
Searching for Dependencies at Multiple Abstraction Levels

Toon Calders∗ Raymond T. Ng† Jef Wijsen‡

Abstract

The notion of roll-up dependency (RUD) extends functional dependencies with gener-
alization hierarchies. RUDs can be applied in OLAP and database design. The problem
of discovering RUDs in large databases is at the center of this paper. An algorithm is pro-
vided that relies on a number of theoretical results. The algorithm has been implemented;
results on two real-life datasets are given. The extension of functional dependency (FD)
with roll-ups turns out to capture meaningful rules that are outside the scope of classical
FD mining. Performance figures show that RUDs can be discovered in linear time in the
number of tuples of the input dataset.

1 Introduction

Generalization hierarchies are important in OLAP and data mining [CT97, GCB+97, Han97].
Examples of such hierarchies are numerous. Along the spatial dimension, for example, coun-
tries are divided into states, states into cities, cites into quarters, and so on. Along the
temporal dimension, years are divided into months, months into days, days into hours, and so
on. These hierarchies can be used to aggregate, for example, census data. Starting from the
daily number of births by city, we can compute the annual number of births by country. The
capacity of making such generalizations is crucial in today’s decision support systems.

It is natural to ask which abstraction level is appropriate for a given dataset. For example,
Belgium’s birth-rate per 1000 inhabitants amounted to 11 in 1998. The number of births
varies in function of social status and region, and such variations may be of interest to po-
litical decision makers, to whom annual birth-rates by social status and region are thus more
meaningful than overall figures. A major problem addressed in this paper is that of finding
those abstraction levels in databases that allow significant data aggregation without hiding
important variations.

Suppose we have a dataset showing birth-rates by city for the year 1998. The observation
that the birth-rate does not change within a region is expressed by:

(City , REGION) → (Birth Rate, PERMILLE) ,

and called a roll-up dependency (RUD). The meaning is that whenever two cities belong to the
same region, then their birth-rate expressed as an entire permille is the same. The following
RUD expresses that birth-rates are homogeneous throughout the country:

(City , COUNTRY) → (Birth Rate, PERMILLE) .

∗calders@uia.ua.ac.be, University of Antwerp, Belgium.
†rng@cs.ubc.ca, University of British Columbia, Canada.
‡jef.wijsen@umh.ac.be, University of Mons-Hainaut, Belgium.

1

If there are significant differences in birth-rates among different regions of the country, the
latter RUD will be falsified by the data, meaning that country-level birth-rates will hide
existing regional differences, which can be undesirable. In this example, we only consider
generalization along the spatial dimension. In general, abstraction may occur along several
dimensions simultaneously.

The problem addressed in this paper is the following. Given a relational table (or a
data cube) R with multiple attributes (or dimensions). Every attribute of R takes its values
from a specified domain dom(R). The domain values are ordered into generalization or is a
hierarchies. The problem is to find roll-up dependencies that are satisfied with high confidence.

This paper is organized as follows. The next section discusses some applications of the
proposed construct. Roll-up dependencies and roll-up lattices are defined in Sections 3 and 4
respectively. The problem of mining RUDs is introduced in Section 5, and an algorithm for
solving it in Section 6. Section 7 shows some experiments on real datasets. Related work is
discussed in Section 8. Finally, Section 9 concludes the paper. Certain lengthy proofs are
moved to the appendix.

2 Applications

We provide some applications of the proposed framework. The applications cover different
areas such as OLAP, data mining, and database design.

2.1 Data Cube Reduction

Suppose we are given a dataset (or data cube) that contains detailed thermometer readings
from numerous weather stations throughout the country. This results in a huge relation
over the scheme {Station,Time,Temperature}. This information may be too detailed for
effective data analysis. Of course, we can compute average daily temperatures by region,
or average hourly temperatures for the entire country, thereby significantly decreasing the
level of detail. It is natural to ask which level of detail is appropriate. If there are significant
temperature differences between regions, it may be undesirable to hide these regional variations
by summarizing temperatures at the country level. The goal becomes to find generalization
levels that do not hide significant differences during data aggregation. Assume we discover
that the data satisfies the RUD:

(Time, HOUR), (Station, REGION) → (Temperature, INTEGER) ,

stating that the temperatures, rounded to the nearest integer, are the same for all readings
performed in the same region during the same one-hour-period. In that case we can signif-
icantly reduce the original data cube by rolling up Time-values to HOUR, Station-values to
REGION, and by rounding Temperature-values.

2.2 Database Design

In temporal databases, generalization hierachies along the temporal dimension are denoted by
the term time granularity and have been outlined in [BDE+98]. The impact of time granularity
on database design has been studied by a number of authors [WBBJ97, Wij99]. Suppose a
relation over the scheme {Part , Warehouse, Price, Day}. A tuple {(Part , p), (Warehouse, w),
(Cost , c), (Day , d)} means that at day d, the part p was available at warehouse w at a cost

2

of c. Suppose further that the cost of a part at a given warehouse cannot change within a
month, which is expressed by the RUD:

Part ,Warehouse, (Day , MONTH) → Cost .

That is, whenever we have two tuples that agree on Part and Warehouse, and whose Day-
values fall within the same month, then these tuples must necessarily agree on Cost . In
that case, it is appropriate to decompose the scheme into two new schemes: one scheme
{Part ,Warehouse,Day} to store the daily availability of parts from warehouses, and a second
one {Part ,Warehouse,Cost ,Month} to store the monthly cost price by warehouse for each
part. Note that the time indication in the second scheme is in months, whereas the original
scheme uses days. A difference with classical normalization is that the function mapping days
to months is supposed to be a constant function outside the user-stored data. So RUDs are
functional dependencies (FD) extended with pairs like, for example, (Day , MONTH) to indicate
that Day-values should be converted into months before being compared for equality. The
mapping of dates into values of the domain MONTH is part of the database scheme, not of the
user-stored data.

The design principles used in “temporal normalization” also apply to non-temporal dimen-
sions. Suppose, for example, that warehouses are grouped into commercial regions, and that
the monthly cost is fixed for each region. This regularity would be expressed by the RUD:

Part , (Warehouse, REGION), (Day , MONTH) → Cost .

Then it is advantageous to further generalize the scheme {Part ,Warehouse,Cost ,Month}
into {Part ,Region,Cost ,Month}, to store for each part the monthly cost per commercial
region. Here again, we assume the existence of a fixed grouping of warehouses into regions. A
discussion of RUDs in the spatio-temporal domain can be found in [WN99].

2.3 Prediction

Discovered RUDs can be used later on for prediction. Suppose we discovered from historical
population records that the annual birth-rate does not change much between cities of the same
region. If birth-rates for certain cities are lacking, we can reasonably guess that these rates
should be similar to birth-rates of other cities in the same region. This way of predicting
unknown values resembles k-nearest-neighbor; the difference is that the neighborhood is de-
termined by similarity w.r.t. a generalization hierarchy, rather than by a distance metric and
a number k. This idea has been elaborated in [BW01] for a slightly different framework.

3 Roll-Up Dependencies

3.1 Roll-ups

Definition 1 formalizes the notion of “roll-up.” We assume a family of domain names, called
levels, equipped with an order relation �. This ordered set is called a roll-up scheme and
captures the generalization hierarchies introduced in Section 1. A roll-up scheme is depicted
in Figure 1. We have, for example, DAY � MONTH expressing that months are divided into
days. The precise semantics is captured by the construct of roll-up instance, which assigns an
extension to every level and “instantiates” the generalization hierarchy. For example, the day
6 Feb 2001 is an instance of DAY that “rolls up” to the month February 2001 , which belongs

3

@
@

@
@

@
@

@
@

�
�

�
�

�
�

�
�

q DAY

q MONTH q
WEEK

q
YEAR

q STORE

q
AREA

q
CHAIN

q ITEM

q
BRAND

q
CATEGORY�

�
@

@
q

INDUSTRY

q PATH

q
DRIVE

q
DIR

q FNAME

q EXTENSION

q
FTYPE

q B

q KB

q
MB

q CENT

q
EURO

Figure 1: A roll-up scheme.

to MONTH. It is natural to require that roll-up be transitive: if February 2001 rolls up further
to the year 2001 , then 6 Feb 2001 should roll up to that same year.

Definition 1 We assume the existence of three countably infinite and pairwise disjoint sets:
a set A of attributes, a set L of levels, and a set D of constants. A roll-up scheme is a pair
(L,�) where L is a finite subset of L and � is a partial order on L. Let l1, l2 ∈ L. We write
l1 ≺ l2 iff l1 � l2 and l1 6= l2. The covering relation [DP90] of � is denoted −·≺ . That is,
l1−·≺ l2 iff l1 ≺ l2 and l1 � l3 ≺ l2 implies l3 = l1. If l1−·≺ l2, l1 is said to be covered by l2.

A roll-up instance over the roll-up scheme (L,�) is a pair (ext , I) where:

• ext is a total function with domain L that maps every l ∈ L to a disjoint set of constants,
and

• I is a set of functions from D to D as follows. For every l1, l2 ∈ L with l1 � l2, I contains
a total function from ext(l1) to ext(l2), denoted I l2

l1
, satisfying:

1. for every l ∈ L, I l
l is the identity function on ext(l), and

2. for every l1, l2, l3 ∈ L with l1 � l2 � l3, for every c ∈ ext(l1), I l3
l1

(c) = I l3
l2

(I l2
l1

(c)).

If I l2
l1

(c) = d, then we also say that c in l1 rolls up to d in l2.

2

3.2 Generalization Schemes (Genschemes)

A relation scheme is a set of attribute-level pairs, for example, {(Item, ITEM), (Store, STORE),
(Day , DAY)} to store the daily availability of items from stores. A genscheme (from “generaliza-
tion” scheme) can be built from a relation scheme by replacing a level l by a level l′ with l ≺ l′,
and/or by entirely omitting certain attributes. For example, {(Store, CHAIN), (Day , MONTH)} is
a genscheme of the above relation scheme: the level STORE has been replaced by CHAIN where
STORE ≺ CHAIN, and DAY by MONTH; the attribute Item has been omitted. The same attribute
can appear twice in a genscheme provided that the associated levels are not comparable by
�. For example, {(Store, CHAIN), (Store, AREA), (Day , MONTH)} is a valid genscheme as CHAIN

and AREA are not related by �, as shown in Figure 1.
A genscheme G of a relation scheme S naturally leads to a partitioning of each relation over

S: two tuples belong to the same partition if they become equal after rolling up their attribute
values to the levels specified by G. For example, the tuples {(Item, Lego44), (Store, Toysrus),

4

(Day , 9 Feb 2001)} and {(Item, Lego77), (Store, Toysrus), (Day , 17 Feb 2001)} belong to the
same partition w.r.t. the genscheme {(Store, CHAIN), (Day , MONTH)} as 9 Feb 2001 and 17 Feb
2001 roll up to the same month.

Definition 2 Let a roll-up scheme (L,�) be given, as well as a roll-up instance (ext , I) over
this roll-up scheme. A relation scheme S over (L,�) is a set {(A1, l1), . . . , (An, ln)} where n ≥
0, A1, . . . , An are pairwise distinct attributes, and l1, . . . , ln are (not necessarily distinct) levels
of L. A tuple over the relation scheme {(A1, l1), . . . , (An, ln)} is a set {(A1, v1), . . . , (An, vn)}
where vi ∈ ext(li) for each i ∈ [1..n]. A relation over the relation scheme S is a set of tuples
over S.

A genscheme of the relation scheme {(A1, l1), . . . , (An, ln)} is a set {(Ai1 , li1), . . . , (Aim , lim)}
satisfying:

1. each Aij is an attribute among A1, . . . , An, and each lij is a level such that if Aij = Ak

then lk � lij (k ∈ [1..n], j ∈ [1..m]); and

2. whenever Aij = Aik with j 6= k then lij 6� lik and lik 6� lij (j, k ∈ [1..m]).

Let G be a genscheme of the relation scheme S. Two tuples t1, t2 over S are said to be
G-equivalent , denoted t1 ∼G t2, iff for each pair (A, l1) of S, for each pair (A, l2) of G,
I l2
l1

(t1(A)) = I l2
l1

(t2(A)). Let R be a relation over S. Obviously, ∼G is an equivalence relation
on R; we write R/ ∼G to denote the set of equivalence classes induced by ∼G on R. 2

For simplicity, if G is a genscheme of S such that both G and S contain the same pair
(A, l), then we can replace in G the attribute-level pair (A, l) by the attribute A, where it
is understood that the level l can be found in the relation scheme. For example, we can
write simply Day instead of (Day , DAY) if the underlying relation scheme already specifies
(Day , DAY). This simplification was implicitly assumed in the examples of Section 1.

3.3 Roll-up Dependencies (RUDs)

A roll-up dependency (RUD) is an implication between two genschemes of the same underlying
relation scheme. Satisfaction is defined in the natural manner: G → H is satisfied if and only
if whenever two tuples are G-equivalent then they are also H-equivalent.

Definition 3 Let a roll-up scheme (L,�) be given, as well as a roll-up instance (ext , I) over
this roll-up scheme.

A roll-up dependency (RUD) over the relation scheme S is an expression G → H where
G and H are genschemes of S. A roll-up dependency G → H over the relation scheme S is
satisfied by a relation R over S iff for all tuples t1, t2 of R, if t1 ∼G t2 then t1 ∼H t2. 2

For a concrete example, consider the relation FILES of Figure 2. The first tuple of FILES
means that the size of the file Paper.doc with path C:\Research\ is 41 590 bytes. The roll-up
scheme in use is that of Figure 1 with its intuitive semantics. The path C:\Research\ rolls up
to drive C: in DRIVE, and to directory \Research\ in DIR. That is, a path is a drive followed
by a directory. The first two tuples are equivalent under {(Pa, DRIVE), (Fn, EXTENSION)}:
their Pa-values both roll up to drive C:, and their Fn-values to extension .doc. The relation
falsifies the RUD (Pa, DRIVE) → (Fn, EXTENSION) because it is not true that all files on the
same drive have the same file extension.

5

FILES (Pa, PATH) (Fn, FNAME) (Si , B)
C:\Research\ Paper.doc 41 590
C:\Teaching\ Course.doc 65 024
C:\Research\ Paper.ps 1 327 081
C:\Teaching\ Course.ps 134 302
D:\Private\ Resume.doc 754 348
D:\Private\ Letter.doc 251 738
D:\Teaching\ Program.exe 1 040 960
D:\Teaching\ Handouts.ps 370 079
D:\Teaching\ Slides.ps 418 325
D:\Teaching\ Spreadsheet.ps 93 428

Figure 2: The relation FILES over the relation scheme {(Pa, PATH), (Fn, FNAME), (Si , B)}.

3.4 Ordering Genschemes

The order � on levels carries over naturally to an order � on genschemes. We have, for ex-
ample, {(Store, STORE), (Day , MONTH)}� {(Store, CHAIN), (Day , YEAR)}. Also {(Store, CHAIN),
(Day , YEAR)} � {(Day , YEAR)}, so omitting attributes also leads to a more general scheme.

Definition 4 Let S be a relation scheme over the roll-up scheme (L,�). We define a binary
relation, denoted �, on the set of all genschemes of S, as follows. For all genschemes G, H of
S: G � H iff for all (A, l) in H, there is some (A, l′) in G with l′ � l. 2

Obviously, if G � H are two genschemes of the relation scheme S, then any relation over
S will satisfy G → H. The relation � will be explored in detail in the next section.

4 Roll-Up Lattice

In this section, we prove some additional properties of the relation � on the family of gen-
schemes of a relation scheme S. First, we show that the relation � is a complete lattice,
and second, we show that the elements of this lattice are layered in so-called strata. These
properties are essential in the development of an algorithm for mining RUDs later on.

In the remainder we will implicitly assume a fixed roll-up instance for each roll-up scheme.
Also, most definitions are relative to some roll-up scheme that is implicitly understood.

4.1 Complete Lattice

Given a roll-up scheme, the set of all genschemes of a relation scheme S, ordered by �, is a
complete lattice. The lattice will be denoted S3. Figure 3 shows the Hasse diagram of S3 for
S = (Pa, PATH)(Si , B); the underlying roll-up scheme is the one of Figure 1.

Not every set of attribute-level pairs is a valid genscheme; for example, {(Store, STORE),
(Day , MONTH), (Day , YEAR)} is no genscheme because MONTH and YEAR are comparable by �,
i.e., MONTH � YEAR. The operator b·c takes as its argument a set of attribute-level pairs and
turns it into a genscheme by removing a pair (A, l′) if the set already contains a pair (A, l)
with l ≺ l′. In the preceding example, applying b·c has the effect of removing (Day , YEAR).

Definition 5 Let G be a set of attribute-level pairs; i.e., G = {(A1, l1), . . . , (An, ln)} with
n ≥ 0, A1, . . . , An ∈ A, and l1, . . . , ln ∈ L. bGc denotes the smallest subset of G containing
(Ai, li) iff for every (Aj , lj) of G, whenever Aj = Ai and lj � li then li = lj .

6

1

2

3

4

5

6

7

�
�

�
�

�
�

�
�

@
@

@
@

@
@

@
@

s
(Pa, PATH)(Si , B)

s
(Pa, DRIVE)(Pa, DIR)(Si , B)

s
(Pa, DRIVE)(Si , B)

s
(Pa, DIR)(Si , B)

s
(Si , B) �

�
�
�

�
�

�
�

@
@

@
@

@
@

@
@

s
(Pa, PATH)(Si , KB)

s
(Pa, DRIVE)(Pa, DIR)(Si , KB)

s
(Pa, DRIVE)(Si , KB)

s
(Pa, DIR)(Si , KB)

s
(Si , KB) �

�
�
�

�
�

�
�

@
@

@
@

@
@

@
@

s
(Pa, PATH)(Si , MB)

s
(Pa, DRIVE)(Pa, DIR)(Si , MB)

s
(Pa, DRIVE)(Si , MB)

s
(Pa, DIR)(Si , MB)

s
(Si , MB) �

�
�
�

�
�

�
�

@
@

@
@

@
@

@
@

s
(Pa, PATH)

s
(Pa, DRIVE)(Pa, DIR)

s
(Pa, DRIVE)

s
(Pa, DIR)

s
> = {}

���������������������������������

���������������������������������

���������������������������������

���������������������������������

���������������������������������

Figure 3: The lattice (Pa, PATH)(Si , B)3.

We can write (A1, l1)(A2, l2) . . . (An, ln) instead of {(A1, l1), (A2, l2), . . . , (An, ln)}, omitting
braces and commas. 2

Theorem 1 Let S be a relation scheme over the roll-up scheme (L,�). The set of all gen-
schemes of S, ordered by �, is a complete lattice.

Proof. See Appendix A. 2

Definition 6 Let S be a relation scheme over the roll-up scheme (L,�). The set of all gen-
schemes of S, ordered by �, is denoted S3 (where the roll-up scheme is implicitly understood).
S3 is called the roll-up lattice of S. The top and bottom elements of S are denoted > and ⊥
respectively. The infimum of two genschemes G and H is denoted G ∧ H.

Let G, H be genschemes of S. We write G�H iff G�H and G 6= H. The covering relation
of � is denoted −� . That is, G−�H iff G � H and G � F � H implies F = G. We define:

• gen(G) := {H ∈ S3 | G−�H}, the direct generalizations of G, and

• spec(G) := {H ∈ S3 | H−�G}, the direct specializations of G.

2

Consider the roll-up lattice of Figure 3. The direct specializations of the genscheme
(Si , KB) are (Si , B), (Pa, DRIVE)(Si , KB), and (Pa, DIR)(Si , KB). The direct generalizations of
(Pa, DRIVE)(Pa, DIR) are (Pa, DRIVE) and (Pa, DIR).

7

4.2 Constructing Direct Generalizations

In the algorithm later on, we need to perform the following task: Given a relation scheme S,
a roll-up scheme (L,�), and a genscheme G of S, find all direct specializations and general-
izations of G. The following theorem gives a characterization of the relation −� in terms of
−·≺ , which can be used to compute the direct specializations and generalizations of a given
genscheme.

Theorem 2 Let S be a relation scheme over the roll-up scheme (L,�). Let G, H ∈ S3.
G−�H iff for some pair (A, l) ∈ G, H = b(G − {(A, l)}) ∪ {(A, l′) | l−·≺ l′}c.

Proof. See Appendix B. 2

That is, every direct generalization of a genscheme G can be obtained by first replacing
some element (A, l) of G by the set {(A, l′) | l−·≺ l′}, and then applying the b·c-operator. For ex-
ample, let us construct the direct generalizations of the genscheme (Pa, PATH)(Size, MB). Since
no level covers MB, we directly obtain (Pa, PATH) as one direct generalization. For the other di-
rect generalization, we replace (Pa, PATH) by (Pa, DRIVE)(Pa, DIR). The application of b·c does
not induce any changes, so the second direct generalization is (Pa, DRIVE)(Pa, DIR)(Size, MB).

For a second example, consider the genscheme (Item, BRAND)(Item, CATEGORY). Since BRAND
is only covered by INDUSTRY, one direct generalization is b(Item, CATEGORY)(Item, INDUSTRY)c,
which yields (Item, CATEGORY). Hence, (Item, BRAND)(Item, CATEGORY)−� (Item, CATEGORY).

4.3 Stratification

Each roll-up lattice can be layered in strata. More precisely, a unique number can be assigned
to every genscheme of a roll-up lattice, as follows: (a) the top is numbered 1, and (b) if G−� H
and H is numbered n, then G is numbered n + 1. In Figure 3, the number assigned to the
genschemes is indicated at the right. For example, the number of (Pa, DRIVE)(Si , KB) is 4.
Such numbering divides the roll-up lattice into different strata. In the algorithms later on,
this stratification will be used to traverse the roll-up lattice startumwise.

Definition 7 Let S be a relation scheme. A roll-up lattice S3 has a stratification iff for some
n ∈ N, there exists a numbered partition P1, . . . , Pn of S3, such that (a) P1 = {>}, and (b) for
each G, H ∈ S3, if G−�H and H ∈ Pi, then G ∈ Pi+1. 2

Theorem 3 Let S be a relation scheme over the roll-up scheme (L,�). The roll-up lattice
S3 has a unique stratification.

Proof. See Appendix C. 2

Note incidentally that not every complete lattice has a stratification.

5 RUDMINE

In this section, we consider the problem of finding all RUDs that hold in a database. We first
define support and confidence of RUDs, and then we introduce the problem RUDMINE.

8

5.1 Notions of Satisfaction: Support and Confidence

In data mining, one is typically not only interested in rules that fully hold, but also in rules
that almost hold. Therefore we define some relaxed notions of satisfaction that characterize
the “interestingness” of the rules.

Definition 8 Let R be a relation over the relation scheme S. Let G be a genscheme of S.

• The support of the genscheme G in R, denoted sp(G, R), measures the fraction of pairs
of tuples that are G-equivalent:

sp(G, R) :=
|{ {t, s} ⊆ R | t 6= s ∧ t ∼G s }|

|{ {t, s} ⊆ R | t 6= s }|
.

• The support of a RUD G → H in R, denoted sp(G → H, R), is simply the support of
the genscheme G in R.

• The confidence of a RUD G → H in R is defined as follows.

cf (G → H, R) :=
sp(G ∧ H, R)

sp(G, R)
.

2

Our notions of support and confidence are natural adaptations of the notions with the same
name used in association rule mining [AIS93]. Notice that the confidence of a RUD G → H
is the conditional probability that two distinct tuples are H-equivalent provided that they are
already G-equivalent; the support is the probability that the conditioning event occurs. Our
support and confidence refer to pairs of tuples, rather than individual tuples. This is because
only pairs of tuples can give evidence for or against a RUD. Contrast this with association
rules where individual customer transactions can give evidence for or against a rule.

In the definition of support, we consider only left-hand sides of RUDs. In this way, support
and confidence are independent—the support can be smaller or greater than the confidence.
This is a minor divergence from the association rule literature, where the support is defined
as the fraction of transactions satisfying both the left-hand and the right-hand side of a rule,
and the support cannot exceed the confidence. In our framework, multiplying support and
confidence gives the fraction of tuple pairs that are equivalent under both the left-hand and
the right-hand side of the RUD under consideration.

Theorem 4 gives an effective way for computing support and confidence.

Theorem 4 Let G, H be genschemes, and R a relation. Let ñ denote the number n(n − 1),
for each positive natural number n. Then:

sp(G → H, R) =

∑
S∈(R/∼G) |̃S|

|̃R|

cf (G → H, R) =

∑
S∈(R/∼G)

∑
T∈(S/∼H) |̃T |

∑
S∈(R/∼G) |̃S|

9

FILES (Pa, PATH) (Fn, FNAME) (Si , B)
C:\Research\ Paper.doc 41 590
C:\Teaching\ Course.doc 65 024
C:\Research\ Paper.ps 1 327 081
C:\Teaching\ Course.ps 134 302

D:\Private\ Resume.doc 754 348
D:\Private\ Letter.doc 251 738
D:\Teaching\ Program.exe 1 040 960
D:\Teaching\ Handouts.ps 370 079
D:\Teaching\ Slides.ps 418 325
D:\Teaching\ Spreadsheet.ps 93 428

Figure 4: Equivalence classes induced by (Pa, DRIVE) (double lines) and
(Pa, DRIVE)(Fn, EXTENSION) (single lines).

Proof. Straightforward. 2

Consider, for example, the relation FILES of Figure 2, and the RUD (Pa, DRIVE) →
(Fn, EXTENSION). Figure 4 shows the equivalence classes induced by (Pa, DRIVE) (double lines)
and (Pa, DRIVE)(Fn, EXTENSION) (single lines). There are two equivalence classes induced by
(Pa, DRIVE) with 4 and 6 elements respectively. So the support of the RUD under consideration

is 4̃+6̃

1̃0
= 7

15 . Both equivalence classes are further partitioned giving five equivalence classes

induced by (Pa, DRIVE)(Fn, EXTENSION). The confidence of the RUD under consideration is
2̃+2̃+2̃+1̃+3̃

4̃+6̃
= 2

7 .

5.2 RUDMINE

The problem RUDMINE is motivated by the following example. Assume a relation R over
the relation scheme

(Item, ITEM)(Day , DAY)(Store, STORE)(Price, CENT) .

An analyst wants to find out whether there are temporal or spatial patterns governing the
price. He decides that prices in integral Euros are sufficiently accurate to begin with. That
is, he is looking for “strong” RUDs of the form G → (Price, EURO) where G is any genscheme
that does not contain the attribute Price. An example is the RUD

(Item, ITEM)(Day , YEAR)(Store, AREA) → (Price, EURO) ,

expressing that the Euro price of an item does not vary within a year and area. By a strong
RUD, we mean a RUD of which the support and the confidence exceed specified threshold
values.

Definition 9 A RUDMINE problem is a quintet (S, H, s∗, c∗, R) where S is a relation scheme,
H is a genscheme of S, s∗ and c∗ are real numbers between 0 and 1, and R is a relation over
S.

The answer to the RUDMINE problem (S, H, s∗, c∗, R) is the set of all genschemes G of
S satisfying: sp(G → H, R) ≥ s∗, cf (G → H, R) ≥ c∗, and G and H have no attributes in
common. 2

10

So RUDMINE asks which RUDs with a fixed right-hand genscheme attain certain specified
support and confidence thresholds. Fixing the right-hand side in a RUDMINE problem is
intuitive: in the previous example, the analyst would not be interested in RUDs where the
level in the right-hand is coarser than EURO.

It is not hard to prove that the associated decision problem—i.e., the problem asking
whether a given RUDMINE problem has a nonempty solution—is NP-hard. The proof uses
a reduction from 3SAT along the lines of [WM98]. The exponentiality is in the number
of attributes; the problem can be solved in polynomial time in the number of tuples. An
algorithm for solving RUDMINE is described next.

6 Algorithm

6.1 Stratumwise Search

The input of the algorithm is a RUDMINE problem (S, H, s∗, c∗, R). Clearly, since no gen-
scheme in the solution can have attributes in common with H, every genscheme in the solution
must be a genscheme of S ′, where S′ is the relation scheme obtained from S by omitting all
attributes that occur in H. We know that all genschemes of S ′ are organized in the stratified
roll-up lattice S ′3 (Theorem 3). The main idea is to traverse S ′3 stratumwise, starting at the
top > and moving towards the bottom ⊥, and retain all genschemes of S ′3 that are solutions,
while avoiding visiting genschemes that cannot possibly be solutions based on the information
obtained so far.

The outline of the algorithm is given in Figure 5, and is an application of levelwise
search [MT97]. After the initialization, the lattice is traversed stratumwise in the outer while-
loop. The evaluation phase of the kth iteration determines which candidate genschemes at
stratum k are solutions. The subsequent candidate generation phase generates the genschemes
at stratum k + 1 that can possibly turn out to be solutions in the next iteration. The fol-
lowing monotonicity property will be used for pruning in the candidate generation phase: if
a genscheme G has insufficient support, then any genscheme F with F � G will also have
insufficient support.

Theorem 5 Let F, G be genschemes of the relation scheme S. If F �G, then for all relations
R over S, sp(F, R) ≤ sp(G, R).

Proof. Straightforward. 2

Hence, a genscheme F at level k + 1 cannot possibly be a solution if some of its direct
specializations G at level k fails the support threshold. The genschemes at level k with
sufficient support are collected in Lk. Moreover, it is clear that every solution G at level k +1
must be covered by a genscheme with sufficient support at level k (k > 1). The candidate
generation phase can thus be elaborated as shown in Figure 6.

The generation of direct specializations and generalizations is based on the property ex-
pressed by Theorem 2. There can be two distinct genschemes F1 and F2 in Lk that both cover
the same genscheme G; that is, G ∈ spec(F1) and G ∈ spec(F2). In that case we need to
avoid considering G twice, hence the addition “—unless G already tested—” in the algorithm
of Figure 6. In practice, this can be achieved by using a spanning tree of the roll-up lattice;
in this spanning tree, G will be a child of either F1 or F2, but not both. We illustrate this by
an example.

11

Input:

RUDMINE-problem (S, H, s∗, c∗, R)
Output:

The solution to the problem.
Method:

1. C1 = {>}
2. k = 1
3. while Ck 6= {} loop

4. % Evaluation phase
5. Lk = {}
6. for G ∈ Ck loop

7. if sp(G → H, R) ≥ s∗ then

8. Lk = Lk ∪ {G}
9. if cf (G → H, R) ≥ c∗ then output G

10. end-if

11. end-if

12. end-loop

13. % Candidate generation phase
14. Ck+1 = all genschemes at stratum k + 1 except those that cannot possibly be

solutions, given all information obtained so far.
15. k = k + 1
16. end-loop

Figure 5: Stratumwise algorithm for solving RUDMINE.

13. % Candidate generation phase
14.1 Ck+1 = {}
14.2 for F ∈ Lk loop

14.3 for G ∈ spec(F)—unless G already tested—loop

14.4 if every H ∈ gen(G) is in Lk then

14.5 Ck+1 = Ck+1 ∪ {G}
14.6 end-if

14.6 end-loop

14.7 end-loop

Figure 6: Elaboration of the candidate generation phase.

12

wC11

wC21
wC22

gC31
q wC32

wC33

gF41
q wC42

gC43
q

gN51
q gF52

q gN53
q

gN61
q gN62

q

gN71
q

@
@

@R

@
@

@R

@
@

@R

�
�

�	

�
�

�	

�
�

�	

�
�

�	

�
�

�	

�
�

�	

�
�

�	

�
�

�	

�
�

�	

�
�

�	

�
�

�	

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@@

Figure 7: Roll-up lattice. The full-circled genschemes satisfy the support threshold; the open-
circled genschemes falsify the support threshold. The vectors constitute the spanning tree.
Nodes labeled Cij are considered candidate solutions at level i. The nodes F41 and F52 are no
candidates because they are covered by some genscheme that is no solution. Nodes labeled N
are never visited because they are not covered by a solution in the spanning tree.

Consider the roll-up lattice in Figure 7. The thick vectors indicate the spanning tree.
We start with C1 = {C11}, and obtain L1 = {C11} as C11 turns out to satisfy the support
threshold. The first candidate generation phase yields C2 = {C21, C22}. In the subsequent
evaluation phase, both C21 and C22 turn out to satisfy the support threshold, hence L2 =
{C21, C22}. The next candidate generation phase yields C3 = {C31, C32, C33}. Note that C32

is generated only once, along the vector from C22 pointing to it; that is, C32 is not generated
from C21 because this edge of the roll-up lattice is not part of the spanning tree. Since C31 fails
the support threshold, we obtain L3 = {C32, C33}. In the subsequent candidate generation
phase, the genscheme F41 is considered no candidate because C31 is no solution. Hence,
C4 = {C42, C43}. Since C43 has insufficient support, we obtain L4 = {C42}. In the subsequent
candidate generation phase, the genscheme F52 is considered no candidate because F41 is no
solution. Hence, C5 = {} and the algorithm terminates.

A spanning tree can be defined easily by using a lexical order on genschemes. Among all
direct specializations of a given genscheme G, the one that is the smallest according to this
lexical order will point to G in the spanning tree.

6.2 Counting

In this subsection we explain how the functions sp(·, ·) and cf (·, ·) can be evaluated efficiently.
By Theorem 4, for calculating the support and the confidence of a rule G → H, we need

the number of elements in each class of the partitions induced by ∼G and ∼G∧H . In order
to calculate the number of elements in each class, we use histograms. The histogram of a
genscheme G stores the number of tuples in each partition induced by ∼G.

In Figure 8, the histograms of both (Pa, DRIVE) and (Pa, DRIVE)(Fn, EXTENSION) over the
relation FILES are given. Note the difference with Figure 4, where the partitions induced
by these two genschemes are given. The histograms exhibit a hierarchical structure. For the

13

(Pa, DRIVE) COUNT

C: 4
D: 6

(Pa, DRIVE) (Fn, EXTENSION) COUNT

C: .doc 2
.ps 2

D: .doc 2
.exe 1
.ps 3

(a) (b)

Figure 8: The histograms of the genschemes (Pa, DRIVE) and (Pa, DRIVE)(Fn, EXTENSION).

histogram of Figure 8 (b), for example, the main entries are C: and D:. The main entry C:

is further subdivided into subentries .doc and .ps. And so on. In our implementation, we
take advantage of this hierarchical structure and store histograms as trees. The hierarchical
structure is further exploited to reduce storage requirements by sharing main entries that are
common to two histograms. For example, the two histograms of Figure 8 could share the
entries for the common subscheme (Pa, DRIVE).

The right-hand genscheme is fixed in a RUDMINE problem. As a consequence, this right-
hand genscheme would appear in all histograms that are constructed for computing confi-
dences. To avoid this duplication of right-hand side data, we start by fragmenting the input
dataset according to the fixed right-hand genscheme. For example, for the RUDMINE problem
(S, (Fn, EXTENSION), s∗, c∗,FILES)), where S is the relation schema of FILES , the relation
FILES is first fragmented according to the fixed genscheme (Fn, EXTENSION). This is shown
in Figure 9 (left). From this fragmented input relation, we can construct fragments of the
histogram of G∧ (Fn, EXTENSION), for any genscheme G. For G = (Pa, DRIVE), the three frag-
ments of the histogram of (Pa, DRIVE)(Fn, EXTENSION) are shown in Figure 9 (right). These
fragments can then be merged to obtain all figures needed to compute the support and confi-
dence of the RUD (Pa, DRIVE) → (Fn, EXTENSION). The figure shows one merge operation; in
practice, merge can be done two histograms at a time. The main advantage of this fragmenta-
tion technique is a better usage of main memory. The original (unfragmented) histograms can
become very large as one goes down the roll-up lattice, and may not fit into main memory.
With fragmentation, we only need to store smaller fragments, and we can compute fragments
in main memory until it is filled.

Note incidentally that although the examples considered so far show RUDs with singleton
right-hand sides, the algorithm allows any number of attributes at the right-hand side of a
RUD.

7 Experiments

A prototype of our algorithm has been implemented in Visual C++ 6.0 and its performance
has been tested. In this section, we describe experiments on four different datasets: COUN-
TRIES, FILES, KDD98CUP, and SYNTH. The main characteristics of the datasets are given
in Table 1. The COUNTRIES dataset is rather small, but is included because of the many
natural roll-up functions and the interest of discovered rules. Although the FILES dataset
has only seven attributes, it is associated with a rich roll-up lattice. The KDD98CUP dataset
is large, but the number of roll-ups is limited. The SYNTH dataset is synthetically gener-
ated using the data generator of the IBM QUEST-group for transactional data [AMS+96],
as explained later on. Together the four datasets show a wide variety of characteristics. We
first describe the content and the discovered RUDs for each dataset, and then we provide

14

fragmented fragmented
relation histogram

.doc

C:\Research\
C:\Teaching\
D:\Private\
D:\Private\

count
−→

(Pa,DRIVE) COUNT

C: 2
D: 2

.ps

C:\Research\
C:\Teaching\
D:\Teaching\
D:\Teaching\
D:\Teaching\

count
−→

(Pa,DRIVE) COUNT

C: 2
D: 3

.exe

D:\Teaching\
count
−→

(Pa,DRIVE) COUNT

D: 1

↙ merge

(Pa,DRIVE) COUNT

C: 4
D: 6

Figure 9: Technique used for computing support and confidence.

Dataset Number of Number of
attributes tuples

COUNTRIES 12 195
KDD98CUP 100 97 000

FILES 7 45 000
SYNTH 200 100 000

Table 1: Size of the datasets.

performance figures.

7.1 Datasets and Mined RUDs

7.1.1 COUNTRIES

Each tuple of this dataset contains geographical, social, political, and other information per-
taining to a single country. It is based on the CIA factbook [FAC01], global statistics [van01],
and the MONDIAL database [May99]. The attributes and the most important roll-ups are:

Country The name of the country. Roll-ups to sub-continent (SUBCONT) and continent (CONT)
are natural.

Pop Population size. This attribute can be rolled up to the nearest 100 000 (100th), 1 000 000
(1mil), or 10 000 000 (10mil).

InfMor Infant mortality per 1000 births; rolls up to nearest 10, 20 (20), 30 (30).

Res Natural resources of the country; roll-ups to resources like GAS, OIL, FISH, LUMBER, COAL,
IRON, indicate whether the resource is present or not.

15

Econ Economical situation. This attribute contains data about the occupation of the in-
habitants of the country. The occupations are split into three categories: agriculture,
industry, and service. This attribute can be rolled up to the percentage of people work-
ing in service (SERV), industry (INDU), and agriculture (AGRI). These percentages again
can be rolled up to the nearest 10%, 20%, 30%,. . . We can also order the three categories
by importance (ORDER) or select the main occupation (MOCC).

Geo Geographical information; roll-ups to landscape elements like SEA, DES (for desert),
MOUNTAIN, indicate whether the element is present in the country.

Rel Religious situation in the country. This attribute rolls up to the percentages of muslims,
catholics, hindus. The percentages again roll up to the nearest 10%, 20%,. . .

PopGr Relative population growth in percent. Rolls up to .1%, 1% (1%), and to SIGN,
indicating whether the growth is positive or negative.

Area Area of the country in square miles, rolls up to 100 000 sq. miles (100thsq.m.), and
1 000 000 sq. miles (1milsq.m.).

GDP Gross product of the country. This can again be rounded to 10 000s (10th) and 100 000s
(100th).

PScore Score for different political parameters such as press freedom (PRESS), civil rights
(CIVIL), amount of democracy (DEMO) and corruption (CORR). The percentages roll up
to 10%, 20%. Civil rights rolls up to a qualitative ranking (CIVILHL).

HDI Score from the human development index. This score includes percentages for life
expectation (LIFE), GDP per inhabitant (GDP), education (EDU), and a total score (TOT).

Due to the many roll-ups, the roll-up lattice contained more than 36×1015 genschemes. Table 2
shows some RUDs of interest found in this dataset. The first three RUDs, for example, indicate
that countries that score similarly w.r.t. the presence of gas and population size (up to 10mil),
also score similarly w.r.t. gross product (up to 100th). The last rule

(GDP , 100th)(Area, 100thsq.m.) → (Pop, 10mil)

means that countries with the same GDP at the 100th level and the same area at the
100thsq.m. level, are likely (probability of 89%) to have the same population size (up to
10mil). This is a strong rule, because the probability that two randomly chosen countries
agree on population at level 10mil, is only 40%.

7.1.2 FILES

The dataset FILES contains characteristics of files on a number of PCs running Windows NT.
These data are fairly easy to obtain, roll-ups are natural, and our familiarity with the dataset
facilitated interpreting the output of the algorithm. Each file is described by one record in
the dataset. Attributes include:

Fn is the file name. The level EXTENSION denotes the file name’s extension. For example, the
file name document.txt rolls up to .txt in EXTENSION.

16

G → H sp(G → H) cf (G → H) cf ({} → H)

(Res, GAS) → (GDP , 100th) 57% 70% 59%
(Pop, 10mil) → (GDP , 100th) 40% 87% 59%
(Res, GAS)(Pop, 10mil) → (GDP , 100th) 29% 90% 59%
(Econ, MOCC)(InfMor , 30) → (HDScore, TOT50%) 14% 85% 58%
(Econ, MOCC)(InfMor , 30)(Geo, DES) → (HDScore, TOT50%) 12% 88% 58%
(Econ, MOCC)(InfMor , 30)(Rel , Mus)(Geo, DES) → (HDScore, TOT50%) 10% 90% 58%
(Econ, SERV20%)(InfMor , 30) → (HDScore, GDP50%) 12% 82% 53%
(Econ, MOCC)(InfMor , 30)(Geo, DES) → (HDScore, GDP50%) 12% 88% 53%
(Econ, MOCC)(Econ, AGRI20%)(InfMor , 30) → (HDScore, GDP50%) 10% 88% 53%
(Econ, MOCC)(Rel , Mus)(Geo, DES) → (HDScore, EDU50%) 21% 81% 62%
(Country , CONT) → (HDScore, LIFE50%) 21% 71% 56%
(InfMor , 30) → (HDScore, LIFE50%) 29% 73% 56%
(PopGr , SIGN)(InfMor , 30) → (HDScore, LIFE50%) 23% 73% 56%
(Econ, MOCC)(PScore, DEMO50%)(HDScore, GDP50%) → (InfMor , 30) 11% 64% 29%
(Country , CONT)(HDScore, GDP50%) → (PopGr , 1%) 14% 40% 24%
(HDScore, EDU10%) → (PopGr , 1%) 15% 40% 24%
(InfMor , 20) → (PopGr , 1%) 19% 41% 24%
(PScore, CORR20%)(Pop, 10mil) → (GDP , mil) 25% 100% 91%
(Econ, AGRI20%)(InfMor , 20) → (PScore, DEMO50%) 13% 64% 36%
(Econ, AGRI20%)(Area, 1milsq.m.)(Rel , Mus) → (PScore, CIVILRNK) 21% 70% 49%
(Geo, SEA)(InfMor , 30) → (PScore, PRESS50%) 10% 72% 49%
(Econ, AGRI20%)(Rel , Mus)(InfMor , 30) → (PScore, PRESS50%) 14% 76% 49%
(Pop, 10mil) → (Area, 1milsq.m.) 40% 87% 73%
(Pop, mil) → (Area, 1milsq.m.) 7% 95% 73%
(Area, 100thsq.m.) → (Pop, 10mil) 22% 78% 40%
(GDP , 10th) → (Pop, 10mil) 20% 86% 40%
(GDP , 100th)(Area, 100thsq.m.) → (Pop, 10mil) 18% 89% 40%

Table 2: RUDs for the COUNTRIES dataset.

Pa is the path to the file. The level DRIVE denotes the disk, and MAIN the main directory. For
example, the path C:\winnt\profiles\desktop\ rolls up to C: in DRIVE and to winnt

in MAIN.

Access is the last time the file was accessed.

Write is the last time the file was modified.

Attrib is an array of file properties, indicating whether or not the file is hidden, a subdirectory,
a system file, and so on. The level SD only retains the boolean property indicating
whether or not the file is a directory.

The roll-up lattice contained up to 64 800 genschemes. Table 3 shows some RUDs found in
this dataset.

As expected, many RUDs had low support. The support of a RUD with left-hand side
(Pa, DIR), for example, is the probability that two files belong to the same directory. If the
number of directories is large, and files are evenly distributed over directories, then the support
of the RUD is low.

More interesting than the support is the confidence. Some caution is in order when inter-
preting confidence measures, however. For example, RUDs with (Pa, DRIVE) at the right-hand
side happened to have a high confidence independent of the left-hand side, just because the
confidence of {} → (Pa, DRIVE) is high. The confidence of {} → (Pa, DRIVE) is the probability
that any two files reside on the same drive, which is high if there is only a small number of

17

G → H sp(G → H) cf (G → H) cf ({} → H)

(Pa, MAIN) → (Fn, EXTENSION) 0.10 0.26 0.056
(Access, WEEKDAY) → (Pa, DRIVE) 0.23 0.57 0.37
(Pa, MAIN) → (Access, WEEKDAY) 0.10 0.62 0.23
(Pa, MAIN) → (Write, YEAR) 0.10 0.65 0.26
(Pa, DRIVE)(Create, WEEKDAY) → (Write, YEAR) 0.14 0.53 0.26
(Pa, DRIVE)(Write, YEAR)(Access, YEAR) → (Attrib, SD) 0.11 0.96 0.90

Table 3: RUDs for the dataset FILES.

drives. The confidence of a RUD G → H has therefore to be compared with the confidence of
{} → H to verify its statistical significance.

The RUD (Pa, MAIN) → (Write, YEAR) says that files in the same main directory tend to
be last modified in the same year. This RUD has a confidence of 65% while the probability
that two randomly chosen files are last modified in the same year is only 26%.

7.1.3 KDD98CUP

The KDD98CUP dataset contains information about donations; the dataset is available in
the UCI KDD archive [Bay99]. Every record describes a donor. In a preprocessing phase, we
removed attributes having the same value in more than 95% of the tuples. In the experiments,
we varied the number of attributes from 10 to 100. Attributes include:

Dob is the date of birth. Classical temporal roll-ups apply, for example, to YEAR.

Income is the household income of the donor.

Wealth is a rating of the donors wealth status.

Hit is the number of times the donor has responded to a mail order offer other than PVA’s.
Each positive Hit-value rolls up to ‘Yes’ in the level YN, while the value 0 rolls up to
‘No.’ So YN indicates whether or not the donor has responded to an offer.

Dsrc is the source of overlay data, and indicates which third-party data source the donor
matched against.

Books is the number of times the donor has responded to mail order offers for books. Like
for the attribute Hit , each positive Books-value rolls up to ‘Yes’ in YN, while the value 0
rolls up to ‘No’.

Numchld is the number of children.

Table 4 shows some RUDs found in this dataset. There are a number of relatively strong RUDs
with Wealth at the right-hand side. For example, the RUD (Hit , YN)(Books, YN) Dsrc →
Wealth with a confidence of 63% and a support of 18% says that donors having the same
response behavior to other mailings and especially to mailings for books, and who match
against the same third-party data source, tend to have the same wealth rating.

7.1.4 SYNTH

The SYNTH dataset is generated using the IBM QUEST-group data generator. This data
generator originally generates data for transaction databases. We transform the transactional
data into a relational table with 200 attributes A1, . . . , A200 as follows.

18

G → H sp(G → H) cf (G → H) cf ({} → H)

(Dob, YEAR) → Wealth 0.07 0.50 0.27
(Income) → Wealth 0.14 0.46 0.27
(Hit , YN) → Wealth 0.51 0.47 0.27
(Books, YN) → Wealth 0.65 0.38 0.27
Dsrc → Wealth 0.32 0.41 0.27
(Hit , YN)(Books, YN) Dsrc → Wealth 0.18 0.63 0.27
Income (Books, YN) → Wealth 0.10 0.60 0.27
Income → Numchld 0.14 0.81 0.76

Table 4: RUDs for the dataset KDD98CUP.

1. We generate a transaction database with 1000 different items.

2. We group the 1000 items in 200 groups of 5. Let I i
1, I

i
2, . . . , I

i
5 be the five items associated

with the ith attribute.

3. The domain of each attribute Ai is the set of integers {0, 1, 2, . . . , 25 − 1}. For each
transaction, we construct a tuple t such that the jth bit in the binary representation of
t(Ai) indicates whether I i

j is present (value one) or absent (value zero) in the transaction
under consideration (1 ≤ j ≤ 5, 1 ≤ i ≤ 200).

4. As roll-up functions, we use bit-wise AND with randomly selected integers in {0, 1, 2, . . . ,
25 − 1}; e.g., the roll-up function Rb00101 is associated with the number 5 is defined as
follows: Rb00101(x) is the bit-wise AND between the binary representation of x and
b00101. For example, Rb00101(12) = b00101 AND b01100 = b00100 = 8. We do not use
all these functions, for each attribute we randomly take a selection of these 512 roll-up
functions.

The resulting synthetic dataset has a large number of attributes and roll-up functions, and a
complex roll-up lattice. The RUDs discovered in the SYNTH dataset are not shown because
they are artificial and lack meaning.

7.2 Performance Evaluation

It was investigated how the execution time behaves in function of the size of the dataset, the
size of the roll-up lattice, and the support threshold. Unless stated otherwise, the upper half
of each figure shows a graph for KDD98CUP (a) followed by a graph for FILES (b). The lower
half correspond to the SYNTH dataset restricted to 100 attributes (c) and 200 attributes (d)
respectively.

7.2.1 Scale-up

Figure 10 shows the execution time as we increase the number of tuples of the input dataset,
for different levels of threshold support. In Figure 10 (a), i.e., for the KDD98CUP data,
the fixed right-hand genscheme was Wealth; for Figure 10 (b), i.e., for the FILES data, the
fixed right-hand genscheme was (Fn, EXTENSION). The fixed right-hand genscheme for the
experiments with the SYNTH-dataset was always the same attribute. The algorithm turns
out to scale linearly for the three datasets. Note that the execution time is independent of
the threshold confidence, as the confidence is not used for pruning.

The support thresholds for the KDD98CUP data may seem rather high (45% and higher).
However, it can be easily verified that the support for a genscheme (A, l) cannot drop below

19

0

1000

2000

3000

4000

5000

6000

7000

8000

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

tim
e

(s
)

tuples

ts=0.5
ts=0.45

ts=0.6

0

50

100

150

200

250

300

5000 10000 15000 20000 25000 30000 35000 40000 45000

tim
e

(s
)

tuples

ts=0.1
ts=0.15

ts=0.3

(a) (b)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

tim
e

(s
)

tuples

ts=0.5
ts=0.6
ts=0.7

0

1000

2000

3000

4000

5000

6000

7000

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

tim
e

(s
)

tuples

ts=0.6
ts=0.7

(c) (d)

Figure 10: Execution time in function of the number of tuples.

20

0

50

100

150

200

250

1 2 3 4 5 6 7 8

tim
e

(s
)

attributes

0

500

1000

1500

2000

2500

3000

3500

20 40 60 80 100 120 140 160 180 200

tim
e

(s
)

attributes

ts=0.6, tuples=50000

(a) (b)

Figure 11: Execution time in function of the number of attributes, for FILES and SYNTH
datasets.

|R|
n

−1

|R|−1 ≈ 1
n , where R is the relation under consideration and n is the number of distinct A-

values in R. This minimal support is reached if the genscheme partitions R in n classes each
containing |R|

n tuples that agree on A. Since in the KDD98CUP dataset, n is smaller than 5
for most attributes, high support thresholds are reasonable. The supports in the experiments
with the SYNTH-dataset are high for the same reason.

Figure 11 shows the execution time as we increase the number of attributes that can appear
at the left-hand side. The fixed right-hand side in Figure 11 (a) was (Fn, EXTENSION). To
obtain the figures for the FILES dataset, we ran the algorithm on each dataset that can be
obtained from FILES by retaining only a subset of the attributes (always retaining the right-
hand attribute Fn, of course). We used all 45000 tuples and a support threshold of 0.1. The
graph shows that, for a given number of attributes, the execution time can vary considerably
depending on which set of attributes is retained. Attributes with a small number of distinct
values are generally easier to handle.

For the graph in Figure 11 (b), in the ith experiment, we only retain the first 20 × i
attributes (1 ≤ i ≤ 10). Unlike for the FILES dataset, there is no significant difference
between attributes of the SYNTH dataset, as was to be expected since the attributes are
synthetic.

7.2.2 Pruning

The size of the roll-up lattice is exponential in the number of attributes. In the worst case, our
algorithm has to evaluate every genscheme of the roll-up lattice. Therefore, it is significant
to ask how many nodes of the roll-up lattice have to be evaluated in practice. Figure 12
shows that the execution time drops rapidly as the support threshold increases. Figure 13
gives the explanation: increasing the support results in more genschemes of the roll-up lattice
being pruned away. The graph shows that the pruning strategy used is quite effective. Signif-
icantly, the genschemes that are pruned away are near the bottom of the roll-up lattice; these
genschemes have large histograms that would otherwise be expensive to evaluate. Figure 14
shows the execution time in function of the number of genschemes that are considered in the
evaluation phase of the algorithm. The execution time grows little faster than linear, even for
the SYNTH dataset, which has a rich roll-up lattice. The explanation for the super-linearity is

21

0

20000

40000

60000

80000

100000

120000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tim
e

(s
)

support

#attributes=26
#attributes=39

0

50

100

150

200

250

300

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

tim
e

(s
)

support

#tuples=45000
#tuples=35000
#tuples=25000
#tuples=20000

(a) (b)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

tim
e

(s
)

support

tuples=10000
tuples=50000

tuples=100000

0

2000

4000

6000

8000

10000

12000

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

tim
e

(s
)

support

tuples=10000
tuples=50000

tuples=100000

(c) (d)

Figure 12: Execution time in function of the support threshold.

22

0

2000

4000

6000

8000

10000

12000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ge

ns
ch

em
es

support

#attributes=26
#attributes=39

0

20

40

60

80

100

120

140

160

180

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

ge

ns
ch

em
es

support

(a) (b)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

ge

ns
ch

em
es

support

tuples=10000
tuples=50000

tuples=100000

0

20000

40000

60000

80000

100000

120000

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

ge

ns
ch

em
es

support

tuples=10000
tuples=50000

tuples=100000

(c) (d)

Figure 13: Number of genschemes considered in the evaluation phase in function of the support
threshold.

23

0

20000

40000

60000

80000

100000

120000

0 2000 4000 6000 8000 10000 12000

tim
e

(s
)

genschemes

#attributes=26
#attributes=39

0

50

100

150

200

250

300

0 20 40 60 80 100 120 140 160 180

tim
e

(s
)

genschemes

#tuples=45000
#tuples=35000
#tuples=25000
#tuples=20000

(a) (b)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

tim
e

(s
)

genschemes

tuples=10000
tuples=50000

tuples=100000

0

1000

2000

3000

4000

5000

6000

7000

0 2000 4000 6000 8000 10000 12000 14000

tim
e

(s
)

genschemes

tuples=10000
tuples=50000

tuples=100000

(c) (d)

Figure 14: Execution time in function of the number of genschemes considered in the evaluation
phase.

24

that while evaluating ever more genschemes, we are moving towards the bottom of the roll-up
lattice where the genschemes tend to have ever larger histograms.

8 Related Work

We relate our work to theoretical approaches on lattice traversal, to mining functional depen-
dencies, and to OLAP.

8.1 Lattice Traversal

Numerous data mining techniques involve traversing a lattice (or poset) of candidate patterns
in a systematic way; our algorithm for mining RUDs is no exception. It is interesting to
position our solution relative to the theoretical framework provided in [vNC98]. Assume a
lattice (P,�), with top element >, capturing some generalization order on patterns: p � q
means that p is more general than q. Elementary specialization steps are executed by applying
a so-called downward refinement operator : a mapping ρ : P → 2P such that for every p ∈ P
and q ∈ ρ(q), p � q. Starting from an initial pattern, the search space is traversed from general
to specific patterns by recursively applying ρ until a solution is found. For this search to be
effective, the downward refinement operator ρ must satisfy a number of desirable properties.
Notably, the downward refinement operator ρ is called:

• Locally finite if ρ(p) is finite and computable for each p ∈ P . Clearly, a refinement
operator without this property is of no practical use.

• Complete if for all p, q ∈ P such that p � q, there exists a finite sequence p =
p0, p1, . . . , pn = q such that pi ∈ ρ(pi−1) (i ∈ {1, 2, . . . , n}). When incomplete refinement
operators are used, it is not guaranteed that all patterns in the search space can be
attained. Nevertheless, if every “downward” search starts at the top element >, then
the notion of completeness can be relaxed: in that case it suffices that any pattern be
derivable from > to guarantee the derivability of all patterns in the search space. Note
that the algorithm outlined in Figure 5 starts at the top element of the roll-up lattice.

• Proper if for every p ∈ P and q ∈ ρ(p), p � q. Properness is interesting because it
prevents us from infinite loops.

A downward refinement operator satisfying each of these three properties is called ideal
in [vNC98]. It can be easily verified that our spec(·) operator is ideal in this respect. Nev-
ertheless, this notion of ideality does not capture every desirable aspect of refinement. For
example, it may be a waste of time and memory to visit the same pattern twice. We have
avoided such double computations by imposing a spanning tree on the roll-up lattice. When
using a spanning tree, p � q does not imply that q is reachable form p along the spanning
tree; nevertheless, q will be attainable from the top element. For example, in Figure 7, C21 is
more general than C32, but there is no path from C21 to C32 in the spanning tree.

The exploitation of (anti-)monotonicity properties to prune parts of the lattice is common
in many data mining tasks; it is the main principle underlying apriori [AS94], and has been
generalized and formalized in [MT97].

25

8.2 RUDs and Functional Dependencies

The discovery of FDs dates back to the eighties [MR86, MR87, BMT89, KMRS92], and has
gained renewed interest recently [HKPT99, LPL00, NC01]. A comprehensive overview of
FD mining can be found in [NC01]. There is an apparent relationship between FDs and
RUDs, which goes as follows. Let S be a relation scheme over the roll-up scheme (L,�), and
suppose we want to mine RUDs from a relation R over S, where a roll-up instance is implicitly
understood. One can “flatten” S and the associated roll-up scheme into a classical relation
scheme (i.e., a set of attributes), denoted flat(S). Correspondingly, R and the associated roll-
up instance are “flattened” in a relation, denoted flat(R). More precisely, the construction
is as follows: flat(S) is the smallest set of attributes such that for every (A, l) ∈ S, for
every level l′ ∈ L such that l � l′, flat(S) contains a new attribute that we will denote Al′ .
Correspondingly, flat(R) is the smallest set of tuples such that for every tuple t ∈ R, flat(R)
contains a tuple t′ such that for every (A, l) ∈ S, for every level l′ ∈ L such that l � l′,
t′(Al′) = I l′

l (t(A)). The problem of mining RUDs in R then corresponds to the problem of
mining FDs in flat(R): if R satisfies the RUD (A, l) → (B, l′), then flat(R) satisfies the FD
Al → Bl′ ; the extension to RUDs containing more than two attributes, is straightforward.

However, two caveats are in place. First, it can be easily verified that if Al, Al′ with l ≺ l′

are two distinct attributes in flat(S), then flat(R) must necessarily satisfy the FD Al → Al′ .
Although FDs between distinct attributes are not trivial in general, triviality of Al → Al′

follows from our flattening construction. However, since existing algorithms for mining FDs
are not developed to capture roll-up semantics, they must and will “discover” such trivialities.
Our RUDMINE problem resembles the problem of discovering previously unknown FDs from
relations when a set of known FDs has already been given. We are not aware of FD mining
algorithms that exploit FDs that are given in advance. Second, different strength measures for
FDs have been used by different authors, and FD mining algorithms obviously depend on the
measure used. For example, an FD mining algorithm developed for the discovery of “exact”
FDs is unlikely to be capable of discovering approximate FDs according to some relaxed notion
of satisfaction. For both reasons, an experimental comparison of our RUD mining algorithm
with pure FD mining algorithms seems inappropriate.

We believe that our notions of support and confidence are natural approximation measures
for dependencies, as they allow a straightforward probabilistic interpretation: the confidence of
a RUD G → H is the conditional probability that two distinct tuples are H-equivalent provided
that they are already G-equivalent; the support is the probability that the conditioning event
occurs. Our confidence measure is closely related to the approximation measure g1 for FDs
in [KM95]. Another natural approximation measure for FDs is in terms of the tuples that
need to be deleted to bring a relation in accordance with the FDs [HKPT99].

8.3 OLAP

RUDs are intimately related to roll-up operations in OLAP. A motivation of RUD mining is
to tell users which roll-up operations are beneficial. Our notion of roll-up lattice generalizes
the lattice framework for OLAP provided in [HRU96]. Many computational issues involved
in the algorithm to solve a RUDMINE problem are similar to those in computing data cubes.
For example, Harinarayan et al. [HRU96] study the selection of views to materialize for a
data cube. The views typically group data by one or more dimensions, and then apply a
distributive set function on each group so obtained. Rather than distributive, our notion of
confidence is an example of a holistic set function [GCB+97]. Little work has addressed data

26

cubes that compute a holistic set function.

9 Conclusions and Future Work

Roll-up dependencies (RUDs) generalize FDs for domains (called levels) that are related by
a partial order that captures roll-up semantics. From this partially ordered set of levels we
derive a complete roll-up lattice. Our construct of roll-up lattice is a generalization of several
earlier proposals. We have shown that the roll-up lattice in our framework can be divided into
strata. This allows levelwise search.

RUDs have a promising application potential in database design, data mining, and OLAP.
We addressed the problem RUDMINE: discover RUDs whose support and confidence exceed
certain specified threshold values. We can show that the problem is NP-hard in the schema
size, but polynomial in the number of tuples.

We have implemented and tested an algorithm for mining RUDs. Experimental results
show that the execution time is linear in the number of tuples. If the threshold support
is set low, the program may have to evaluate each genscheme of the roll-up lattice, whose
size is exponential in the number of attributes. The algorithm proceeds in an apriori-like
way, traversing the roll-up lattice stratumwise and using support as a pruning criterion. The
lattice traversal is optimized by proceeding along a spanning tree. Histograms are used to
efficiently calculate confidence and support values; several optimizing techniques, like sharing
and fragmentation of histograms, have been implemented.

An interesting and important research goal is to further generalize our roll-up framework,
and to study the impact of such generalizations on RUDs. For example, instead of saying
that two prices in cents roll up to the same integral Euro, we may wish to express that the
distance between two cent prices is less than one Euro. Some initial results in this direction
are presented in [BW01].

A more incremental approach to RUD mining may be useful for OLAP. Mined RUDs can
be used first to select good data cube dimensions, and should then be maintained incrementally
during further modifications of the cubes. Incremental mining has already been addressed for
FDs [Bel95, Sch93].

Another interesting research topic is the use of RUDs in (multi-dimensional) database
design. Our work was inspired by the work on temporal FDs (TFDs) and temporal nor-
malization of Wang et al. [WBBJ97], and the TFDs proposed by ourselves [Wij99]. Loosely
speaking, a TFD corresponds to a RUD where roll-up is only provided for one single dedicated
timestamping attribute.

References

[AIS93] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets
of items in large databases. In Proc. ACM SIGMOD Int. Conf. Management of
Data, pages 207–216, Washington, D.C., 1993.

[AMS+96] R. Agrawal, H. Manilla, R. Srikant, H. Toivonen, and A.I. Verkamo. Fast discovery
of association rules. In U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthu-
rusamy, editors, Advances in Knowledge Discovery and Data Mining, chapter 12,
pages 307–328. AAAI Press/The MIT Press, 1996.

27

[AS94] A. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc.
Int. Conf. Very Large Data Bases, pages 487–499, Santiago, Chile, 1994.

[Bay99] Stephen Bay. The UCI KDD archive, http://kdd.ics.uci.edu/. University of
California, Irvine, Dept. of Information and Computer Sciences, 1999.

[BDE+98] C. Bettini, C.E. Dyreson, W.S. Evans, R.T. Snodgrass, and X.S. Wang. A glossary
of time granularity concepts. In O. Etzion, S. Jajodia, and S. Sripada, editors,
Temporal Databases: Research and Practice, number 1399 in LNCS State-of-the-
art Survey, pages 406–413. Springer-Verlag, 1998.

[Bel95] S. Bell. Discovery and maintenance of functional dependencies by independencies.
In Proceedings of the Workshop on Knowledge Discovery in Databases, pages 27–
32. AAAI Press, 1995.

[BMT89] D. Bitton, J. Millman, and S. Torgersen. A feasibility and performance study of
dependency inference. In Proc. IEEE Int. Conf. on Data Eng., pages 635–641, Los
Angeles, CA, 1989.

[BW01] R. Bassée and J. Wijsen. Neighborhood dependencies for prediction. In Proc. Fifth
Pacific-Asia Conference on Knowledge Discovery and Data Mininig, PAKDD 2001,
LNAI 2053, pages 562–567. Springer, 2001.

[CT97] Luca Cabibbo and Riccardo Torlone. Querying multidimensional databases. In
Sixth Int. Workshop on Database Programming Languages, pages 253–269, 1997.

[DP90] B.A. Davey and H.A. Priestley. Introduction to Lattices and Order. Camebridge
University Press, 1990.

[FAC01] The world factbook 2001, http://www.cia.gov/cia/publications/factbook,
2001.

[GCB+97] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao,
F. Pellow, and H. Pirahesh. Data cube: A relational aggregation operator general-
izing group-by, cross-tab, and sub-totals. Data Mining and Knowledge Discovery,
1:29–53, 1997.

[Han97] J. Han. OLAP mining: An integration of OLAP with data mining. In Proceedings
of the 7th IFIP 2.6 Working Conference on Database Semantics (DS-7), pages 1–9,
1997.

[HKPT99] Ykä Huhtala, Juha Kärkkäinen, Pasi Porkka, and Hannu Toivonen. TANE: An
efficient algorithm for discovering functional and approximate dependencies. The
Computer Journal, 42(2):100–111, 1999.

[HRU96] V. Harinarayan, A. Rajaraman, and J.D. Ullman. Implementing data cubes effi-
ciently. In Proc. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, pages 205–216, Montreal, Canada, 1996.

[KM95] J. Kivinen and Heikki Mannila. Approximate inference of functional dependencies
from relations. Theoretical Computer Science, 149:129–149, 1995.

28

[KMRS92] M. Kantola, H. Mannila, K.-J. Räihä, and H. Siirtola. Discovering functional
and inclusion dependencies in relational databases. Internat. Journal of Intelligent
Systems, 7:591–607, 1992.

[LPL00] Stephane Lopes, Jean-Marc Petit, and Lotfi Lakhal. Efficient discovery of func-
tional dependencies and Armstrong relations. In Proc. 7th Int. Conf. on Extending
Database Technology (EDBT 2000), LNCS 1777, pages 350–364. Springer, 2000.

[May99] Wolfgang May. Information extraction and integration with Florid: The Mon-

dial case study. Technical Report 131, Universität Freiburg, Institut für Infor-
matik, 1999.

[MR86] Heikki Mannila and Kari-Jouko Räihä. Design by example: An application of
armstrong relations. Journal of Computer and System Sciences, 33(2):126–141,
October 1986.

[MR87] Heikki Mannila and Kari-Jouko Räihä. Dependency inference. In Peter M. Stocker,
William Kent, and Peter Hammersley, editors, Proc. Int. Conf. Very Large Data
Bases, pages 155–158, Brighton, England, 1–4 September 1987. Morgan Kaufmann.

[MT97] H. Mannila and H. Toivonen. Levelwise search and borders of theories in knowledge
discovery. Data Mining and Knowledge Discovery, 1(3):241–258, 1997.

[NC01] Noel Novelli and Rosine Cicchetti. FUN: An efficient algorithm for mining func-
tional and embedded dependencies. In ICDT, volume 1973 of Lecture Notes in
Computer Science, pages 189–203. Springer, 2001.

[Sch93] J. C. Schlimmer. Efficiently inducing determinations: A complete and system-
atic search algorithm that uses optimal pruning. In Proc. Int. Conf. on Machine
Learning, pages 284–290, 1993.

[van01] Johan van der Heyden. Global statistics, http://www.geohive.com/. GeoHive,
2001.

[vNC98] Patrick R. J. van der Laag and Shan-Hwei Nienhuys-Cheng. Completeness and
properness of refinement operators in inductive logic programming. Journal of
Logic Programming, 34(3):201–225, 1998.

[WBBJ97] X.S. Wang, C. Bettini, A. Brodsky, and S. Jajodia. Logical design for tem-
poral databases with multiple granularities. ACM Trans. on Database Systems,
22(2):115–170, 1997.

[Wij99] J. Wijsen. Temporal FDs on complex objects. ACM Trans. on Database Systems,
24(1):127–176, 1999.

[WM98] J. Wijsen and R. Meersman. On the complexity of mining quantitative association
rules. Data Mining and Knowledge Discovery, 2(3):263–281, 1998.

[WN99] J. Wijsen and Raymond T. Ng. Temporal dependencies generalized for spatial and
other dimensions. In Proc. Int. Workshop on Spatio-Temporal Database Manage-
ment (STDBM’99), LNCS 1678, pages 189–203. Springer, 1999.

29

[WNC99] J. Wijsen, R.T. Ng, and T. Calders. Discovering roll-up dependencies. In Proc.
ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, pages 213–222,
San Diego, CA, 1999.

A Proof of Theorem 1

Proof. Let G, H be genschemes of a relation scheme S. We write G ⊕ H for the smallest
set containing (A, l) if G contains (A, g) for some level g � l, and H contains (A, h) for some
level h � l.

Let S3 be the set of all genschemes of S ordered by �. It suffices to show two things:
First, that (S3, �) is a partially ordered set; and second, that inf{G, H} and sup{G, H} are
defined for all genschemes G and H of S. From this and the obvious fact that S3 is finite, it
follows that (S3, �) is a complete lattice.

We first show that (S3, �) is a partially ordered set. Proving reflexivity and transitivity
is straightforward. For antisymmetry, assume G and H are genschemes of S with G � H and
H � G. We need to show G = H, i.e., G ⊆ H and H ⊆ G. We show G ⊆ H; the proof of
H ⊆ G is symmetrical. Let (A, l) ∈ G. It suffices to show (A, l) ∈ H. Since H �G, H contains
(A, h) for some level h with h � l. Since G�H, G contains (A, g) for some level g with g � h.
So G contains both (A, l) and (A, g) with g � h � l. By the definition of genscheme, g = l,
hence h = l. Consequently, H contains (A, l).

We next show that inf{G, H} and sup{G, H} are defined for all genschemes G, H of S.
We show that inf{G, H} = bG ∪ Hc. Clearly, bG ∪ Hc � G and bG ∪ Hc � H. Let F be a
genscheme of S with F �G and F �H. We need to show F � bG ∪ Hc. Let (A, l) ∈ bG ∪ Hc.
Hence, (A, l) ∈ G or (A, l) ∈ H. Since F � G and F � H, F contains (A, g) for some level
g with g � l. Since (A, l) is an arbitrary member of bG ∪ Hc, it is correct to conclude
that F � bG ∪ Hc. Finally, we show that sup{G, H} = bG ⊕ Hc. Clearly, G � bG ⊕ Hc
and H � bG ⊕ Hc. Let F be a genscheme of S with G � F and H � F . We need to show
bG ⊕ Hc� F . Let (A, l) ∈ F . Since G � F and H � F , G contains (A, g) for some level g � l,
and H contains (A, h) for some level h � l. Hence, G ⊕ H contains (A, l). Hence, bG ⊕ Hc
contains (A, f) for some level f � l. Since (A, l) is an arbitrary member of F , it is correct to
conclude that bG ⊕ Hc � F . This concludes the proof. 2

B Proof of Theorem 2

Lemma 1 If h ≺ l, (A, l) ∈ G, and G � H, then (A, h) 6∈ H.

Proof. Assume h ≺ l, (A, l) ∈ G, and G � H. Suppose (A, h) ∈ H. Since G � H, G contains
(A, g) for some level g � h. From g � h and h ≺ l, it follows g ≺ l. But then G contains both
(A, g) and (A, l) with g ≺ l, a contradiction. We conclude by contradiction that (A, h) 6∈ H. 2

Lemma 2 If F � G � H, then H contains no element of F − G.

Proof. Assume F � G � H. Assume the existence of an element (A, l) such that (A, l) ∈ H,
(A, l) ∈ F , but (A, l) 6∈ G. Since G � H, G must contain (A, h) for some level h � l. Since
(A, l) 6∈ G, h 6= l, hence h ≺ l. From h ≺ l, (A, l) ∈ F , and F � G, it follows by Lemma 1

30

that (A, h) 6∈ G, a contradiction. We conclude by contradiction that H contains no element
of F − G. 2

Definition 10 Let G be a genscheme of a relation scheme S. Let (A, l) ∈ G. We write
G�(A,l) for the genscheme b(G − {(A, l)}) ∪ {(A, l′) | l−·≺ l′}c. 2

Lemma 3 Let (A, l) ∈ G. Then G � G�(A,l).

Proof. Since G 6= G�(A,l) is obvious, it suffices to show G�G�(A,l). Assume (C, h) ∈ G�(A,l).
It suffices to show that G contains (C, g) for some level g � h. If C 6= A, then (C, h) ∈ G
follows from the definition of G�(A,l). If C = A, then either (A, h) ∈ G or l−·≺h, and the
desired result follows immediately. 2

Lemma 4 Let (A, l), (C, g) ∈ G. If (C, g) 6∈ G�(A,l), then (A, l) = (C, g).

Proof. Assume (A, l), (C, g) ∈ G and (C, g) 6∈ G�(A,l). C = A follows immediately from the
definition of G�(A,l). Suppose l 6= g. Then G�(A,l) contains (A, h) for some level h ≺ g, such
that the application of b·c in the computation of G�(A,l) has the effect of removing (A, g). From
h ≺ g, (A, g) ∈ G, and G � G�(A,l) (Lemma 3), it follows by Lemma 1 that (A, h) 6∈ G�(A,l),
a contradiction. We conclude by contradiction that l = g. This concludes the proof. 2

Lemma 5 If (A, l) ∈ G and l ≺ h, then G�(A,l) contains (A, g) for some level g � h.

Proof. Assume (A, l) ∈ G and l ≺ h. Then there exists some level l′ such that l−·≺ l′ � h.
If (A, l′) ∈ G�(A,l), then the desired result obtains vacuously. Next assume (A, l′) 6∈ G�(A,l).
Hence, G�(A,l) must contain some element (A, g) with g ≺ l′, such that the b·c operator in
the computation of G�(A,l) has the effect of removing (A, l′). It follows that G�(A,l) contains
(A, g) with g � h. 2

Lemma 6 If G−� H then H = G�(A,l) for some (A, l) ∈ G.

Proof. Assume G−� H. G 6⊆ H, or else H � G. Let (A, l) ∈ G − H. We prove G�(A,l) = H.
Since G−�H and G � G�(A,l) (Lemma 3), it suffices to show G�(A,l) � H. Let (C, h) ∈ H.
Since G � H, G contains a pair (C, g) for some level g � h. It suffices to show that G�(A,l)

contains a pair (C, f) with f � h. If G�(A,l) contains (C, g) then the desired result follows
immediately. Next assume (C, g) 6∈ G�(A,l). By Lemma 4, (C, g) = (A, l). Since (A, h) ∈ H,
(A, l) 6∈ H, and g = l � h, we conclude l ≺ h. By Lemma 5, G�(A,l) will contain some pair
(A, f) with f � h. 2

The proof for Theorem 2 can now be given.
Proof. Only-if part. Immediately by Lemma 6. If part. Suppose that (A, l) ∈ G. Suppose
not G−�G�(A,l). Since G � G�(A,l) (Lemma 3), there exists a generalization scheme F with
G−�F � G�(A,l). By Lemma 6, F = G�(C,g) for some (C, g) ∈ G. Clearly, (A, l) 6= (C, g),
or else F = G�(A,l), a contradiction. Suppose (C, g) ∈ G�(A,l). Since F � G�(A,l), F con-
tains a pair (C, f) with f � g. We have f 6= g, since (C, g) 6∈ F , hence f ≺ g. By Lemma 1,
(C, f) 6∈ F , a contradiction. We conclude by contradiction that (C, g) 6∈ G�(A,l). By Lemma 4,
(C, g) = (A, l), again a contradiction. We conclude by contradiction that G−�G�(A,l). 2

31

C Proof of Theorem 3

The following lemma implies that in the roll-up lattice, any path towards the top has to respect
all levels of the roll-up scheme. More precisely, if G1−�G2−� . . .−�Gn−�> are genschemes,
and (A, l) ∈ G1 and l ≺ h, then (A, h) occurs in some Gi (i ∈ [1..n]).

Lemma 7 If G1−� G2−� . . .−� Gn are genschemes, and (A, l) ∈ G1, and l ≺ h, then either
(A, h) ∈ Gi for some i ∈ [1..n], or Gn contains (A, g) for some level g � h, or both.

Proof. Proof by induction on n. The base case n = 1 is trivial. For the induction step, assume
G1−� G2−� . . .−� Gk are genschemes, (A, l) ∈ G1, and l ≺ h. Further assume (A, h) 6∈ Gi for
all i ∈ [1..k]. It suffices to show that Gk contains (A, g) for some level g � h. Since (A, h) 6∈ Gi

for all i ∈ [1..k − 1] is obvious, it follows by the induction hypothesis that Gk−1 contains (A, f)
for some level f with f ≺ h. Two cases can occur.

1. Gk = Gk−1
�(A,f). By Lemma 5, Gk contains (A, g) for some level g � h.

2. Gk 6= Gk−1
�(A,f). By Lemma 6, Gk = Gk−1

�(C,e) for some (C, e) ∈ Gk−1. If (A, f) 6∈ Gk,
then (A, f) = (C, e) by Lemma 4, hence Gk = Gk−1

�(A,f), a contradiction. We conclude
by contradiction that (A, f) ∈ Gk, where f � h.

2

Lemma 8 If G−� H then G − H is a singleton and—let G − H be the singleton {(A, l)}:

H = G�(A,l) .

Proof. Assume G−� H. By Lemma 6, H = G�(A,l) for some (A, l) ∈ G. Clearly, (A, l) ∈
G − H. Suppose the existence of (C, g) with (C, g) ∈ G but (C, g) 6∈ H. By Lemma 4,
(A, l) = (C, g). This concludes the proof. 2

Lemma 9 Consider the generalization schemes: G = G1−�G2−� . . .−�Gn = H and G =
H1−� H2−� . . .−�Hm = H. Then

⋃n
i=1 Gi =

⋃m
j=1 Hj.

Proof. We prove
⋃n

i=1 Gi ⊆
⋃m

j=1 Hj . The proof runs by induction on n. The base case

n = 1 is obvious. For the induction step, assume
⋃k−1

i=1 Gi ⊆
⋃m

j=1 Hj . Let (A, l) ∈ Gk. It
suffices to show (A, l) ∈

⋃m
j=1 Hj . If (A, l) ∈ Gi for some i ∈ [1..k − 1], then the desired

result obtains obviously. We next assume (A, l) 6∈ Gi for all i ∈ [1..k − 1]. By Theorem 2,
it is correct to assume that Gk = Gk−1

�(A,g) for some (A, g) ∈ Gk−1 with g−·≺ l. Since
Gk−1 �Gk �H and (A, g) ∈ Gk−1 −Gk, it follows by Lemma 2 that (A, g) 6∈ H. On the other
hand, since (A, g) ∈ Gk−1, it follows by the induction hypothesis that (A, g) ∈ Hj for some
j ∈ [1..m]. Hence, we can assume the existence of some p ∈ [1..m − 1] such that (A, g) ∈ Hp

but (A, g) 6∈ Hp+1. Since Hp−� Hp+1, Hp+1 = Hp
�(A,g) by Lemma 8. If (A, l) ∈ Hp+1, the

desired result obtains vacuously. Next assume (A, l) 6∈ Hp+1. Then since g−·≺ l, we can assume
the existence of some level f with (A, f) ∈ Hp and f ≺ l so that the application of b·c in the
computation of Hp+1 has the effect of removing (A, l). Since

• Hp−� Hp+1−� . . .−�Hm = H,

32

• (A, f) ∈ Hp, and

• f ≺ l,

it follows by Lemma 5 that either (A, l) ∈ Hj for some j ∈ [p..m], or H contains (A, e) for
some e � l, or both. Assume some level e with e ≺ l. Since (A, l) ∈ Gk and Gk �H, it follows
by Lemma 1 that H does not contain (A, e). It follows (A, l) ∈ Hj for some j ∈ [p..m]. To
conclude,

⋃n
i=1 Gi ⊆

⋃m
j=1 Hj . By symmetry,

⋃n
i=1 Gi =

⋃m
j=1 Hj . 2

Theorem 6 Consider the following chain of genschemes G1−�G2−� . . .−�Gn. Then |
⋃n

i=1 Gi| =
|Gn| + n − 1.

Proof. We show that |
⋃n

i=k Gi| = |Gn| + n − k for each k ∈ [1..n]. Proof by induction
on decreasing k. The base case k = n is trivial. For the induction step, |

⋃n
i=k−1 Gi| =

|Gk−1 ∪
⋃n

i=k Gi|. By Lemma 8, Gk−1 −Gk is a singleton (say {(A, l)}), and Gk = Gk−1
�(A,l).

Moreover, by Lemma 2, (A, l) 6∈ Gj for all j ≥ k. Hence, |
⋃n

i=k−1 Gi| = 1 + |
⋃n

i=k Gi|. By the
induction hypothesis, |

⋃n
i=k Gi| = |Gn| + n − k. Hence, |

⋃n
i=k−1 Gi| = |Gn| + n − (k − 1). 2

Corollary 1 Consider the generalization schemes: G = G1−�G2−� . . .−� Gn = H and G =
H1−� H2−� . . .−�Hm = H. Then m = n.

Proof. By Lemma 9,
⋃n

i=1 Gi =
⋃m

j=1 Hj . Hence |
⋃n

i=1 Gi| = |
⋃m

j=1 Hj |. By Theorem 6,
|H| + n − 1 = |H| + m − 1. Hence, m = n. 2

Finally, we obtain a proof for Theorem 3.
Proof. Consider the family of sets defined as follows:

• P1 = {>}

• for each i ≥ 2, Pi is the smallest set containing G ∈ S3 if there exist i genschemes
G1, . . . , Gi such that G = G1−� G2−� . . .−� Gi−1−�Gi = >.

Since G � > for each G ∈ S3, every genscheme will be in at least some Pi. Moreover, by
Corollary 1, no G ∈ S3 can be in Pi and Pj unless i = j. So the non-empty sets P1, . . . , Pn

are a partition of S3. To see that this partition is a stratification, assume F−� G and G ∈ Pi.
Hence, there exist i genschemes G1, . . . , Gi such that G = G1−� G2−� . . .−� Gi−1−�Gi = >.
Since F−� G1−�G2−� . . .−�Gi−1−� Gi = >, it follows F ∈ Pi+1. 2

33

