violate the condition that no two edges can share a starting node is done
as follows:

σSet=Set′,Start=Start′,End6=End′(SE × ρSet→Set′,Start→Start′,End→End′SE)

For each of the valid sets we can select the starting nodes as follows:

πSet,Start as Node − πSet,End as NodeSE

In a similar way we can select the ending node. Based on these starting and
ending nodes, and the relation Edges, we can construct the relation that consists
of the tuples (S, {[x, y]}), with S a valid set, and x the starting node, and y the
ending node. Notice that {[x, y]} can be constructed using the equality {[x, y]} =
[x, ∗] ∩ [∗, y]. By projecting on the edges, we get the transitive closure T C in the
I-world. Via a populate, and a projection on the D-world attributes, we get the
transitive closure in the D-world: Unnest{{A,B}}πAPop(T C, Pairs), where Pairs
is the D-world relation holding all pairs of elements in D.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Li-
brary by visiting the following URL: http://www.acm.org/pubs/citations/

journals/tods/2006-V-N/p1-URLend.

REFERENCES

Abiteboul, S. and Hillebrand, G. G. 1995. Space usage in functional query languages. In Proc.

ICDT Int. Conf. Database Theory, G. Gottlob and M. Vardi, Eds. Lecture Notes in Computer

Science, vol. 893. Springer-Verlag, London, UK, 439–454.

Abiteboul, S., Hull, R., and Vianu, V. 1995. Foundations of Databases. Addison-Wesley,

Reading, MA.

Agrawal, A. and Srikant, R. 1994. Fast algorithms for mining association rules. In Proc.

VLDB Int. Conf. Very Large Data Bases. Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA, 487–499.

ACM Transactions on Database Systems, Vol. V, No. N, July 2006.

Expressive Power of an Algebra For Data Mining · 43

Agrawal, R., Imielinski, T., and Swami, A. 1993. Mining association rules between sets of items

in large databases. In Proc. ACM SIGMOD Int. Conf. Management of Data. ACM Press, New

York, NY, USA, 207–216.

Boulicaut, J.-F., Klemettinen, M., and Mannila, H. 1999. Modeling KDD processes within
the inductive database framework. In Proc. DaWaK Int. Conf. Data Warehousing and Knowl-

edge Discovery. Lecture Notes in Computer Science, vol. 1676. Springer-Verlag, London, UK,

293–302.

Breiman, L., Friedman, J., Olshen, R., and Stone, C. 1984. Classification and Regression

Trees. Wadsworth, Belmont, CA.

Calders, T., Rigotti, C., and Boulicaut, J.-F. 2006. A survey on condensed representations for

frequent sets. In Constraint-based mining and inductive databases, J.-F. Boulicaut, L. de Raedt,

and H. Mannila, Eds. LNCS, vol. 3848. Springer-Verlag, London, UK.

Chaudhuri, S., Narasayya, V. R., and Sarawagi, S. 2002. Efficient evaluation of queries with

mining predicates. In ICDEproc. IEEE Computer Society, San Jose, CA, 529–540.

Consens, P. and Mendelzon, A. 1993. Low complexity aggregation in graphlog and datalog.

Theoretical Computer Science 116, 1& 2, 95–116.

Dantzig, G. 1963. Linear Programming and Extensions. Princeton University Press, Princeton,

NJ.

Garey, M. and Johnson, D. S. 1979. Computer and Intractability: A Guide to NP-Completeness.
W. H. Freeman, New York.

Geist, I. and Sattler, K. 2002. Towards data mining operators in database systems: Algebra and
implementation. In Proceedings DBFusion International Workshop on Databases, Documents,

and Information Fusion. Vol. 124. CEUR-WS, Karlsruhe, Germany.

Guttman, A. 1984. R-trees: a dynamic index structure for spatial searching. In Proc. ACM

SIGMOD Int. Conf. Management of Data. ACM Press, New York, NY, USA, 47–57.

Han, J., Fu, Y., Wang, W., Koperski, K., and Zaiane, O. 1996. DMQL: A data mining query
language for relational databases. In Proc. ACM SIGMOD Int. Conf. Management of Data.

ACM Press, New York, NY, USA, 27–33.

Han, J., Pei, J., and Yin, Y. 2000. Mining frequent patterns without candidate generation. In
Proc. ACM SIGMOD Int. Conf. Management of Data, W. Chen, J. Naughton, and P. Bern-
stein, Eds. ACM Press, New York, NY, USA, 1–12.

Hand, D., Mannila, H., and Smyth, P. 2001. Principles of Data Mining. MIT Press, Cambridge,
MA.

Imielinski, T. and Mannila, H. 1996. A database perspective on knowledge discovery. Comm.

of the ACM 39, 11, 58–64.

Imielinski, T. and Virmani, A. 1999. MSQL: A query language for database mining. Knowledge

Discovery and Data Mining 3, 4, 373–408.

Johnson, T., Lakshmanan, L. V., and Ng, R. 2000. The 3w model and algebra for unified data

mining. In Proc. VLDB Int. Conf. Very Large Data Bases. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 21–32.

Kennedy, K. and McKinley, K. S. 1994. Maximizing loop parallelism and improving data
locality via loop fusion and distribution. In Proceedings of the 6th International Workshop on

Languages and Compilers for Parallel Computing. Springer-Verlag, London, UK, 301–320.

Law, Y.-N., Wang, H., and Zaniolo, C. 2004. Query languages and data models for database

sequences and data streams. In Proc. VLDB Int. Conf. Very Large Data Bases. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 492–503.

Libkin, L. and Wong, L. 1997. On the power of aggregation in relational query languages. In

Proc. DBPL Workshop on Databases and Programming Languages. Lecture Notes in Computer

Science, vol. 1369. Springer-Verlag, London, UK, 260–280.

Mannila, H. and Toivonen, H. 1996. Multiple uses of frequent sets and condensed representa-

tions. In Proc. KDD Int. Conf. Knowledge Discovery in Databases. ACM Press, New York,

NY, USA.

ACM Transactions on Database Systems, Vol. V, No. N, July 2006.

44 · Toon Calders et al.

Meo, R., Psaila, G., and Ceri, S. 1996. A new sql-like operator for mining association rules.

In Proc. VLDB Int. Conf. Very Large Data Bases. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 122–133.

Murty, K. G. 1983. Linear Programming. John Wiley & Sons, New York.

Netz, A., Chaudhuri, S., Fayyad, U. M., and Bernhardt, J. 2001. Integrating data mining with

sql databases: Ole db for data mining. In Proc. IEEE ICDE Int. Conf. on Data Engineering.

IEEE Computer Society, Washington, DC, USA, 379–387.

Paradaens, J., Van den Bussche, J., and Van Gucht, D. 1994. Towards a theory of spatial

database queries. In Proc. PODS Int. Conf. Principles of Database Systems. ACM Press, New

York, NY, USA, 279–288.

Paradaens, J. and Van Gucht, D. 1998. Possibilities and limitations of using flat operators in

nested algebra expressions. In Proc. PODS Int. Conf. Principles of Database Systems. ACM

Press, New York, NY, USA, 29–38.

Sarawagi, S., Thomas, S., and Agrawal, R. 1998. Integrating association rule mining with

relational database systems: Alternatives and implications. In Proc. ACM SIGMOD Int. Conf.

Management of Data. ACM Press, New York, NY, USA, 343–354.

Tsur, D., Ullman, J. D., Abiteboul, S., Clifton, C., Motwani, R., Nestorov, S., and Rosen-

thal, A. 1998. Query flocks: a generalization of association-rule mining. In Proc. ACM SIG-

MOD Int. Conf. Management of Data. ACM Press, New York, NY, USA, 1–12.

Van den Bussche, J. 2001. Simulation of the nested relational algebra by the flat relational
algebra, with an application to the complexity of evaluating powerset algebra expressions.
Theoretical Computer Science 254, 1-2, 363–377.

Wang, H. and Zaniolo, C. 2000. Nonmonotonic reasoning in LDL++. In Logic-Based Artificial

Intelligence, J. Minker, Ed. Kluwer Academic Publishers, Dordrecht, 523–544.

Wang, H. and Zaniolo, C. 2003. ATLaS: A native extension of sql for data mining. In Proceedings

of the Third SIAM International Conference on Data Mining. SIAM, US.

Zaniolo, C. 2005. Mining databases and data streams with query languages and rules. In Pro-

ceedings ECML-PKDD 2005 Workshop Knowledge Discovery in Inductive Databases. LNCS,
vol. 3933. Springer-Verlag, London, UK.

Received Month Year; revised Month Year; accepted Month Year

ACKNOWLEDGMENTS

Toon Calders is funded by the Fund for Scientific Research - Flanders (FWO-
Vlaanderen) as a post-doctoral fellow. This work has been partially funded by the
EU contract IQ FP6-516169. Lakshmanan’s research was supported in part by a
grant from the Natural Sciences and Engineering Research Council of Canada, a
fellowship from the BC Advanced Systems Institute, and a grant from Networks of
Centres of Excellence/Institute for Robotics and Intelligent Systems, Phase IV.

ACM Transactions on Database Systems, Vol. V, No. N, July 2006.

Expressive Power of an Algebra For Data Mining · App–1

This document is the online-only appendix to:

Expressive Power of an Algebra For Data Mining
TOON CALDERS

University of Antwerp, Belgium

and

LAKS V.S. LAKSHMANAN and RAYMOND T. NG

University of British Columbia, Canada

and

JAN PAREDAENS

University of Antwerp, Belgium

ACM Transactions on Database Systems, Vol. V, No. N, July 2006, Pages 1–44.

A. MA IS TURING COMPLETE FOR D→D QUERIES

In this appendix we proof the following theorem: Theorem 5.1 Every generic
computable D→D data mining query is MA-expressible. 2

The proof will consist of two large parts:

(1) We show that we can encode integers in the I-world, and that the MA-algebra
is capable to express every computable query on these integers.

(2) We construct two expressions enc and dec that respectively encode a D-world as
integers in the I-world, and decode the integers in the I-world back to relations
in the D-world.

These two parts together make that the MA-algebra is Turing complete for generic
D to D queries. Indeed; let q be a query from D to D. Then, Q = dec ◦ q ◦ enc is
a computable query from integers to integers in the I-world. Because the algebra
MA is Turing complete on integers in the I-world, there exists an expression for
Q. This expression, preceded by the expression enc and followed by dec form an
expression for q. In the proof special care is needed to handle genericity.

But before we give the full proof, we first introduce some auxiliary expressions
that play a crucial role in the proof. We introduce expressions for:

—constructing powersets in the I-world;

—mapping an integer in the D-world to the representation of an integer in the
I-world, and vice versa;

—splitting a rational number p/q in the D-world into a triplet of positive integers
(s, n, d), with s encoding the sign, n the absolute value of the nominator and q
the absolute value of the denominator;

Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and

notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2006 ACM 0362-5915/2006/0300-0001 $5.00

ACM Transactions on Database Systems, Vol. V, No. N, July 2006.

App–2 · Toon Calders et al.

—going from an integer to its binary representation and vice versa.

A.1 Auxiliary Expressions

A.1.1 Constructing powersets in the I-world. The expression Subs expresses the
following I→I query: given a relation S over the schema {R}, Subs(S) will be the I-
world relation over schema {S} consisting of all non-empty sets of basic constraints
that are in regions in S. For example, consider the following relation S:

R

{A = 1, B = 1}
{A + B = 3, B = 1}

The basic constraints in this relation S are: A = 1, B = 1, A + B = 3. Hence,
Subs(S) will be the following relation:

S

{A = 1}
{B = 1}

{A + B = 3}
{A = 1, B = 1}

{A = 1, A + B = 3}
{B = 1, A + B = 3}

{A = 1, B = 1, A + B = 3}

The following (static) MA-expression expresses the desired query:

(X := UR(S);
While(∆X) loop

X :=X ∪ ρU→R πU Union(X × ρR→R′X);
End loop

Return X ;)

Recall that The expression Union(X (S1, S2)) used here was introduced in Sec-
tion 4.3 and produces the following relation over {S1, S2, U}:

{(s1, s2, s1 ∪ s2) | (s1, s2) ∈ X} .

A.1.2 Integers in I- and D-world. Zero and One Let D be an arbitrary D-
world relation. We give D→D-expressions Zero and One that respectively return
the relations {(0)} and {(1)} over the schema {Nr}.

Zero:=Γ
COUNT(∗) as Nr

〈〉 (D \ D)

One:=Γ
COUNT(∗) as Nr

〈〉 Zero

Integers in the I-world The following I-world relation N r[n] will be used to
denote the number n:

Reg

{Nr ≤ 0}
{Nr ≤ 1}
{Nr ≤ 2}

. . .
{Nr ≤ n}

ACM Transactions on Database Systems, Vol. V, No. N, July 2006.

Expressive Power of an Algebra For Data Mining · App–3

The transformation of I-world relation N r[n] to the number n in a relation in
the D-world and vice versa will be key constructions in the proof of the Turing
completeness of MA.

Mapping N r[n] to n First we give an expression to go from a relation N (Nr) in
the I-world expressing a number n, to the D-world relation {(n)}. MapNrI→D(N)
is the following expression:

πAΓ
COUNT(∗) as Nr

〈〉 Pop(N , One);

That is, first N is populated with the D-world relation One. This creates an E-
world relation with tuples ({Nr ≤ i}, 1), for all i = 1 . . . n. The number of tuples in
this E-world is then counted, resulting in the number n. Subsequently, this number
is projected to the D-world.

Mapping n to N r[n] Let MapNrD→I(D) now be the following expression,
mapping a D-world relation D(Nr) = {n} to the I-world relation N r[n].

(X := κNr≤val(Nr) as Reg Zero;
While(MapNrI→D 6= D) loop

T := MapNrI→D(X);
T ′ := ρNr′→Nr πNr′ CalcNr+1 as Nr′ T ;
X := X ∪ κNr≤val(Nr) as RegT

′;
End loop

Return X ;)

The expression MapNrD→I(D) works as follows: first X is initialized to N r[0].
In the loop, X is updated such that after the ith loop, X is N r[i]. This is done
as follows: via MapNrI→D, the number represented by X is transported to the
D-world (in the beginning of the ith loop this number is i− 1). There, this number
is incremented, resulting in i, and the constraint Nr ≤ i is constructed and added
to X . The loop is repeated until MapNrI→D(X) equals D; i.e., until X represents
the number stored in D.

Using both MapNrD→I and MapNrI→D, we can do arithmetic with the encoded
numbers in the I-world. Indeed; we can map numbers N r[n] in the I-world to
numbers n in the D-world, do arithmetic on these numbers, and map them back to
the I-world. To make notations less heavy, we will use expressions like:

X := N r[n] + N r[m];

to actually denote

X := MapNrD→I πNr CalcNr′+Nr′′ as Nr

[ρNr→Nr′(MapNrI→DN r[n]) × ρNr→Nr′′(MapNrI→DN r[m])];

Alternative Representations Notice that it is also possible to use other repre-
sentations for the integers. For example, we could use the relation {({Nr = n})} to
represent the relation n. We can go from the representation N r[n] to this notation
in the following way:

Map(≤ to =) := κNr=val(Nr)MapNrI→DN r[n]

The other direction, that is, from N = {({Nr = n})} to N r[n] will be denoted
Map(= to ≤), and can be expressed as follows:

ACM Transactions on Database Systems, Vol. V, No. N, July 2006.

App–4 · Toon Calders et al.

(X := MapNrD→I Zero;
Y := Map(≤ to =)(X);
While(Y 6= N) loop

X := X + 1;
Y := Map(≤ to =)(X);

End loop

Return X ;)

Therefore, in the following we will often assume that we are working with the more
convenient form {({Nr = n})}. To make notations less heavy we will often relax
the notation MapNr(Map(= to ≤)(N)) to simply MapNr(N).

A.1.3 Splitting a rational number. Let D(Nr) = {(p/q)} be a D-world relation
holding a single rational number p/q (p and q are integers). We give expressions
that create the I-world relations S, N r[|p|], and N r[|q|]. S will be a relation over
the schema {Sign}, holding the sign of p/q. That is, if p/q is positive, S will be
{{Sign = 1}}, otherwise S will be {{Sign = 0}}. The sign can easily be extracted
as follows:

S:=κSign=val(Nr) (If (σNr≥0D 6= {}) Then One Else Zero);

For notational convenience we introduce the following expression abs(D) that re-
turns the relation {|p/q|}.

abs(D) ≡ (If (σNr≥0D 6= {}) Then D Else Calc(−Nr) as Nr D);

The positive rational number |p|/|q| is now split up into the positive integers |p|
and |q| as follows: we iterate over all pairs of positive integers (a, b) in a systematic
way until a/b equals |p|/|q|. This enumeration of all pairs is possible, because Q is
countable. For example, the following expression first generates all pairs (a, b) with
a + b = 1, then with a + b = 2, a + b = 3, ... The loop is guaranteed to stop, as the
pair (|p|, |q|) will be generated at some point in time.

P := MapNrD→I(Zero);
Q := MapNrD→I(One);
Sum := MapNrD→I(One);
While(P/Q 6= abs(D)) loop

Sum := Sum + 1;
P := MapNrD→I(Zero);
While(P/Q 6= abs(D) and

P ≤ Sum − 1) loop

Q := Sum − P;
P := P + 1;

End loop

End loop

Return P,Q;

A.1.4 Binary Representation. We now give an expression that maps a positive
integer N r[n] to its binary representation in the relation Bin(I,B). Bin consists of
pairs ({Index = i}, {Bit = b}), where b is the ith bit in the binary representation
of n.

ACM Transactions on Database Systems, Vol. V, No. N, July 2006.

Expressive Power of an Algebra For Data Mining · App–5

We can easily find the index of most significant bit of the binary representation
of the number n; this index is the largest number i such that 2i is smaller than or
equal to n. Let msb be the following expression, returning the most significant bit
of n as the relation {({Index = i})}.

I := MapNrD→IZero;
P := MapNrD→IOne;
While(P ≤ n) loop

I := I + 1;
P := P ∗ 2;

End loop

Return κIndex=val(Nr) as I MapNrI→D(I − 1);

We can now get all 1-bits by iteratively applying msb, and subtracting the most
significant bit. Hence, we get the following expression:

N := n;
While(N 6= 0) loop

Bin := Bin ∪ (msb(N) × (κBit=1R));
N := N − 2msb(N);

End loop

Return Bin;

We still need to add the 0-bits. This is not too hard; we can just initiate a for-
loop over i from 0 to msb(n), and if ({Index = i}) is not in πIndex Bin, we add
({Index = i}, {Bit = 0}) to Bin.

For the other direction, we can go through the binary number from the highest
index to lowest, and use the following computation method:

n := b0 + 2 · (b1 + 2 · (b2 + . . .))

In this sum, bi represents the ith bit. Hence, we iteratively pick the largest index
i left, add it to twice the result so far, and remove bit i from Bin. This procedure
stops when Bin becomes empty.

A.2 Computational completeness on Integers

Let Q be a computable function from integers to integers. Since we can loop in
the I-world, represent integers and apply arithmetic operations on them, we can
express the query Q in the following way: there exists an MA expression expr such
that on input N r[n], expr returns N r[Q(n)].

In the following we will show how we can uplift this result to computational
completeness for generic and computable D→D queries. Therefore, we show that
we can encode every D-world relation as an integer, and decode integers back to
D-world relations. Since MA is computationally complete for integer to integer
queries, for any computable query q from D to D, the function that maps the
encoding of a D-world to the encoding of the result of q applied to that D-world is
expressible in MA. Let Q denote this expression. The expression for q will then
be the encoding, followed by Q, followed by the decoding.

ACM Transactions on Database Systems, Vol. V, No. N, July 2006.

App–6 · Toon Calders et al.

A.3 Computational Completeness in General

The proof of computational completeness in general will proceed as follows. Suppose
that we want to construct an expression for the generic, computable D→D query
q.

(1) First we show how to handle nesting and multiple relations. We reduce the
general problem to expressing queries from a single flat relation R to a single
flat relation q(R).

(2) Secondly we map such a relation to a relation holding only integers. That is,
elements of Q are split into a triplet of positive integers, and elements of U
are mapped to integers. Due to genericity, however, it is not possible to give a
unique mapping from U to integers. Therefore, we will consider many mappings
at the same time.

(3) For each mapping m, we can transform the unique input relation R into a
relation with only integers. This table with only integers can be encoded as a
single number em(R). Similarly, we can decode a number n to a single relation
using e−1

m .

(4) For every mapping m we consider the following function from integers to in-
tegers: Qm = em ◦ q ◦ (em)−1. We will show that this function Qm does not
depend on m. We hence denote this function by Q. Since q is computable, Q
will be computable as well.

(5) For every mapping m, we will, simultaneously, compute e−1
m (Q(em(R))). By

definition of Qm, for every mapping m, the result of e−1
m (Q(em(R))) will be

q(R). Therefore, for all mappings the same result q(R) will be obtained. Finally,
we get q(R) by projecting away the mappings and collapsing all (m, q(R)) into
q(R).

Simplifying the Problem We will use examples to illustrate the complex con-
structions used in the encoding. In Figure 7 an example D-world database is given.
First we remove nesting as follows: a nested attribute will be treated as if its values
are categorical data that play the role of set identifiers. In Figure 7 this principle is
illustrated; a nested attribute {A} is duplicated, one copy is kept as the set identi-
fier, while the other copy will be unnested. This process is repeated until no nested
attributes are left, except for those that are used as set identifiers. The following
expression does the unnesting for an attribute {A} in a relation R:

Unnest{A}σ{A}=ID((π{A} as IDR) × R)

In fact, this reduction does not change the nature of the input data; the set identi-
fiers are still nested attributes. For the construction of the encoding, however, the
reduction has the important advantage that we can treat these set identifiers as if
they are elements of the unordered domain U , without loosing information on the
contents of the nested attributes. Therefore, in the construction of the encoding
we can assume, without loss of generality, that there are no nested attributes, only
attributes with domain U and Q.

We further reduce the problem of encoding many relations to one relation, by
making the Cartesian product of all relations in the input. Hence, in the following

ACM Transactions on Database Systems, Vol. V, No. N, July 2006.

Expressive Power of an Algebra For Data Mining · App–7

R

{A} B U

{1,2,3/4} 7/16 u

{2/5,3/4} 4 v

S

{U1, {U2}}
{(v,{w,x}),(w,{y,z})}

{(x,{y,z})}

↓ Removing nesting

R

{A} A B U

{1,2,3/4} 1 7/16 u

{1,2,3/4} 2 7/16 u

{1,2,3/4} 3/4 7/16 u

{2/5,3/4} 2/5 4 v

{2/5,3/4} 3/4 4 v

S

{U1, {U2}} {U2} U1 U2
{(v,{w,x}),(w,{y,z})} {w,x} v w

{(v,{w,x}),(w,{y,z})} {w,x} v x

{(v,{w,x}),(w,{y,z})} {y,z} w y

{(v,{w,x}),(w,{y,z})} {y,z} w z

{(x,{y,z})} {y,z} x y

{(x,{y,z})} {y,z} x z

↓ Treat set identifiers as categorical data.

R

ID1 A B U

u1 1 7/16 u

u1 2 7/16 u

u1 3/4 7/16 u

u2 2/5 4 v

u2 3/4 4 v

S

ID2 ID3 U1 U2
u3 u5 v w

u3 u5 v x

u3 u6 w y

u3 u6 w z

u4 u6 x y

u4 u6 x z

Fig. 7. Running Example to illustrate the construction of the encoding. dom(Ui) =
U , dom(A) = dom(B) = Q

we will show how to encode a single relation R, over attributes with domain either
U , or Q.

Mapping R to an integer em(R) For the moment being, we assume that we
are working with a fixed mapping. For this mapping, we show how the encoding
em is constructed. Later on we will show how to construct all possible mappings,
and how to deal with all mappings simultaneously.

Suppose that we have a mapping m that maps every element of U to a positive
integer. Then we can transform the relation R into a relation containing only
natural numbers. Every element u of U is replaced by m(u), and every rational
number p/q is mapped to a triplet (s, |p|, |q|), with s = 0 if p/q is strictly negative,
and s = 1 otherwise. We fix an order on the attributes of R. Since all attribute
values are numeric, and hence ordered, we can order the tuples in an unambiguous
way. We will order the tuples in ascending order. The encoding is now as follows.
First we transform our relation into one large string of the symbols “0”, “1”, “,”,
“(”, and “)”. The attribute values are written down in binary, and separated by

ACM Transactions on Database Systems, Vol. V, No. N, July 2006.

App–8 · Toon Calders et al.

“,”. Tuples are enclosed in brackets, and separated by ,. Because the attributes and
the tuples are ordered, this string is unique. Furthermore, we encode the symbols
“0”, “1”, “,”, “(”, and “)” using 3 bits. In this way we get a string of “0” and “1”.
We add a leading “1” in order not to lose leading “0”’s. The resulting string of “0”
and “1” is the number encoding our relation in binary.

Example 12. Let R be the following relation:

A B

u 1
5

v − 3
4

Let m be the mapping {u 7→ 0, v 7→ 1}. First R is transformed into the following
relation consisting of only natural numbers:

A Bs Bd Bn
0 1 1 5

1 0 3 4

We fix the order of the attributes as follows: A < Bs < Bd < Bn. The resulting string
is the following:

(0, 1, 1, 101), (1, 0, 11, 100)

We encode 0 as 000, 1 as 001, (as 010,) as 011, and , as 100. With the leading 1,
and this encoding, we get the following number in binary encoding the database:

1 010 000 100 001 100 001 100 001 000 001

011 100 010 001 100 000 100 001 001 100

001 000 000 011

Thus, the integer encoding the above relation under mapping m is

5941608283405117866499

Representing the mapping in the I-world Let m be a mapping from the
active domain of the attributes with domain U to the positive integers. We will
store this mapping in the I-world as a tuple in the relation M(Map). The tuple
representing m will be the following:

({{U,Nr} = {(u,m(u))} | u ∈ adomU}) .

Example 13. Let m be the following mapping:






u 7→ 1 v 7→ 2

w 7→ 3 x 7→ 4

y 7→ 5 z 7→ 6







This mapping is represented by the following tuple in the I-world:

M
Map







{U, Nr} = {(u, 1)}, {U, Nr} = {(v, 2)},
{U, Nr} = {(w, 3)}, {U, Nr} = {(x, 4)},
{U, Nr} = {(y, 5)}, {U, Nr} = {(z, 6)}







ACM Transactions on Database Systems, Vol. V, No. N, July 2006.

Expressive Power of an Algebra For Data Mining · App–9

We have chosen for this rather complicated representation of the mapping, because
it is not allowed to nest groupings in the I-world. Hence, it is impossible to first
group the pairs {u,m(u)} and then group the pairs that are in the mapping. There-
fore, we first use nesting in the D-world to form the pairs {(u,m(u))} and then use
the regionize operator κ to export these pairs to the I-world. There the different
mappings are constructed using the powerset construction presented before.

Construction of the Mappings We will construct all possible mappings m at
the same time. For every mapping m, we encode the relation, resulting in the code
em(R). First we give an expression that returns the active domain of the unordered
elements. That is, we construct an expression that returns all unordered elements
that are used in the input. This can be done by simply unnesting nested attributes,
projecting on the attributes with unordered domains, and then taking the union.
For example, suppose that the input consists of two relations R({U1}, A) and S(U2),
with U1 and U2 the only attributes with domain U , then the active domain query
is the following:

adomU = (πU1 as UUnnest{U1}R) ∪ πS2 as US

We will encode the elements of U using integers 1 to n, with n = |adomU |. We
can easily construct an expression returning the relation C(Nr) = {(1), . . . , (n)}
using a similar technique as is used in the proof of Theorem 5.7. We then take
the cross-product of adomU and C to get all possible codes for all elements of U .
Subsequently, the pairs (u, k) are nested, and made into constraints in the I-world:

κ{U,Nr}=val({U,Nr})Nest{U,Nr}(adomU × C)

This construction is illustrated with an example in Figure 8.
In this way, we get in the I-world a relation consisting of all encodings of a single

element of U . Then we use the powerset-operator introduced in the beginning of
this appendix to generate all subsets of codes. From these subsets we select those
that represent valid mappings. A subset S of codes represents a valid mapping if:

—for every u in adomU there is exactly one coding {U,Nr} = {(u, n)} in S;

—for every u, v, the coding for u is different from the coding for v.

We can easily select those subsets that represent valid codings using the following
helper relations:

Code U(Code, U) :=
{({{U,Nr} = {(u, n)}}, {U = u})

| u ∈ adomU , n = 1 . . . |adomU |}

and

Code Nr(Code,Nr) :=
{({{U,Nr} = {(u, n)}}, {Nr = n})

| u ∈ adomU , n = 1 . . . |adomU |}

These relations can be formed easily using the algebra. The connection between
{{U,Nr} = ({(u, n)})} and the correct {U = u} can be established with a populate
operation.

Applying all mappings simultaneously First we transform the whole re-
lation in the D-world to the I-world via regionize operations. For example, let

ACM Transactions on Database Systems, Vol. V, No. N, July 2006.

App–10 · Toon Calders et al.

R

A B C D

u y 7/16 0

v w 7/16 1

w z 7/16 2

x w 4 3

x z 4 4

The active domain query for U in this example is the following:

adomU = πA as UR ∪ πB as UR

The resulting relation is:

{(u), (v), (w), (x), (y), (z)}

The relation C in this example is thus:

{(1), . . . , (6)},

and the set Enc, and the result of the regionize:

{U, Nr}

{(u, 1)}

. . .

{(u, 6)}

{(v, 1)}
. . .

{(v, 6)}
. . .

{(z, 1)}

. . .

{(z, 6)}

→

Map

{{U, Nr} = {(u, 1)}}

. . .

{{U, Nr} = {(u, 6)}}

{{U, Nr} = {(v, 1)}}
. . .

{{U, Nr} = {(v, 6)}}
. . .

{{U, Nr} = {(z, 1)}}

. . .

{{U, Nr} = {(z, 6)}}

Fig. 8. Running Example to illustrate the construction of the encoding. dom(A) = dom(B) = U ,
dom(C) = dom(D) = Q

R(A1, . . . , An) be the relation in the D-world. We transport it to the I-world as
follows: first we do n regionize operations, for each attribute separately. Then we
combine them with Cartesian products, and reconstruct the tuples by a populate
operation:

πRDAPop(κA1=val(A1)R × . . . × κAn=val(An)R,R)

Then, for each mapping we replace the values with the corresponding integers;
that is, rational numbers are split using the auxiliary expressions, and unordered
elements are mapped using the mapping. The result is a relation in the I-world over
the schema {Map,C1, . . . , Ck}. With the looping and arithmetic capabilities in the
I-world it is now easy to compute the number for each mapping; always select the
smallest tuple per mapping, and translate it into a binary number with the auxiliary
expressions given in the beginning of the appendix. The binary numbers can easily
be concatenated and translated using the codes for “0”, “1”, “,”, “(”, and “)”.

Computing the Number for Each Mapping Let now Qm be the following
computable function from integers to integers:

Qm(em(R)) := em(q(R)) ,

and on all numbers that do not represent a valid encoding, Qm is the identity.

ACM Transactions on Database Systems, Vol. V, No. N, July 2006.

Expressive Power of an Algebra For Data Mining · App–11

Let m1 and m2 be two mappings. Let Q1 and Q2 be the two functions associated
with m1 and m2, and e1 and e2 be the two encodings. By definition,

q = (e1)
−1 ◦ Q1 ◦ e1

= (e2)
−1 ◦ Q2 ◦ e2

The following function expresses a permutation on U :

e−1
1 ◦ e2

Therefore,

(e−1
1 ◦ e2) ◦ q = q ◦ (e−1

1 ◦ e2)

and hence,

q = (e−1
1 ◦ e2) ◦ q ◦ (e−1

1 ◦ e2)
−1

= (e−1
1 ◦ e2) ◦ ((e2)

−1 ◦ Q2 ◦ e2) ◦ (e−1
1 ◦ e2)

−1

= e−1
1 ◦ Q2 ◦ e1

Thus,

(e1)
−1 ◦ Q1 ◦ e1 = e−1

1 ◦ Q2 ◦ e1

and therefore,

Q1 = Q2

Hence, due to genericity, the function Qm is the same for all mappings m. We
denote this function Q. It is clear that Q is computable, because q is computable.
Therefore, there exists an I→I expression that computes Q.

For every mapping m we will do the following: first we encode the D-world as a
single number using em. Then, we evaluate Q on this number. Finally, we apply
the inverse relation (em)−1 to the result of Q. Because Qm equals Q, and Qm was
defined in such a way that the result of the sequence m−1 ◦ Qm ◦ m equals q, for
every mapping m the same output relation is computed. Therefore, we can just
project away the mapping to get the final result.

ACM Transactions on Database Systems, Vol. V, No. N, July 2006.

